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Abstract

We study the impact of parameter uncertainty on the expected utility of a

multiperiod investor subject to quadratic transaction costs. We characterize

the utility loss associated with ignoring parameter uncertainty, and show that

it is equal to the product between the single-period utility loss and another

term that captures the effects of the multiperiod mean-variance utility and

transaction cost losses. To mitigate the impact of parameter uncertainty, we

propose two multiperiod shrinkage portfolios and demonstrate with simulated

and empirical data sets that they substantially outperform portfolios that

ignore parameter uncertainty, transaction costs, or both.

Keywords: Shrinkage portfolios, trading costs, out-of-sample performance.
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I. Introduction

Markowitz (1952) shows that an investor who cares only about the portfolio mean and

variance should hold a portfolio on the efficient frontier. Markowitz’s mean-variance

framework is the cornerstone of most practical investment approaches, but it relies on

three restrictive assumptions. First, the investor is myopic and maximizes a single-

period utility. Second, financial markets are frictionless. Third, the investor knows the

exact parameters that capture asset price dynamics. However, these assumptions are

unrealistic.

There is an extensive literature on multiperiod portfolio selection in the presence of

transaction costs under the assumption that there is no parameter uncertainty. For the

case with a single-risky asset and proportional transaction costs, Constantinides (1979)

and Davis and Norman (1990) show that the optimal portfolio policy of an investor with

constant relative risk aversion (CRRA) utility is characterized by a no-trade interval. The

case with multiple-risky assets and proportional transaction costs is generally intractable

analytically.1 Garleanu and Pedersen (2013) show that the case with multiple-risky assets

and quadratic transaction costs is, however, more tractable, and they provide closed-form

expressions for the optimal portfolio policy of a multiperiod mean-variance investor.

1Liu (2004), however, characterizes analytically the case where asset returns are uncorrelated and

the investor has constant absolute risk aversion (CARA) utility.

1



There is also an extensive literature on parameter uncertainty on portfolio selection

for the case of a single-period investor who is not subject to transaction costs. This liter-

ature includes Bayesian approaches with diffuse priors (Klein and Bawa (1976), Brown

(1978)), Bayesian approaches with priors based on asset pricing models (MacKinlay and

Pastor (2000), Pástor (2000), Pástor and Stambaugh (2000)), Bayesian approaches with

priors based on economic objectives (Tu and Zhou (2010)), shrinkage approaches (Ledoit

and Wolf (2004b)), robust optimization methods (Cornuejols and Tutuncu (2007), Gold-

farb and Iyengar (2003), Garlappi, Uppal and Wang (2007), Rustem, Becker and Marty

(2000), Tutuncu and Koeing (2004)), Bayesian robust optimization (Wang (2005)), mean-

variance timing rules (Kirby and Ostdiek (2012)) and methods based on imposing con-

straints (Best and Grauer (1992), Jagannathan and Ma (2003), and DeMiguel, Garlappi,

Nogales and Uppal (2009)).

Kan and Zhou (2007) characterize analytically the utility loss of a mean-variance

investor who suffers from parameter uncertainty. Moreover, they propose two single-

period shrinkage portfolios that shrink the sample mean-variance portfolio towards a

target portfolio, and they analytically characterize the shrinkage intensities that minimize

the investor’s utility loss from parameter uncertainty.2

2See also Tu and Zhou (2010), who consider a combination of the sample mean-variance portfolio

with the equally-weighted portfolio.
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In this paper, we consider the impact of parameter uncertainty on the performance

of a multiperiod mean-variance investor facing quadratic transaction costs. Our first

contribution is to give a closed-form expression for the utility loss of an investor who uses

sample information to construct her optimal portfolio policy. We find that the utility

loss is the product of two terms. The first term is the single-period utility loss in the

absence of transaction costs, as characterized by Kan and Zhou (2007). The second term

captures the effect of the multiperiod horizon on the overall utility loss. Specifically, this

term can be split into the losses coming from the multiperiod mean-variance utility and

the multiperiod transaction costs.

We also use our characterization of the utility loss to understand how transaction

costs and the investor’s impatience factor affect the investor utility loss. We observe

that agents that face high transaction costs are less affected by estimation risk. The

explanation for this is that transaction costs induce the investor to trade at a slower

rate, and as a result the impact of estimation error is postponed to future time periods

that have a smaller impact on the overall discounted utility. We also find that an investor

with high impatience factor is less affected by estimation risk. Roughly speaking, the

investor’s impatience factor has a similar effect on the investor’s expected utility to that

of trading costs. When the investor is more impatient, the cost of making a trade is

relatively more important compared to the future expected payoff of the corresponding
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trade. Hence, larger trading costs or higher impatience factor make the investor trade

less aggressively, and this offsets the uncertainty of the inputs that define the multiperiod

portfolio model.

Our second contribution is to propose two shrinkage approaches designed to combat

estimation risk in the multiperiod mean-variance framework with quadratic transaction

costs. From Garleanu and Pedersen (2013), it is easy to show that, in the absence of

estimation error, the optimal portfolio policy is to trade towards the Markowitz portfolio

at a fixed trading rate every period. Our first shrinkage approach consists of shrinking

the Markowitz portfolio towards a target that is less sensitive to estimation error, while

maintaining the trading rate fixed at its nominal value. This portfolio aims to diversify

the effects of estimation risk across different funds. The second approach consists of

shrinking the trading rate, in addition to shrinking the Markowitz portfolio. This port-

folio aims to smooth the investor trading activity to avoid extreme positions that may

result into extreme negative outcomes due to the effects of parameter uncertainty.

We consider two variants of the first approach. The first variant consists of shrinking

the Markowitz portfolio towards the risk-free asset. We term this portfolio a multiperiod

three-fund shrinkage portfolio because it is a combination of the investor’s initial port-

folio, the Markowitz portfolio, and the risk-free asset. The second variant shrinks the

Markowitz portfolio towards the minimum-variance portfolio, and we term the resulting
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trading strategy as multiperiod four-fund portfolio because it is a combination of the

investor’s initial portfolio, the Markowitz portfolio, the minimum-variance portfolio and

the risk-free asset. We show that the optimal shrinkage intensities for the three- and

four-fund multiperiod portfolios are the same as for the single-period investor and we

show that it is always optimal to shrink the Markowitz portfolio and combine it with

the minimum-variance portfolio. Regarding the second shrinkage approach, the nominal

trading rate given by Garleanu and Pedersen (2013) may not be optimal in the presence

of parameter uncertainty. Hence, we propose versions of the four-fund portfolio where

the trading rate is also shrunk to reduce the effects of parameter uncertainty. We pro-

vide a rule to compute the optimal trading rate and we identify the conditions where the

investor can obtain gains by shrinking the trading rate.

For tractability, the analysis described above relies on the assumption that the investor

uses a fixed estimation window to construct her lifetime portfolio policy. Our third

contribution is to relax this assumption by considering the case where the investor uses

expanding estimation windows; that is, where the investor uses all available data at

each point in time for estimation purposes. We find that for the case with expanding

windows, the utility loss is no longer separable into the product of the single-period

utility loss and a multiperiod factor. Nevertheless, we conjecture an approximation to

the investor’s expected loss that allows us to compute the optimal shrinkage intensities of
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the multiperiod shrinkage portfolios, and show with simulated data that the conjectured

approximation is very accurate.

Our fourth contribution is to evaluate the out-of-sample performance of the proposed

multiperiod shrinkage portfolios on simulated and empirical data sets. We find that

the four-fund portfolios (either with nominal or shrunk trading rate) substantially out-

perform portfolios that either ignore transaction costs, or ignore parameter uncertainty.

In addition, we find that shrinking the nominal trading rate can also improve the in-

vestor’s out-of-sample performance under certain circumstances. Finally, we identify the

situations when using expanding windows helps to improve performance.

The outline of the paper is as follows. Section II characterizes the expected loss

of an investor who uses sample information to estimate her optimal trading strategy.

Section III introduces the multiperiod shrinkage portfolios that help to reduce the effects

of estimation risk, and Section IV studies the case with expanding windows. Section V

tests the out-of-sample performance of our proposed multiperiod portfolios on simulated

and empirical data sets. Section VI concludes.

II. Multiperiod Utility Loss

We adopt the framework proposed by Garleanu and Pedersen (2013), hereafter G&P.

In this framework, the investor maximizes her multiperiod mean-variance utility, net of

quadratic transaction costs, by choosing the number of shares to hold of each of the N
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risky assets. We focus on the case where price changes in excess of the risk-free asset are

independent and identically distributed (iid) as a normal distribution with mean µ and

covariance matrix Σ. 3

The investor’s objective is

max
{xi}

U
(
{xi}

)
=
∞∑
i=0

(1− ρ)i+1
(
x′iµ−

γ

2
x′iΣxi

)
− (1− ρ)i

(
λ

2
∆x′iΣ∆xi

)
,(1)

where xi ∈ IRN for i ≥ 0 contains the number of shares held of each of the N risky

assets at time i, ρ is the investor’s impatience factor, and γ is the absolute risk-aversion

parameter. The term (λ/2)∆x′iΣ∆xi is the quadratic transaction cost at the ith period,

where λ is the transaction cost parameter, and ∆xi = xi − xi−1 is the vector containing

the number of shares traded at the ith period.

A few comments are in order. First, quadratic transaction costs are appropriate

to model market impact costs, which arise when the investor makes large trades that

distort market prices. A common assumption in the literature is that market price

impact is linear on the amount traded (see Kyle (1985)), and thus market impact costs

are quadratic.4 Second, we adopt G&P’s assumption that the quadratic transaction

3G&P consider the case of predictable price changes, however we focus on the iid multivariate normal

case which is customary in the transaction costs literature; see Constantinides (1979), Davis and Norman

(1990), and Liu (2004).

4Several authors have shown that the quadratic form matches the market impact costs observed in

empirical data; see, for instance, Lillo, Farmer and Mantegna (2003) and Engle, Ferstenberg and Russell
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costs are proportional to the covariance matrix Σ. G&P provide micro-foundations to

justify the use of quadratic transaction costs and we can also find more examples in the

literature that address this type of costs. For instance, Greenwood (2005) shows from

an inventory perspective that price changes are proportional to the covariance of price

changes. Engle and Ferstenberg (2007) show that under some assumptions, the cost of

executing a portfolio is proportional to the covariance of price changes. Transaction costs

proportional to risk can also be understood from the dealer’s point of view. Generally,

the dealer takes at time i the opposite position of the investor’s trade and “lays it off”

at time i+ 1. In this sense, the dealer has to be compensated for the risk of holding the

investor’s trade.

Garleanu and Pedersen (2013) show that the optimal multiperiod portfolio is a con-

vex combination between the investor’s current portfolio and the static mean-variance

(Markowitz) portfolio,

xi = (1− β)xi−1 + βxM,(2)

where β =

(√
(γ + λ̃ρ)2 + 4γλ− (γ + λ̃ρ)

)
/(2λ) ≤ 1 represents the investor’s trading

rate, xM = (1/γ)Σ−1µ is the Markowitz portfolio and λ̃ = λ/(1−ρ). Hence, it is optimal

to invest in the static mean-variance portfolio, but it is prohibitive to trade towards

the Markowitz portfolio in a single period and thus the investor converges smoothly at

(2012).
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a constant trading rate. The trading rate β increases with the absolute risk-aversion

parameter γ, and decreases with the transaction cost parameter λ and the investor’s

impatience factor ρ; see Garleanu and Pedersen (2013).5

In a real-world application, investors ignore the true inputs that define the model.

Therefore, it is interesting to characterize the expected loss for an investor who uses

historical data to construct the optimal trading strategy; i.e. the plug-in approach.

Specifically, let rt for t = 1, 2, . . . , T be the sample of excess price changes. Then, we

consider the following sample estimators of the mean and covariance matrix:

µ̂ =
1

T

T∑
t=1

rt, and Σ̂ =
1

T −N − 2

T∑
t=1

(rt − µ̂)2 .(3)

Kan and Zhou (2007) characterize the investor’s expected utility loss as the difference

between the single-period utility evaluated for the true Markowitz portfolio xM and the

expected single-period utility evaluated for the estimated Markowitz portfolio x̂M. They

show that this is defined by L1(x
M, x̂M) = (1/2γ) [(c− 1)θ + c(N/T )], where c = [(T −

N − 2)(T − 2)]/[(T −N − 1)(T −N − 4)], and θ = µ′Σ−1µ is the squared Sharpe ratio

for a static mean-variance investor.6

5Garleanu and Pedersen (2013) only prove the monotonicity properties of β for γ and λ. However,

it is straightforward to prove the monotonicity of β with respect to ρ using their same arguments.

6The single-period utility loss is stated here in terms of the unbiased estimator of the Markowitz

portfolio, while Kan and Zhou (2007) cast it in terms of the standard estimator.
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Similar to Kan and Zhou (2007), we study the investor’s multiperiod expected loss

as the difference between the investor’s utility evaluated for the true optimal trading

strategy xi and the investor’s expected utility evaluated for the estimated optimal trading

strategy x̂i. We provide this result in the following proposition (all proofs are given in

the Appendix ).

Proposition 1 The expected loss of a multiperiod mean-variance investor is equal to the

product between the utility loss of a single-period investor L1(x
M, x̂M), and a multiperiod

term,

L({xi}, {x̂i}) = L1(x
M, x̂M)× [fmv + ftc] ,(4)

where fmv is the multiperiod mean-variance loss factor, and ftc is the multiperiod trans-

action cost loss factor:

fmv =
1− ρ
ρ

+
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)
,(5)

ftc =
λ

γ

β2

1− (1− ρ)(1− β)2
.(6)

To understand why we name fmv and ftc as the multiperiod mean-variance and trans-

action cost factors, respectively, note that from the proof of Proposition 1 it is easy to
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see that the multiperiod expected loss can be written as L = Lmv + Ltc, where

Lmv ≡ L1(x
M, x̂M)× fmv =

γ

2

∞∑
i=0

(1− ρ)i+1E [x̂′iΣx̂i − x′iΣxi] ,(7)

Ltc ≡ L1(x
M, x̂M)× ftc =

λ̃

2

∞∑
i=0

(1− ρ)i+1E [∆x̂′iΣ∆x̂i −∆x′iΣ∆xi] .(8)

Moreover, equation (7) shows that the term Lmv depends only on the multiperiod mean-

variance loss of the plug-in multiperiod portfolio x̂i, and equation (8) shows that the

term Ltc depends only on the multiperiod transaction cost loss of the plug-in multi-

period portfolio. Therefore, we can say that the multiperiod mean-variance loss factor

fmv captures the multiperiod losses originating from the mean-variance utility, and the

multiperiod transaction cost loss factor ftc captures the multiperiod losses originating

from the transaction costs.

For tractability, in Proposition 1, we assume the investor uses a fixed estimation

window (from time t=1 to time t=T) to construct her lifetime optimal portfolio policy.

In Section IV, however, we relax this assumption by considering an investor who updates

her portfolio policy at every time period to take into account every available observation;

that is, we consider an investor who uses expanding estimation windows. Moreover, for

the out-of-sample evaluation in Section V, we consider the cases with a rolling estimation

window (that is, an estimation window that considers at each time period the last T

observations) as well as expanding window (that is, a window that considers all available
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observations from t=1).

Finally, we study how the multiperiod expected loss depends on the absolute risk-

aversion parameter γ, the transaction cost parameter λ, and the discount factor ρ. Fig-

ure 1 shows the results for the case where the investor constructs the optimal trading

strategy with T = 500 observations, and where the population parameters µ and Σ are

equal to the sample moments of the empirical data set of commodity futures described in

Section V. We obtain three main insights from Figure 1. First, the multiperiod expected

loss decreases with the absolute risk-aversion parameter γ. Like in the static case, this is

an intuitive result because as the investor becomes more risk averse, the investor’s expo-

sure to risky assets is lower and then the impact of parameter uncertainty is also smaller.

Second, the multiperiod expected loss decreases with transaction costs λ. As trading

costs increase, the optimal trading rate decreases, and thus the investor optimally slows

the convergence to the Markowitz portfolio. This effect results into a delay of the impact

of parameter uncertainty to future stages where the overall importance of utility losses

is smaller. Third, the multiperiod expected loss decreases with ρ. Roughly speaking,

the investor’s impatience factor ρ has a similar effect on the investor’s expected utility

to that of trading costs λ. When the investor is more impatient, the cost of making a

trade takes a greater importance than the future expected payoff of the corresponding

trade. Accordingly, a more impatient investor also postpones the impact of parameter
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uncertainty to future stages that have lower impact in the overall investor’s utility, which

results into a lower expected loss.

[Include Figure 1 about here]

We now study a single-period example for which we can analytically characterize the

monotonicity properties of the expected utility loss with respect to γ, λ, and ρ.

Example 1 Consider a single-period mean-variance investor subject to quadratic trans-

action costs and whose initial portfolio is x−1. The investor’s decision problem is:

max
x

(1− ρ)
{
x′µ− γ

2
x′Σx

}
− λ

2
∆x′Σ∆x.(9)

Notice that (9) is a good approximation to (1) when ρ is close to one. From the

first-order optimality conditions, it is easy to see that the investor’s optimal portfolio

is x = (1 − β1)x−1 + β1x
M, where β1 = γ/(γ + λ̃) is the single-period trading rate.

Substituting µ and Σ with their sample counterparts, it is easy to show that the investor’s

expected utility loss is:

β1 × L1(x
M, x̂M).(10)
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Moreover, it is straightforward to show that the single-period trading rate β1 satisfies the

same monotonicity properties as the multiperiod trading rate. As a result, the investor’s

expected loss is monotonically decreasing in the transaction cost parameter and the

investor’s impatience factor because β1 is decreasing in these parameters and L1(x
M, x̂M)

does not depend on them. On the other hand, we observe that as γ increases, β1 increases

and L1(x
M, x̂M) decreases. However, the overall impact of γ on the investor’s expected

loss is determined by β1×(1/γ) = 1/(γ+λ̃), which is a decreasing function of γ. Thus, the

investor’s expected loss also decreases with the investor’s absolute risk aversion parameter

γ.

III. Multiperiod Shrinkage Portfolios

In this section we propose two shrinkage approaches to mitigate the impact of estimation

error on the multiperiod mean-variance utility of an investor who faces quadratic trans-

action costs. For tractability, in this section we assume that the investor uses a fixed

estimation window, but in Section IV we show how to relax this assumption and consider

the case with expanding windows. Section A discusses the first approach, which consists

of shrinking the estimated Markowitz portfolio towards a target that is less sensitive to

estimation error, while maintaining the trading rate fixed to its nominal value. Section B

discusses the second approach, which, in addition, shrinks the trading rate.
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A. Shrinking the Markowitz Portfolio

The optimal portfolio at period i, in the absence of estimation error can be written as:

xi = (1− β)i+1x−1 + βxM
i∑

j=0

(1− β)j.(11)

Therefore, the true optimal multiperiod trading strategy allocates the investor’s wealth

into three funds: the risk-free asset, the initial portfolio x−1, and the Markowitz portfolio.

In the presence of parameter uncertainty the investor suffers from estimation error, which

results in utility losses. A simple rule to minimize utility losses is to shrink the sample

Markowitz portfolio towards a target portfolio that is less sensitive to estimation error.

For the single-period case, Kan and Zhou (2007) show that this helps to mitigate the

impact of parameter uncertainty.

We generalize the analysis of Kan and Zhou (2007) to the multiperiod case. In

particular, we consider two novel multiperiod portfolios that maximize the investor’s

expected utility by shrinking the Markowitz portfolio towards a target portfolio. The

first portfolio shrinks the Markowitz portfolio towards the portfolio that invests solely

on the risk-free asset; that is, towards a portfolio with x = 0 holdings. Shrinking the

Markowitz portfolio gives a portfolio in the ex ante sample capital market line, and the

resulting trading strategy is as follows:

x̂3Fi = (1− β)x̂3Fi−1 + βηx̂M,(12)
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where η is the shrinkage intensity. We term this portfolio as the multiperiod three-fund

shrinkage portfolio because it invests in the risk-free asset, the investor’s initial portfolio

and the sample Markowitz portfolio.

Second, we consider a multiperiod portfolio that combines the sample Markowitz

portfolio with the sample minimum-variance portfolio x̂Min = (1/γ)Σ̂−1ι, which is known

to be less sensitive to estimation error than the mean-variance portfolio; see Kan and

Zhou (2007):7

x̂4Fi = (1− β)x̂4Fi−1 + β(ς1x̂
M + ς2x̂

Min),(13)

where ς1 and ς2 are the shrinkage intensities for the Markowitz portfolio and the minimum-

variance portfolio, respectively. We term the resulting trading strategy as the multiperiod

four-fund portfolio because it invests in the risk-free asset, the investor’s initial portfolio,

the sample Markowitz portfolio and the sample minimum-variance portfolio.

Note that while Kan and Zhou (2007) consider a static mean-variance investor that is

not subject to transaction costs, we consider a multiperiod mean-variance investor subject

to quadratic transaction costs. Given this, one would expect that the optimal shrinkage

intensities for our proposed multiperiod shrinkage portfolios would differ from those ob-

tained by Kan and Zhou (2007) for the single-period case, but the following proposition

7Notice that the minimum-variance portfolio does not depend on γ. However, for notational conve-

nience, we multiply the unscaled minimum-variance portfolio with (1/γ).
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shows that the optimal shrinkage intensities for the single-period and multiperiod cases

coincide.

Proposition 2 The optimal shrinkage intensities for the three-fund and four-fund port-

folios that minimize the utility loss of a multiperiod mean-variance investor L({xi}, {x̂i})

coincide with the optimal shrinkage intensities for the single-period investor who ignores

transaction costs. Specifically, the optimal shrinkage intensity for the three-fund portfolio

η and the optimal shrinkage intensities for the four-fund portfolio ς1 and ς2 are:

η = c−1
θ

θ +
N

T

,(14)

ς1 = c−1
Ψ2

Ψ2 +
N

T

,(15)

ς2 = c−1

N

T

Ψ2 +
N

T

× µ′Σ−1ι

ι′Σ−1ι
,(16)

where Ψ2 = µ′Σ−1µ− (µ′Σ−1ι)2/(ι′Σ−1ι) > 0.

From the above proposition we observe that the optimal combination parameters ς1

and ς2 are independent of trading costs. The intuition for this result can be traced back

to the optimal multiperiod trading strategy, which is a convex combination between the

investor’s current portfolio and the static mean-variance portfolio. In the presence of

parameter uncertainty, the investor should choose a combination of the current port-
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folio and the portfolio that is optimal in the single-period framework with parameter

uncertainty of Kan and Zhou (2007).

The following corollary shows that the optimal multiperiod portfolio policy that ig-

nores estimation error is inadmissible in the sense that it is always optimal to shrink the

Markowitz portfolio. Moreover, the three-fund shrinkage portfolio is also inadmissible in

the sense that it is always optimal to shrink the Markowitz portfolio towards the target

minimum-variance portfolio. The result demonstrates that the shrinkage approach is

bound to improve performance under our main assumptions.

Corollary 1 It is always optimal to shrink the Markowitz portfolio; that is, η < 1.

Moreover, it is always optimal to combine the Markowitz portfolio with the target

minimum-variance portfolio; that is, ς2 > 0.

We use the commodity futures data set described in Section V to illustrate the benefits

from using the multiperiod three- and four-fund shrinkage portfolios. We consider the

base-case investor described in Section V, and assume she constructs the optimal trading

strategy with T = 500 observations. Moreover, we set the population parameters µ and

Σ equal to the sample moments of the empirical data set of commodity futures. We study

the investor’s loss relative to the true investor’s utility and we find that the relative loss

of the base-case investor who is using the shrinkage three-fund portfolio in (12) is about

eight times smaller than that of the base-case investor using the plug-in multiperiod
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portfolio. Also, the relative loss of the shrinkage four-fund portfolio in (13) is about 11%

smaller than that of the three-fund portfolio in (12). These results confirm that there is

a clear advantage of using the four-fund shrinkage portfolio with respect to the plug-in

multiperiod portfolio and the multiperiod three-fund shrinkage portfolio.

B. Shrinking the Trading Rate

In this section we study the additional utility gain associated with shrinking the trading

rate in addition to the Markowitz portfolio. For the proposed shrinkage portfolios in

(12) and (13), note that the nominal trading rate β in (2) may not be optimal in the

presence of parameter uncertainty. We now consider optimizing the trading rate in order

to minimize the investor’s utility loss from estimation risk. In particular, a multiperiod

mean-variance investor who uses the shrinkage four-fund portfolio in (13) may reduce

the impact of parameter uncertainty by minimizing the corresponding expected utility

loss, L({xi}, {x̂4Fi (β)}), with respect to the trading rate β. Overall, the aim of shrinking

the trading rate is to reduce the risk of taking extreme positions that may result into

extreme negative outcomes.

The following proposition formulates an optimization problem whose maximizer gives

the optimal shrunk trading rate of the four-fund portfolio. Notice that we can apply the

same proposition to the shrinkage three-fund portfolio in (12) simply by considering

ς2 = 0 and ς1 = η.
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Proposition 3 For the shrinkage four-fund portfolio in (13), the optimal trading rate

β that minimizes the expected utility loss L({xi}, {x̂4Fi (β)}) can be obtained by solving

the following optimization problem:

max
β

Excess return︷ ︸︸ ︷
V1(x−1 − xC)′µ−1

2

Variability + Trading costs︷ ︸︸ ︷(
E
[
(x̂C)′Σx̂C

]
V2 + x′−1Σx−1V3 + 2x′−1Σx

CV4
)
,(17)

where x−1 is the investor’s initial position, x̂C = ς1x̂
M + ς2x̂

Min is the optimal portfo-

lio combination between the static mean-variance portfolio and the minimum-variance

portfolio,

E
[
(x̂C)′Σx̂C

]
= (c/γ2)

(
ς21
(
µ′Σ−1µ+ (N/T )

)
+ ς22 ι

′Σ−1ι
)

+ (c/γ2)
(
2ς1ς2µ

′Σ−1ι
)
,(18)
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and elements Vi for i = 1, 2, . . . , 4 are:

V1 =
(1− ρ)(1− β)

1− (1− ρ)(1− β)
,(19)

V2 = γ

(
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)

)
+ λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
,(20)

V3 = γ
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
+ λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
,(21)

V4 = γ

(
(1− ρ)(1− β)

1− (1− ρ)(1− β)
− (1− ρ)(1− β)2

1− (1− ρ)(1− β)2

)
− λ̃ (1− ρ)β2

1− (1− ρ)(1− β)2
.(22)

Proposition 3 gives an optimization problem whose solution defines the investor’s

optimal trading rate β. As we see from (17), the objective is to maximize the trade-off

between the expected excess return of the investor’s initial portfolio with the optimal

portfolio combination x̂C, and the expected portfolio variability and trading costs of the

four-fund portfolio.

To gauge the benefits from optimizing the trading rate, we compare the relative losses

for the multiperiod four-fund portfolio optimizing the trading rate as in (17), and the

multiperiod four-fund portfolio with the nominal trading rate.
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Figure 2 depicts the relative loss of the base-case investor described in Section V,

assuming she uses a fixed estimation window with T = 500 observations, and for pop-

ulation parameters µ and Σ equal to the sample moments of the empirical data set of

commodity futures described in Section V. The investor’s initial portfolio is assumed to

be x−1 = d × xM, where d is the value represented in the horizontal axis of the figure.

We observe that when the investor’s initial portfolio is close to the static mean-variance

portfolio, shrinking the trading rate β provides substantial benefits. In particular, we

find that the relative loss of the four-fund shrinkage portfolio can be reduced by more

than a 15% by shrinking the trading rate for the case where the starting portfolio is

x−1 = 0.1 × xM, and when x−1 ' 0.5 × xM, one can reduce the relative loss to almost

zero. Summarizing, shrinking the nominal trading rate may result into a considerable

reduction of the investor’s expected loss, specially in those situations where the investor’s

initial portfolio is close to the static mean-variance portfolio.

[Include Figure 2 about here]

IV. Expanding Estimation Windows

The analysis in Sections II and III relies on the assumption that the investor uses a

fixed window. We now relax this assumption by considering the case where the investor

uses expanding windows to estimate her portfolio; that is, the case where the investor

uses all available data at each point in time for estimation purposes. We find that for
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this case the expected multiperiod utility loss can no longer be separated as the product

of the single-period utility loss and a multiperiod factor. Nevertheless, we conjecture

an approximation to the multiperiod utility loss that allows us to estimate the optimal

shrinkage intensities for the case with expanding windows. To conserve space, in the

remainder of this section we only sketch the main steps of our analysis.

For the expanding window case, the estimated multiperiod portfolio can be written

as:

x̂i = (1− β)i+1x̂i−1 + βx̂Mi ,(23)

where x̂Mi = (1/γ)Σ̂−1i µ̂i is the estimated Markowitz portfolio at time i, and µ̂i and Σ̂i

are the estimators of the mean and covariance matrix obtained from the sample that

includes all available observations up to the investment decision time i; that is,

µ̂i =
1

T + i

T+i∑
t=1

rt, and Σ̂i =
1

T + i−N − 2

T+i∑
t=1

(rt − µ̂i)2 ,(24)

where T is the initial estimation window and i are the new available observations up to

the i-th investment decision stage.8 Note that the sample Markowitz portfolio changes

8We also considered the case of changing shrinkage intensities for an investor who uses expanding

windows. We recalculate the optimal shrinkage intensities with (14)-(16) every time the investor has

new available observations. However, this technique reduces the shrinkage intensity towards the target

portfolio as time goes by, and it does not provide better out-of-sample Sharpe ratios. We do not report

these results to preserve space.
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over time and thus it is not possible to use the single-period utility loss as a common

factor of the investor’s expected loss so that this is equal to the product between the

single-period loss and a multiperiod term.

A. Characterizing the Multiperiod Utility Loss

To characterize the investor’s expected loss with N ≥ 2 assets, and thus to be able to

optimize the shrinkage intensity for the multiperiod three-fund and four-fund portfolios,

one needs to characterize expectations of the form:

Bh,h+j = E
(
µ̂′hΣ̂

−1
h ΣΣ̂−1h+jµ̂h+j

)
,(25)

where h and j are nonnegative integers. This expression is proportional to the expected

out-of-sample portfolio covariance between the estimated Markowitz portfolio at time h,

and the estimated Markowitz portfolio at time h + j. This expression arises from the

expected portfolio variance or trading costs of the estimated optimal trading strategy.

The difficulty here is that we pre-multiply and post-multiply the true covariance matrix

with two inverse-Wishart matrices with different degrees of freedom. To the best of our

knowledge, this specific problem has not been dealt with previously and there are not

available formulas to characterize this expectation.

To address this difficulty, we conjecture an approximation to the expectation in (25).

We have tested the accuracy of our conjecture via simulations and we find that the
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approximation error of our conjecture is less than 0.1 %.

Conjecture 1 Provided that T+h > N+4, the expectation Bh,h+j can be approximated

as:

Bh,h+j ≈ (1− πh,h+j)θ + πh,h+jBh,h,(26)

where πh,h+j = (T + h−N) / (T + h+ j −N), θ = µ′Σ−1µ, and the expectation Bh,h =

E
[
µ̂′hΣ̂

−1
h ΣΣ̂−1h µ̂h

]
is as given by (Kan and Zhou, 2007, Section 2); that is, Bh,h =

ch×(θ+N/(T+h)), where ch = [(T+h−2)(T+h−N−2)]/[(T+h−N−1)(T+h−N−4)].

We now give some motivation for the approximation in Conjecture 1. First, we

establish the bounds of expression (25) when asset returns are iid normal:

θ ≤ Bh,h+j < Bh,h,(27)

where Bh,h is proportional to the expected out-of-sample portfolio variance of an esti-

mated mean-variance portfolio with information up to time T + h, and θ is proportional

to the true portfolio variance of the Markowitz portfolio. The true portfolio variance of

the Markowitz portfolio is known to be lower than the expected out-of-sample variance

of an estimated portfolio (see Kan and Zhou (2007)), and hence θ < Bh,h.
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On the other hand, we conjecture that the expected out-of-sample portfolio covariance

between the estimated mean-variance portfolio constructed with information up to time

T+h, and the estimated mean-variance portfolio constructed with information up to time

T + h + j, is lower than the expected out-of-sample portfolio variance of an estimated

mean-variance portfolio with information up to time T + h; i.e. Bh,h+j < Bh,h. This

assumption establishes the upper bound for Bh,h+j. In particular, for the specific case

of j → ∞, Σ̂−1h+jµ̂h+j → Σ−1µ, and in turn Bh,h+j = θ < Bh,h; see Schottle and Werner

(2006).9

To establish the lower bound for Bh,h+j, we know that the true Markowitz portfolio

provides the lowest portfolio variance and in turn θ < Bh,h+j. This provides the lower

bound for Bh,h+j.

Therefore, it is natural that the expectation in (25) is between θ and Bh,h. In particu-

lar, we establish that Bh,h+j can be characterized as a convex combination of the bounds

in (27), defined by parameter πh,h+j = (T + h−N) / (T + h+ j −N). Notice that as j

grows, the expectation approximates more towards θ because there is more information

to estimate Σ−1µ. In addition, we account for the number of assets subtracting N both

in the numerator and the denominator, which acts as a smoothing term.

9The multivariate normal assumption implies that Σ̂h and µ̂h are independent. As a result, when

j →∞, then Bh,h+j = θ because E
[
Σ̂−1h µ̂h

]
= Σ−1µ due to the independence and unbiasedness of Σ̂−1h

and µ̂h.
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Given Conjecture 1, it is straightforward to characterize the expected multiperiod

utility loss and the optimal shrinkage intensities following the procedure used for the

fixed window case described in Section III. We do not report the details to conserve

space.

V. Out-of-Sample Performance Evaluation

In this section, we compare the out-of-sample performance of the multiperiod shrinkage

portfolios with that of the portfolios that ignore either transaction costs, parameter

uncertainty, or both. We run the comparison on simulated data sets that satisfy the

assumptions of our analysis, as well as on empirical data sets. We consider both rolling

as well as expanding estimation windows. Finally, we check the robustness of our results

to the value of the transaction cost and absolute risk-aversion parameters, and to the

estimation window length.

A. Base-Case Investor and Data Sets

We consider a base-case investor with an absolute risk aversion parameter of γ = 10−8,

which corresponds to a relative risk aversion of one for a manager who has $100M to

trade. Garleanu and Pedersen (2013) consider an investor with a lower risk aversion

parameter, but because our investor suffers from parameter uncertainty, it is reasonable

to consider a higher risk aversion parameter. Our base-case investor has a discount
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factor ρ = 1 − exp(−0.1/260), which corresponds to an annual discount of 10%. We

consider an investor who is subject to quadratic transaction cost with transaction costs

parameter λ = 3 × 10−7 as in Garleanu and Pedersen (2013). Finally, our base-case

investor constructs her optimal trading strategy with T = 500 observations.10

We consider two simulated data sets with N = 25 and 50 risky assets (N25 and

N50, respectively). The advantage of using simulated data sets is that they satisfy

the assumptions underlying our analysis. Specifically, we simulate price changes from a

multivariate normal distribution. We assume that the starting prices of all N risky assets

are equal to one, and the annual average price changes are randomly distributed from a

uniform distribution with support [0.05, 0.12]. In addition, the covariance matrix of asset

price changes is diagonal with elements randomly drawn from a uniform distribution with

support [0.1, 0.5].11 Without loss of generality, we set the return of the risk-free asset

equal to zero. Under these specifications, a level of transaction costs of λ = 3 × 10−7

10To estimate the shrinkage intensities, we need to estimate the population moments. To mitigate the

impact of parameter uncertainty on these parameters, we use the shrinkage vector of means proposed in

DeMiguel, Martin-Utrera and Nogales (2013), and the shrinkage covariance matrix of Ledoit and Wolf

(2004b). Moreover, we compute the shrinkage intensities only once a month to reduce the computation

time, which is important particularly for the computationally intensive expanding window approach.

11For our purpose of evaluating the impact of parameter uncertainty in an out-of-sample analysis,

assuming that the covariance matrix is diagonal is not a strong assumption as we prove that the investor’s

expected loss is proportional to θ = µ′Σ−1µ.
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corresponds with a market that, on average, has a daily volume of $364 million.12

We consider simulated data sets to test the out-of-sample performance of our proposed

multiperiod shrinkage portfolios when the random walk assumption holds. However, it

is also interesting to investigate the out-of-sample performance of our proposed strate-

gies with empirical data sets where this assumption may fail. In particular, we consider

four empirical data sets. First, we use an empirical data set formed with commodity

futures (Com), similar to that used by Garleanu and Pedersen (2013); see Table 1. We

collect data from those commodity futures with 3-month maturity. Some descriptive

statistics and the contract multiplier for each commodity are provided in Table 1. Sec-

ond, we use two equity portfolio data sets downloaded from Kenneth French’s website:13

the 48 Industry portfolios (48IndP) and the Fama-French 100 portfolios formed on size

and book-to-market (100FF). Finally, we also consider an individual stock data set con-

structed with 100 stocks randomly selected at the beginning of each calendar year from

those in the S&P500 index (SP100). For the equity data sets, we download total return

data and construct price change data by assuming all starting prices are equal to one,

12 To compute the trading volume of a set of assets worth $1, we use the rule from Engle, Fer-

stenberg and Russell (2012), where they show that trading 1.59% of the daily volume implies a

price change of 0.1%. Hence, for the simulated data sets we can calculate the trading volume as

1.59%× Trading Volume× 3× 10−7 × 0.3/260× 0.5 = 0.1%.

13See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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and computing price changes from the total return data.

[Include Table 1 about here]

We use daily data from July 7th, 2004 until September 19th, 2012.14 Like Garleanu

and Pedersen (2013), we focus on daily data because it is more appropriate for the in-

vestment framework we consider. To see this, note that quadratic transaction costs are

typically used to model market impact costs, which occur when an investor executes a

large trade that distorts market prices. Typically, investors split large trades into several

smaller orders to reduce the negative impact of these price distortions; see Bertsimas

and Lo (1998) and Almgren and Chriss (2001). The market impact cost literature usu-

ally focuses on high frequency trades because low frequency (low urgency to execute the

portfolio) results in smaller market impact; see Almgren (2008) and Engle, Ferstenberg

and Russell (2012). Consequently, it seems appropriate to focus on daily data. Never-

theless, in results not reported to conserve space, we have evaluated the performance of

the different portfolio policies on weekly and monthly data and we find that our results

are generally robust to the use of lower frequency data.

14For the SP100 data set we consider daily data from July 07th, 2004 until December 31st, 2011. We

thank Grigory Vilkov for providing these data.
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B. Portfolio Policies

We consider eight different portfolio policies. We first consider three buy-and-hold port-

folios based on single-period policies that ignore transaction costs. First, the sample

Markowitz portfolio, which is the portfolio of an investor who ignores transaction costs

and estimation error. Second, the single-period two-fund shrinkage portfolio, which is the

portfolio of an investor who ignores transaction costs, but takes into account estimation

error by shrinking the Markowitz portfolio towards the risk-free asset. Specifically, this

portfolio can be written as

xS2F = ηx̂M,(28)

where, as Kan and Zhou (2007) show, the optimal single-period shrinkage intensity η is

as given by Proposition 2. The third portfolio is the single-period three-fund shrinkage

portfolio of an investor who ignores transaction costs but takes into account estima-

tion error by shrinking the Markowitz portfolio towards the minimum-variance portfolio.

Specifically, this portfolio can be written as

xS3F = ς1x̂
M + ς2x̂

Min,(29)

where the optimal single-period combination parameters are given in Proposition 2.

We then consider five multiperiod portfolios that take transaction costs into account.

The first portfolio is the sample multiperiod portfolio policy of an investor who takes into
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account transaction costs but ignores estimation error, which is given in (2). The second

portfolio is the multiperiod three-fund shrinkage portfolio of an investor who shrinks the

Markowitz portfolio towards the risk-free asset, as given by Proposition 2. The third

portfolio is the multiperiod four-fund shrinkage portfolio of an investor who combines the

Markowitz portfolio with the minimum-variance portfolio, as given by Proposition 2. The

fourth portfolio is the multiperiod four-fund portfolio with shrunk trading rate, which is a

modified version of the multiperiod four-fund shrinkage portfolio, where in addition the

investor shrinks the trading rate by solving the optimization problem given by Proposi-

tion 3. Finally, the fifth multiperiod portfolio that we consider is the four-fund portfolio

constructed under the expanding window approach of Section IV.

C. Evaluation Methodology

We evaluate the out-of-sample portfolio gains for each strategy using an approach similar

to DeMiguel, Garlappi, and Uppal (2009). We estimate the first seven portfolios using a

rolling estimation window, where at each point in time we use the T most recent available

observations. For this rolling window approach, the length of the estimation window is

constant, and hence we use the methodology introduced in Section III to construct the

multiperiod shrinkage portfolios. The last portfolio is the four-fund shrinkage portfolio

estimated using an expanding window, where at each point of time we use all observations

available from t = 1, and we compute the shrinkage intensity using the methodology
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proposed in Section IV.

To account for transaction costs in the empirical analysis, we define portfolio gains

net of trading costs as:

Rk
i+1 = (x̂ki )

′ri+1 − λ̃∆(x̂ki )
′Σ∆x̂ki ,(30)

where x̂ki denotes the estimated portfolio k at period i, ri is the vector of price changes

at the i-th out-of-sample period, and Σ is the covariance matrix of asset prices.15 Then,

we compute the portfolio Sharpe ratio of all the considered trading strategies with the

time series of the out-of-sample portfolio gains as:

SRk =
R
k

σk
,(31)

where (σk)2 =
1

L− 1

L−1∑
i=1

(
Rk
i+1 −R

k
)2
,(32)

R
k

=
1

L

L−1∑
i=1

Rk
i+1,(33)

where L is the total number of out-of-sample periods.

We measure the statistical significance of the difference between the adjusted Sharpe

ratios with the stationary bootstrap of Politis and Romano (1994) with B = 1000 boot-

15For the simulated data, we use the population covariance matrix, whereas for the empirical data

sets we construct Σ with the sample estimate of the entire data set.
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strap samples and block size b = 5.16 Finally, we use the methodology suggested in

(Ledoit and Wolf, 2008, Remark 2.1) to compute the resulting bootstrap p-values for the

difference of every portfolio strategy with respect to the four-fund portfolio.

We consider the base-case investor described in Section V, but we also check the

robustness of our results to the values of the transaction costs and absolute risk-aversion

parameters, and the estimation window length. We report the results for two different

starting portfolios: the portfolio that is fully invested in the risk-free asset and the

true Markowitz portfolio.17 We have tried other starting portfolios such as the equally

weighted portfolio and the portfolio that is invested in a single risky asset, but we observe

that the results are similar and thus we do not report these cases to conserve space.

D. Performance with Rolling Estimation Window

Table 2 reports the out-of-sample Sharpe ratios of the eight portfolio policies we consider

on the six different data sets, together with the p-value of the difference between the

Sharpe ratio of every policy and that of the multiperiod four-fund shrinkage portfolio.

Panels A and B give the results for a starting portfolio that is fully invested in the risk-free

asset and a starting portfolio equal to the true Markowitz portfolio, respectively.

16We also compute the p-values when b = 1, but we do not report these results to preserve space.

These results are, however, equivalent to the block size b = 5.

17For the empirical data sets, we assume the true Markowitz portfolio is constructed with the entire

sample.
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[Include Table 2 about here]

Comparing the multiperiod portfolios that take transaction costs into account with

the static portfolios that ignore transaction costs, we find that the multiperiod portfolios

substantially outperform the static portfolios. That is, we find that taking transaction

costs into account has a substantial positive impact on performance.

Comparing the shrinkage portfolios with the portfolios that ignore parameter un-

certainty, we observe that shrinking helps both for the static and multiperiod portfo-

lios. Specifically, we find that the portfolios that shrink only the Markowitz portfolio

(the single-period two-fund shrinkage portfolio and the multiperiod three-fund shrinkage

portfolio) outperform the equivalent portfolios that ignore estimation error (the sam-

ple Markowitz portfolio and the sample multiperiod portfolio). Moreover, we find that

shrinking the Markowitz portfolio towards the minimum-variance portfolio improves per-

formance. In particular, we observe that the single-period three-fund shrinkage portfolio

and the multiperiod four-fund shrinkage portfolio considerably outperform portfolios that

shrink the Markowitz portfolio only towards the risk-free asset.

Moreover, our out-of-sample results confirm the insight from Section B that shrinking

the trading rate may help when the starting portfolio is close to the true mean-variance

portfolio. We see from Panel A that shrinking the trading rate (in addition to shrinking

the Markowitz portfolio towards the minimum-variance portfolio) does not result in any
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gains when the starting portfolio is fully invested in the risk-free asset, but Panel B shows

that it may lead to substantial gains when the starting portfolio is the true mean-variance

portfolio. This is not surprising because when the investor’s initial portfolio is the true

Markowitz portfolio, it is optimal for the investor to avoid any trading and retain the

current portfolio; i.e. β = 0. Nevertheless, the investor ignores whether her starting

portfolio is the true Markowitz portfolio. The benefit of shrinking the trading rate using

the rule given in (17) is that it takes into account whether given the available information

the investor’s starting portfolio is close to the true Markowitz portfolio or not.

Overall, the best portfolio policy is the multiperiod four-fund shrinkage portfolio

with shrunk trading rate. This portfolio policy outperforms the multiperiod four-fund

shrinkage portfolio when the starting portfolio is close to the true Markowitz portfolio,

and it performs similar to the multiperiod four-fund shrinkage portfolio for other starting

points. These two policies appreciably outperform all other policies, which shows the

importance of taking into account both transaction costs and estimation error.

E. Performance with Expanding Estimation Window

We find that expanding windows generally help to improve performance. For the sim-

ulated data sets, we find that expanding windows help, which is not surprising because

the simulated data sets satisfy the assumptions behind our analysis, and larger estima-

tion windows provide more accurate estimators of the multiperiod strategies for iid data.
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Second, we find that expanding windows also help to improve the performance on the

two empirical data sets containing data on equity portfolios (48IndP and 100FF). This

is more impressive as the statistical properties of these data sets are likely to be time

varying, and the expanding window approach is slower in capturing any time variation

in the data. Nevertheless, we find that expanding windows help improve performance for

these two data sets.

We find, however, that expanding windows do not help for the data sets containing

data on commodity futures and individual stock returns (Com and SP100). We believe

the reason for this may be that these data sets contain data on individual assets (com-

modity futures or stocks), and thus these data sets may be more sensitive to the presence

of any structural changes or time variation in the data. In turn, structural changes or

time variation in the data are likely to impact the performance of the expanding window

approach more negatively, because expanding windows are slower in capturing a shift in

the data regime.

Summarizing, we believe the expanding window approach is likely to help for data

sets containing equity portfolio data or relatively stationary data, and the rolling window

approach is likely to perform better with data on individual assets or data that is time

varying or affected by structural changes.
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F. Robustness Checks

We check the robustness of our results to the transaction cost parameter λ and the

estimation window length T . Note that changing the transaction cost parameter λ has

the same impact on the portfolio policies as changing the absolute risk-aversion parameter

γ, and thus we only report the results for the transaction cost parameter.18 We consider

a high transaction costs scenario with λ = 3 × 10−6, which corresponds to a market

with a daily trading volume of $36.4 million, and a low transaction cost scenario with

λ = 3 × 10−8, which correspond to a daily trading volume of $3, 640 million for the

simulated data sets; see Section V and Footnote 12 to understand the relation between

trading costs and trading volume. For the estimation window lengths, we consider the

cases with T = 250 and T = 750.

Tables 3 and 4 report the results of the robustness checks. In general, we observe

that our main insights are robust to changes in these parameters. There are substantial

losses associated with ignoring both transaction costs and estimation error, and overall

18In particular, the multiperiod portfolios that are optimal for investors with γ = 10−8 facing trans-

action costs of λ = 3×10−6 and λ = 3×10−8 are equal to those for investors with absolute risk aversion

parameters of γ = 10−9 and γ = 10−7, facing transaction costs of λ = 3× 10−7, respectively. Explicitly,

this means that multiplying γ by z has the same impact on the trading rate β as multiplying λ by 1/z.

Therefore, the impact of an increment/reduction on the transaction cost parameter λ is equivalent to

that of a reduction/increment in γ.
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the best portfolio policies are the multiperiod four-fund portfolio and the multiperiod

four-fund portfolio that in addition shrinks the trading rate.

[Include Table 3 about here]

[Include Table 4 about here]

We also observe that the static portfolio policies are very sensitive to the level of

transaction costs, and their performance is particularly poor for the case with high trading

costs (λ = 3 × 10−6). This is because static investors ignore transaction costs and thus

they are more vulnerable to the costs of trading. On the other hand, multiperiod trading

strategies take into account transaction costs and provide more stable portfolios with

higher Sharpe ratios.

Finally, we observe that the performance of the static portfolio strategies is also very

sensitive to the choice of estimation window T . Specifically, static portfolios perform

poorly when the estimation window is small and has T = 250 observations. For this esti-

mation window, the difference between static mean-variance portfolios and multiperiod

portfolios is large.

VI. Concluding Remarks

We study the impact of parameter uncertainty in multiperiod portfolio selection with

transaction costs. We provide a closed-form expression for the utility loss associated
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with using the plug-in approach to construct multiperiod portfolios and we show that

the investor’s expected loss decreases with trading costs, the investor’s impatience factor

and the investor’s risk aversion parameter. In addition, we propose two complementary

shrinkage approaches to mitigate the impact of parameter uncertainty: the first shrinkage

approach combines the Markowitz portfolio with a target portfolio that is less sensitive to

estimation error, while the second shrinkage approach reduces the investor trading rate in

order to avoid the risk of taking extreme positions that may result into extreme negative

outcomes. Finally, we show analytically and empirically the superior performance of those

portfolios that account for both, the impact of parameter uncertainty and transaction

costs.
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Appendix: Proofs

Proof of Proposition 1. We first write the investor’s expected loss as the difference

between the utility of an investor who knows the population vector of means µ and the

covariance matrix Σ, and the expected utility of an investor who replaces µ and Σ with

their sample estimates:

L({xi}, {x̂i}) =
∞∑
i=0

(1− ρ)i+1

{
x′iµ−

γ

2
x′iΣxi −

λ̃

2
∆x′iΣ∆xi

−E

[
x̂′iµ−

γ

2
x̂′iΣx̂i −

λ̃

2
∆x̂′iΣ∆x̂i

]}
.(A-1)

Since the estimated optimal trading strategy is unbiased, one can write the investor’s

expected loss as the sum of the following terms:

L({xi}, {x̂i}) =

γ

2

∞∑
i=0

(1− ρ)i+1E [x̂′iΣx̂i − x′iΣxi]︸ ︷︷ ︸
Multiperiod mean-variance loss

+
λ̃

2

∞∑
i=0

(1− ρ)i+1E [∆x̂′iΣ∆x̂i −∆x′iΣ∆xi]︸ ︷︷ ︸
Transaction cost loss

.(A-2)

From the above expression we can observe that the multiperiod expected loss is the

sum of a multiperiod mean-variance term and a transaction cost term. Now, we plug

the estimated investor’s optimal strategy in (A-2) to obtain a simplified expression of

the investor’s expected loss. First, notice that those elements defined as linear functions

of the sample Markowitz portfolio disappear due to the unbiasedness of the estimator.
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Second, we use the following expressions of the estimated multiperiod portfolio:

x̂i = (1− β)i+1x−1 + βξix̂
M and ∆x̂i = φix−1 + β(1− β)ix̂M,(A-3)

where ξi =
∑i

j=0(1 − β)j, φi = ((1− β)i+1 − (1− β)i) and x−1 is the investor’s initial

portfolio. We estimate the investor’s multiperiod strategy with a fixed window T . Then,

after some straightforward manipulations, we obtain that the investor’s expected loss is

the product between the expected loss of a static investor and another term that accounts

for the multiperiod effects of the mean-variance utility and the transaction costs:

L({xi}, {x̂i}) =
1

2γ

(
E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
− θ
)
×
∞∑
i=0

(1− ρ)i+1 [AVi + ACi] ,(A-4)

where θ = µ′Σ−1µ. The multiperiod term is the sum of two terms. The first term,

AVi = β2ξ2i captures the utility losses from the accumulated portfolio variability. In

particular, β2 can be understood as the proportion of the expected variability of a static

mean-variance investor that affects to a multiperiod investor at every stage i, and ξ2i

determines the impact of the discounted expected variability of all trades up to stage

i. The second term ACi = (λ̃/γ)β2(1 − β)2i captures the losses from the accumulated

trading costs. In particular β2(1 − β)2i is the impact on transaction costs of trading

towards the static mean-variance portfolio at stage i. We observe that as i becomes

larger, the impact on transaction costs is lower because the optimal multiperiod portfolio

is closer to the static mean-variance portfolio and as a result the optimal multiperiod
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strategy requires less trading. Then, we can substitute (1/2γ)(E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
−θ) with

L1(x
M , x̂M), and using the fact that ξi can be written as

∑i
j=0(1−β)j = (1−(1−β)i+1)/β

and the properties of infinite geometric series, we can express the accumulated variability

and transaction costs as:

fmv = β2

∞∑
i=0

(1− ρ)i+1ξ2i =
1− ρ
ρ

+
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)
,(A-5)

ftc =
∞∑
i=0

(1− ρ)i+1β2 λ̃

γ
(1− β)2i =

λ

γ

β2

1− (1− ρ)(1− β)2
.(A-6)

In turn, we obtain that the investor’s expected loss is

L({xi}, {x̂i}) = L1(x
M, x̂M)× [fmv + ftc].(A-7)

Proof of Proposition 2. We now prove that the optimal combination parameters of

multiperiod portfolios coincide with the optimal combination parameters in the static

framework. For expository reasons, we focus on the proof of the multiperiod four-fund

portfolio, but it is straightforward to do the analysis for the multiperiod three-fund port-

folio. First, let us define the investor’s initial portfolio as x−1. Then, we can write the

investor’s four-fund portfolio x̂4Fi and the difference ∆x̂4Fi as:

x̂4Fi = (1− β)i+1x−1 + βξix̂
C,(A-8)

∆x̂i = φix−1 + β(1− β)ix̂C,(A-9)
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where x̂C = (ς1x̂
M+ς2x̂

Min), ξi =
∑i

j=0(1−β)j and φ = ((1− β)i+1 − (1− β)i). Plugging

(A-8)-(A-9) in the investor’s expected utility, we obtain:

E

[
∞∑
i=0

(1− ρ)i+1
{

(1− β)i+1x′−1µ+ βξi(x̂
C)′µ

− γ

2

(
(1− β)2i+2x′−1Σx−1 + β2ξ2i (x̂

C)′Σx̂C + 2β(1− β)i+1ξix
′
−1Σx̂

C
)

(A-10)

− λ̃

2

(
φ2
ix
′
−1Σx−1 + β2(1− β)2i(x̂C)′Σx̂C + 2φiβ(1− β)ix′−1Σx̂

C
)}]

.

Now, using the properties of geometric series as in Proposition 1, we obtain that the

investor’s expected utility is defined as follows:

τ1 (x−1 − xC)′µ+ τ5x
C′
µ

− γ

2

{
τ2x
′
−1Σx−1 + (τ5 + τ2 − 2τ1) E((x̂C)′Σx̂C) + 2(τ1 − τ2)x−1ΣxC

}
(A-11)

− λ̃

2

{
β2τ3x

′
−1Σx−1 + β2τ3E((x̂C)′Σx̂C) + 2β(τ4 − τ3)x′−1ΣxC

}
,

where

τ1 =
(1− ρ)(1− β)

1− (1− ρ)(1− β)
, τ2 =

(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
,

τ3 =
(1− ρ)

1− (1− ρ)(1− β)2
, τ4 =

(1− ρ)(1− β)

1− (1− ρ)(1− β)2
and τ5 =

1− ρ
ρ

.
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We can obtain the optimal value of ς1 by developing the first order conditions that

maximize the investor’s expected utility with respect to ς1. This is:

ς1 =
(xM)′µ

γE [(x̂M)′Σx̂M]

W1

W2

−
x′−1Σx

M

γE [(x̂M)′Σx̂M]

W3

W2

− ς2
E
[
(x̂M)′Σx̂Min

]
E [(x̂M)′Σx̂M]

,(A-12)

where W1 = τ5− τ1, W2 = (τ5 + τ2− 2τ1) + (λ̃/γ)β2τ3, and W3 = γ(τ1− τ2) + λ̃β(τ4− τ3).

We numerically verify that W1/W2 = 1 and W3 = 0, so that the optimal parameter ς1

takes the following expression:

ς1 =
(xM)′µ

γE [(x̂M)′Σx̂M]
− ς2

E
[
(x̂M)′Σx̂Min

]
E [(x̂M)′Σx̂M]

.(A-13)

Similarly, we obtain the optimal value of ς2 by developing the first order conditions

that maximize the investor’s expected utility. Thus, the optimal ς2 takes the following

form:

ς2 =
(xMin)′µ

γE [(x̂Min)′Σx̂Min]
− ς1

E
[
(x̂M)′Σx̂Min

]
E [(x̂Min)′Σx̂Min]

.(A-14)

Therefore, one can solve the system given by (A-13)-(A-14) to obtain the optimal

values of ς1 and ς2. This corresponds with the system of linear equations that one has

to solve to obtain the optimal combination parameters in the static framework. In turn,
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we obtain; see Kan and Zhou (2007):

ς1 = c−1
Ψ2

Ψ2 +
N

T

,(A-15)

ς2 = c−1

N

T

Ψ2 +
N

T

× µ′Σ−1ι

ι′Σ−1ι
,(A-16)

where c = [(T − 2)(T − N − 2)]/[(T − N − 1)(T − N − 4)] and Ψ2 = µ′Σ−1µ −

(µ′Σ−1ι)2/(ι′Σ−1ι) > 0. Therefore, one can obtain the optimal value of η by setting

ς2 = 0 in equation (A-13). As a result, the optimal value of η is; see Kan and Zhou

(2007):

η =
(xM)′µ

γE [(x̂M)′Σx̂M]
= c−1

µ′Σ−1µ

µ′Σ−1µ+
N

T

.(A-17)

Our results of the optimal combination parameters are slightly different with respect

to those of Kan and Zhou (2007) because we consider the sample covariance matrix that

yields an unbiased estimator of the inverse covariance matrix.

Proof of Corollary 1. We know from Proposition 2 that the optimal combination param-

eters coincide with the optimal combination parameters of the static three-fund portfolio

of Kan and Zhou (2007). Then, we can show that it is optimal to shrink the static mean-

variance portfolio if the derivative of the (single-period) investor’s expected utility with

respect to parameter η is negative when η = 1. Deriving the investor’s expected utility
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with respect to η and setting η = 1, we obtain that it is optimal to have η < 1 when:

(xM)′µ < γE
[
(x̂M)′Σx̂M

]
⇒(A-18)

⇒ µ′Σ−1µ < E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
.(A-19)

Since we assume that price changes are multivariate normal, µ̂ and Σ̂ are indepen-

dent.19 Then, to characterize the expectations in (A-19) we use the property for the

expected value of quadratic forms of a random vector x with mean µ and covariance

matrix Σ. This property says that E [x′Ax] = µ′Aµ + trace(AΣ), being A a definite

positive matrix. Moreover, we can characterize the expectation of Σ̂−1ΣΣ̂−1 using the

identities of inverse-Wishart matrices described in Haff (1979). In particular, we have

that E
[
Σ̂−1ΣΣ̂−1

]
= c×Σ−1, where c = [(T −N − 2)(T − 2)]/[(T −N − 1)(T −N − 4)].

Then, we obtain that η < 1 if θ < c(θ + N/T ). Because, c > 1, we observe that it is

always optimal to shrink the static mean-variance portfolio.

Now, we show that it is optimal to shrink the sample Markowitz portfolio towards the

sample minimum-variance portfolio. If we take derivatives of the (single-period) investor’s

expected utility with respect to parameter ς2, and then set ς2 = 0, this derivative is

19Due to the multivariate normality assumption, µ̂ is normally distributed as N(µ,Σ/T ) and Σ̂ follows

a Wishart distribution of the form W(Σ/(T −N − 2), T − 1).
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positive (an in turn it is optimal to have ς2 > 0) if

(xMin)′µ > γς1E
[
(x̂M)′Σx̂Min

]
⇒(A-20)

⇒ ι′Σ−1µ > ς1E
[
µ̂′Σ̂−1ΣΣ̂−1ι

]
(A-21)

Now, we can again characterize the above expectations by using the identities of

inverse-Wishart matrices derived in Haff (1979). Thus, we obtain that ς2 > 0 if 1 > ς1c.

From the optimal expression of ς1, we obtain that 1 > ς1c if 1 > Ψ2/(Ψ2 + N/T ),

which always holds because Ψ2 can be written as Ψ2 = (µ − µgι)′Σ−1(µ − µgι), where

µg = (ι′Σ−1µ)/(ι′Σ−1ι). As a result Ψ2 is nonnegative and relation 1 > ς1c always holds.

Notice that ς2 cannot be negative because then 1 has to be lower than ς1c, which is not

possible because Ψ2 > 0.

Proof of Proposition 3. We can prove Proposition 3 by writing the investor’s expected

utility as in the proof of Proposition 2, which is the expected utility for an investor using

the multiperiod four-fund portfolio. Moreover, we remove from the investor’s expected

utility all the elements τ5 because the trading rate does not appear in that term and in

turn it would not affect the optimization problem. Then, we make some straightforward

arrangements to obtain the following expression:

V1(x−1 − xC)′µ− 1

2

(
E
[
(x̂C)′Σx̂C

]
V2 + x′−1Σx−1V3 + x′−1Σx

CV4
)
,(A-22)

where Vi are defined as in formulas (19)-(22) in the paper.
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We see that equation (A-22) is formed first by the expected excess return of the

investor’s initial portfolio with the optimal portfolio combination x̂C, and second by a

term that represents the expected variability and trading costs of the four-fund portfolio.

Now, we can characterize E
[
(x̂C)′Σx̂C

]
using the property for the expected value of a

quadratic form of a random vector as defined in the proof of Corollary 1. We also use

the identities for inverse-Wishart matrices to characterize E
[
Σ̂−1ΣΣ̂−1

]
as in the proof

of Corollary 1. Then, we obtain:

E
[
(x̂C)′Σx̂C

]
=

1

γ2
E
[
ς21 µ̂

′Σ̂−1ΣΣ̂−1µ̂+ ς22 ι
′Σ̂−1ΣΣ̂−1ι+ 2ς1ς2µ̂

′Σ̂−1ΣΣ̂−1ι
]

(A-23)

=
c

γ2

(
ς21

(
µ′Σ−1µ+

N

T

)
+ ς22 ι

′Σ−1ι+ 2ς1ς2µ
′Σ−1ι

)
,(A-24)

where c = [(T −N − 2)(T − 2)]/[(T −N − 1)(T −N − 4). Notice that the analysis can

be easily extended for the case of the sample multiperiod portfolio or the multiperiod

three-fund shrinkage portfolio.
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Table 1: Commodity Futures

This table provides some descriptive statistics of the data from the commodity futures, as well as

the contract multipliers.

Commodity Average
Price

Volatility
price
changes

Contract multi-
plier (units per
contract)

Aluminium 56,231.71 888.37 25
Copper 161,099.45 3,268.96 25
Nickel 127,416.45 3,461.62 6
Zinc 54,238.84 1,361.69 25
Lead 45,925.04 1,227.02 25
Tin 78,164.60 1,733.53 5
Gasoil 69,061.48 1,571.89 100
WTI Crude 75,853.55 1,798.93 1000
RBOB Crude 88,503.62 2,780.74 42,000
Natural Gas 63,553.35 3,4439.78 10,000
Coffee 58,720.11 940.55 37,500
Cocoa 23,326.21 458.50 10
Sugar 18,121.58 462.35 112,000
Gold 94,780.87 1,327.11 100
Silver 87,025.94 2,415.69 5,000
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Table 2: Sharpe Ratio Discounted with Transaction Costs

This table reports the annualized out-of-sample Sharpe ratio for the different portfolio strategies that we consider.

Sharpe ratios are discounted by quadratic transaction costs with λ = 3 × 10−7. The numbers in parentheses are

the corresponding p-values for the difference of each portfolio strategy with the four-fund portfolio that combines

the static mean-variance portfolio with the minimum-variance portfolio. Our considered base-case investor has an

absolute risk aversion parameter of γ = 10−8 and an impatience factor of ρ = 1− exp(−0.1/260). We consider two

types of investor: one whose initial portfolio is fully invested in the risk-free asset, and another investor whose initial

portfolio is the true Markowitz portfolio xM. We estimate each portfolio strategy with T=500 observations.

Panel A: Start from zero
Datasets

N=25 N=50 Com 48IndP 100FF SP100
Static portfolio policies
Sample Markowitz -0.266 -0.345 -0.459 -0.672 -1.435 -0.985

( 0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Two-fund shrinkage 0.080 0.134 -0.042 -0.100 -0.681 -0.471
(0.000) (0.000) (0.020) (0.000) (0.000) (0.014)

Three-fund shrinkage 0.715 0.662 0.587 -0.064 -0.494 -0.390
( 0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Multiperiod portfolio policies
Sample multiperiod 0.150 0.297 0.056 0.503 0.209 -0.107

(0.000) (0.008) (0.038) (0.538) (0.000) (0.110)

Three-fund shrinkage 0.193 0.319 0.242 0.525 0.314 0.367
(0.000) (0.006) (0.130) (0.798) (0.022) (0.934)

Four-fund shrinkage 0.766 0.773 0.893 0.529 0.355 0.390
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Trading rate shrinkage 0.766 0.773 0.893 0.529 0.355 0.390
(0.366) (1.000) (0.602) (0.612) (1.000) (0.536)

Expanding four-fund 0.948 0.872 0.803 0.702 0.360 0.271
(0.190) (0.532) (0.648) (0.496) (0.962) (0.642)

Panel B: Start from xM

Datasets
N=25 N=50 Com 48IndP 100FF SP100

Static portfolio policies
Sample Markowitz -0.266 -0.337 -0.452 -0.660 -1.465 -1.007

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Three-fund shrinkage 0.072 0.131 -0.039 -0.076 -0.678 -0.470
(0.000) (0.000) (0.010) (0.000) (0.000) (0.018)

Three-fund shrinkage 0.714 0.664 0.615 -0.043 -0.490 -0.396
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Multiperiod portfolio policies
Sample multiperiod 0.153 0.295 0.052 0.510 0.210 -0.101

(0.000) (0.006) (0.036) (0.524) (0.000) (0.108)

Three-fund shrinkage 0.203 0.309 0.232 0.532 0.311 0.370
(0.000) (0.008) (0.080) (0.784) (0.028) (0.972)

Four-fund shrinkage 0.774 0.765 0.886 0.536 0.351 0.392
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Trading rate shrinkage 0.932 0.897 0.962 0.766 0.374 0.547
(0.070) (0.206) (0.216) (0.264) (0.712) (0.150)

Expanding four-fund 0.957 0.863 0.797 0.714 0.356 0.278
(0.208) (0.486) (0.630) (0.476) (0.976) (0.694)
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Table 3: Sharpe Ratio: Some Robustness Checks for Different λ

This table reports the annualized out-of-sample Sharpe ratio for the different portfolio strategies that we consider.

Our considered base-case investor has an absolute risk aversion parameter of γ = 10−8 and an impatience factor of

ρ = 1 − exp(−0.1/260). The investor faces quadratic transaction costs with λ = 3 × 10−6 and λ = 3 × 10−8. The

numbers in parentheses are the corresponding p-values for the difference of each portfolio strategy with the four-fund

portfolio that combines the static mean-variance portfolio with the minimum-variance portfolio. We estimate each

portfolio strategy with T=500 observations.

Panel A: λ = 3× 10−6

Datasets
N=25 N=50 Com 48IndP 100FF SP100

Static portfolio policies
Sample Markowitz -3.623 -4.020 -2.636 -2.532 -2.239 -1.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Two-fund shrinkage -1.099 -1.256 -1.700 -2.444 -2.012 -0.989
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Three-fund shrinkage 0.038 -0.193 -0.818 -2.382 -1.940 -1.146
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Multiperiod portfolio policies
Sample multiperiod 0.086 0.219 -0.067 0.338 -0.336 -0.552

(0.000) (0.000) (0.014) (0.000) (0.000) (0.000)

Three-fund shrinkage 0.187 0.312 0.108 0.505 0.020 0.367
(0.000) (0.010) (0.050) (0.100) (0.000) (0.764)

Four-fund shrinkage 0.748 0.771 0.801 0.528 0.087 0.447
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Trading rate shrinkage 0.907 0.912 0.917 0.739 0.136 0.558
(0.076) (0.194) (0.134) (0.274) (0.418) (0.298)

Expanding four-fund 0.952 0.858 0.753 0.696 0.109 0.281
(0.182) (0.518) (0.778) (0.408) (0.990) (0.530)

Panel B: λ = 3× 10−8

Datasets
N=25 N=50 Com 48IndP 100FF SP100

Static portfolio policies
Sample Markowitz 0.141 0.248 -0.044 0.381 0.089 -0.502

(0.000) (0.008) (0.016) (0.132) (0.000) (0.016)

Two-fund shrinkage 0.199 0.290 0.175 0.396 0.204 0.029
(0.004) (0.000) (0.048) (0.036) (0.000) (0.466)

Three-fund shrinkage 0.781 0.753 0.841 0.387 0.257 0.090
(0.334) (0.144) (0.032) (0.014) (0.000) (0.000)

Multiperiod portfolio policies
Sample multiperiod 0.179 0.306 0.034 0.512 0.341 -0.088

(0.000) (0.010) (0.026) (0.378) (0.178) (0.304)

Three-fund shrinkage 0.215 0.307 0.221 0.476 0.353 0.264
(0.000) (0.006) (0.066) (0.672) (0.056) (0.982)

Four-fund shrinkage 0.788 0.765 0.884 0.468 0.389 0.269
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Trading rate shrinkage 0.951 0.874 0.931 0.747 0.406 0.496
(0.064) (0.314) (0.368) (0.156) (0.838) (0.064)

Expanding four-fund 0.961 0.865 0.796 0.693 0.431 0.214
(0.234) (0.522) (0.600) (0.374) (0.852) (0.812)
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Table 4: Sharpe Ratio: Some Robustness Checks for Different T

This table reports the annualized out-of-sample Sharpe ratio for the different portfolio strategies that we consider.

Our considered base-case investor has an absolute risk aversion parameter of γ = 10−8 and an impatience factor

of ρ = 1 − exp(−0.1/260). The investor faces quadratic transaction costs with λ = 3 × 10−7. The numbers in

parentheses are the corresponding p-values for the difference of each portfolio strategy with the four-fund portfolio

that combines the static mean-variance portfolio with the minimum-variance portfolio.

Panel A: T = 250
Datasets

N=25 N=50 Com 48IndP 100FF SP100
Static portfolio policies
Sample Markowitz -1.126 -1.458 -0.766 -1.543 -4.815 -1.456

( 0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Two-fund shrinkage -0.127 -0.044 -0.138 -0.989 -3.318 -1.225
(0.000) (0.000) (0.006) (0.000) (0.000) (0.000)

Three-fund shrinkage 0.459 0.535 0.046 -0.883 -2.448 -0.882
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Multiperiod trading strategies
Sample multiperiod 0.055 0.218 0.635 0.315 -0.790 -0.835

(0.000) (0.000) (0.762) (0.000) (0.000) (0.000)

Three-fund shrinkage 0.159 0.334 0.490 0.545 -0.008 0.052
(0.000) (0.006) (0.488) (0.558) (0.000) (0.672)

Four-fund shrinkage 0.640 0.746 0.710 0.563 0.164 0.162
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Trading rate shrinkage 0.765 0.935 0.688 0.567 0.168 0.241
(0.076) (0.094) (0.278) (0.952) (0.042) (0.560)

Expanding four-fund 0.938 0.929 0.829 0.392 0.304 0.366
(0.102) (0.322) (0.562) (0.560) (0.702) (0.538)

Panel A: T = 750
Datasets

N=25 N=50 Com 48IndP 100FF SP100
Static portfolio policies
Sample Markowitz -0.023 0.207 -0.156 -0.098 -0.570 -0.998

(0.000) (0.000) (0.156) (0.000) (0.000) (0.000)

Two-fund shrinkage 0.080 0.440 -0.186 0.247 -0.071 -0.526
(0.000) (0.006) (0.068) (0.000) (0.000) (0.012)

Three-fund shrinkage 0.709 0.844 0.307 0.290 -0.011 -0.316
(0.004) (0.000) (0.044) (0.000) (0.000) (0.000)

Multiperiod trading strategies
Sample multiperiod 0.216 0.545 0.049 0.608 0.398 -0.145

(0.000) (0.038) (0.324) (0.964) (0.118) (0.198)

Three-fund shrinkage 0.167 0.568 -0.120 0.592 0.456 0.140
(0.000) (0.048) (0.142) (0.262) (0.796) (0.628)

Four-fund shrinkage 0.755 0.917 0.468 0.612 0.462 0.301
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Trading rate shrinkage 0.829 0.987 0.566 0.938 0.524 0.454
(0.478) (0.586) (0.036) (0.320) (0.620) (0.196)

Expanding four-fund 0.924 0.851 0.685 0.506 0.387 0.169
(0.170) (0.664) (0.272) (0.572) (0.798) (0.558)
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Figure 1: Utility Loss of Multiperiod Investor

Figure 1 depicts the investor’s expected utility loss for different values of the absolute risk-aversion

parameter γ, the transaction cost parameter λ, and the impatience factor ρ. Our base-case investor

has γ = 10−8, λ = 3 × 10−7 and ρ = 1 − exp(−0.1/260). We consider an investor that uses 500

observations to construct the optimal trading strategy. The population parameters are defined with

the sample moments of the empirical data set formed with commodity futures that we consider in

Section V.
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(b) Different values of λ
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(c) Different values of ρ
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Figure 2: Nominal Vs Optimal Four-Fund Shrinkage Portfolios: Comparison of

Relative Losses

Figure 2 depicts the investor’s relative loss of our four-fund strategy for different values of the investor’s

initial portfolio x−1. In particular, this plot depicts the relative loss for our base-case investor with

γ = 10−8, λ = 3 × 10−7, ρ = 1 − exp(−0.1/260), and T = 500. We define µ and Σ with the sample

moments of the empirical data set of commodity futures. The investor’s initial portfolio is defined as

x−1 = d×xM, where d is the value represented in the horizontal axis. On the other hand, the vertical axis

provides the investor’s relative loss.
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Pástor, L. “Portfolio Selection and Asset Pricing Models.” Journal of Finance, 55 (2000),

179–223.
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