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Abstract This paper concerns Gibbs measures v for some nonlinear PDE over the D-torus
TP. The Hamiltonian H = [, [[Vu||* — [;5 |ulP has canonical equations with solutions in
QOn ={u € L*(TP): [|u|> < N}. For D =1 and 2 < p < 6, Q0 supports the Gibbs measure
v(du) = Z e HWT] _1 du(x) which is normalized and formally invariant under the flow
generated by the PDE. The paper proves that (Qn, | - ||z2,v) is a metric probability space
of finite diameter that satisfies the logarithmic Sobolev inequalities for the periodic KdV,
the focussing cubic nonlinear Schrodinger equation and the periodic Zakharov system. For
suitable subset of 2y, a logarithmic Sobolev inequality also holds in the critical case p = 6.
For D = 2, the Gross—Piatevskii equation has H = [, [|Vu? — [ (V *|u[?)|ul?, for a suitable
bounded interaction potential V' and the Gibbs measure v lies on a metric probability space
(2, |||l -, v) which satisfies LSI. In the above cases, (£2,d, ) is the limit in L? transportation
distance of finite-dimensional (€2, || - ||, v») given by Fourier sums.

Keywords Gibbs measure, logarithmic Sobolev inequality transportation
Classification: 37L55; 35Q53

1. Introduction

The periodic Korteweg—de Vries and cubic nonlinear Schrodinger equations in space dimen-
sion D may be realised as Hamiltonian systems with an infinite-dimensional phase space
L?(TP R)*2. For instance, the Hamiltonian

mw =5 [ IvuOP G5~ [ erg=s. (1)

is focussing for A > 0 and defocussing for A < 0, and the canonical equations generate the
NLS. The critical exponent for existence of smooth solutions over all time is p = 2 4 (4/D)
by [9, p. 6]. In particular H, generates the cubic NLS equation for the field u. For N > 0,
traditionally called the number operator [15], let Qx be the

Oy = {ue 2(T%0): / ()220 < N} (1.2)

TD (2m)P ~
Observe that Qp is formally invariant under the flow generated by (1.1).
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For D = 1, Lebowitz, Rose and Speer [15] introduced an associated Gibbs v measure
and determined conditions under which v can be normalized to define a probability measure
on y; thus they introduced the modified canonical ensemble as the metric probability space
X = (2n,|l-]lz2,v). The purpose is to have a statistical mechanical model of typical solutions
of KdV and NLS, not just the smooth solutions. In this paper, we describe concentration
of Gibbs measures in terms of logarithmic Sobolev inequalities, and then use Sturm’s theory
of metric measure spaces [19] to obtain convergence of Gibbs measures on finite-dimensional
phase spaces to the true Gibbs measure.

Definition (LSI(«)) Let (X,d) be a complete and separable metric space, which is a length
space with no isolated points, and u a probability measure on X. For f: X — R, introduce

the norm of the gradient |V f(z)| = limsup,_,, [f(y) — f(®)|/d(z,y). Then (X,d, 1) satisfies
the logarithmic Sobolev inequality with constant a > 0 (abbreviated LSI(«)) if

[ s@Pros(rar/ [ fan)utan) < 2 [ |94 (a0 (13)

for all f € L?(pu; X;R) such that |V f(z)] € L*(u; X;R). See [21, chapter 21].

When (X,d) = (R™,|| - ||g) for some Banach space norm E and f : R™ — R is con-
tinuously differentiable, then we have |V f(z)| = ||V f(x)|
and E* the dual normed space. In the analysis below, we generally apply LSI(a) to functions

g+, where V f is the usual gradient

which may be expressed in terms of the Fourier coordinates, and we require inequalities with
constants that do not depend directly upon the dimension of the phase space. Our results are
closely related to those of [14], since LST implies a spectral gap inequality by [21, Theorem
22.28].

Bourgain [6] showed that the Gibbs measure on suitably normalized subspaces could
be constructed from random Fourier series, so that the Fourier coefficients give an explicit
system of canonical coordinates for the phase space. Let H*(T?) = {3, .70 are™? : |ao|? +
> kezd\ {0} k|?*|ak|* < oo}. Let (Vk,7Vi)wezr be mutually independent standard Gaussian
random variables. Then for p > 0, the periodic Brownian motion

oy = Y CEEORETT gy (1.4)

vezo VP EIEP

lies in H*(TP) almost surely for s < 1 — (D/2).
For D = 1, Lebowitz, Rose and Speer [15] showed that for all N < oo and 2 < p < 6 one
can introduce Z = Z(N,p, A) > 0 to normalize the Gibbs measure

vy (du) = Z7 g, (u)e Hr(¥) H du(6) (1.5)
9eT

as a probability on Qy. However, for p > 6, so such Z exists. See also [13, 16] for alternative
constructions of the Gibbs measure.



In section 3 of this paper, we prove a logarithmic Sobolev inequality for vy when D =1
and p = 4. The proof depends upon convexity of the Hamiltonian on €y, and uses a criterion
that originates with Bakry and Emery [2, 21]. In section 4, we deduce similar results for
the periodic Zakharov system. In section 5, we use a similar method to prove a LSI for
u € L*(T;R) and p = 3, where the Hamiltonian generates the KdV equation. For D=1
and p = 6, there exists Ny > 0 such that the Gibbs measure can be normalized on Qy for
N < Ny, but not for N > Ny. In section 6, we obtain a logarithmic Sobolev inequality for
subsets Oy, = {u € Qn : HUH%_I < k} and 1/4 < s < 1/2 which support most of the Gibbs
measure. While these Gibbs measures are absolutely continuous with respect to Brownian
loop, the Radon—Nikodym derivatives are not logarithmically concave, so our results do not
follow directly from the curvature computations in [19]. Instead we use uniform convexity of
the Hamiltonians on suitable 2, and exploit the property that LSI are stable under suitable
perturbations; see [21, Remark 21.5].

The partial sums of the spatial Fourier series suggest classical Hamiltonians on finite-
dimensional phase spaces X" given by the low wave numbers, which generate autonomous
systems of ordinary differential equations in the canonical coordinates. Such X" support
Liouville measures v,,, which are invariant under the flow generated by the canonical equations,
and which give metric probability spaces X™ = (X™, || - |gz2n, vn). We show that for D = 1 and
p < 6, the X" converge as metric probability spaces to X in the L? transportation distance;
this extends the notion of approximating the solution of a PDE by Fourier partial sums.

The lack of smoothness of b(#) complicates the analysis of the NLS equation in two
dimensions, and more drastically in higher space dimensions. The integral (1.1) with p =4 is
critical for existence of invariant measures in the 2D focussing case. So one introduces a real
interaction potential V' and works with the Gross—Piatevskii equation

ou  0u  *u 9
Z@t + o902 + 902 +)\(V* |ul )u 0, (1.6)

which is also credited to Hartree. In section 7, we impose additional hypotheses including
V € L>®(T?R) to obtain a finite-dimensional logarithmic Sobolev inequality and then V &
H'™25(T?;R) to obtain a infinite-dimensional LSI. We regard this as realistic, since in their
model of a supersolid, Pomeau and Rica [17] consider a soft sphere interaction with V' bounded.
The Gibbs measure is supported on distributions in H™*, so the solutions of (1.6) are typically
not in L?(T? C). Nevertheless, in section 8 we achieve convergence in L? transportation
distance for finite-dimensional metric probability spaces towards Gibbs measure on the phase
space for the PDE.

2 Metric Measure Spaces for Trigonometric Systems

Sturm [19] has developed a theory of metric measure spaces which refines the metric geometry
of Gromov and Hausdorff. We recall some definitions, which simplify slightly in our setting of
probability spaces, which Sturm calls normalized measure spaces.
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Let (X,d) be a complete and separable metric space. Now let Probg(X) be the space
of Radon probability measures on (X, d) with the weak topology; a metric probability space
X consists of (X,d, ) with p € Probg(X). Suppose that p,v € Probg(X) and that v is

absolutely continuous with respect to pu and that f = S—Z is the Radon—Nikodym derivative.
Then the relative entropy of v with respect to u is
Ent(v | ) = [ f(e)log f(o) uldo) (2.1)

so that 0 < Ent(v | pu) < oco. For 1 < s < oo, Probg(X) consists of the subspace of
v € Probo(X) such that [ 6(xo,x)*u(dz) < co for some or equivalently all zp € X. The

Wasserstein distance of order s between p, v € Probs(X) is

Wi(p,v) = igf{ <//X><X 5(m,y)s7r(dmdy)>l/s DT =, T = I/} (2.2)

where 7 € Probs(X x X) with marginals m; = p and w3 = v is called a transportation plan,
and §° is the cost function. Then (Probs(X), W) is a metric space.
Suppose further that there exists o > 0 such that

Wa(v. ) < |/ ZEnt(v | ) (2.3)

for all v € Prob,(X) that are of finite relative entropy with respect to p. Then p is said to
satisfy the transportation inequality Ts(«). We repeatedly use the result of Otto and Villani
that LSI(«) implies T5(«) on Euclidean space; see [21, 22.17].

Definition (L? transportation distance) A pseudo metric on a nonempty set Z is a function
d : Z x Z — [0,00] that is symmetric, vanishes on the diagonal, and satisfies the triangle
inequality. A coupling of pseudo metric spaces (X,d1) and (Y,d3) is a pseudo metric space
(Z,0) such that Z = X UY and d|xxx = 01 and d|yxy = d2. Given metric probability
spaces X = (X,61, 1) and Y = (Y, 0z, p2), consider a coupling & of these metric spaces and
7 € Probg(X x Y) with marginals p1 and po. Then the L? transportation distance is

D/ 2(X,Y) = 15H7f{(//xxy 5(m,y)27r(dmdy)>1/2}, (2.4)

where the infimum is taken over all such couplings § and all transportation plans 7. One can
easily show that if p1 € Proby(X) and g € Proby(Y), then Dy2(X,Y) < co. The diameter of
X is sup{d(z,y) : 2,y € support(p)}. The family of isomorphism classes of metric probability
spaces that have finite diameter gives a metric space (X, Dy2) by results of [19].

To obtain LSI(«) for measures on Hilbert space from their finite-dimensional marginals,

we use the following Lemma, which is related to Theorem 1.3 from [4].
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Lemma 2.1 Let dv = e V(@) [[;Z, dz; be a Radon probability measure on ??(N;R), and
let F,, be o-algebra that is generated by the first n coordinate functions, and let v,, be the
marginal of v for the first n coordinates. Suppose that

(i) V is continuously differentiable, and [ ||VV (2)|Z%v(dz) < oo;

(ii) there exists a > 0 such that LSI(«) holds for X™ = (R™, || - ||42,v») for all n.

Then LSI(«) holds for X>° = (€2, - ||¢2,v), and X™ — X in D2 asn — oo.

Proof. For 0 < f € L?({%;v;R), let f,, = E(f | F), so that 0 < f,, and f,, — f almost surely
and in L? as n — oo by the martingale convergence theorem. By Jensen’s inequality applied
to the convex function ¢(z) = 22 log 22 for > 0, we have

/f,% log, f? du—/f,% log_ f2dv < /f2 log f? dy—/f2 log_ f%dv. (2.5)

Now ¢(z) > —1/e, so we can apply the dominated convergence theorem to the terms with
log_ and Fatou’s lemma to the positive terms with log, to deduce that the entropy term on
the left-hand side of LST satisfy

[ Frog(s2) [ pav)ay= v [ sirog(s2) [ f2av)av

<tim sup 2 [ V£, (o) v (o). (2.6)

n—oo

Integrating by parts in the first n coordinates, we see that V f, = E(Vf | F,)+E((f.,—f)VV |
Fn), so by the Cauchy—Schwarz inequality

2 1w saan, < 222 [y pppar+ 2L (g ppan) ™ [iovipas) ™
(2.7

a 7

where we can choose €,, > 0 decreasing to 0 so that (2.6) and (2.7) give

[ rros(r) [ pav)av <2 [1972an (2.8)

Hence X satisfies LST(cr). Now LSI(«) implies T1(e) by [21, 22.17], so
[exp(a||z||?/2)v(dx) < co. Any continuous and bounded function f, : R®™ — R may be
identified with a function on the first n coordinates of #2, so the equation f fndv, = f fndv
determines v, € Proba(R"). We write z = (§;)52, € £* as x, = (&1,...,&) and 2" =
(€nt1,Ense,...) and introduce p,(dz™ | &,) € Probs(¢?) by disintegrating v(dz) = p,(dz™ |
X )Vn(dzy,) with respect to vy,; then we couple X" with X°° by mapping X" — X via
Zp — (x,,0). To transport v, to v, we select x,, according to the law v, then select z"
according to the law p,, (dz"™ | z,,); hence

Dy (X", X*)? < // N Eapn(da” | 2)vnldn) = / lo — Bz | F)|Zv(de), (2.9)
n X 2 2

5



which converges to zero as n — oo by the dominated convergence theorem; so X" — X in
D2 as n — oc. ]

In subsequent sections, we introduce metric probability spaces relating to the trigonomet-
ric system over TP; their properties link curvature, dimension and the exponent in H. In
space dimension D, let

X" =span{e®? : k € ZP;k = (ky,...,kp); |k;| <n; j=1,...,D}, (2.10)

so that ¢,, : X™ — X" T is the formal inclusion. When n is a dyadic power, the metric structure
is well described by Littlewood—Paley theory. For j € N, we introduce the dyadic block A; =
{27129 4-1,...,2 — 1}, and for J = (j1,...,7p) € NP let A(J) = A, x ... x Aj,. Let
P; be Dirichlet’s projection onto the span{e®*"? : k € A(J)}, and introduce the Hamiltonian

1 dPe A aPe
m)P”

Haon() =5 [ IVPn@IE G5 -5 [ Pu®)

. (2.11)

Proposition 2.2 For 2 <p <2+ (4/D) and N > 0, there exists A > 0 such that Hx(;)(u) is
uniformly convex on 2.

Proof. We observe that H(y is twice continuously differentiable on L?, and

d2
<ﬁ>t:0HA(J)(U + tv)
dPe

2 p—2 2 dD9
> | IR s = Me=1) [P |Pr)

(2m)P

We write |A| for the cardinality of a finite set A, and observe that by the inequality of

(2.12)

the means,
D

> 18,17 = DIAW)PP. (2.13)

{=1

Hence the first term on the right-hand side of (2.12) satisfies

dPo D dPo
VP(0)|l; >—AJ2/D/ P(0))? —5. 2.14
IR s = ZIADE [ PP G (2.14)
Now we introduce de la Vallée Poussin’s kernel K ; for A(J), so that K;(ny,...,np) =
1 for all (ny,...,np) € A(J) and Kj(ny,...,np) = 0 whenever some n, lies outside of

Aj,—1UA;, UAj, 1. Then Pyu = K * Pju, so by Young’s inequality we have constants c,,,
independent of u, N and A such that

@0 <o 1Pyl
. J (2m)D — LTl pep-0/e-0 14Tl L2

< co|Ay|PENPT2 (2.15)
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for all u € Q. Likewise, we have

. dPo 4
/T PO G < sl Kol 1Pl

§ C4’AJ’HPJ’UH%2. (216)

Hence by the Cauchy—Schwarz inequality, we have
d2
— H t
<dt2>t:0 A(J)(u+ v)

> (ZIa@)P? - M- DeslaA)-22N0-22) [Pz L0
- 4 TD (QW)D,

where 2/D > (p — 2)/2; so given N > 0, we can choose A\ > 0 sufficiently small so that the
coefficient in parentheses from (2.17) exceeds D/8, for all J. O

(2.17)

3. Application to the cubic periodic Schrodinger equation in 1D

Proposition 2.2 involves an exponent p = 2 + (4/D) which equals the optimal exponent for
the focussing NLS by [9, page 6]. Such inequalities on dyadic blocks do not of themselves lead
directly to LSI(«) on Qy. So in sections 3, 4 and 5, we extend Proposition 2.2 to infinite

1 [ (Ou2do 4d9
5/‘89 ﬁ__/‘ (3.1)

may be expressed in terms of the canonical variables (£, g) where f,g € L*([0,27]; R), and the

dimensions. The Hamiltonian

field is u = f 4+ ig. Then the canonical equation of motion is the cubic Schrodinger equation
i =~ Ay, (3.2)

periodic in #. Lebowitz, Rose and Speer [15] considered the Gibbs measures for such par-
tial diﬂerential equations, exploiting the formal invariance of H(u) and the number operator

= [ [u(0)[*df/(27) with respect to time under the flow generated by the NLS. Bour-
gain [6, 9] introduced a Gibbs measure v for spatially periodic solutions, and established the
existence of a flow for almost all initial data in the support of v.

Let (v, ’yj’);"i_oo be mutually independent standard Gaussian random variables, so that
Z;’i_oo j0€"” %(vj +iv})/j defines Brownian loop. Let A, N > 0 and introduce the ball Qx
as in (1.2). Often it will be more convenient to use the real Fourier coefficients a;,b; of u as
canonical coordinates, where a; +ib; = [u(0)e~"%df/(2r). There exists Z(N,\) > 0 such
that

v(du) = Z(N,\) q, (u) exp(% / |u(6) 4d9> H du(0 (3.3)
T

0€[0,27]



defines a probability measure, where as in [15, 6] we define

oo .2 .2
7 7°da;db;
H du(0 H exp <—E(a? + b?)) #, (3.4)
0€0,27] j=—00;7#0

namely the measure induced on L? by Brownian loop. The indicator Iq, (u) restricts the field
to the bounded subset Qy of L?, and ensures convergence.

We approximate Qy by finite-dimensional phase spaces. Let P, : L? — span{e’/? : j =
—n,...,n} be the usual Dirichlet projection. Then the Hamiltonian
OP,u|? d9 4 dé
- _Z P, — 3.5
/ ‘ / ‘ u(f 2 (3.5)
generates the differential equation
0P, u 9?P,u 9
i o APn<]Pnu] Pnu>, (3.6)

which is associated with a finite-dimensional phase space P,L?, and a corresponding Gibbs
measure. In terms of the Fourier coefficients, (3.6) is an autonomous ordinary differential

equation. Let X = (Q, | - |[z2,7) be the metric measure space associated with (3.3), and
with X™ = Qn N P,L2, let X™ = (X™,||-||12, vn) be the metric measure space associated with
(3.5).

Proposition 3.1 For 0 < AN < 3/(147n?), the Gibbs measure for NLS on Qy satisfies the
logarithmic Sobolev inequality

/Q F(x)210g<F(x)2//F2dy>y(da:) < %/HVFH}I_ldu, (3.7)

for a =1 — (1472N)\)/3.

Proof. For f = Ru and g = Su, the Hamiltonian is

a+i =g [ [(Gg) + () Jos -3 L1+ 75 38

and we aim to show that this is uniformly convex on 5 with respect to the homogeneous
-1

Sobolev norm ([ |f/|242)1/2 of H' . We consider U(f+ig) = [p(f*+9%)?22, which contributes

a concave term to the Hamiltonian H. We observe that for 0 <t < 1 and f, g,p,q € HY,

2+ 0% + (-0 + ) = [(tf + (1 - 1)p)® + (tg + (1 - )g)?]?
=t(1—1) f p2(1+t+t2 fPr@E+2t—2%)fp+ (2—t+ (1—1)*)p?)
+t(1—t)(g—@)*((L+t+t*)g* + (2+2t —2t%)gqg+ (2 —t + (1 — 1)?)¢?)
+2t(1 —t)
+2t(1 —t)

f=p)g—(f+p)(1+t)g+ (1 —1)q)
9—a)’p> +2t(1—t)(f —p)*(tg + (1 — t)g)*. (3.9)

8
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We have the basic estimates [(f*+ ¢g?) < N, and likewise [(p?+ ¢*) < N, while the Cauchy—
Schwarz inequality gives the bounds
2 2
9 T (8 f 8p> do
—pl[fee < — - — =) — 3.10
and likewise for ||g—q|| L. We integrate (3.9) over T, and use the L> on each of the differences
f —p and g — ¢ and the squared L? norm to bound each of the sums; hence we have the bound

0<tU(f+ig)+ (1 -t)U(p+iq) —UEf+ (1 —t)p+i(tg+ (1 —1t)q))

1
We deduce that H is uniformly convex with respect to the norm on H , with

tH(f +1ig) + (1 —t)H(p+iq) — H(tf + (1 —t)p +itg +i(1 — t)q)

1  28AN~7? of  0Op\?2 dg  0q\271db

2i-0(3-5) [ G- a) + (G5 - ) 13 312
The standard inner product on L?(TP;d”0/(27)P; R) is unitarily equivalent to the standard
inner product on ¢2(Z”) under the Fourier transform, and under this pairing, the dual space
of H*(T?;C) is H™*(TP;C). In particular, the dual space of HI(T;R) is H_I(T;R). So
by Bobkov and Ledoux’s Proposition 3.1 of [2], the inequality (3.7) holds for all continuously
differentiable F': X" — R, which depend on only finitely many Fourier coefficients. Then by
Lemma 2.1, we can deduce (3.7) for all F. O

Theorem 3.2 Let p =4, D =1 and 0 < NX < 3/(14n?). Then X of the focussing cubic
NLS has finite diameter and satisfies LSI(1— (1472N)/3)), and X" — X in D2 as n — oco.

Proof. This follows from Lemma 2.1 and Proposition 3.1. Note that ||[VF||g-1 < [[VF|[z,
so (3.7) implies (1.3). m

Remark. One can extend the L? convergence result in Theorem 3.2 to all A\, N > 0, although
the proof becomes more complicated.

4. Periodic Zakharov system in 1D

Let u(0,t) and n(f,t) be periodic in the space 0 variable; here u is the complex electrostatic
envelope field and n is the real ion density fluctuation field. Then the periodic Zakharov model
is the pair of coupled differential equations

ou 0%y
Za = —w + nu;
’n  0*n 9?2
= o ([ul?). (4.1)

The initial condition is

u(0,0) = p(6), n(0,0)=al6), (5,0) = b(6): (4.2)



and Bourgain [7] established global existence of solutions of (4.1) for initial data ¢ € H',
a € L? and b € H'. We now introduce V as the solution of

ov._on

00  ot’

ov on 0

E = _% 89(’”’ ) (4'3)

such that [, V(6,1) % = 0; existence may be verified from Fourier series. Then we introduce
the Hamiltonian

Hum) = ¢ [ (21557 = ol + (ot 1)+ v2) 5, (4.4)

which suggests that we introduce further variables 71 = (n+|u|?)/v/2 and W = (d/df)~*V//2.
The canonical variables which lead to the system (4.3) are (Ru, Su) and (n,v2W). Then H
and [ [ul? % are invariant under the flow, so we can restrict attention to Qp as in (1.2) with
D = 1. Then the Gibbs measure on Qp x L?(T;R) x L?(T;R) is defined by

v(dudidW) = Z~ [IQB w) exp /y 14———/ 8”2d9)Hd2 ]
x [exp(- /~2)Hdn )] [exp (- /8W2d9>HdW )] (45)

We say that f : L? — R is a cylindrical function, if there exists a compactly supported
smooth function F': R® — R and &1,...,&, € L? such that f(¢) = F({¢,£1),...($,&0)).

Proposition 4.1 There exists B > 0 such that the Gibbs measure for the periodic Zakharov
system satisfies a logarithmic Sobolev inequality for all cylindrical functions.

Proof. The Gibbs measure is the direct product of three measures which satisfy logarithmic
Sobolev inequalities, as follows. Let (yx)52_ ., be mutually independent standard Gaussian
random variables, where ~; has distribution i on R. Then a typical field 7 has the form

0) = Z(% cos k6 + v_y sin k), (4.6)
k=1

which converges in H~1/27¢ for all € > 0 almost surely. By results of Gross and Federbush,
each pu, satisfies LSI(1) on R, and likewise ®}_ _ uj on Eucliean space. The canonical Gaus-
sian measure on L? has the characteristic property that for any finite-dimensional subspace X,
the orthogonal projection P, : L? — X™ induces the standard Gaussian probability measure
on X" with respect to the induced Euclidean structure; see [18, page 327]. In particular, this
applies to ®%2___ i and the subspace X" = span{¢{; : j = 1,...,n} on which the cylindircal
function lives. By [21, page 574; 3] this shows that the middle factor in (4.5) satisfies LSI(1),
and there is no need to truncate the domain of the n variable.

10



Likewise, a typical W field initially has the form W (6,0) = 2 (v cos k6 +~y_ sin k6) /k
and hence the final factor in (4.5) arises from the direct product of Gaussian measures that
satisfy LSI(1) on R; hence we have LSI(1) for this product.

Finally, the first factor in (4.5) is the Gibbs measure v for NLS with p = 4, so by
Proposition 3.1, v satisfies LSI(1/2) for B < 3/2872. Combining these results, as in [21, page

574; 4], we obtain a logarithmic Sobolev inequality where the gradient is
IVEIF = [VuF g + 1VaF [ + [V F |- (4.7)

a

5. Periodic KdV equation in 1D
Consider u : T x (0,00) — R such that u(-,t) € L?(T) for each t > 0, and introduce the

Hamiltonian . 9 240 "
u
H = — — — = = 32
() QAK%WJDQW 6A”@ﬂ2w
ou

where A > 0 is the reciprocal temperature. Then the canonical equation of motion &

0.9
o0

o1|m

gives the KdV equation

ou u ou
_ v , o%u 1
ot 068 ~ 0 (5-1)

For a suitably differentiable solution u of (5.1), both [w(f,¢)*df/2m and H(u) are invariant
with respect to time. On the ball

db
By = L*(T;R) : 2— <N 2
v={eerrmr): [ o025l <N} (52)
with indicator Iz, one can define a Gibbs measure

v(d) = Zn(N) 'Ipy (¢ VI dete (5.3)

0e[0,2m)

where Zn(¢) is a normalizing constant, chosen to make v(d¢) a probability measure.

The metric probability space (Qn, || - ||z2,v) arises as the limit of finite-dimensional
metric probability spaces, which are defined in terms of random Fourier series. Let X™ =
{(aj,bj)j—; € R*™ : ¢(0) = 3°7_ ajcos jO + bjsinj@ € By} where we introduce the trigono-
metric polynomial ¢(0) = >>"_, (a; cos jf + b; sin j¢) and then the probability measure

Vn(dadb) = Z 11, (¢) exp / (0 exp( ZjQ(a? + b?)/Q) H da;db; (5.4)
j=1 j=1

for a suitable Z, = Z,(N,A) > 0. We then let X = (X", || - ||¢2,vn), which is finite

dimensional.
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Lemma 5.1 Suppose that 0 < \V/N < 3/mn%. Then the Gibbs measure satisfies the logarithmic
Sobolev inequality

Faog(£@?) [ Fav)otan) < = [ 95]fvtaa) (5.5)

QN

where o = 1 — 37172 \\/N.

Proof. A related result was given in [3] with a larger norm on the right-hand side. Here
we give a proof that is based upon an observation of Schmuckensliager concerning uniformly
convex Hamiltonians [2, Proposition 3.1]. For 0 < ¢ < 1, we have

tH (u) + (1 — ) H(v) — H(tu+ (1 — t)) (5.6)

= t(l;t)A(%_%)Q;li L(lﬁ_ t)/T(u—v)Q((lnLt)qu(Q—t)v)g

where the final term is estimated by the Cauchy—Schwarz inequality by

‘/ u—v) ((1+t)u+(2—t) );ZQ (/T(u_v)4§>l/2</T((1+t)u+(Q_t)v)2§>1/2

<V [ (55 -5) o (5.7

Hence for @ = 1 — 37 '"\x2V/N > 0, we have a uniformly convex H such that

tH (u) + (1 — ) H(v) — H(tu+ (1 —t)v) > @ /T<Z_Z - %)2% (5.8)

so H is uniformly convex with respect to H'(T;R). O

Theorem 5.2 Let 0 < A\V/N < 3/n%. Then (v, ||+ || 12, v) of KdV has finite diameter, satisfies
LSI(1 —n? \V/N/3), and is the limit in Dy of X™ as n — oc.

Proof. Theorem 5.2 follows from lemmas 2.1 and 5.1. O

6. Logarithmic Sobolev inequality for critical power p =6 in 1D
Now we consider the critical exponent p = 6, and the Hamiltonian

H(u) = %/T(%)Qg - %/Tu(e)ﬁ g. (6.1)

Lebowitz, Rose and Speer show that for 0 < A < 1, there exists Ny > 0 such that the Gibbs
measure for H can be normalized on Qpn for N < Ng, but not for N > Ny. To obtain a
logarithmic Sobolev inequality, we specialize further and for 1/4 < s < 1/2 and x > 0 let

Oy = u € HY(T / Ju 12— < N; Z In[2|a(n)|? < m} (6.2)

12



Proposition 6.1 Let N < Ny and 0 < A <1, and 1/4 < s < 1/2, then let vy be the Gibbs
measure on )y associated with potential H.

(i) The sequence of convex and compact subsets (Qn )52, of Qn is increasing and there
exist e,C(¢) > 0 such that vy (Qn..) > 1 — C(e)e =",

(ii)) Let Un be vy renormalized on Qy . as a probability. Then for all k > 0 there exists
a = a(k,N) > 0 such that (QUn ., || - |22, 0n) satisfies LSI(«).

Proof. (i) Compactness and convexity follow from simple facts about the Fourier multiplier
sequence (|n|~2%) on L2. Let u be the Gaussian measure on L? that is induced by Brownian
loop. Then by the Cauchy—Schwarz inequality, we have

1/2
) <fQN exp(25|\u|\%_ls),u(du) fQN exp(37IA [ uf du))
/Q exp(€|\UHHs>VN(dU) < fQN ,u(du) fQN exp(6 6—1\ fT u6 du) )

N

(6.3)

where for suitably small € > 0 the right-hand side integrals are all finite and together define
C(g). Then we conclude by applying Chebyshev’s inequality.

(ii) For integers k = 1,2,..., let Ay = {2F-1 2k=1 4 1 ... 2k — 1} be the k" dyadic
interval of integers; for k < 0, let Ay = {n: —n € A_j}; also let Ag = {0}. Next let Kj, be de
la Vallée Poussin’s kernel associated with Ay so Kj(n) =1 for all n € Ay, and Ky(n) = 0 for
n outside Ap_1 U Ap U Apiq. Also, let (e5)72, be the usual Rademacher functions. By the
Littlewood—Paley theorem, there exist constants C7,Cy > 0 etc. independent of u such that

lull1: < C1E || Z ek xul}, gcz( Z HKk*uHL4> , (6.4)

k=—o00

and we can use Young’s inequality to show
| K ul| o < Csll Kll pars || Ky + ull 2 < Cal M| 72 | . (6.5)

Hence H® embeds continuously in L*.
We choose M > 2NZ (4041 (27k)*372)1/(4s=1) and introduce

M , df
= 7/Tyu(e)y 5 (6.6)

so that U is bounded on 2 with 0 < U(u) < MN < MNy. Then we consider the modified
Hamiltonian H (u) + U(u), and check that it is uniformly convex, with

<d—2> » (H(u+tv) + U(u+tv))

dt? /¢
= () 32 5 [ @t 52 [ po 5
Ouy* 4 4.df
> i - do
> [ (5) 5 ot [| 2 KM@KMU\ d

+M/yv Qde 40)\H Z Kk*u /y Qde (6.7)
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By using the Littlewood—Paley decomposition as above, we obtain the lower bound on (6.7)

dv\?2 db do

- 2 n1—4s 2 2 n72 2An 1-4s / 2
(1= soaw?l,[10n/3) [ (G0 57+ (M = 404N —50a?1a, 1) [ Jul) -
(6.8)

Now we choose n to be the smallest integer such that 2" = |A,| > (16072k2/3)/(4s=1D 5o
that the first coefficient in (6.8) exceeds 1/2, while M was chosen above so that

<j—;>t_0(H(u+tv)+U(u+tv)) > §A<%>2§+%[FU(9)QZ£7 (6.9)

™

and we have uniform convexity. Hence there exists Z(N) > 0 such that the measure

Z(N)te =V (u) [ du(® (6.10)
96[0 27

can be normalized and satisfies a logarithmic Sobolev inequality with constant ag > 0. The
original Gibbs measure appears when we perturb the potential by adding the bounded function
U, to remove —U; hence by the Holley—Stroock perturbation theorem [11; 21, page 574] vy
also satisfies a logarithmic Sobolev inequality with constant

a > agexp(—NM) > ag exp(—2(404s+1(2#/@)43_2)1/(43_1)NN§). (6.11)

Ol
7. The finite-dimensional Gross—Piatevskii equation in 2D
Let u € L?(T?;C), and a, + ibx = 1(k) be the decomposition of the Fourier coefficients into
real and imaginary parts. With the canonical variables (ag, bi)rez2, the Hamiltonian

1 ,dby dy A , dfy dby
_1 _A 1
H=5 [ VP SEGE =3 | s lal?)ul? SE (71)

gives rise to the G-P equation (1.5). The L?(T?; C) norm is invariant under the flow for
smooth periodic solutions.

Following Bourgain [8], we introduce a Gibbs measure via random Fourier series as in (1.4)
with D = 2. Now b does not belong to L?(T?; C) almost surely, whereas b defines a distribution
in H™*(T?;C) almost surely for all s > 0. We cannot therefore construct the canonical
ensemble in precisely the same way as in sections 3,4 and 5; instead, we need to introduce
finite-dimensional approximations for which the L? norms depend upon the dimension.

We define the number operator by

N, = S . (7.2)

k|2 +
k:(k17k2)ez2;|k1|7|k2|§n’ ’ p

so that N,, ~ 2logn as n — oco. Then for N > 0 let Qx be as in (1.2) with D = 2.
Let P, : L?(T?;C) — span{e®*%: k € Z2 k = (ky,k2); |k1|,|k2| < n} be the usual Dirichlet
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projection onto the span of the characters indexed by lattice points in the square of side 2n
centred at the origin. For B > 0, we let X" = P,L? N Qy, +p with the metric given by the
L? norm, so that the diameter of X™ increases with dimension. Accordingly, we replace |u|?
in (7.1) by |u,|* — k(N,, + B) where u, = P,u. This is an instance of Wick renormalization.

In the following computations, we have integrals over T2 with respect to df;dfs/(27)?,

and we suppress the variables of integration. Hence we take the Hamiltonian to be

1 A A
H,y () = _/ 94 - —/ (V 5 [l Jul® + —nV(O)(Nn+B)/ W2 (7.3)
2 T2 4 T2 2 T2
We can regard X™ as a compact and convex subset of C™ for some m < 4(n + 1)?, and define
the Gibbs measure via

vn(dadb) = Z, T, (u)e (0 11 daydby,, (7.4)
k:(kl ,k2)€Z2;|k1 I,IkQ |§n

for u = Zk:(kl,k2)622;|k1|,|k2|§n(ak + by, )0

Brydges and Slade [10] consider focussing periodic NLS in 2D and show that some standard
routes to renormalization are blocked. However, allow the possibility that there exist invariant
measures in the case in which N,, — oo and A\, — 04+ as n — o0; see page 489. This is the

situation we consider in Proposition 7.1.

Proposition 7.1 (i) Suppose that V € L*(T?;R). Then for all B > 0, there exists A, > 0
such that the Gibbs measure v, on X" corresponding to H,, satisfies LSI(1/2), so

(m)Qlog<f(x)2//f2dun>yn(dx) §4/X ‘|Vf‘|§{—1(T2)yn(dm). (7.5)

X n n

(ii) Suppose further that V € L*®°(T%R) and that kV(0) > 3||V||z~. Then for all
B,\>0 and all n, (X", || - |12, vn) satisfies LSI(1/2).

Proof. We prove that the Hamiltonian is uniformly convex, by introducing

P ,
(42),_ HCwttw) = [ [VulP 4 PO+ B) [ fu?
dtQ t=0 T2 T2

A A
=5 [P vyl =5 [ (uf? V) luf
T2 T2
- % / (w0 + aw) * V) (uid + aw). (7.6)
T2
(i) By Young’s inequality, we have
|G < V)l <l VL ol (77)
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and likewise

[+ V)l < 2 Ve 8

while each term in the final term in (7.6) is bounded by Young’s inequality and Holder’s
inequality, so that

L, Gt V1) ol < ]V = o]
< ol 1V ol 79

By the Sobolev embedding theorem, we have ||w — [w||ps < C4||Vw]| 2, for some Cy > 0.
Hence

d? ,
(ﬁLOH(“ +iw) 2 (1 = BAC4(Ny, + B)HVHLz) /T | Vuwl|

+ AN, + BY(rV(0) — 3C4||V]12) / w2, (7.12)
T2
By choosing A > 0 such that 1/2 > 3AC4(N,, + B)||V|| 12, we obtain uniform convexity with

constant & = 1/2. Then LSI(1/2) follows from [2, Proposition 3.1].
(ii) When V' is bounded, we can use Young’s inequality to bound

2 2
P V)l < Vel (7.11)
and likewise for the similar terms in (7.6). Hence we obtain the inequality
d2
— H t
<dt2>t:0 (1 tw)
> / IVl + (k¥ (0)(Ny + B) = 3||V]| 1~ / uf?) / w2, (7.12)
T2 T2 T2

Again LSI(«a) follows from [2, Proposition 3.1]. O

8. The Gross—Piatevskii equation on Sobolev space with negative index
To conclude the paper, we obtain a logarithmic Sobolev inequality for the G-P equation (1.5)
on a suitable subset of H™*(T?; C). The convolution

2+ V0) = > (juP)(m)V(m)e™® (8.1)

meZ?

in the potential is to be interpreted probabilistically, since u(6) = >y cz2\ 101 (Ve + iy}, ) et 0 /| k|
does not define an L?(T) function almost surely.
For 0 < s<1/4,0<e<1/8, K1 >0 and Ky > 5, let

Q= {(aj>jez2 €C®: Y P liIPT < Kus o ay] < Kalj|Y7E, Ve ZQ}’ (8:2)
JEZ2\{0}
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so that Q is a convex set. Let (74)jez2 be mutually independent standard complex Gaussian
random variables, so that v; has distribution yu;, and let i be the product measure ®;cz2 1,
on C*®. Let J : (2(Z?; C) — H'(T?; C) be the linear map J(a;) = > jez2\ {0} a;je’?/|j|, and
let

Q= {u €H™: |lullg-- < K1;  |a(j)] < Kalj|~®/47=, Vje ZQ}. (8.3)

Then J induces a measure p on H™*, which is mainly supported on 2.

Theorem 8.1 Suppose that V € H'*?*(T2;R) for some s > 0.

(i) Then u(Q2) — 1 as K1, Ko — oo;

(ii) for all Ky, Ky sufficiently large and 0 < ¢ < 1/8 there exist A > 0 and o > 0 such that
the Gibbs measure v, normalized to be a probability on Q, satisfies LST(«), so

[ os(swpy [ Fav)otdn < = [ 9] v (8.4

for all f € L*(Q;v;R) that are differentiable with ||V f|l¢-+ € L*(Q; 5 R).
(iii) The transportation cost for cost function c(f,g) = || f — g||?%—. and all w € Proby(Q)
that are of finite relative entropy with respect to v satisfies

Wo(w,v)? < %Ent(w | v). (8.5)

Remark. The hypotheses imply that V € L*°. In summary, the Gibbs measure produces a
metric probability space (€2, || - ||gg-+,v) of finite diameter that satisfies LSI.

Proof. (i) We introduce the event

P ={ll < Kaljl /975, vj e 22\ {0}}, (8.6)

which by mutual independence of the 7; has measure

() = H (1_2/ —s2/2_ds )

€
jez2\{0} K |j|/4=< 2

o 2,5 ds
> exp<—4 / e /2 ) (8.7)
jez2z\{0} Ka|j|t/4—= \ 2m

oo

since Koe®2/2 > 4. Also by Chebyshev’s inequality, we have

~ ’7’2 2 —K2/4 1 —1/2
i3 gz Ky T (1= gppmm)

jeZ>\{0} jezZ>\{0}

<exp<——+ 3 !J!25+2> (8.8)

j€Z>\{0}
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so by estimating these sums by the Euler-Maclaurin sum formula, we obtain

~ 2(6 4+ 7r)e_K§/2 ~-K? 1
> — — .
a(Q2) > exp( Koo ) exp( T 5% + 5), (8.9)

hence ji(Q) — 1 as K1, Ky — oo.

(ii) By results of Gross and Federbush, each p; satisfies LSI(1) for the standard gradient
and distance over C; hence their direct product fi satisfies LSI(1) on €2, where the norm of
the gradient is computed in the norm of /2. Lemma 2.1 enables us to pass from finite to
infinite dimensions. We prove below that there exist k > 0 and Z > 0 such that v(da) =
Z~1eV(J(9) [i(da) defines a probability measure on Q such that

/QeXp(ﬁHV(UoJ ng) (da) < (8.10)

Then v satisfies LSI(«) for some o > 0 by the condition of Aida and Shigekawa [1]; see also
[21, Remark 21.5]. Letting u = J(a) and v = J(b), we have

5U a9
OO G B

T2 (SU

<V(U o J)(a),b>z2 = (d/dt)i=U o J(a + tb) =
while the norms satisfy

V(U 0 1) (@)]|,2 = sup{[(V(U 0 T)(a),B)] : [l 2 < 1}

oU d?
Ta O0(O) G v =T bl < 1}

= sup{?R

T2 (Su

< H (8.12)

2l

since J : /2 — H® defines a contractive linear operator for 0 < s < 1, and H® is the dual of
H™® under the integral pairing.

Let v be the measure on € that is induced from 7 on Q by J, then normalized to be a
probability. Then we obtain the logarithmic Sobolev inequality for the Gibbs measure

[ @rros(s07/ [ Fav)utds) = [ @) og(s0@)% [ fo1d) i) 2
= [Iv(re @]t
<= [ 195 iy -v(do) (313)

IN

where the final step follows as in (8.12).
So this leaves us with the task of verifying (8.10). The Hamiltonian involves

Uu) = %/szw - [ 1) *V)IUP(;% (8.14)
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with gradient
(VU(u),v) = <%>t_OU(u+tv) (8.15)
_ E/TQ[((W —/W) *V)(u@—i—vﬁ)—i— <(u6—|—fw) *v)yuﬁ]%.

The integrand involves the Fourier series

(JuP «Vya="3" (lul2)(m)V(m) 3" a(j)el0+m e, (8.16)

meZ? JEZ2

where (14 |7 +m|)(1+ |m|) > (1 +[j]), so for all u € Q we have

H > al)e ”m)QHH_S_( > m(.j)l2)1/2!m!s§K1!mys, (8.17)

2s
jezZ2\ {0} jezavoy V|
hence
|t vyl < B0 S b V)| () (). (8.18)
meZ?2

To estimate the right-hand side of (8.18), we will later use the following lemma.

Lemma 8.2 (i) The (W)(m) are uniformly exponentially square integrable over () with
respect to u, so there exist C'1,k > 0 such that

/Qexp< ?|(WP)(m)|*)udu) < Gy (m € 27\ {0}). (8.19)

(ii) A similar statement holds for v on §), possibly with different constants.

Proof. (i) We have (W)(—m) = > (v + 1) (Vj+m — 1Vi1m)/Lilld + ml, so we require to
bound Y7 | d'™ where each d™ is a sum over an annulus

dm) — M 8.20
D DI T e (8.20)
JEZA\{0,—m};r—1<|j[<r

Observe that on Q the random variables v; are symmetric and we can independently replace
each 7; by £;, without affecting the distribution of /i on Q.

The sequence (dg«m)) is multiplicative in the sense of [12] so that for all strictly increasing
subsequences r; < ro < ... < r, of integers,

/ dim™alm .. .dl™ fi(dy) = 0. (8.21)
Q

To see this, consider a product of terms, with one taken from the sum (8.20) for each factor
d%n) and consider the lattice points ¢ that index the =, from factors in this product. In
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particular, consider ¢ such that the distance from the origin is a maximum, and observe that
this is attained at some point of the form j 4+ m, and that v;,,, appears only once in the
product, hence integrates to give zero.

Observe also that \d&m)] < ¢, where 6§, = CoK%?“_(l/ 2)=¢ for some universal constant Cy,
so that 6, < 3C2K35 /8¢ as follows: The most challenging case is when |m| = r, and we can
compare §, < K3r— (/4= Zjez2\{07_m};r_1§m<r lj + m|~B/)=e
the lattice points j replaced by points equally spaced around the circle of centre the origin and
radius 7, which produces the integral KZr—(1/2)=2¢ f | sin(0/2)|~G/Y==qg.

Bounded multiplicative systems satisfy similar concentration inequalities to bounded mar-

with the sum arising with

tingale differences as in [20]. By Jakubowski and Kwapien’s [12] contraction principle, for any
convex function ® : R™ — [0, 00), the inequality

g(Q>—1/Qq>(d§m>,...,dgm>>dg <E®(S1e1,...,0nEn) (8.22)

holds, where (g;)52; is the usual sequence of mutually independent Rademacher functions. In
particular, choosing x > 0 so that k23C3 K3 /8¢ < 1, we have

ﬂ(Q) /exp( de) )du</ Eexp( zn:/i&«sr) exp(—tQ/Q)%

r=1

i o oy dt
= /_OO Ucosh(/@drt) exp(—t /Q)E

/ exp( Z k2022 — ﬁ) \/th_ﬂ
- (1 K2 z_:l 53) - (8.23)

Letting n — oo and applying Fatou’s lemma, we obtain (8.19).
(ii) This follows from (i) by Holder’s inequality. O

Conclusion of the proof of Theorem 8.1. (ii) We need to deduce (8.10) from (8.19). We
introduce C3 > 0 such that 1/C3 < Ki(m/s+ 10) such that C33°, 72\ 10} Im|~272% = 1, and
then use Holder’s inequality to obtain

/QenU(u),u(dU) H /exp ]u] m)‘Q/Cs],u(du)>03|V(m)/2

meZ2\{0}
< ([ exp[wl Py m)f Ca ) "] s

By Lemma 7.3, all of these integrals converge for sufficiently small £ > 0, so the Gibbs
measure dv = eV dp can be normalized on €2 to define a probability measure which is absolutely
continuous with respect to p.
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We can introduce C(s) > (/s 4 10)~" such that 3=, z2\ oy C(5)/]7]*"** = 1, and then
we separate V from W by Cauchy—Schwarz inequality, before applying Holder’s inequality to

obtain
Lewlsi( X mplv el dPom)]) uc)
meZ2\{0}
< I ([eo[2s > upwGr] @Remfluw) ™" )
meZ>\{0} 3622\{0}

By taking k¢ > 0 sufficiently small, we can ensure that all the integrals and the product
converge. This confirms that (8.10) holds, and hence gives the logarithmic Sobolev inequality.
(iii) The transportation inequality follows from the logarithmic Sobolev inequality (8.4)
as in [21, Theorem 22.17]. O
Let X" = span{e¥"? : j € Z2%;|j| < n} be the subspace of L?(T?;C) that is spanned
by the characters that are indexed by the lattice points in the disc with radius n, and let
P, : L*(T%,C) — X™ be the orthogonal projection. Let v,, be the Gibbs measure

n(du) = Z,, I (u) exp(U(Pyu)) H e_|m‘2(“3'L+bib)/2damdbm/27r. (8.26)
meZ2\{0}
Let w,, be the marginal distribution of v,, on X™.
Corollary 8.3 The (X" N, || -|[|g-s,wn) converge in Dz to (Q, | - [[g-+,v) as n — oco.

Proof. (i) First we prove that U(P,u) — U(u) almost surely and in L? with respect to p on
Q as n — oo. The difference in the potentials has a Fourier expansion

U(Pou) — / F 1Pyuf?) | Poul? — /(v*yuP)yuy?
= 32V ) (1 Pal?) (m) = () () ) (P (=)

— —

+ 3 V) (1 Paul2) () (1 Paul2) (=m) = (jul2) (=m)); ~ (8.27)

m

hence
\U(Pyu) — U(Pyu)| (8.28)
<2 3 Vo)l (1Byul)(m) — (1Pyuf2)m)| (|(1Bpul?) (m) — (| Byaa2) (m)]| + | (uf?)(m)
where ,
[(Byul?)(m) = ([Paul2)(m)] < | 32 am]. (8.29)
r=n-+1



We observe that (]P/naz)(m) has a similar expansion to (8.31), except that only those j with
|7] < n contribute; so Lemma 8.2; hence (|P,u|?)(m) satisfies similar estimates to (|u|?)(m),
with the same constants.

Let ® : C*~" — [0,00) be the convex function

4
:ngpgf} (8.30)

P
D(21,...y20-n) = m;xx{‘ E Zt—n
t=n

associated with the fourth power of maximal partial sums. Then by the contraction principle
from [12], the martingale maximal theorem in L* and Khinchine’s inequality we have

1/4

</ 2y, dyu(du) < (E{_;@(angn,...,am))”“
Q

4
)

4v2Cy K2
< =
—  3y/en®

IN

(8.31)

A~

The sequence (V(m))ez2 is summable, so we deduce from (8.28) via the triangle inequality
in L?(p) and Holder’s inequality that

</Q mgx{]U(Ppu) —U(Puwu)|*:n<p< E}ﬂ(du)>1/2 (8.32)
<4y \V(m)!(/Q @(dgmx...,d§m>>ﬂ(du))1/4

and hence by (8.31)
,u{max{]U(Ppu) —UPw)Pin<p<t) > 5} ~0  (5>0) (8.33)
)

as £ >n — oo, so U(P,u) — U(u) almost surely and in L?(u) as n — oo.
(ii) We have

Ent(vy | v) = /Q <U(Pnu) —U(u) +log Z — log Zn>yn(du), (8.34)

where the normalizing constants satisfy liminf, .., Z, > Z, and the preceding arguments
show that [, |U(Pyu) — U(u)>u(du) — 0 as n — oo and [, eV p(du) < C. Hence
Ent(v, | v) — 0 as n — oco. By the transportation inequality (8.5), this implies Wy (v, v) — 0
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as n — oo. Essentially, v, is the tensor product of w, with a Gaussian measure on H™® with
variance that converges to zero as n — oo; indeed, the tail of the product (8.26) satisfies

2 2 2
3 Ay + by 11 o Imi? (a2, 482, /2 M damdby o2
’m’28 27 ’m’2+28
mEZH[m|2n meZm|>n meZm|>n
4
~ s(n—1)2%"

Hence Dz (X", [ [[g-sswn)s (2, || - [|g-+,vn)) — 0 as n — oo as in [19, Example 3.8]. H
Let A = 0%/002 + 8% /063, and write

O(u)(0,t) = /t elt=mA ((!u!Q * V)u) (0,7)dr. (8.35)

0

In Proposition 8.4, we verify that the solution of the G-P equation

Ou
—ig = Au + (!u!Q * V)u,

u(6,0) = ¢(6) (8.36)

with ¢ € Q ¢ H*(T?;C) is given by u = ug + w, where ug(6,t) = e®*¢(f) is the solution of
the free periodic Schrodinger equation with initial datum ¢ in the support of Brownian loop
on H™® and w € H® is a fixed point of w — ®(ug + w).

We say that f: H® — R is a cylindrical function, if there exists a compactly supported
smooth function F': R" — R and &;,...,&, € H® such that f(¢) = F({(¢,&1),...{(¢,&)). The
following may be compared with Bourgain’s results from [9, p. 132].

Proposition 8.4 Let 0 < s < 1/68, and let V € H**2¥3/2(T2;R) for some § > 0 have
V(0) = 0. Then for all ) > 0, there exists Q, € Q and L,,t, > 0 such that u(€2,) > 1—n and

(i) for all ¢ € Q, and ug(0,7) = e"2¢(0), the function ®(ug) € C([0,T]); H*(T?;C)) for
T > 0 almost surely;

(i) w — ®(ug + w) is L,-Lipschitz on bounded subsets of C([0,T]; H*(T?; C));

(iii) the Cauchy problem (8.36) has a solution u(0,t) for t € [0,t,] for all ¢ € Q,,;

(iv) ¢(0) — u(0,t) for ¢ € Q, induces a measure on H™* which satisfies the Ty trans-
portation inequality, and is invariant in the sense that all cylindrical functions satisfy

/Q Flul -, 1) (dg) = / f@w(ds)  (0<t<ty). (8.37)

Proof. (i) We write |all« = 1+ ||a||. Note that (£, ) is invariant under the operation
() — €2 ¢(0). The integral (8.35) may be expressed in Fourier coefficients as

®(uo) (6, 1) (533
cit(lelZ=le+ml?) _

- i) — 7 (m ilt+m)-6
D D D (e T o] AP DL

meZ2\{0} j,k:j+k=m ¢
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and we split this sum into four cases, according to the values of j and k in the inner sum, and
then according to £ and m in the outer sums. First we note that in the inner sum in square
brackets [|j|2 — ||k||> = (27 — m) - m, so we split the index set as {(j, k) € Z2 x Z? : j + k =
m} =G, m)U B(¢,m} where

G(l,m) = {(j,k:): '

and the complementary set
B(e,m) = {(j.k)

so that B(¢,m) is the set of integral lattice points in a strip in R? which has axis perpendicular
to m and width [[|¢|[* — ||¢ + m|[?|. Now the sum

— lm+ €2+ (25 —m)m| = 27210 = [|e+m]?| }, (8.39)

— -+ €2+ (2 = m)m| < 2721 = |e+m]?] }, (8.40)

()Y (141 = [} + m]?)
Z oy T2 = T1€+ml2 + 712 = [I6IP2 (8.41)

(4,k)EG(L

is exponentially square integrable by Lemma 8.2. Then we take the complementary contribu-
tion to the inner sum of (8.38) to be

Z Qg(j)ﬁg(—k) ‘
L+ (1612 = |6+ ml2 + [[7]1 = [|¥]]?]
K3
<
- . 3/4 .
e LI ARIS2 A el = N1+ mli2 + 1512 — 11%)12]

(3,k)eB(£,m)

< > )
- 1/16 . +1/2 .
162 = 11+ ml2[ " G Satem IE 2 lm — jll=+1/2

1
X ( . (8.42)
.11/8 11/8 . 15/16)
1713 = 4115 )12 = 1€+ m)|2 + 25 - m — ||m]]?]

Then we split j = j1 + jm, where j, is perpendicular to m, and j,, parallel to m; the sum
in braces is dominated by the corresponding sum over j; and is bounded; while the sum in
parentheses is dominated by the corresponding sum over j,, and is also bounded; so the whole
expression (8.42) is
KQ
<C 2 Vi (8.43)
|42 = [[€ + ml[?|
We deduce that for all n > 0, there exist a subset €, C Q with p(2,) > 1 —n and a
constant C,, such that

zm+£) 9¢( )
ol < & 3 Vo3 -
€12 = |1€ + m2|/*° TH

: [ RN O R RE
e e — e+ ) T
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We split this sum into a sum over the index set
A={(tm) e 22 x 22 |0 = 1o+ m)2|"" = el

and a sum over the complementary set A°. On A, the factor in parentheses from (8.44) is
bounded, so the upper bound ) ]V(m)]HmHQSHngH_ is immediate. On A we use the

bound |¢(j)| < KgHjH*_E_?’M, and for each m, we compare the sum over (¢,m) € A° with an
integral in polar coordinates (r,1) over the region

{(r,9) € (1,00) x (=m,m) : 2ljm|[r| sine)| < [Im]|* 4 r27}; (8.45)

so we have a bound on ), 4. of

)3 s
2e+3/2
el o< g 2 2 = llm + €278 |35+

o0 (r325 4 [ml|2) /2r||m|
< 2K? / p2e=3/2-2e / dip rdr
1 0

< 20K2<Hm|| + L) (8.46)

[l

The series 3, |V (m)]||m||?**/? converges, so ®(ug) belongs to C([0, T]; H?).

(ii) In this proof, we use concentration of measure to prove Lipschitz continuity of a
function; this reverses the usual flow of the theory as in [5, 21]. For v and w in the unit ball of
C([0,T]); H*(T?;C)), We have

D(v+up)(0,t) — P(w ~+ up)(0,t) (8.47)

_ Ot pit=T)A <(!U0!2 « V)(v _ w)) (0,7)dr

+/0t€¢(t—r)A<<(’v’2+UuO+UUO>*V)(U_w)>(0,7') dr
+/Ot€i(t—T)A<(((v_w)U+w(U—w)—i—uo(U—W)+U0(U_w))*v)w>(977_)d7'

In the final integral, we can use the simple bound

—

o~ ) (m)| < [y

v—wHHs §K1Hv—wHHs, (8.48)

and similar bounds on the other terms; the terms in the middle integral are treated similarly.
The first integral, we use the probabilistic estimate of Lemma 8.2: for all n > 0 there exist
L, > 0 and a subset Q, C 2 such that p(£,) > 1 —n and

> I(uoP)Ym) IV (m)lllml|** < Ly (u0(0,0) € ),
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so there exists C > 0 such that

sup || ®(uo+v)(0,t) — P(ug +w)(0,t)||ggs < CT(A+Ly) sup [[v(0,7)—w(0,7)|g=. (8.49)
0<t<T 0<T<T
(iii) By (i), we have T" > 0 such that Kq = supg.s.7 [|[®(uo)(0,t)||fg= is finite for all
¢ € . Now by (8.49) we can shrink the time interval to [0, ¢,] where 0 < ¢, < T, and ensure
that
B, = {we C0,1,[; B*(T% Q) sup w0, )|y < 260} (8.50)

0<t<ty

contains ®(ug) and w — ®(ug + w) is (1/2)-Lipschitz on B,. Indeed, we have

sup [ ®(uo +w)(0, )| < sup [ ®(uo +w)(0,t) — P(uo)(0,1)[[fg= + sup ||P(uo) (0, 1)
0<t<t, 0<t<t, 0<t<t,

<27t gup lw(6,t)]11: + Ko
0<t<t7]

< 2K,. (8.51)

By Banach’s fixed point theorem, there exists w € B,, such that w = ®(ug+w); thus we obtain
a solution u(6,t) = ug(6,t) + w(6,t) of G-P (8.36) for 0 <t < t,,.

(iv) We do not assert that ¢ — ®(ug + v) is Lipschitz; hence we need an indirect proof
of (iv) instead of deducing it from Theorem 8.1. The fixed point w satisfies [|w(-,t)|fs <
2[|®(ug)( -, t)||fg=, hence

[u(- Dl < [10llgg-= + [19(uo) (-, )l (8.52)

so there exists x > 0 such that

/ exp (iu( -, )13 )v(do) (8.53)

n

is finite. Hence the measure induced on H™® from p on Q, by ¢ — wu(-,t) satisfies a T}
transportation inequality by Bobkov and Gotze’s criterion, as in [21, Theorem 22.10].

Let u, be the solution of the GP equation with finite-dimensional Hamiltonian H,, as
in (7.3) and initial data ¢n(0) = > }.0<5/<n e (v, + i) /|| k||, and we regard wu,(-,t) as a
random variable for ¢ € ,. We have

lu(-58) = un (-5 ) g

<2||¢ — ganH_b +2H/ i(t— ﬂA((,w T e, |2 *V)( iTAg wACb )dTHH—

+ QH/ DA ((Ju + €29 — fwn + €20 ) € V) (w+ €720) Jar] |, (8.54)

Ji ¢
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As in (iii), one can show that u,, converges to u in the sense that

[ unCo0) = a0l ude) — 0 (8.55)

n
as n — oo. By Liouville’s theorem applied to H,,, the corresponding Gibbs measure on phase
space is invariant under the flow generated by the canonical equations of motion. Hence by

Corollary 8.3, we have weak convergence of the Gibbs measures, so

/Q (- 0)w(dd) = lim [ Flun (- 6)va(do)

n—oo [¢)
n

= lim [ f(¢)vn(de)

n—oo

Q,
= [ seewae). (8.56)

Ol
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