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Abstract 

We highlight the impact of Ultrahigh Vacuum (UHV)-born surface science on modern 

electrocatalysis. The microscopic, atomic level picture of surface adsorption and reaction, which was 

developed in the surface science community in decades of systematic research on single crystals in 

UHV, has meanwhile become state-of-the-art also in electrochemistry. For the example of CO on 

Pt(111) single crystals, which has been extensively studied at the solid/gas and the solid/liquid 

interface using atomic resolution scanning tunnelling microscopy (STM), we highlight how both 

interfaces may have even more in common than often assumed. We then illustrate how planar 

model surfaces such as mono- and bimetallic single crystals and surface alloys, prepared and 

thoroughly analysed in UHV, enabled a systematic search for improved electrocatalysts. Surface 

alloys, thermodynamically more stable than foreign metal islands, are a particularly important sub-

group of model surfaces, which so far have only been fabricated in UHV.  

We also flag that model surfaces may not always assume the structure anticipated for the 

respective experiment, regardless of their preparation in UHV or by electrochemical methods. 

“Accidental” surface alloying may be more common than often assumed, leading to 

misinterpretations of the structure-property relationships targeted in many model studies. We 

highlight that controlled surface alloy formation should be a key step in any model study looking at 

bimetallic systems in order to get an idea what the effect of unintended alloying could possibly be, 

and to cross-check whether alloyed surfaces may potentially be the better electrocatalysts in the 

first place.  

1 Introduction 
Surface science under vacuum conditions pioneered the research on adsorption and reaction at 

solid surfaces; these phenomena are monitored by an ever increasing pool of spectroscopic, 

diffraction, and imaging techniques. A microscopic picture of adsorption and reaction, including the 

local structure and chemistry of the involved surface, was developed in that community. In 

electrocatalysis, the accuracy of the microscopic picture quickly advanced once experiments at well-

defined single crystals became possible. Those crystals initially had to be prepared in UHV [1,2], but 



methods of fabricating well-oriented single crystals through flame annealing soon became dominant 

[3]. UHV-based surface analysis instruments paved the way for chemical and structural insights into 

electrocatalytically relevant adlayers. Hubbard's and Yeager's groups pioneered those ex-situ 

experiments that relied on a clean transfer from an electrochemical compartment into a UHV 

chamber [4–8][9][10]. Meanwhile, the portfolio of in-situ imaging and spectroscopy methods grew 

to an extent that made many ex-situ methods redundant. However, we will highlight that certain 

irreversible changes in the (non-periodic) surface morphology, under influence of the 

electrochemical potential, require high-resolution microscopy that so far is still most easily 

performed ex-situ and in UHV.  

This paper will focus on the relevance of UHV for the research on the structural and chemical 

optimization of bimetallic electrocatalysts. As in heterogeneous catalysis [11–14], the intermixing of 

various metals is systematically utilized to improve the electrocatalytic activity of electrodes [7,15–

17]. In a systematic optimization strategy, the interplay of a number of electronic and geometric 

effects must be understood and considered. For instance, variations in the local adsorption 

properties due to changes in the electronic structure, which often result from compression or 

expansion of the crystal lattice (strain effects)[18–24] or from the intermetallic bonds in the 

(near-)surface region (ligand effects) [12,25] need to be considered. Another key factor is the space 

requirement for adsorbed species during the distinct elementary steps of surface reactions, which is 

referred to as the geometric ensemble effect [12,25–27]. Reaction paths requiring more space for 

adsorbed reactants or intermediates can be suppressed by mixtures of active and inactive metals, 

thus increasing the selectivity towards those pathways that require less space. Apart from the 

adsorption properties for individual species, many reactions require sites for two different reactants 

in direct vicinity, e.g., for a Langmuir-type reaction mechanism. On a bimetallic surface, the different 

reactants may be specifically stabilized by different sites (bifunctional mechanism). On real bimetallic 

surfaces, these effects usually occur simultaneously. In recent years, advances in theoretical and ex-

perimental methods have increasingly improved the molecular scale understanding of the separate 

phenomena themselves and also their interplay.  



 

Figure 1-1. Bimetallic nanoparticles (a-c) and corresponding planar model systems (d-i). 
 

Though technically applicable electrocatalysts usually consist of small particles, many important 

insights are derived in studies at planar model systems [13,16,25,28,29,30]. Three generic types of 

bimetallic particles and corresponding planar model systems are assembled in Figure 1-1. Foreign 

metal modified nanoparticles (Figure 1-1a) can be modelled by metal single crystals covered by 

islands (Figure 1-1d) or thicker films (Figure 1-1g) of the respective foreign metal [31]. Alloy particles 

are often represented by corresponding bulk alloys [32–36] or by thin surface alloys [29,37–39]. 

Many bimetallic particles are (deliberately) enriched in one component at their surface ("core-shell" 

particles, see (Figure 1-1c), which in model studies can be mimicked by foreign metal films on bulk 

alloys (Figure 1-1f) or (sub-)surface alloys (Figure 1-1i). 

 Optimization of the electrodes through chemical and structural modification demands a certain 

degree of understanding of the respective reactions at chemically and structurally homogeneous 

surfaces. Many important lessons are still learned by coordinated modelling and experiments at 

seemingly simple model systems such as the oxidation/evolution of hydrogen or oxygen, or the 

oxidation of carbon monoxide on monometallic single crystals. Platinum and ruthenium single 

crystals turned out to be excellent starting points, not only because these two elements and their 

alloys were known as powerful fuel-cell electrocatalysts, but also because their adsorption 

properties for key species like H, O, CO were known from decades of intensive surface science 

research under UHV conditions [7,40–43]. These surface science insights are essential for the 

microscopic picture of adsorption and reaction at the solid/liquid interface.  

This paper is organized as follows. We will first take a look at a model adsorption system that 

was studied in depth at the solid/gas and the solid/liquid interface: CO on Pt(111). We will highlight 



how improved experimental approaches made some initially expected discrepancies between both 

interfaces become less significant. We will then demonstrate how the fabrication and 

characterisation of model surfaces using UHV based techniques became an essential tool for the 

collaboration between theory and experiment. This will also involve some selected results of 

electrochemical studies at UHV prepared surfaces, specifically, Pt3Sn, Pt modified Ru, and PtRu 

surface alloys. Those studies involved adsorption and reaction under well-defined electrochemical 

conditions. In the last section, we will discuss the fact that even very well-defined model surfaces 

may undergo structural changes when exposed to certain electrochemical potentials. This results in 

some amendments to the “best practises” of experimental studies on bimetallic model surfaces.  

2 Adlayers at the solid/gas and the solid/liquid interface: CO 

on Pt(111) 
CO electro-oxidation is a reaction relevant in electrocatalysis. There are CO impurities present in 

the H2 feedstock for application in hydrogen fuel cells, if the feed is produced from hydrocarbons 

[44,45]. CO is also a poisoning species produced during the oxidation of small organic molecules, 

such as formic acid and methanol [46,47]. That motivated a lot of research on CO adsorption and 

electrooxidation at smooth model electrodes such as polycrystalline Pt or various Pt single crystal 

surfaces [7,48–51]. Just for the Pt(111) surface, there are numerous in-depth studies using scanning 

probe [52–55], spectroscopic [56–59], theoretical [60–63] and electrochemical techniques [7,64–66].  

At the solid/gas interface, the interaction of CO with catalytically active metal surfaces is of 

interest, too, e.g., CO oxidation [67] and poisoning during ethylene hydrogenation [68] are 

important reactions. This gave rise to numerous model studies at single crystal surfaces [24,69,70], 

including also Pt(111) [53,71,72].  

In the following, we will highlight some selected studies on densely packed CO adlayers on 

Pt(111) at the solid/gas and the solid/liquid interface to highlight the parallels and differences 

between both environments. Historically, gas phase adsorption/desorption studies of CO in UHV at 

low temperature preceded electrochemical studies. A frequently observed pattern formed by CO 

adsorption on Pt(111) is the c(4x2) adlayer (see Figure 2-1a), with a CO coverage of θ=0.5 Monolayer 

(ML; 1 ML = 1 adsorbate per surface atom) [8,55,61]. At higher coverages, unit stripes of the c(4x2) 

adlayer structure, separated by domain walls of a higher local packing density are observed [8,61]. 

However, the relevance of these structures to real catalytic [73], and particularly electrocatalytic 

[54,65], processes has been questioned. This is not only due to the pressure difference between 

UHV and real catalytic processes, but it has also been appreciated that the effect of solvent 



coadsorption, as well as the lower surface potentials that typify aqueous electrochemical 

environments [65], lead to a difference between UHV and electrochemical CO adlayer structures.  

That view changed,when the CO / Pt(111) adsorption isotherm was studied by scanning 

tunneling microscopy (STM) at CO pressures between near-vacuum conditions up to nearly 

atmospheric pressure [53] ("high-pressure STM" [41], see also the "pressure gap"  discussion [73]). 

Figure 2-1 shows STM images for three different CO pressures (a,b,c), along with the resulting STM-

based adsorption isotherm (d). The c(4x2) pattern (Figure 2-1a) obtained at equilibrium with pCO = 

10-8 Torr is identical to the one obtained by adsorption at low temperatures [55,61]. At higher 

pressures, more densely packed adlayers appear that get seemingly saturated at θ = 0.68 ML for pCO 

= 720 Torr. Those adlayers are laterally compressed and rotated with respect to the substrate, 

resulting in the Moiré fringes visible in Figure 2-1b and Figure 2-1c. These patterns correspond to an 

(probably) incommensurate (θ = 0.6 ML, pCO = 10-2 Torr), and (√19 × √19) R23.4° − 13CO (θ = 0.68 

ML) structure, respectively. The structures involve part of the CO molecules occupying adsorption 

sites other than the three most stable ones (top, bridge, threefold-hollow [60]). That is possible 

when on average the energy gained by adsorbing more CO surpasses the energy loss due to the 

occupation of less favourable adsorption sites.  

It has been emphasized that the effect of raising the pressure is equivalent to lowering the 

temperature, provided that thermodynamic equilibrium remains kinetically accessible [74]. In that 

picture, the formation of the more densely packed adlayers (Figure 2-1 b&c) at lower temperatures 

may be hindered by a lack of thermal fluctuations in the adlayer. Such fluctuations are necessary to 

provide space for further adsorption, but they require the adoption of energetically less favourable 

adsorption sites by the CO adsorbates. In turn, the less stable adsorption sites that CO is forced to 

occupy at higher coverage, in combination with adsorbate-adsorbate repulsions, makes the 

adsorbed CO less stable against CO2 formation by reaction with Oad and may thus be the essential 

element of reactive CO adlayers (Brønstedt–Polanyi–Evans relation [75,76]). 

 

  



 
Figure 2-1. Equilibrium adlayer structures of CO formed on Pt(111). The STM images (a), (b) and (c) are shown 

for variable CO background pressure, pCO. The values of p and the coverages, θ, of each CO adlayer are 

indicated on the figure. The scan window in (a) is 7 x 7 nm2; in (b) and (c) it is 5.5 x 5.5 nm2. The proposed unit 

cells of the adlayers, determined by analysis of the Moiré fringes, are shown in the insets. (d) Variation of CO 

adlayer coverage as a function of p. Each data point is linked to the corresponding STM image. (a) reproduced 

with permission from [55], (b), (c) and (d) reproduced with permission from ref. [53]. 

 
Figure 2-2. In-situ STM images (5 x 5 nm2) obtained in CO saturated 0.1 M HClO4 at an applied potential of (a) 0 

V vs. RHE and (b) 0.35 V vs. RHE. The structural models in the insets were deduced by comparison of the z-

corrugation patterns with IRAS data. Reproduced with permission from ref. [54]. 



 Although historically the CO/Pt(111) system was first studied at the solid/gas interface, the 

first direct observation of higher-coverage phases occurred at the solid/liquid interface. As early as 

1994 – 10 years before the high-pressure-STM data reported above – Villegas and Weaver published 

in-situ STM on Pt(111) in CO saturated electrolyte (see Figure 2-2) [54]. They found a change in the 

adlayer density with potential, specifically, a similar (√19 × √19) R23.4° − 13CO (θ = 0.68 ML) 

structure as discussed above for 0.35 V vs. RHE, and an even more densely packed (2 x 2)-3CO 

structure (θ = 0.75 ML) at 0 V.  

The high-coverage adlayers were not observed at the solid/gas interface as long as the 

adsorption took place at cryogenic temperatures and low CO pressures. The discovery of higher-

coverage phases at the solid-liquid interface further fuelled the idea of the two interfaces 

substantially differing in their CO adsorption properties. Before the in-situ STM observations in 

Figure 2-2, many CO adlayers formed at the solid/liquid interface were studied with thermal 

desorption or electron diffraction after a transfer into UHV [8,77,78]. Those studies showed higher 

CO coverages than θ = 0.5 ML, but did not exceed θ = 0.67 ML, i.e., the √𝟏𝟏𝟏𝟏 × √𝟏𝟏𝟏𝟏 pattern could 

not be observed ex-situ. As discussed in detail in ref. [79], it is now accepted that most adlayers 

formed at the solid/liquid interface cannot be transferred for ex-situ analysis into UHV without 

changes in coverage or at least structure. By now, however, the availability of an increasing number 

of in-situ methods, including in-situ-STM (see above) [54,80], X-ray scattering [81][82], surface 

sensitive vibrational spectroscopy such as infrared absorption [56][83] or Sum Frequency Generation 

(SFG) [48,51,57,59], and differential electrochemical mass spectroscopy (DEMS) [58] have 

substantially improved the picture of CO adsorption and oxidation at the solid/liquid interface. 

Similar successes were achieved for other systems. Hence, the application of UHV based methods for 

the ex-situ characterization of "electrochemical" adlayers was an important step towards a better 

microscopic understanding of electrocatalysis. Most results from those "emersion experiments", 

apart from a few strongly adsorbing halides, could not be confirmed by in-situ methods once such 

became available [79]. However, the insights obtained in UHV experiments turned out to be of 

substantial relevance, in particular if those experiments were performed at room temperature and 

under conditions of increased gas pressure. In contrast, traditional UHV experiments at cryogenic 

temperatures and gas dosing in the 10-6 mbar range may generally not be sufficient to "model" 

electrochemically relevant interfaces. The main reason is the lack of thermal fluctuations in the 

adlayer which is decisive for the possibility of reaching high adsorbate coverages, which in turn are 

essential for many adlayers to actually become reactive (Brønstedt–Polanyi–Evans relation [75,76]). 

  



3 Bimetallic model surfaces prepared in UHV 

3.1 Coupling electrochemistry to UHV 
UHV methods were historically introduced to electrochemical research to provide ex-situ 

analysis of the solid/liquid interface after emersion and transfer into vacuum. Such experiments are 

still common, but the focus shifted from attempting to understand the (rather weakly bound) 

adlayers towards analysing the electronic structure of the electrode itself, e.g., using X-Ray induced 

Photoemission [7,8,33,36,84–91].  

For the preparation of well-defined model electrodes, on the other hand, UHV continuously 

gained importance of the last two decades  [8,29,33,36,84–86,90–96]. Planar model systems offer a 

high degree of control over their composition and structure. In particular, the distribution of the 

components parallel and perpendicular to the surface can be measured and controlled with high 

precision. Studies at electrodes with systematically varied surface structures and compositions 

reveal valuable insights into electrocatalytic reaction mechanisms and show pathways towards an 

improvement of electrode materials via a rational design. For some time, there was a gap between 

the versatility of well-defined bimetallic surfaces that could be prepared for (electrochemically 

motivated) surface science studies and those systems that were actually used for electrochemical 

experiments. Increasing interest in electrocatalysis research also fuelled the development of 

improved experimental transfer setups that facilitate the combination of UHV preparation and 

analysis on the one hand and state-of-the-art electrochemistry on the other [8,97,98]. A recently 

published example is shown in Figure 3-1.  

A key feature of the EC chamber depicted in Figure 3-1 is the O-ring sealed flow cell (see also 

[99]), which offers two main advantages. First, only the cleaned and well-defined surface of the 

planar model electrode (here: Pt(111)) is in touch with the electrolyte. This avoids problems with the 

sample perimeter being wetted, which is often contaminated by other metals during sputter 

cleaning [8]. Second, the option of working either in still or in flowing electrolyte, combined with a 

small electrolyte volume, comes with the potential opportunity of downstream analysis of the 

electrolyte, e.g., by mass spectroscopy [100]. 

 



 

Figure 3-1. (a) Schematic representation of an UHV-electrochemistry transfer system (from ref. [98]) and cross 

section of a ‘‘nozzle cell’’ for kinetic ORR measurements, (b) ORR polarization curves in O2 saturated 0.1 M 

HClO4 at 50 mV s-1 on Pt(111); electrolyte flow rates from 3mL min-1 to 18 mL min-1 in steps of 1.5 mL min-1; (c) 

plot of the limiting currents for the ORR vs. the flow rate to the power of ¾.  

3.2 Electrochemistry at UHV prepared bulk alloy surfaces: Pt3Sn 
As mentioned in the introduction, early UHV/EC transfer setups were designed for experiments 

at monometallic, UHV-prepared single crystal surfaces. Even after the preparation by flame 

annealing had become state-of-the art [101], preparation in UHV through a combination of sputter 

cleaning and annealing remained the method of choice for alloy surfaces (Figure 1-1e). Apart from 

the clean conditions, UHV offers standardized methods to analyse the structure and composition of 

surfaces during and after the preparation procedures. Generally, metals intermixed with the 

intention to tune the (electro-)catalytic properties will differ in their surface free energies. Hence, 

thermal annealing in vacuum [32,102,103] or gas[104,105] will lead to the enrichment of one or the 

other component (Figure 1-1f) – with obvious consequences for the (electro-)chemical surface 

properties. 

Figure 3-2 shows results from such a study, which in this case aimed at the structure sensitivity 

of CO electrooxidation at Pt3Sn single crystal surfaces [8,106,107]. The samples compared in the 

cited work were cleaned by ion bombardment (sputtering) in UHV. Two of them (see Figure 3-2) 

were subsequently annealed to obtain smooth surfaces. The cyclic voltammograms indicate the 

electrocatalytic superiority of the (111) over the (110) surface, as apparent from the high CO 

oxidation currents observed at low potentials. However, a thorough analysis of the influence of the 



preparation procedure on the structure and composition was only performed in a subsequent study, 

after the electrocatalytic experiments had been performed [108,109]. 

 

Figure 3-2. Current-potential curves (1 mV s-1) for CO electrooxidation in 0.5 M H2SO4 at 25°C on three 

different UHV-prepared Pt3Sn(hkl) model electrodes mounted into a rotating disc configuration (2500 rpm). 

Prior to the positive going sweep, the electrode potential was held at ~0.05 V for 3 minutes to ensure the 

complete CO poisoning of the surfaces. Figure reproduced with permission from [110]. 

 

Figure 3-3. STM of Pt3Sn(111) surface phases; (a) (√3x√3)-R30° phase after annealing at 600 K; inset: atomic 

resolution zoom (Pt = dark, Sn = white, due to chemical contrast [111]); (b) coexistence of p(2x2) and (√3x√3)-



R30° phases after annealing at 1000 K. STM images reproduced from Kuntze et al. [112] by permission of the 

American Physical Society. 

Low Energy Electron Diffraction (LEED) [108] revealed that with increasing temperature, the 

Pt3Sn(111) surface became increasingly dominated by a p(2 x 2) pattern, with Sn surface content = ¼. 

At lower annealing temperatures, a (√3 x √3)-R30° pattern, with Sn content = 1/3, is dominant [108]. 

This was confirmed in a subsequent STM study [112], where chemical contrast [111] lets Pt atoms 

appear "higher" than Sn ones (see Figure 3-3). However, even at an annealing temperature of 1000 

K, the authors still observed a coexistence of the two ordered phases. Hence, the annealing step to 

950 K used in the electrochemical study [110] of Figure 3-2 must have led to a coexistence of the (√3 

x √3)-R30° and the p(2 x 2) structures. Hence, the current observed at every given potential must 

reflect a weighted sum of the currents generated in the (√3 x √3)-R30° and the p(2 x 2) dominated 

regions.  

The following sections will show a number of cases where quantitative analysis of smooth model 

electrodes by STM in UHV allowed a break-down of the overall electrochemical behaviour into a sum 

of well-understood parts. Similar to Figure 3-3b, areas with different chemical properties can 

laterally expand with dimensions of many nm up to µm. An accurate quantitative analysis of such 

spatial patterns is very difficult with diffraction methods, but quite straightforward using STM.  

  



3.3 Tuned adsorption properties: Pt mono- and multilayers on 

Ru(0001) 

3.3.1 Strain and vertical ligand effects in experiment and theory 
This section will show an example of a smooth overlayer model system (cf. Figure 1-1g) that 

consists of areas with different local adsorption properties. Those adsorption properties can be 

directly observed by STM. We will then show that a combination of (i) an accurate statistical analysis 

of the surface morphology by STM and (ii) a calculation of the adsorption energies by density 

functional theory (DFT) is sufficient to accurately and quantitatively predict some key voltammetric 

features of the same samples. Metal vapour deposition in UHV in combination with surface sensitive 

spectroscopy and high-resolution STM is the most reliable way of preparing model surfaces that 

chemically and structurally match the "slab" type systems typically used in DFT calculations and thus 

allow a specific validation of predictions.   

Due to its high activity in low temperature fuel cell anodes for the oxidation of CO contaminated 

H2 or the direct electrochemical oxidation of methanol, the metal combination Pt+Ru has attracted 

tremendous research activity over the last decades. Apart from the electrochemistry community 

[113–117], also the Surface Science community was significantly involved [8,19,22,34,118–125]. 

Early concepts to explain the enhanced electrocatalytic activity of Pt-Ru mainly refer to a bi-

functional Langmuir-Hinshelwood mechanism, in which an oxygenated species formed at Ru by H2O 

dissociation acts as a co-reactant to remove CO from Pt sites [114]. As a result of the continuously 

improved microscopic picture of surface chemistry, however, more recent works put a particular 

emphasis on the influence of Pt-Ru bonds (ligand effect) and lattice strain on the local reactivity of Pt 

and Ru [19,22,99,122–125]. These will affect the coverages of desired (e.g., H) and undesired (e.g., 

CO) adsorbates and also the rates of the associated surface reactions [126].  

Among the model surfaces studied in the cited works, atomically thin Pt films on Ru(0001) play a 

distinctive role. Pt was found to grow in atomically smooth, pseudomorphic layers on Ru(0001): Pt 

atoms adopt the lateral atom-atom distance of the underlying Ru(0001) plane, which is 0.271 nm as 

compared to 0.277 nm in the Pt(111) surface. Compared to Pt(111), the Pt films are thus laterally 

compressed, which according to the d-band model of Hammer and Nørskov [18,127] makes CO 

adsorption weaker. In addition to the lattice compression, the bonds to the underlying Ru atoms 

further destabilize the interaction of the Pt atoms with surface adsorbates, including CO 

[18,19,22,125,127,128]. The latter effect can be rationalized by a simple bond order argument: Pt is 

more strongly bound to Ru than to Pt [119], which reduces its bonding power for the interaction 



with a third species, e.g., an adsorbate. DFT calculations explicitly show for the cases of COad,[19] 

Had,[22], Oad[128] that the destabilizing effect of the Pt-Ru bond becomes weaker with increasing Pt 

layer thickness. For these surfaces, it is possible to work at corresponding systems in experiment and 

theory. Following the approach used for the images in Figure 2-1 [53], the following examples will 

demonstrate the use of STM to probe the CO adlayer patterns formed at room temperature and 

increased CO pressure on chemically different areas at the surface (see also refs.[129] and [103] for 

imaging of spatially varying adsorption properties). 

3.3.2 Direct observation of local adsorption properties through video-STM 
Figure 3-4a shows the surface morphology after deposition of ~ 1.2 ML (monolayer, 1 ML = one 

adsorbate or foreign metal atom per surface atom) Pt onto Ru(0001) at room temperature, followed 

by flash annealing to 800 K. The morphology of the atomically smooth surface is characterized by 

ribbons of step decorations and hexagonal islands, where the local Pt film thickness is 2 ML. The 

remaining fraction of the surface is covered by a single Pt monolayer. Close to the buried Ru(0001) 

step edges, it is possible to record STM images  at the boundaries between regions of 1 ML and 2 ML 

local Pt coverage where the topmost Pt atoms reside at almost the same height level. This allows for 

fast imaging of these regions in constant-height mode. A sequence of 163 STM images was recorded 

with a frame rate of five images per second, i.e., the overall sequence covers a period of 33 s. The 

sample temperature was kept constant at 300 K. Figure 3-4b shows an atomic resolution STM image 

from this sequence (recorded in the area indicated by the small rotated square in Figure 3-4a) at 

conditions of ultrahigh vacuum (10-10 mbar). The 1 ML | 2 ML border is characterized by a line of 

fourfold hollow sites. This is due to the different stacking of the outermost layer with respect to the 

two underlying ones.  

Figure 3-4c summarizes the experimental and calculated findings from ref. [19]. These are the 

DFT calculated Pt-CO binding energies and peak positions in temperature programmed desorption 

experiments of CO on Pt mono- and multilayers on Ru(0001) and on Pt(111). Experiments and calcu-

lations agree on the prediction that CO adsorption is weakest on Pt1ML/Ru(0001) and becomes 

stronger with the number of Pt layers. Even for Pt films with a thickness of 10 atomic layers, how-

ever, CO desorption is shifted to lower temperatures as compared to Pt(111). This can be explained 

by the pseudomorphic growth of Pt on Ru(0001) that was shown to persist up to Pt10ML/Ru(0001) 

[123]. The DFT calculations confirm that the compression alone is sufficient to explain the persisting 

gap in CO stability on Pt10ML/Ru(0001) vs. Pt(111) (data point on the right hand side of Figure 3-4c) 

[19]. It should be noted that the CO desorption peak for bare Ru(0001) is at around 480 K [130] i.e., 

the adsorption on that surface is stronger than on Pt(111) or on  Ru supported Pt thin films. 



 

 

Figure 3-4. Local adsorption properties directly observed by fast STM. (a) STM image of 1.2 ML Pt/Ru(0001) 

after annealing at 800 K. Regions with 1 ML and 2 ML Pt coexist.  (b) Atomically resolved image (recorded with 

5 images s-1 in constant height mode) of the boundary between regions with locally 1 ML and 2 ML Pt. A 

smaller version of the image is overlaid on the morphology in (a) to indicate where it was recorded. (c) CO 

adsorption properties of pseudomorphic Pt films with increasing thickness according to ref. [19]. Top plot: 

adsorption energies; bottom plot: temperature programmed desorption peak temperatures; the dashed lines 

show the respective values for Pt(111) as a reference. (d) Atomically resolved image of the same region as in 

(b), but at a CO pressure of 10-5 mbar. The frame size in this image is the same as in (b). The circles marked by 

1 and 2 link the surface regions in (d) to the corresponding data points in (c). The diagram at the bottom right 

indicates how the morphology around the step edge allows imaging 1 ML and 2 ML of Pt at almost the same 

geometric level of height. Reproduced with permission from ref. [131]. 



According to Figure 3-4c, the peaks of thermal CO desorption from 1 ML and 2 ML Pt on 

Ru(0001) are at 320 K and 390 K [19], respectively. At 300 K, this intuitively suggests that CO should 

be quite unstable on Pt1ML/Ru(0001), whereas at the same temperature the corresponding CO 

adlayer adsorbed on Pt2ML/Ru(0001) should be similar to the one on Pt(111). This is confirmed by the 

following observation: when the UHV chamber is backfilled to a CO pressure of 10-5 mbar with the 

sample kept at 300 K (Figure 3-4d), the Pt1ML/Ru(0001) region appears largely unaffected, i.e., CO 

could only be present as a mobile adlayer that remains invisible to STM. This is different from the 

Pt2ML/Ru(0001) region on the right hand side of Figure 3-4d, in which a superstructure with a 

quadratic unit cell becomes visible. This structure is the well-known c(4 × 2) phase that is formed on 

Pt(111) at a CO coverage of 0.5 ML (see Figure 2-1a) [71,132]. The c(4 × 2) CO adlayer gives rise to a 

desorption peak at T > 450 K on Pt(111). For Pt2ML/Ru(0001), however, the desorption peak was 

already observed at 390 K, with measurable desorption rates even at 300 K [19]. This fits to the 

observation that the c(4 × 2) pattern in Figure 3-4d disappeared a few minutes after the chamber 

was pumped down again to UHV conditions.  

3.3.3 Closing the loop: reality check for DFT predicted isotherms 
The STM observation of CO on Pt1ML/Ru(0001) and  Pt2ML/Ru(0001) correspond to one point in 

the adsorption isotherm of either model surface. In the experiment, both areas are in independent 

equilibrium with the gas phase, i.e., the coexisting regions with different local adsorption properties 

do not "see" each other when it comes to the local CO coverage (the boundary may again have its 

own adsorption sites). In the following, we will demonstrate that the observed behaviour is in 

quantitative agreement with the DFT calculated adsorption energies in Figure 3-4c [19]. For that 

purpose, we calculate the adsorption isotherms for both surfaces, starting with a published curve for 

CO on Pt(111) and then modifying this curve by varying only the adsorption energy of CO on Pt 

according to Figure 3-4c [19]. We use the isotherm obtained by Poelsema et al. by He scattering at 

Pt(111) at varied CO pressure [72]. The same study served as a key reference point in a 

comprehensive computational treatment of CO phases on Pt(111) [71]. Poelsema et al. found that 

CO adsorption on Pt(111) at coverages θCO < 0.1 ML can be fitted by a Frumkin- (= Fowler-

Guggenheim) isotherm of the form 

𝑝𝑝𝐶𝐶𝐶𝐶 =
𝜃𝜃𝐶𝐶𝐶𝐶

1 − 𝜃𝜃𝐶𝐶𝐶𝐶
𝜅𝜅𝑇𝑇3𝑒𝑒𝑒𝑒𝑝𝑝 �−

𝐸𝐸𝑑𝑑,𝑃𝑃𝑃𝑃(111),𝜃𝜃𝐶𝐶𝐶𝐶=0 + 𝜀𝜀𝜃𝜃𝐶𝐶𝐶𝐶

𝑘𝑘𝐵𝐵𝑇𝑇
� 

 
𝜃𝜃𝐶𝐶𝐶𝐶 = CO coverage, 𝑝𝑝𝐶𝐶𝐶𝐶 = CO pressure, 𝑇𝑇 = surf. temp., 𝑘𝑘𝐵𝐵 = Boltzmann constant, 𝜅𝜅 = 12.5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐾𝐾−3 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐., 𝐸𝐸𝑑𝑑,𝑃𝑃𝑃𝑃(111),𝜃𝜃𝐶𝐶𝐶𝐶=0 = 1.378 𝑒𝑒𝑒𝑒 = desorption barrier of CO on Pt(111) at 𝜃𝜃𝐶𝐶𝐶𝐶 = 0, 𝜀𝜀 = 0.71 𝑒𝑒𝑒𝑒 =
mean field repulsive interactions 

 



In the cited work, a good data fit at T = 402 K, 415 K, 427 K, 440 K, and 452 K was obtained with 

the coverage and temperature independent value of κ as shown above. The constant ε was found to 

be independent of 𝜃𝜃𝐶𝐶𝐶𝐶 and T. Figure 3-5 shows the isotherm for 402 K. For 𝜃𝜃𝐶𝐶𝐶𝐶< 0.17 ML the curve is 

drawn as solid line. For higher coverages, the cited work did not explicitly confirm the isotherm 

experimentally, which is why this part is considered an extrapolation and therefore drawn as dotted 

line. For CO on Pt(111), reversible adsorption at 300 K has only been studied for 𝜃𝜃𝐶𝐶𝐶𝐶> 0.5 ML [53]; 

see the discussion of Figure 2-1. Only the high-coverage structures formed in this regime imply 

sufficiently large desorption rates to establish adsorption equilibrium in a reasonable time at that 

temperature. The small circles reflect the STM-based data points from ref. [53], which were also 

plotted in Figure 2-1d (note that in Figure 3-5 we omitted the error bars for the sake of clarity of the 

plot). 

Based on the Frumkin isotherm and the parameters listed above, one can calculate a 

hypothetical isotherm for CO on Pt(111) at 300 K, plotted as a dashed line in Figure 3-5. CO 

pressures of pCO < 10-9 mbar would have to be established and controlled to attain equilibrium 

coverages of 𝜃𝜃𝐶𝐶𝐶𝐶< 0.5 ML. Reliable measurements of CO equilibrium coverages in this pressure 

regime would be very difficult due to the influence of the rest gas and the slow 

adsorption/desorption rates. Nevertheless, the hypothetical isotherm points to the data point at the 

low-coverage limit of the STM study at 300 K [53], which nicely closes the validation loop. 

The DFT calculated CO binding energies on Pt(111), Pt1ML/Ru(0001), and Pt2ML/Ru(0001) (see 

Figure 3-4c) directly yield isotherms for CO on Pt1ML/Ru(0001) and Pt2ML/Ru(0001) (dash-dotted lines 

in Figure 3-5). The curves use 𝐸𝐸𝑑𝑑,𝑃𝑃𝑃𝑃1𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅(0001),𝜃𝜃𝐶𝐶𝐶𝐶=0 = 0.928 𝑒𝑒𝑒𝑒 and 𝐸𝐸𝑑𝑑,𝑃𝑃𝑃𝑃2𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅(0001),𝜃𝜃𝐶𝐶𝐶𝐶=0 =

1.158 𝑒𝑒𝑒𝑒 instead of 𝐸𝐸𝑑𝑑,𝑃𝑃𝑃𝑃(111),𝜃𝜃𝐶𝐶𝐶𝐶=0 = 1.378 𝑒𝑒𝑒𝑒. The two values for the energy barriers were 

directly calculated from the experimentally found value for Pt(111) [71,72] and the differences 

between the binding energies as obtained by DFT, i.e. 0.45 eV and 0.22 eV for Pt1ML/Ru(0001) and 

Pt2ML/Ru(0001), respectively (in Figure 3-4c those are the vertical distances of points 1 and 2 with 

respect to the dashed line). The absolute values of the DFT-based binding energies were not 

considered for calculating the curves. All other parameters in the isotherm were kept at the values 

found for Pt(111). This is similar to the treatment of H adsorption on the same surfaces discussed in 

the context of Figure 3-6 in this paper [22]. 



 

Figure 3-5. Adsorption isotherms of CO on Pt(111), Pt1ML/Ru(0001) and Pt2ML/Ru(0001). For Pt(111), 

experimental data points were taken from ref. [133] (STM data, small circles) and ref. [72] (solid line). The 

dashed line is the hypothetical isotherm for CO on Pt(111) at 300 K. The dash dotted lines are calculated 

isotherms based on the experiments in ref. [72] and the adsorption energies of CO on Pt1ML/Ru(0001) and 

Pt2ML/Ru(0001) from ref. [19]. The two spots marked (1) and (2) reflect the points observed by STM at 300 K 

and pCO = 10-5 mbar (see inset and Figure 3-4). Reproduced with permission from ref. [131]. 

The two isotherms predicted by this DFT based extrapolation agree well with the following 

experimental findings: 

1. The CO coverage for Pt1ML/Ru(0001) at pCO=10-5 mbar would be 𝜃𝜃𝐶𝐶𝐶𝐶~ 0.25 ML (see the point 

marked “1” on Figure 3-5). A CO adlayer with 𝜃𝜃𝐶𝐶𝐶𝐶< 0.33 ML can be expected to be too 

mobile for STM imaging at 300 K on any of the Pt surfaces discussed here. This assumption is 

justified by the known low lateral corrugation of the CO adsorption energy on Pt(111) [71]. 

STM imaging of CO adlayers is only possible once CO is immobilized by CO-CO repulsion. The 

barrier for CO hopping between different adsorption sites should be even lower on 

Pt1ML/Ru(0001) or Pt2ML/Ru(0001), thus making STM observations of low CO coverages at 300 

K even less likely. Hence, the fact that no evidence for CO is visible on the Pt1ML/Ru(0001) 

surface (see inset of Figure 3-5) is fully consistent with the isotherm.  

2. According to Figure 3-5, pCO = 10-5 mbar at 300 K should yield a CO coverage of 0.5 ML on 

Pt2ML/Ru(0001), in perfect agreement with the STM observation (see point marked “2” and 

inset of Figure 3-5). Furthermore, the fact that the c(4 × 2) pattern disappears when the CO 

supply is stopped confirms that it indeed belongs to a reversibly adsorbed adlayer in 

equilibrium with the gas phase. 



3.3.4 Closing the loop: DFT predicted cyclic voltammetry features 
The data discussed in the previous section demonstrates that pseudomorphic Pt layers on Ru(0001) 

indeed behave like electronically modified Pt(111) when it comes to the adsorption of CO as a probe 

molecule. For the solid/liquid interface, the same trend can be verified directly with adsorbed 

hydrogen as a probe species. Accurate quantitative adsorption data obtained through cyclic 

voltammetry were reported for the equilibrium 𝐻𝐻+ + 𝑒𝑒− ⇌ 𝐻𝐻𝑎𝑎𝑑𝑑[49,134–143], where the potential is 

varied instead of the H2 partial pressure at different Pt single crystal surfaces. By analysis of the 

experimental data [134] and by comparison with Monte Carlo modelling [144,145] it has been 

established that the region of underpotentially deposited hydrogen (upd-Had) is well described by a 

Frumkin isotherm incorporating repulsive interactions between the adsorbed hydrogen atoms. 

Based on coverage-dependent adsorption energies for Had
 calculated by density functional theory 

(DFT), Karlberg et al. obtained good agreement with experiment in modelling the most important 

features of the regions associated with the formation of upd-Had in the base voltammograms for 

Pt(111) and Pt(100) [145]. In particular, the DFT predictions about the differences between these 

two surfaces agree quite well with the corresponding experimental data. Quantitative deviations 

from experimental observations mainly concerned the absolute onset potentials for Had formation, 

and the strength of the lateral interactions between the adsorbed hydrogen atoms, which were 

underestimated in the ab-initio based predictions for both surfaces (see Table 1 in ref. [135]).  

As will be demonstrated in the following, DFT calculated adsorption energies allow modelling of 

the voltammetric upd-Had formation with a much higher accuracy when experimental results for a 

reference surface are taken into account as anchoring point. As model surfaces, we have chosen the 

same pseudomorphic Pt films on Ru(0001) (in the following referred to as Ptx-ML / Ru(0001), where x 

is the Pt coverage in ML = monolayers and ranges from x = 1.1 … 3.5, 1 ML = 1 Pt atom per Ru 

surface atom) as studied in the previous section. Again, Pt(111) serves as a reference surface. The 

samples were prepared by vapour deposition in ultrahigh vacuum (UHV) followed by annealing to 

850 K – 950 K to attain a smooth morphology. The thicknesses of the Pt layers were coarsely 

determined by Auger-Electron spectroscopy (AES), but the chemically relevant details about the 

distribution of local thicknesses are based on scanning tunnelling microscopy (STM) data. As visible 

in the STM data in Figure 3-6a - e, the annealed Pt exhibits a Stranski-Krastanov growth mode, with a 

closed first layer and an onset of 3D growth for thicknesses > 2 ML. The area fractions of the 

respective local thicknesses are plotted in the histograms in Figure 3-6f – j.  

The cyclic base voltammograms recorded for these surfaces are plotted in Figure 3-6k - o. The 

profile for Pt(111) plotted in Figure 3-6k shows the typical sigmoidal upd-Had [49,101,137,138] and 



“butterfly-type” OHad [101,146,147] regions at φ < 0.4 V and φ > 0.6 V, respectively, which are 

separated by the "double-layer region" [143] dominated by capacitive currents. Apart from Figure 

3-6 l, which shows the CV for θPt = 1.1, all other voltammograms qualitatively resemble this shape. 

The main peculiarity about Figure 3-6 l is the occurrence of higher pseudocapacitive currents in the 

region 0.4 V < φ < 0.6 V, which are not observed in any of the other voltammograms. It is likely that 

these currents reflect adsorption/desorption at/from uncovered Ru areas and/or locally alloyed 

surface regions [148]. The potential regions related to upd-Had and OHad formation at the Pt films are 

shifted to lower and higher potentials, respectively, compared to the CV for Pt(111). This means that 

both adsorbates bind more weakly to Ptx-ML / Ru(0001) (at least for x < 4) than to Pt(111). Moreover, 

the deviation from the Pt(111)-like behaviour becomes smaller with increasing Pt coverage. 

 



 

Figure 3-6. STM images (a-e, size 200×200 nm²), film thickness histograms (f-j), and cyclic base voltammograms 

(k-o) of Pt(111) (a, f, k) and four pseudomorphic Ptx-ML / Ru(0001) thin films. Line profiles extracted along the 

dotted lines are plotted and visualized together with the STM data. The numbers in STM images denote local 

Pt layer thickness θPt. The histograms show surface fractions covered by regions with θPt = 0…5. The 

Voltammograms were recorded in 0.1 M HClO4 with 0.05 V s-1, and within the ranges 0.05 V – 1 V (k) and 0.06 

– 1 V (l-o). The voltammogram for Pt(111) is re-plotted as dashed line in (l-o) for comparison. The dash-dotted 

line in (k) = sigmoidal fit to Pt(111) voltammogram; the dotted lines in (l-o) = simulated voltammograms (see 

text). Reproduced with permission from ref. [22]. 

 



 

Figure 3-7. DFT calculated binding energies Ebind for atomic hydrogen at pseudomorphic Pt films on Ru(0001) of 

variable thickness (see text). Stars = most stable adsorption states. Value for Pt3ML/Ru(0001) estimated by 

interpolation. Ebind for hcp sites on Pt(111) is shown as reference (dashed line) Axis on the right hand side: 

∆Ebind = Ebind-Ebind(Pt(111)). Reproduced with permission from ref. [22]. 

 

Figure 3-8. (a) solid line: upd-Had region of the voltammogram of Pt(111) (see Figure 3-6 k); dash-dotted line: 

j(Pt(111)) = sigmoidal fit to the Pt(111) voltammogram; dashed lines: simulated voltammograms for Ptn 

ML/Ru(0001) with n=1…5, obtained by shifting j(Pt(111)) by -∆Ebind (see text and Figure 3-7). (b) solid line: upd-

Had region of Pt2.6 ML / Ru(0001) (see Figure 3-6n); dotted line: simulation of the upd-Had region as a weighted 

sum of curves from (a) using weight factors from Figure 3-6i; dashed lines: contributions of the different Pt 

layer thicknesses to the overall voltammogram. Reproduced with permission from ref. [22]. 



The predictions of the CVs are based on the following simple concept. For a given Had coverage, 

the equilibrium potential of the reaction H++ e- ⇌ Had is directly linked to the adsorption energy of 

Had on the respective surface. This means, if the binding energy decreases by ∆Ebind = 0.05 eV from 

surface A to surface B, the potential must be shifted by ∆φ = -0.05 V on surface B to stabilize the 

same Had coverage as on surface A. According to Le Chatelier's principle, this just means using a 

more negative potential to shift the equilibrium H++ e- ⇌ Had to the right hand side. The resulting 

procedure of simulating the CVs is demonstrated in Figure 3-8. A sigmoidal curve fitted to the 

Pt(111) region is shifted by the potential differences ∆φ =-∆Ebind (∆Ebind: see Figure 3-7, axis on the 

right-hand side). A weighted sum of these shifted curves is used as prediction for the 

voltammograms of the respective model surfaces. The thickness histograms in Figure 3-6 f-j are used 

as weighting factors in each simulation. As visible for Pt2.6ML/Ru(0001) in Figure 3-8 and for all other 

model surfaces in Figure 3-6 k-o, all simulations agree well with the measured curves.  

This analysis demonstrates a high predictive capability of DFT calculations, even without explicit 

consideration of the electrochemical conditions. By analogy with the analysis of CO adsorption at the 

solid/gas interface, the high level of quantitative agreement between experiment and theory 

became possible by involving a well-defined experimental anchor point, from where the behaviour 

of other surfaces can be incrementally extrapolated. Though this is not exactly an ab-initio 

prediction, the approach suits studies that aim at a fine-tuning of an already good catalyst material 

by subtle changes in its composition or structure. The second essential pre-requisite for this accuracy 

is control of the composition and structure of the model surfaces through their growth in UHV, 

which ensures that the experimentally studied systems actually match those considered in the 

calculations. Last but not least, the loop could only be closed by including the quantitative STM 

image data (Figure 3-6 f – j) 

3.4 Foreign metal islands and surface alloys: ensemble effects and 

bifunctional mechanism in the Pt-Ru system  

3.4.1 Pt-Ru: history and model systems 
PtRu catalysts have become the state-of-the-art anode catalyst in Polymer Electrolyte Fuel Cells 

(PEFCs) operated by CO containing fuel gases [113], as they result, e.g., from steam reforming of 

hydrocarbons or alcohols [45], or in direct methanol fuel cells (DMFCs) [47]. Pt is usually considered 

as the primary electrocatalyst, whose activity is obstructed by slowly reacting poisons or inter-

mediates. Ru is then introduced as the modifier to provide an oxygen containing species at low 



potentials to remove CO by electrooxidation in a bifunctional mechanism [114,149]. Most of the 

related experimental model studies were performed on bulk alloy substrates [2,34,116,150–153] or 

on bimetallic electrode surfaces prepared by electrochemical or electroless deposition of Ru on 

Pt(111) [114,149,154–159] or Pt on Ru(0001) [160–164] substrates, respectively. Here, we will give a 

brief overview of the interplay of Pt and Ru on a bimetallic electrode surface from a different point 

of view, summarizing findings from refs. [125,99,165].  

Certain adsorption and reaction processes on Ru(0001) are catalytically accelerated by Pt 

modifications, and the adsorption of some key species shows preferences for certain atomic 

ensembles. In the first of the following two sections, the effect of Pt on the formation of Had and 

OHad layers will be highlighted. A special focus will be on structure effects on adsorption, comparing 

Pt islands on Ru(0001) (Figure 3-9a) on the one hand and PtxRu1-x/Ru(0001) (Figure 3-9b-d) surface 

alloys on the other. The island morphologies were fabricated the same way as the Pt films (Figure 

3-6a - e) discussed above, just using smaller Pt doses (shorter time and/or slower evaporation rate). 

Surface alloys resulted from annealing of the island morphologies to temperatures that allow 

intermixing of the foreign metal atoms and the substrate atoms in the outermost layer.  

In Pt/Ru(0001), as in many other systems, surface alloys are actually thermodynamically more 

stable than the island morphologies [29,120,166]. This can be experimentally demonstrated by 

burying them under an additionally evaporated layer of substrate metal (here: Ru). If the overgrown 

surface alloy is annealed again, it will float back to the surface [120]. In a simplified picture, this is 

driven by a lower surface energy of the guest as compared to the host metal atoms. A hint for that is 

already implied in Figure 3-9: initially, 0.5 ML Pt islands cover the surface. After annealing, the island 

morphology has totally changed. Zooming in (c and d), 50% of the atoms appear “dark” (Pt). This is 

the same on the terraces (c) and on the islands (d), which is only possible if, despite the change in 

morphology, no Pt is “buried” under the islands. See ref [120] or [29] for details on the mechanism. 

Stable surface alloys are predicted [167] and experimentally observed for many other metal 

combinations (see Figure 3-10 for four additional examples). 

Whereas the atom distribution in PtRu/Ru(0001) was found to be very close to a random one 

[168], most other systems show preferences for like (Figure 3-10a-c) or unlike (Figure 3-10d) 

neighbours. Those preferences can be predicted by DFT [29,167,169,170]. As for the stability of 

surface alloys, we wish to emphasize the following observation: if guest A on host B forms a (meta-

)stable surface alloy, then guest B on metal A will tend to form a sub-surface alloy, where the guest 

metal enriches in the first subsurface layer. A precursor of that behaviour is the formation of bilayer 



islands in metal vapour deposition [119,171].  For detailed discussions of surface alloys and their 

stability, see refs. [29,39,166,167] . 

 

Figure 3-9. (a) and (b) 217 x 217 nm2 STM images showing the fabrication of a PtRu/Ru(0001) surface alloy 

[120–122,125,148] as imaged by UHV-STM: (a) 0.5 ML Pt deposited onto Ru(0001) at 300 K. (b) The same 

surface after annealing to 1350 K. Atomically resolved images of frame size 13 x 13 nm² (c) on a large terrace 

and (d) of an island edge (see frames marked in (b)) showing a Pt0.5Ru0.5/Ru(0001) surface alloy with identical 

composition on islands and surrounding terraces. Pt atoms appear darker than Ru atoms in the atomically 

resolved images. Reproduced with permission from ref. [121].  

 

 

Figure 3-10. Examples of further surface alloys, imaged by STM with chemical contrast: Pd0.52Ru0.48/Ru(0001) 

[172], Ag0.46Pt0.54/Pt(111)[29,173], Au0.44Pt0.56/Pt(111) [174], and Ag0.49Pd0.51/Pd(111) [175]. In all images, the 

atoms of host/guest appear bright/dark, respectively. The frame sizes were 10x10 nm2 in all cases. Reproduced 

with permission from ref. [29].  

 



 

Figure 3-11. Comparison of the base voltammograms for (a) pure Ru(0001) and (b) Ru(0001) modified by 0.03 

ML of Pt islands. The peaks drawn with solid lines belong to the replacement of OHad by upd-Had and vice 

versa. 50 mV/s, 0.1 M HClO4. Reproduced with permission from [165]. 

3.4.2 Bifunctional effect reversed: Pt as promoter on Ru(0001) 
This section will start with some details about the electrochemical adsorption properties of 

Ru(0001). Those are essential to understand the electrocatalytic behaviour of that surface. And their 

understanding was substantially improved by experiments including UHV-prepared Pt modifications 

to the Ru(0001) surface, since those reduced some of the kinetic barriers in forming the potential-

dependent adlayers. Figure 3-11a and b show the cyclic base voltammograms of bare and Pt 

modified Ru(0001), respectively. As illustrated in Figure 3-12 and explained in more detail in refs. 

[125,99,165,176,177] , the peak couples B/B' and C/C' are related to the formation and reduction of 

OHad and Oad layers, reaching a coverage of 1 ML Oad at the anodic potential limit. On bare Ru(0001), 

Peaks A/A’ are only visible if the scan range is extended to below 0 V. CO displacement experiments 

indicate that they most likely reflect the replacement of 0.5 ML OHad by about 0.5 ML upd-Had (A’) 

and vice versa (A) [165, 176, 177].  

The CVs in Figure 3-11 reveal that peaks B/B’ and C/C’ are largely unaffected by the presence of 

Pt. The hysteresis between A and A', however, is significantly reduced by Pt islands. 0.1 V is the 



equilibrium potential for the upd-Had ↔ OHad exchange process (A/A’). At that potential, upd-Had and 

OHad become metastable against replacement by the other species in the positive and negative 

going scan, respectively. Since the Pt monolayer islands themselves do not contribute any large 

voltammetric features (cf. Figure 3-6l) the voltammogram in Figure 3-11b can be considered as 

Ru(0001) under the catalytic influence of Pt islands (see Figure 3-12 for an overview and ref. [178] 

for more details). The key idea is that the upd-Had ↔ OHad exchange process is slow on bare 

Ru(0001) because it takes place through homolytic surface reactions. The bottlenecks in A’ and A are 

the electrosorption of Had on an OHad-covered surface and the oxidation of Had towards H+ at a 

potential where Had in itself would be stable against H+ formation, but gets displaced because OHad, 

once formed, is even more stable.  

Pt surface atoms act as channels for the reaction upd-Had ↔ H+ + e-. In the negative going scan, 

Had formed at Pt acts as reductive species to remove OHad by H2O formation, whereas in the positive 

going scan it promotes the formation of OHad via H2O dissociation [125,178]. Since it originates from 

an adlayer replacement on the Pt-free Ru areas, the charge in peak A' decreases linearly with 

increasing Pt coverage (Figure 3-13a). Due to the disperse distribution of Pt and Ru (see following 

section), the charge in peak A’ decreases faster than linearly with increasing Pt content in surface 

alloys.  

 

Figure 3-12. Illustration of the formation, removal, and exchange of adlayers on Ru(0001) in the 

presence of Pt islands / sites as observed in the peaks A/A’, B/B’, and C/C’ (see also Figure 3-11). 

Processes in the anodic / cathodic potential scan direction are shown in the upper / lower part; 

for simplicity, H+ is used instead of H3O+. Reproduced with permission from ref. [178]. 



 

Figure 3-13. (a) Charge in peak A' (see Figure 3-7 b) as a function of Pt surface content; (♦) Pt submonolayer 

islands/films on Ru(0001); (•) PtxRu1-x/Ru(0001) surface alloys; lines: predicted trends for linear or parabolic 

correlations between charge and Pt surface content [179]. (b),(c),(d): STM images showing three different Pt 

island/film morphologies (frame size 142 x 142 nm2). (e),(f),(g): atomically resolved images of three different 

surface alloys (frame size 6.5 x 6.5 nm2). The data points belonging to the STM images are labelled in (a). 

  



3.4.3 PtxRu1-x/Ru(0001) surface alloy electrodes 
As discussed above, surface alloys are ideal model systems of electrodes with chemical 

heterogeneity on a sub-nm scale. If they resemble the kind of structure illustrated in Figure 1-1h 

(and many surface alloys actually do [29]), all information about the environment of each surface 

atom is experimentally accessible: the lateral neighbours through high-resolution STM, and the 

underlying neighbours because they only consist of the host metal. Figure 3-14 gives an overview of 

the atom distribution of PtxRu1-x/Ru(0001) surface alloys and their cyclic base voltammograms in 

HClO4 electrolyte.  

The voltammograms in Figure 3-14f - j reveal three main features. First, as mentioned and 

discussed above, the peak couple A/A’ is as sharp for a small amount of Pt atoms as it is for a small 

Pt island coverage (Figure 3-11b). The amplitude of A/A’ quickly decreases with increasing Pt 

content. Second, the overall charge contained in the voltammograms quickly decreases with 

increasing Pt content. And third, symmetric peak couples D/D’, E/E’, and F/F’ start evolving at higher 

Pt contents.  

The behaviour of A/A’ indicate that Pt atoms embedded into atomically smooth PtxRu1-

x/Ru(0001) surface alloys catalyse the OHad ↔ upd-Had exchange the same way that Pt islands on 

Ru(0001) do (Figure 3-12). In this case, spill-over comes from neighbouring Pt-rich adsorption 

ensembles, which at the exchange potential are also free of OHad, rather than from Pt monolayer 

islands. The charge in the sharp voltammetric peaks associated with this adlayer exchange decreases 

much more rapidly for the PtxRu1-x/Ru(0001) surface alloys than for the Pt monolayer covered 

Ru(0001) surface, with the third power of the Ru content rather than linearly. Considering that the 

Pt surface atoms are essentially randomly distributed on the surface alloy layer [168], this indicates 

that the characteristic current spike is due OHad ↔ upd-Had exchange on sites on the PtxRu1-

x/Ru(0001) surface alloy. This is consistent with DFT calculations [125] that predict Ru3 sites to be the 

most stable ones for H and OH on the surface alloys. Their population scales with the third power of 

the Ru concentration. In the model experiments, the Pt atoms thus play a double role: their weak 

adsorption makes them the “channel” for faster adlayer exchange through the mentioned spill-over 

process, and at the same time their presence decreases the number of the most stable adsorption 

sites, Ru3. 

  



 

Figure 3-14. STM images (a-e) and corresponding cyclic voltammograms (f-j) of different PtxRu1-

x/Ru(0001) surface alloys. Voltammograms on right hand side with expanded current scale. xPt= a, f) 

0.07, b, g) 0.12, c, h) 0.25, d, i) 0.53, e, j) 1.05 (scan speed 50 mV s-1). For all STM images, the frame 

size is 6.5 x 6.5 nm2. Reproduced with permission from ref. [125].  



Reversible adsorption of H and OH on mixed Pt2Ru and PtRu2 sites with lower binding energies 

compared to Ru3 sites [125] instead results in broad adsorption and desorption features in the 

potential range between 0.0 and 0.6 V (D/D’ and E/E’), while adsorption on Pt3 sites is very weak and 

hardly detectable for hydrogen and sets in only at very anodic potentials >0.8 V for OH (peaks F/F’). 

These observations are in perfect agreement with results of previous thermal desorption 

experiments [180], which showed H2 desorption peaks from the surface alloys at temperatures 

between those of pure Ru(0001) and a Pt monolayer covered Ru(0001) surface. 

The versatility of sites with varying local adsorption strengths for electrocatalytically relevant 

reactants and intermediates makes PtxRu1-x/Ru(0001) surface alloys highly active for key reactions 

such as oxygen reduction [37] or CO oxidation [99,181,182]. As will be highlighted in the following 

section, even model surfaces that were not intentionally designed as surface alloys may actually owe 

any observed catalytic enhancement to a few “active sites” with tuned adsorption energies due to 

ligand or mixed ensemble effects. Those sites result from spontaneous (as typical for systems like 

Pt/Au(111) [29,94,183] or electrochemically induced [181,182] formation of surface alloy patches, 

driven by their higher thermodynamic stability as compared to foreign metal islands [166]. 

3.5 Stability of bimetallic model surfaces under electrochemical 

conditions 
Preparation of model surfaces through controlled vapour deposition in combination with 

annealing is obviously a strong tool to demonstrate or verify specific atomistic picture effects or 

hypotheses in electrocatalysis. But even if the control of the surface structure and composition is 

excellent just after the preparation, there is no guarantee that the surface will not change its 

morphology and/or composition once exposed to the solid/liquid interface and the potential control 

[184]. Here, we will highlight some recent work performed on the Pt/Ru(0001) system that clearly 

shows how the extension of the electrochemical potential beyond a certain threshold can lead to 

electrochemically relevant changes in the surface morphology [98,181]. Figure 3-15 demonstrates 

the effect of potential cycling on a Ru(0001) surface covered by 0.32 ML of Pt. The dashed line in 

Figure 3-15a is the base CV of bare Ru(0001) in sulphuric acid electrolyte. Note that the peaks A/A’ 

and B/B’, that are characteristic for Ru(0001) in perchloric acid solution (Figure 3-11a), are not visible 

here. This is a well-known phenomenon [178] and it is assumed to be due to the strong specific 

adsorption of (bi-)sulphate species [185] that competes with and suppresses Had formation and only 

becomes displaced in  the anodic scan at potentials beyond 0.5 V. Similar behaviour can be observed 

when cycling in CO saturated perchloric acid solution. 



 

Figure 3-15. (a) CV recorded at 10 mVs-1 and in 0.5 M H2SO4 for Ru(0001) (black, dashed line), 0.32 ML 

Pt/Ru(0001) (blue dotted line), and 0.40 ML Pt/Ru(0001) (red line); inset: STM image (200 x 200 nm²) of 0.32 

ML Pt / Ru(0001) just after preparation. (b,c) STM images  (200 x 200 nm²)  of the electrode after potential 

cycling up to 0.9 V (b) and 1.05 V (c). Reproduced with permission from ref. [181]. 

For the Pt covered surface, the most important features in the STM images are the Pt deco-

rations along the Ru step edges. The two respective CVs show overall reduced current amplitude, in 

agreement with the previous observation that the Pt monolayer areas are essentially featureless 

(see Figure 3-6 l) and the CV essentially reflects a down-scaled Ru(0001) profile, similar to the trend 

discussed in Figure 3-13. The extension of the scan range from 0.9 V to 1.05 V leads to more oxida-

tion charge in the anodic scan, and the reduction peak in the subsequent cathodic scan grows 

accordingly. The same behaviour would also be expected for a Pt-free Ru(0001), i.e., no sign for any 

morphology changes are visible in the CV. Comparing STM probed morphologies before and after 

cycling, however, reveals an obvious influence of the anodic potential limit reached in the CVs:  

whereas the morphology remains essentially untouched after cycling up to 0.9 V (Figure 3-15b) one 

atomic layer deep trenches have formed in the Ru surface just behind the Pt decorations (Figure 

3-15c) after cycling to 1.05 V. If all changes in the morphology were restricted to dissolution of Ru 

atoms from behind the Pt step decorations, the electrochemical properties of the surface should 

remain largely unaffected, since the dissolving Ru atoms mainly unveil the underlying Ru layer, which 

would be a zero-sum game with respect to the surface fraction of Pt and Ru. That (false) assumption 



would be supported by the largely unaffected base CV. Using the electrochemical oxidation of CO as 

a probe reaction, however, reveals that the surface restructuring induced by reaching 1.05 V indeed 

has an effect on the electrocatalytic properties.  

Figure 3-16 shows an experiment similar to the one in Figure 3-15, but in a flow of CO-saturated 

electrolyte. The bare Ru(0001) surface is essentially inactive for CO oxidation, which is a well-

described effect of the high coverage by strongly adsorbed Oad species that prohibit CO adsorption 

[177]. If the potential range is kept below 0.9 V, the presence of Pt islands on the surface slightly 

improves the activity (dashed line in Figure 3-16), but it is still much worse than the activity of a PtRu 

surface alloy (dash-dotted line) in the same potential range. If the Pt island covered surface is cycled 

to 1.05 V, however, the activity significantly improves (dotted line in Figure 3-16). The STM image 

after cycling to 1.05 V (Figure 3-16c) reveals the formation of a gap behind the Pt step decoration 

similar to the one in Figure 3-15c. The improved activity for CO oxidation could not be explained if 

this were the only change to the surface structure. It was concluded that the missing Ru atoms 

intermixed with the Pt deposit, thus forming the mixed Ru2Pt and RuPt2 adsorption sites with 

adsorption energies for CO and O that are lower than those of Ru3 sites and higher than those of the 

Pt3 sites (see discussion of Figure 3-14).  

These results show the importance of thorough surface structure analysis with methods that are 

able to probe the lateral atom distribution in model surfaces, i.e., STM with chemical contrast. Even 

if no “post-mortem” analyses of the atom distribution of surfaces as in Figure 3-15c or Figure 3-16c 

have been reported so far, the “missing” Ru atoms in combination with the knowledge about the 

electrochemical behaviour of purpose-prepared surface alloys allows reasonable conclusions to be 

drawn. 

As to the bifunctional effect in the Pt-Ru system, one has to conclude that mixed adsorption sites 

with intermediate bonding power as compared to pure Pt or Ru are likely to play an essential role for 

the overall activity. Previous studies (e.g., [99]), that have discussed the electrocatalytic effects 

based only on an observed or assumed island morphology without atomic scale intermixing, may 

have to be revised. Model studies involving closed mono- and multilayers of just one deposit that 

effectively bury the substrate (e.g., Figure 3-6) [22,139,140], on the other hand, are less likely to be 

affected by unexpected intermixing since alloying takes place only if both metals are exposed. 

Furthermore, surface alloys themselves seem to be less sensitive to unexpected restructuring [182], 

which can be rationalized by their higher thermodynamic stability as compared with foreign metal 

islands [29, 168].  



 

Figure 3-16. (a) Potentiodynamic bulk CO oxidation in 0.5 M H2SO4 at 10 mVs-1 on Ru(0001) (black line), 

Pt0.29ML/Ru(0001) potential-cycled up to 0.9 V (blue dashed line), Pt0.39ML/Ru(0001) cycled up to 1.05 V (red 

dotted line), and a Pt0.3Ru0.7/Ru(0001) surface alloy potential cycled up to 0.9 V (green, dashed-dotted line). 

Arrows indicate the anodic scan. The inset shows the as-prepared electrode with 0.28 ML Pt deposited on 

Ru(0001) (200 x 200 nm²). (b,c) STM images (200 x 200 nm²) of the electrodes after potential cycling up to 0.9 

V (b) and 1.05 V (c). Reproduced with permission from ref. [181]. 

4 Summary and Outlook 
Surface science insights gained in UHV experiments and related ab-initio studies brought 

research in electrocatalysis to another level. Interfacial electrochemistry has relied upon microscopic 

pictures from its very beginning, but the ever increasing accuracy of experimental adsorption and 

reaction data obtained at the solid-gas interface substantially helped to fill many previous “wildcard” 

assumptions with more reference points. Whereas many early studies assumed that the adlayers 

formed at the solid/liquid interface must necessarily differ substantially from those at the solid/gas 

interface due to the influences of water, electrolyte, and electrochemical potential, experiments 

specifically looking at both interfaces found surprisingly many similarities. We exemplarily showed 



the examples of CO on Pt(111) (measured at both surfaces) and H on Ru(0001) (where the UHV-

prepared adlayers and their desorption are consistent with electrochemical data).  

We also highlighted many examples of coupled UHV/electrochemistry experiments. Whereas 

historically, UHV-based methods were first used for ex-situ analyses of electrodes that were 

transferred into vacuum, more recent studies made increasing use of UHV-based surface 

preparation recipes. Starting with the cleaning and annealing of bulk alloys, which we illustrate 

through the example of Pt3Sn(111), UHV-prepared model electrodes made use of controlled metal 

film growth and surface alloy formation, very much in line with concomitant studies in the surface 

science community. We illustrate that with the examples of Pt films and PtRu surface alloys on 

Ru(0001), which were extensively studied at the solid/gas and the solid/liquid interface, along with 

and inspired by ab-initio predictions about their (electro-)chemical and (electro-)catalytic properties. 

Whereas UHV preparation turned out to be ideal to design experiments that match the slab-type 

model systems typically studied in DFT studies, we also flag the necessity of verifying the actual 

surface structure before and after any electrochemical experiments. Surface alloys often are 

thermodynamically more stable than foreign metal islands. Even if higher temperatures are required 

in UHV to activate metal place exchange processes for surface alloy formation, the electrochemical 

potential and the related adsorbates may also enable atomic-scale intermixing. If such “local” 

surface alloys are electrocatalytically superior, a few accidentally created active sites may dominate 

the outcome of electrocatalytic experiments (such as HER/HOR, ORR, or CO oxidation), and 

neglecting them may lead to false conclusions. The only safe way to rule out such “accidental” active 

site formation would be the purpose-preparation of surface alloys of the respective system through 

annealing and to confirm that they are not active. If they are active, they may potentially influence 

experiments that actually aim to elucidate the properties of foreign metal islands. 

The high flexibility of accessible model surfaces and the ever growing knowledge about 

adsorption and reaction at the solid/gas interface will trigger much more UHV/electrochemistry 

research in the near future. The growing maturity of the respective experimental setups will come 

with an increased use of in-situ analysis methods, such as collector electrodes, on-line mass 

spectrometry, or vibrational spectroscopy. Electrochemical in-situ STM at UHV-prepared surfaces 

may be a suitable tool to track potential-induced morphology changes. Beyond metal electrodes, we 

are likely to see similar approaches for tailor-made thin-film oxides or organic model electrodes. The 

symbiosis of UHV(-STM) and electrochemistry has a bright future ahead. 
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