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Abstract

Survival methods are used for the statistical modelling of time-to-event data. Survival
data are characterised by a set of complete records, in which the time of the event is
known; and a set of censored records, in which the event was known to have occurred in
an interval. When survival data are spatially referenced, the spatial variation in survival
times may be of scientific interest. In this article, we introduce a new R package, spatsurv,
for inference with spatially referenced survival data. The specific type of model fitted by
this package is a parametric proportional hazards model in which the spatially correlated
frailties are modelled by a log-Gaussian stochastic process. The package is extensible in
that it allows the user to easily create new models for the baseline hazard function and
spatial covariance function. The package implements an advanced adaptive Markov chain
Monte Carlo algorithm to deliver Bayesian inference with minimal input from the user.

A particular feature of the new package is the ability to handle large datasets via the
use of auxiliary frailties on a regular grid and the technique of circulant embedding for
fast matrix computations. We demonstrate the new package on a real-life dataset.

Keywords: Spatial Survival, Correlated Frailties, Parametric Proportional Hazards, Log-
Gaussian Frailties.

1. Introduction

Statistical methods for the analysis of survival data are not only applicable in the medical
context, but also in many other areas of science and engineering. When survival times are
spatially-referenced, some evidence of clustering of high or low times might be apparent on
a visual inspection of the data. The question naturally arises as to whether these observed
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spatial survival patterns can be explained by incorporating appropriate covariates into the
model or whether, in order to obtain reliable inferences for model parameters of interest, it is
necessary to explicitly model the unexplained spatial variation. This article introduces an R
package (R Core Team 2013) for Bayesian inference with spatially referenced survival data.

Methodological developments in the analysis of spatial survival data have included the fol-
lowing. In Henderson, Shimakura, and Gorst (2002), the authors use a proportional hazards
(PH) framework based on Gamma frailties and the Breslow estimate of the hazard function
(Breslow 1974) to model the survival times of individuals diagnosed with leukaemia in the
north west of England. In Li and Ryan (2002), the authors propose the use of log-Gaussian
frailties in a semi-parametric framework. In Diva, Dey, and Banerjee (2008), the authors
consider both PH and proportional odds (PO) models for the SEER cancer data (Howlader,
Noone, Krapcho, Garshell, Neyman, Altekruse, Kosary, Yu, Ruhl, Tatalovich, Cho, Mariotto,
Lewis DR, and EJ 2013); the baseline hazard function of their parametric PH model is based
on the Weibull survival model. In each of the above cases, the authors used a Markov chain
Monte Carlo (MCMC) algorithm to produce samples from a posterior, enabling them to per-
form Bayesian inference for each class of models. Li and Ryan (2002) also investigated the
Laplace approximation as a means of approximate posterior inference.

To our knowledge, there are few R packages for dealing with spatial survival data. One recent
addition to CRAN is the package spBayesSurv (Zhou and Hanson 2014), which implements
functions for fitting several Bayesian survival models including spatial copula linear dependent
Dirichlet process mixture models, anova Dirichlet process mixtures and a marginal spatial
proportional hazards model. The R package INLA (Rue, Martino, and Chopin 2009; Lindgren,
Rue, and Lindström 2011) can also be used to fit survival models. Our package spatsurv uses
parametric models for the baseline hazard function and correlated log-Gaussian frailties to
model spatial dependence. We have chosen to implement Markov chain Monte Carlo (MCMC)
inferential algorithms because although they are typically slower than approximate methods,
based on the Laplace approximation for example, they in principle deliver unbiased, joint
inference for all model parameters and are relatively easily extensible to wider model classes
with additional hierarchies.

The software package BayesX (Belitz, Brezger, Klein, Kneib, Lang, and Umlauf 2013; Adler,
Kneib, Lang, Umlauf, and Zeileis 2013) and associated interface to R, R2BayesX (Umlauf,
Adler, Kneib, Lang, and Zeileis 2015) also fits spatial survival models. BayesX comprises a
set of tuned C++ functions for the implementation of structured additive regression models
(STAR), including a flexible parametric survival model using penalised splines to model the
baseline hazard. STAR models offer a flexible parametrisation to the linear predictor, and a
particular advantage of the BayesX package in the context of the present article is its capability
for handling time-varying coefficients, which is not currently implemented in the spatsurv
package. The package BayesX also has facilities for handling large datasets through reduced
rank methodology (Kammann and Wand 2003; Hennerfeind, Brezger, and Fahrmeir 2006).
As Park and Liang (2012) state, while methods using a low-dimensional approximation to the
latent Gaussian process are indeed effective at reducing the computation time, the dimension
of the approximation can still be very high for large datasets, meaning these methods will not
work well. There are also other issues with low-rank methods including the question of how
to choose an appropriate rank, the specification of priors and the physical interpretation of
spatial dependence.

In contrast, the package spatsurv implements a new methodology for handling large spatial
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datasets that (i) delivers O(n) inference for spatial survival models, where n is the number
of observations and (ii) simultaneously solves the spatial prediction problem on a fine regular
grid at a cost of O(m logm), where m is the number of prediction points; both of which would
incur cubic complexity using the standard method, see Section 4 for an example and (Tay-
lor 2015a) for further details. The package spatsurv implements a combination of advanced
adaptive MCMC techniques that require little input from the user and Fourier methods for
the fast computation of matrix operations. To illustrate the massive reduction in compu-
tation time using the proposed method, we estimate that for the real example in Section 4
(6708 observations and 16384 prediction points), the standard O(n3) method would take ap-
proximately five months to analyse, while our method can be run in little over three hours;
moreover, the standard method would incur a massive additional cost in order to predict the
spatial process at unsampled locations, whereas with our method, these are a by-product of
the sampling scheme, and moreover the user has access to an exact sample from their joint
posterior density. Our method is full rank and has the advantage that spatial dependence can
be specified through a covariance function, which has interpretational benefits. Lastly, our
package is written fully in the R programming language, so from the point of view of exten-
sibility, users without specialist knowledge of another programming language will be able to
use and modify spatsurv code more easily; examples of this are in Appendices A and B. To
the authors’ knowledge, this article is the first published walk-through analysis of a spatial
survival dataset in the R programming language.

The article is organised as follows. In Section 2, we provide a general introduction to survival
models, spatial survival models, the form of the likelihood function and Bayesian statistical
inference. In Section 3 we give a tour of spatsurv functionality including the preliminaries:
formatting data, simulation of spatial survival data, plotting, specifying priors and running
the MCMC and also post-processing: MCMC diagnostics, plotting the posterior baseline haz-
ard/cumulative hazard, plotting the posterior covariance function, prediction and the com-
putation of Monte Carlo expectations over the joint posterior. The article concludes with a
discussion in Section 6, before detailing some of the more technical aspects in the appendices
including user-defined covariance functions in Appendix A and user-defined baseline hazard
functions in Appendix B.

2. Survival models

In this section we give a brief overview of the analysis of survival data. We will make frequent
reference to medical data, but the reader should note that with the appropriate translation of
scenarios and terminology, what is to follow is applicable in duration modelling or reliability
analysis etc.

Survival analysis (Cox and Oakes 1984; Klein and Moeschberger 2003; Klein, Ibrahim, Scheike,
van Houwelingen, and Van Houwelingen 2013) is concerned with the modelling and prediction
of time-to-event data: for each individual, we observe the time of an event. The defining
characteristic of survival data relates to the concept of censoring: we do not observe the
survival time of all individuals, rather we might only know that a certain individual was alive
the last time they were seen by a doctor, for example. The observed time might therefore
correspond to an event (e.g., death or disease progression), or it might correspond to the
last time the patient was recorded as alive. In general, the situation is a little more complex
than this example, which is known as right censoring : sometimes our data are left censored,
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meaning the the event happened prior to the patient’s first examination by the doctor; or
interval censored, where we know that the event happened somewhere in an interval of time,
between two visits to the doctor for example. In this article, we make the common assumption
that the censoring process occurs independently of the process governing the survival times.

Let T be a random variable, the occurrence time of an event of interest. The three (inter-
related) quantities of main interest in survival analysis are the density function, which gives
the probability density function of survival times, denoted f(t); the survival function, which
gives the probability that an event happened after some time t, S(t) = P(T > t); and the
hazard function, which is the instantaneous failure rate at some time t conditional on survival
up to that time,

h(t) = lim
∆t→0

{
P(t ≤ T ≤ t+ ∆t)

∆t× S(t)

}
.

Of additional interest is the cumulative hazard, H(t) =
∫ t

0 h(s)ds and lifetime distribution
function, F (t) = 1− S(t). The following relationships hold,

S(t) = 1−
∫ t

0
f(x)dx = exp{−H(t)} and h(t) =

f(t)

S(t)
. (1)

2.1. The spatial parametric proportional hazards model

In this section, we introduce the spatial parametric proportional hazards model for which
inference is implemented in the package spatsurv.

In this article, we will concentrate on the case where the hazard function takes the following
form:

h(ti;ψ, Yi) = exp{Xiβ + Yi}h0(ti;ω), (2)

where ti is the observed time for the ith individual, Xi is a vector of covariates for the ith
observation and the parameters of this model, ψ = (β, ω, η), correspond respectively to the
covariate effects, the parameters of the baseline hazard and the parameters of the covariance
function of a spatially continuous stationary latent Gaussian field Y , of which Yi is the value
of the field at the location of observation i. We will parameterise the latent field Y in such a
way that E[exp(Y )] = 1. In the case of a Gaussian field whose marginal variance is σ2, this is
easily achieved by setting the mean of Y to be −σ2/2. We do this partly to avoid identifiability
issues, but also to give a direct and useful interpretation for exp(Y ), as a multiplicative scaling
on the hazard function.

Examples of a suitable spatial covariance function might be the Matérn or Exponential mod-
els. The latter specifies the covariance between any two objects of distance d apart to be
σ2 exp{−d/φ}, where σ2 is the marginal variance of the field and φ is the ‘spatial decay’
parameter (the larger φ, the longer the range of spatial dependence there is in the field).

We now give two examples of baseline hazard functions derived from parametric survival
models. The baseline hazard function derived from the exponential survival model has form,

h0(t; θ) = θ, θ > 0

H0(t; θ) = θt.
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The parameter ω = θ is called the rate parameter. The baseline hazard function derived from
the Weibull survival model has form,

h0(t;α, λ) = αλtα−1, α, λ > 0

H0(t;α, λ) = λtα;

this is the parametrisation used by the package spatsurv i.e., ω = (α, λ). Note that the
standard R functions dweibull, rweibull etc., use a different parametrisation.

Let ξi = (ψ, Yi) = (β, ω, η, Yi). The density function, hazard function, survival function and
cumulative hazard function all depend on the parameters ξ, hence we use the notation f(t; ξi),
h(t; ξi), S(t; ξi) and H(t; ξi) to represent these functions respectively. The density function
for a parametric PH spatial survival model can be derived using the right-hand expression in
Equation 1 and expanding definitions:

f(t; ξi) = h(t; ξi)S(t; ξi),

= h(t; ξi) exp{−H(t; ξi)},

= exp{Xiβ + Yi}h0(t;ω) exp

{
− exp{Xiβ + Yi}

∫ t

0
h0(s;ω)ds

}
,

= exp{Xiβ + Yi}h0(t;ω) exp {− exp{Xiβ + Yi}H0(t;ω)} ; (3)

this is the density function for the ith individual. It is straightforward to see that,

F (t; ξi) = 1− exp {− exp{Xiβ + Yi}H0(t;ω)} . (4)

2.2. The likelihood for a survival model

Suppose we have n observations and again let ti be the data from the ith individual, repre-

sented as a vector, ti = (t
(1)
i , t

(2)
i ), in the case of an interval censored observation. We use

likelihood-based Bayesian inference to describe what information the data provide about the
parameters, ξ = {ψ, Y1, . . . , Yn}, and functions of these parameters. Conditional on Y1, . . . , Yn,
we will assume that observations are independent. The likelihood in this case splits into con-
tributing components from left, right and interval censored data as well as uncensored data:

π(data|ξ) =
∏

i uncensored

f(ti; ξi)
∏

i left censored

F (ti; ξi)
∏

i right censored

S(ti; ξi)
∏

i interval censored

[
F (t

(2)
i ; ξi)− F (t

(1)
i ; ξi)

]
.

(5)

2.3. Inference

The package spatsurv uses a Markov chain Monte Carlo algorithm to perform Bayesian in-
ference for the parametric proportional hazards model. The idea is to use MCMC to draw
samples from the posterior:

π(ξ|data) ∝ π(data|ξ)π(ξ),

whence we can perform Monte-Carlo inference for Eπ(ξ|data)[g(ξ)], for functions g for which
these expectations exist. MCMC provides an extremely flexible and intuitive basis on which



6 spatsurv R package

to perform inference, allowing us to easily generate plots showing quantiles of quantities (such
as the hazard, baseline hazard, survival function) of interest.

The package spatsurv implements an advanced adaptive MCMC algorithm fully described in
Taylor (2015a); an abbreviated description can be found in Appendix C. It remains for the
user to specify their prior distributions on the parameters ψ: the MCMC algorithm works
with a transformed version of Y , for which there already exists a sensible prior, again see
Taylor (2015a) for details.

3. Introducing the package spatsurv

In this section we give a tour of the main functions in the package spatsurv.

3.1. Formatting data

In encoding survival data, the package spatsurv makes use of the Surv class of objects from
the survival package (Therneau 2014; Terry M. Therneau and Patricia M. Grambsch 2000).
Specifically, the type of data must be "right", "left" or "interval", though negative
survival times are not allowed. In a Surv object of type="interval", we adopt the convention
that times in the first column of the object are the event or censoring times for uncensored,
right-censored or left-censored observations: the second column is only used for storing the
right endpoints of interval-censored observations. An example is given below.

3.2. Simulating data

We first simulate some data from a spatial parametric PH model using MCMC. Note that
simulating spatial survival data using MCMC is much faster than analysing a set of spatial
survival data; the simulations here took around a minute on a desktop PC.

We begin by creating a number of objects in which to store the various model parameters.

R> library("spatsurv")

R> set.seed(11)

R> n <- 300

R> DIST <- weibullHaz()

R> OMEGA <- c(0.5, 2)

R> COVMODEL <- ExponentialCovFct()

R> COVPARS <- c(0.7, 0.1)

In the above, DIST is the distribution function on which the baseline hazard is based, in this
case a Weibull model with parameters OMEGA. The object COVMODEL is the spatial covariance
function with parameters COVPARS.

An alternative way of choosing a spatial covariance function is given through the covmodel

function, which calls CovarianceFct from the package RandomFields (Schlather, Malinowski,
Oesting, Boecker, Strokorb, Engelke, Martini, Menck, Gross, Burmeister, Manitz, Singleton,
Pfaff, and R Core Team 2014), e.g., a Matérn covariance function with roughness parameter
1, can be obtained with covmodel("matern", pars = 1) in place of ExponentialCovFct().
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Note that for covariance functions defined using the function covmodel, any additional pa-
rameters (in this case the roughness parameter) are not estimated, rather they are fixed (in
this case at 1).

The call weibullHaz() returns a list inheriting class "basehazardspec" which provides func-
tions to evaluate the baseline hazard and its derivatives. Details of the built-in baseline hazard
models are given in Table 1

Code Name h(t) H(t) Ranges

exponentialHaz Exponential θ θt θ > 0

weibullHaz Weibull αλtα−1 λtα α, λ > 0

gompertzHaz Gompertz α exp{βt} α
β exp{βt} − α

β α, β > 0

makehamHaz
Gompertz-
Makeham

α exp{βt}+ µ α
β exp{βt} − α

β + µt α, β, µ > 0

tpowHaz
Powers of t,
given α1:d

∑d
i=1 λiαit

αi−1
∑d

i=1 λit
αi λ1:d > 0

BsplineHaz B-spline
∑p

i=1 αiB
d
i (t)

∑p
i=1 αi

∫ t
0 B

d
i (s)ds α1:p > 0

Table 1: Showing the available built-in hazard models, their parameters and functional form.
In the above, Bd

i is the ith B-spline basis function of degree d.

The package spatsurv also provides an extensible base on which to build new models for the
baseline hazard and spatial covariance functions, see Appendix A and Appendix B for details
on how to do this.

The function simsurv is used for simulating spatial parametric proportional hazards data.
This function requires the user to supply a design matrix, X, together with a column vector of
covariate effects, beta; in conjunction with the chosen hazard and covariance functions and
their parameters as defined above. These inputs enable us to construct the hazard, cumulative
hazard, density function etc., and hence we can simulate a set of survival times from the PH
model again using MCMC. By default, the spatial location of the observations will be the
unit square; this behaviour can be changed by specifying the coords argument explicitly. The
dataset we generate below corresponds to 300 individuals between the age of 5 and 50; the
probability of each individual being male (X[, "sex"] == 1) is 0.5 and the probability that
the individual has cancer (X[, "cancer"] == 1) is 1/5.

R> dat <- simsurv(X=cbind(age = runif(n, 5, 50),
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+ sex = rbinom(n, 1, 0.5),

+ cancer = rbinom(n, 1, 0.2)),

+ beta = c(0.0296, 0.0261, 0.035),

+ dist = DIST,

+ omega = OMEGA,

+ cov.parameters = COVPARS,

+ cov.model = COVMODEL,

+ mcmc.control = mcmcpars(nits = 110000,

+ burn = 10000,

+ thin = 100))

In the call above, the MCMC chain is run for 110000 iterations with a 10000 iteration burnin,
retaining every 100th sample, this is set using the mcmc.control argument. The function
simsurv uses an exponentially-distributed independence proposal kernel to produce samples
from the target density: the density function for a spatial parametric PH model. The accep-
tance probability for this scheme is printed at the end of the run, values close to 1 are optimal.
Note that at this stage, there is no censoring. Since the candidate survival times have been
generated using MCMC, before proceeding, the user should check that the chains have con-
verged and are mixing sufficiently well. The chains are stored in dat$T. We recommend using
traceplots and the lag 1 autocorrelation to check for mixing and convergence:

R> plot(dat$T[, 178], type = "s")

R> plot(apply(dat$T, 2, function(x){acf(x, plot = FALSE)$acf[2]}),

+ xlab = "Subject Index", ylab = "Lag 1 autocorrelation")

The first line gives an example trace plot for the 178th individual and the second produces a
plot of the lag-1 autocorrelation for each chain; these plots are shown in Figure 1. Strictly the
user should check mixing and convergence in all chains, but for large n, a practical solution
would be to check 10-20 random traceplots and then use the plot of lag-1 autocorrelations
to justify the sample from the posterior being reasonable; in the latter, if most of the points
plotted are in the range -0.05 to 0.05, then this is a very good sample.

Having checked for good mixing and convergence, we can proceed to extract the simulated sur-
vival times (data$survtimes), generate some candidate right-censoring times independently
of the survival times, censtimes, and finally using the function gencens, produce an object
of class Surv that can be used in the analysis:

R> survtimes <- dat$survtimes

R> censtimes <- rexp(n, 1 / mean(survtimes))

R> survdat <- gencens(survtimes, censtimes)

By default, the function gencens simply compares each survival time with the candidate
censoring time and declares the observation as censored if the censoring time is less than the
simulated survival time.

Lastly, we construct an appropriate object to store the spatial survival data: an sp object
(Pebesma and Bivand 2005; Bivand, Pebesma, and Gomez-Rubio 2013) of class SpatialPointsDataFrame.
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Figure 1: Left: trace plot of simulated survival times for the 178th individual. Right: lag-
1 autocorrelation for each of the 300 chains. These plots are used to check mixing and
convergence of the Markov chains.

R> library("sp")

R> coords <- dat$coords

R> X <- as.data.frame(dat$X)

R> spatdat <- SpatialPointsDataFrame(coords, data = as.data.frame(X))

R> spatdat$ss <- survdat

This is the format the main inferential algorithm, survspat, will expect data to arrive in.

3.3. Plotting data

The package spatsurv includes a basic visualisation tool for spatially referenced survival data.

R> plotsurv(spp = spatdat, ss = spatdat$ss, maxcex = 3)

The output is shown in Figure 2. The parameter maxcex controls how large the plotted points
are, acting as a global scale for both the uncensored and censored times, since the size of each
dot or plus is proportional to the observed time. The user can control the plotting symbols
and colours for the events and the censored observations.

3.4. Specifying priors

Before we can run the main inferential algorithm in the function survspat, we must first
define prior density functions for the parameters in the model: β, ω and η. As mentioned
above, the user does not set a prior for Y ; this is because we do not work with Y directly,

rather with Γ, where Y = −σ2/2 + Σ
1/2
σ,φΓ and we assume a priori that Γ ∼ N(0,1), where 1

is the identity matrix and Σ
1/2
σ,φ is the Cholesky decomposition of the matrix of the covariance

function evaluated at each of the coordinates of the observations.
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Figure 2: The simulated spatial survival data. Red dots are uncensored events and pluses
are censored events. The size of the dot or plus is proportional to the observed time.

We declare priors for β, ω and η as follows:

R> betaprior <- betapriorGauss(mean = 0, sd = 10)

R> omegaprior <- omegapriorGauss(mean = 0, sd = 10)

R> etaprior <- etapriorGauss(mean = c(0, -2), sd = 0.5)

Each of the functions betapriorGauss, omegapriorGauss and etapriorGauss constructs an
independent Gaussian prior for the variable in question (see below). These functions accept
vectors or scalars for setting the mean and sd parameters as they would be processed by the
function dnorm. In the first line, the code betapriorGauss(mean = 0, sd = 10) means that
each β parameter will have a mean of zero and standard deviation of 10 independently.

Note that the priors for ω and for η are in fact priors for the log of these parameters. This is
because σ, φ, α and λ are all positive, whereas our MCMC algorithm needs to operate on the
whole of the real line. As to which parameters are being sampled on the log (or indeed other)
scales, for ω and η, this depends respectively on the choice of baseline hazard distribution and
covariance function. The transformation used is specified in the definitions of each of these
functions, see Appendix A and Appendix B for further details; in brief all of the parameters
in Table 1 are positive and so all of these are in practice sampled on the log-scale.

Note also that although within the MCMC algorithm, ω, η and Y are sampled on a trans-
formed scale, for reporting back to the user at the end of the run, these are back-transformed
for ease of interpretation.

Before proceeding to analyse the data, we first wrap the priors in an object of class mcmcPriors,
constructed as follows,

R> priors <- mcmcPriors( betaprior = betaprior,

+ omegaprior = omegaprior,
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+ etaprior = etaprior,

+ call = indepGaussianprior,

+ derivative = derivindepGaussianprior)

this can now be passed to the main inferential function, survspat.

The function mcmcPriors defines independent priors for β, ω and η and the package spat-
surv only provides functionality for the built-in Gaussian priors discussed above. How-
ever, the choice of prior is extensible by the user by creating functions similar to the func-
tions betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior and lastly,
derivindepGaussianprior: the first three of which provide a mechanism for storing and
retrieving the parameters of the priors; the fourth, a function for evaluating the log of the
prior for a given set of parameter values; and the fifth, a function for evaluating the first and
second derivatives of the log of the prior.

3.5. Running the MCMC algorithm

Having chosen a distribution on which the hazard function is to be based and specified our
priors, we are in a position to be able to perform Bayesian inference for the model defined by
Equation 5. All that remains is to choose the covariates to be included; our model here is ss
~ age + sex + cancer, note that unlike lm this formula will not include an intercept term.
The number of iterations, burnin and thinning parameters are set using the mcmc.control

argument.

R> mod <- survspat(formula = ss ~ age + sex + cancer,

+ data = spatdat,

+ dist = DIST,

+ cov.model = COVMODEL,

+ mcmc.control = mcmcpars(nits = 500000,

+ burn = 10000,

+ thin = 490),

+ priors = priors)

This produces an object of class mcmcspatsurv, for which there exist various methods, dis-
cussed below. Note that this may take several hours to run; the progress bar indicates how
far into the burnin or run stage the algorithm is currently at.

3.6. MCMC diagnostics

Before proceeding to interpret any of the model outputs, we must first look for evidence of
satisfactory convergence and mixing in the MCMC chain. The chains for β, ω, η and Y are
stored in mod$betasamp, mod$omegasamp, mod$etasamp and mod$Ysamp respectively

For the parameters β, ω and η, the function mcmcplot from the package mcmcplots (Curtis
2012) can be used to check trace and autocorrelation plots of the chain:

R> require("mcmcplots")

R> mcmcplot(cbind(mod$betasamp, mod$omegasamp, mod$etasamp))
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This opens up a web browser and displays the diagnostic plots in an easily navigable way,
see Figure 3. For parameters sampled on the log scale, it is sometimes preferable to look at
plots of the log of that parameter, for example by using mcmcplot(log(mod$omegasamp)).
Examining the resulting autocorrelation plots shows that the algorithm was producing near
independent samples from the posterior with the exception of the parameters σ and φ; and
these latter two parameters still mixed reasonably well, with the autocorrelation dropping to
around zero around the 8th and 10th lag respectively.

Figure 3: Showing output from mcmcplot function from the package mcmcplots.

In a similar way to how we conducted diagnostic checks for the simulated data in Section
3.2, we can also look at a plot of the lag-1 autocorrelations for each of the Y s. A further
diagnostic check is given by examining a plot of the log-posterior over the saved iterations
in the chain, see the second line of code below. Note that this latter plot includes the very
first iteration of the chain (so is of length the number of stored iterations plus 1), to provide
evidence that the chain has left the transient phase and has reached stationarity.

R> frailtylag1(mod)

R> plot(mod$tarrec, ylab = "log-Posterior", type = "s")

See Figure 4 for the output of these commands. The left hand plot shows that the lag-1
autocorrelation in the Y s is very low and the right hand plot shows that the MCMC algorithm
has found a mode and is exploring it – in this case, the initial value of the log-target appears
to be close to the mode of the posterior, more commonly there would be a jump from the
initial value, the chain settling at some other value. What is important with this diagnostic
plot is that there is no long-term trend evident, which is the case here.

3.7. Post-processing

Now that we have provided evidence that the MCMC chain has satisfactorily converged, we
can proceed to producing posterior summaries of the quantities of interest. The package
spatsurv has a print method for objects of class mcmcspatsurv, such as the object mod:
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Figure 4: Left: lag-1 autocorrelations in the Y chains. Right: plot of the log-posterior – at
this scale, the priors for β and ω appear as flat lines, this is because they uninformative.

R> mod

Fixed Effects:

50% 2.5% 97.5%

age 0.0330 0.0214 0.0456

sex 0.0314 -0.2572 0.3263

cancer -0.0974 -0.4259 0.2470

Baseline Hazard Parameters:

50% 2.5% 97.5%

alpha 0.532 0.472 0.60

lambda 2.003 1.110 3.76

Spatial Covariance Parameters:

50% 2.5% 97.5%

sigma 0.661 0.3990 0.992

phi 0.166 0.0734 0.388

Deviance Information Criterion: -795.6855

MCMC Details:

Number of Iterations 500000

Burnin length 10000

Thining 490

Running Time:

Time difference of 1.459569 hours
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there are also methods for the generic functions summary, quantile and vcov. Note that for
model selection purposes, the DIC (Spiegelhalter, Best, Carlin, and Van Der Linde 2002) is
printed as part of this output and is available as mod$DIC.

Plots of the prior and posterior

For inferential purposes, it is of interest to qualify the influence of the choice of prior on the
resulting parameter estimates. One way of achieving this is to overlay plots of the prior and
posterior densities:

R> priorposterior(mod)

the result is shown in Figure 5. These plots show the prior density function on its original
scale (in this case, on the log-scale for ω and η) as a red line with a histogram of the posterior
samples overlaid. For each parameter, we would hope to see a big difference between the prior
and posterior, which would indicate that the data are informative about that parameter; in
this case, it can be seen that the parameters β and ω and σ are well identified by the data
whereas, as is typical in geostatistical inference, the spatial decay parameter, φ, is less well
identified: see for example Zhang (2004).
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Figure 5: Plot showing the prior (red line) and posterior (histogram) for each parameter.

Posterior baseline hazard and spatial covariance function

We can plot the posterior baseline hazard, h0, and the posterior spatial covariance function
using the following commands:

R> baselinehazard(mod)

R> posteriorcov(mod)



Journal of Statistical Software 15

this produces the output in Figure 6. Note that the posterior cumulative hazard function can
be obtained using baselinehazard(mod,cumulative=TRUE). To plot the posterior correlation
function, type posteriorcov(mod,corr=TRUE).
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Figure 6: Left: plot showing the posterior median baseline hazard and 95% credible interval.
Right: plot showing the posterior median of the spatial covariance function and 95% credible
interval.

Prediction

The package spatsurv enables the user to extract and examine the hazard, survival and density
curves for each individual in the analysis. For example, for individual number 260, we would
use the following:

R> predict(mod, type = "hazard", indx = 260)

R> predict(mod, type = "survival", indx = 260)

R> predict(mod, type = "density", indx = 260)

The result is shown in Figure 7.

The other useful predict type options include "densityquantile", which returns the Monte
Carlo mean quantiles of the density function for each individual.

R> dq <- predict(mod, type = "densityquantile")

Note that for some distributions, the quantiles of the density function are not available in an
analytically convenient form.

Monte Carlo expectations

Lastly, it is of interest to be able to compute Monte Carlo expectations over the posterior:
the package spatsurv provides a function MCE to facilitate this. Such expectations take the
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Figure 7: Top left: plot showing the posterior median hazard function and 95% credible
interval for individual 260. Top right: plot showing the posterior median survival function
and 95% credible interval for individual 260. Bottom: plot showing the posterior median
density function and 95% credible interval for individual 260.
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general form:

Eπ(β,ω,η,Y |data)[g(β, ω, η, Yi)] =
1

# iterations

#iterations∑
j=1

g(β(i), ω(i), η(i), Y
(j)
i ),

where for example β(i) is the ith sample of β drawn from the chain. Note the dependency on
Yi in the function g here. The function MCE takes as input the mcmcspatsurv object and also
a function which has arguments beta, omega, eta and Y. An example of such a function is
provided by the returned value of the hazardexceedance function, detailed below.

Writing the hazard function as,

h(ti;ψ, Yi) = exp{Xiβ} exp{Yi}h0(ti;ω),

it can be seen that the frailty for individual i is composed of what we can explain by using
covariates, exp{Xiβ}, and what we cannot explain, exp{Yi}, both of which act multiplicatively
on the baseline hazard. It is often of scientific interest to quantify the unexplained variation,
taking into account the uncertainty in estimation. One way of achieving this is to compute
posterior exceedance probabilities, that is P[exp(Y ) > c] for some threshold c.

R> hazardexceedance <- function(threshold, direction = "upper"){

+ fun <- function(beta, omega, eta, Y){

+ EY <- exp(Y)

+ d <- length(Y)

+ len <- length(threshold)

+ A <- matrix(NA, len, d)

+

+ for(i in 1:len){

+ if(direction == "upper"){

+ A[i, ] <- as.numeric(EY > threshold[i])

+ }

+ else{

+ A[i, ] <- as.numeric(EY < threshold[i])

+ }

+ }

+ return(A)

+ }

+ attr(fun, "threshold") <- threshold

+ attr(fun, "direction") <- direction

+ return(fun)

+ }

The hazardexceedance function, shown above returns an R function taking the appropriate
arguments, which can be passed to the MCE function, which will compute the Monte Carlo
expectation required:

R> func <- hazardexceedance(c(1.5, 2, 3))

R> mchaz <- MCE(mod, func)

R> mchaz[, 1:10]
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.028 0.030 0.016 0.197 0.018 0 0.025 0.363 0.281 0.099

[2,] 0.005 0.004 0.003 0.090 0.002 0 0.007 0.171 0.131 0.033

[3,] 0.000 0.000 0.000 0.018 0.000 0 0.000 0.029 0.042 0.005

For example, for the 3rd individual P[exp(Y ) > 1.5] = 0.016, and for the 9th individual
P[exp(Y ) > 3] = 0.042. It may be of scientific interest to further investigate individuals for
which P[exp(Y ) > 1.5] ≥ 0.8, for instance.

4. A large dataset example: fire service response times

The purpose of the previous example was to illustrate basic functionality of the spatsurv
package. In this section we present an analysis of a large dataset: the London Fire Brigade
(LFB) response time data, explored more fully in Taylor (2015b). The data analysed in
this section is available from the London Datastore (London Fire and Emergency Planning
Authority 2015). Here we present an analysis of the data from 2009. We restrict our attention
to fires occurring in dwellings, as most deaths occur in this type of property. Our response
variable is the time for the first fire engine to arrive on the scene of a fire at a dwelling and we
exclude observations where this response time was not recorded. There is no censoring in the
resulting dataset. This is a large dataset containing 6708 observations and a spatial analysis
using the model and methods of the previous section would take prohibitively long.

The package spatsurv includes methods for computationally efficient inference with large
datasets, described in detail in Taylor (2015a). Our model is a slight modification of Equa-
tion 2 with respect to the frailties Yi. The package spatsurv implements a shared frailty model
on an auxiliary grid of cells on which we wish to predict the response times. The model for
the hazard takes the form:

h(ti;ψ, Y ) = h0(ti;ω) exp{Xiβ + YG[i]}, (6)

where YG[i] denotes the value of the process Y in the cell containing observation i. The
approximation of the spatially continuous process Y is via a piecewise constant process on
a fine grid. The main reason for using this model is computational efficiency: the model in
Equation 2 incurs O(n3) computational cost, where n is the number of observations, whereas
the model in Equation 6 is O(n). Moreover since the grid is regular then, provided we assume
that Y is a stationary Gaussian process, we can use the technique of circulant embedding to
optimise the speed of matrix computations: delivering matrix inversion at a cost of O(m logm)
where m is the number of prediction grid cells. The main advantages of this model are that
they allow us to use standard covariance models (such as the exponential or Matérn models)
for the spatial dependence between points and spatial prediction of the process Y is a by-
product of the Monte Carlo sampling procedure.

We begin by reading in the data, which is stored as a SpatialPointsDataFrame.

R> library("spatsurv")

R> library("spatstat")

R> library("sp")

R> library("survival")
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R> library("rgeos")

R> library("rgdal")

R> library("leaflet")

R> library("fields")

R> library("raster")

R> library("lubridate")

R> data("fstimes")

Our model will include harmonic regression terms to describe the response time as a function
of the time of day. Here we set up the required sine and cosine terms in our data frame:

R> for(i in 1:4){

R> fstimes@data[paste("s", i, sep="")] <-

+ sin(i * 2 * pi * fstimes$timenumeric / 24)

R> fstimes@data[paste("c", i, sep="")] <-

+ cos(i * 2 * pi * fstimes$timenumeric / 24)

R> }

We might expect the response time to a call to the fire service to depend on the proximity of
the nearest fire station to the location of the fire. However, it is possible the engines from the
nearest station are already engaged in responding to another call. In this analysis we therefore
use (scaled) fire station intensity as measure of proximity of fire stations to fire locations.

R> data("fs")

R> fs <- fs[fs$Description=="Fire Station", ]

R> fscoords <- cbind(fs$Easting,fs$Northing)

R> chull <- convexhull.xy(rbind(coordinates(fstimes), fscoords))

R> win <- expandwinPerfect(chull, TRUE, 1.2)

R> fsppp <- ppp(x=fscoords[, 1], fscoords[, 2], window=win)

R> fsintens <- density.ppp(fsppp)

R> fsintens <- raster(fsintens)

R> proj4string(fsintens) <- CRS("+init=epsg:27700")

R> fstimes$fsintens <- raster::extract(fsintens, fstimes) * 100000000

We next set up the model and priors:

R> FORM <- S ~ fsintens + s1 + c1 + s2 + c2 + s3 + c3 + s4 + c4

R> betaprior <- betapriorGauss(mean = 0, sd = 100)

R> omegaprior <- omegapriorGauss(mean = 0, sd = 10)

R> etaprior <- etapriorGauss(mean = log(c(1, 1000)), sd = 0.5)

R> priors <- mcmcPriors( betaprior = betaprior,

+ omegaprior = omegaprior,

+ etaprior = etaprior,

+ call = indepGaussianprior,

+ derivative = derivindepGaussianprior)
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Lastly, we call the MCMC algorithm to produce samples from the posterior. Here we use
the BsplineHaz function to model the baseline hazard with a cubic basis spline and the
inference.control function to specify gridded=TRUE which selects the model in Equation 6;
the cellwidth option is used to control the height and width of the square grid cells. The
package spatsurv will by default choose the optimum number of computational cells for a
given cell width subject to the restriction that the dimension of the grid is a power of 2 in
each direction. Smaller choices of the cellwidth parameter obviously lead to finer grids and
hence a larger computation time, but exactly how much time an MCMC sampler will take to
run will depend on the power of the PC in question. We anticipate that to a great extent, the
cell width employed in practice will depend on the available computational resource (seeking
to make the grid as fine as possible given time constraints). There is an optimum cell width,
which minimises the size of the computational grid and hence the computational wastage; the
function getOptCellwidth computes this optimum for a given initial starting value and the
function showGrid can be used to visualise the computational grid for a given cell width. The
optimal cell width computed with getOptCellwidth can be passed to the function survspat;
if entering manually, this optimal cell width should be rounded upwards.

R> mod <- survspat( formula = FORM,

+ data = fstimes,

+ dist = BsplineHaz(fstimes$S[, 1]),

+ cov.model = ExponentialCovFct(),

+ mcmc.control = mcmcpars(nits = 500000,

+ burn = 10000,

+ thin = 490),

+ priors = priors,

+ control = inference.control(gridded = TRUE, cellwidth = 1000))

Computation time for this run, performed on a 3.40GHz Intel®Core�i7-4770 desktop com-
puter, was 3.1 hours; the O(n3) method of the previous section would have taken around five
months to run for this dataset and model. Before proceeding to summarise the results, we
checked for convergence using traceplots and a plot of the log-posterior. Having established
convergence and satisfactory mixing, we can then summarise the results from our model, we
discuss here the production of two plots that are of interest in this example.

We first show how to produce a plot of the effect of time of day on the relative risk. Our
model includes harmonic regression terms, so we first construct a vector of times of length
100, tseq, at which we want to compute the predicted relative risk. The next step is to
create a function, getpred, to reproduce the harmonic functional at these time points for a
given vector of parameters, representing the sampled harmonic coefficients. Finally, applying
this function to the appropriate subset of retained β samples yields a matrix, timetrend, of
dimension 100 × 1000 from which we can extract quantiles of the functionals evaluated at
each time point and plot them. The result is Figure 8. Because a longer ‘survival time’ in
our model is regarded as bad (the engine did not arrive quickly), the intervals of time where
the confidence band for the relative risk is below 1 are where the delay in response time is
significantly lower than average.

R> tseq <- seq(0, 24, length.out = 100)

R> getpred <- function(par){
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+ mat <- rbind( sin(2 * pi * tseq / 24),

+ cos(2 * pi * tseq / 24),

+ sin(2 * pi * tseq * 2 / 24),

+ cos(2 * pi * tseq * 2 / 24),

+ sin(2 * pi * tseq * 3 / 24),

+ cos(2 * pi * tseq * 3 / 24),

+ sin(2 * pi * tseq * 4 / 24),

+ cos(2 * pi * tseq * 4 / 24))

+ return(exp(colSums(par*mat)))

R> }

R> timetrend <- apply(mod$betasamp[, -1], 1, getpred)

R> qts <- t(apply(timetrend, 1, quantile, probs=c(0.025, 0.5, 0.975)))

R> matplot(tseq, qts, type="l", col = c("purple", "black", "blue"),

+ lty = c("dashed", "solid", "dashed"), xlab = "Time of Day",

+ ylab = "Relative Risk")

R> legend("topleft", lty = c("dashed", "solid", "dashed"),

+ col = rev(c("purple", "black", "blue")),

+ legend = rev(c(0.025, 0.5, 0.975)))
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Figure 8: Plot illustrating the functional form of the effect of time of day on the relative risk.
Intervals of time where the confidence interval is less than 1 are the times of where engines
take significantly longer to respond to calls.

The second plot of interest is a plot of the relative risk over space, computed using the function
hazardexceedance with option direction = "lower" to compute the probability that the
relative risk is below the thresholds specified:

R> func <- hazardexceedance(c(0.9, 0.8, 0.7), direction = "lower")

R> mchaz <- MCE(mod, func)
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We can plot these relative risks on a map by creating a SpatialPolygonsDataFrame object
corresponding to the inferential grid with the exceedance probabilities stored as an entry
in the data frame, exceed. Alternatively, the results can be stored in a raster brick or a
SpatialPixelsDataFrame object, depending on what type of grid is returned by the func-
tion getgrid. Finally, we can plot the exceedance probabilities using the wrapper function,
spplot1, to features from the leaflet package (Cheng and Xie 2015), see Figure 9. Areas of
high probability in this plot are where the relative risk of an engine arriving on the scene of
a fire, adjusted for time of day and proximity of fire stations, is such that there may be cause
for concern about the provision of services.

R> gr <- getGrid(mod)

R> gr$exceed <- mchaz[1, ]

R> m <- spplot1(gr, "exceed", useLeaflet = TRUE,

+ palette=rev(brewer.pal(5,"RdBu")))

R> m

Figure 9: Zoomable leaflet plot of P[exp(Y ) < 0.9] i.e., the posterior probability that the
covariate-adjusted relative risk of an engine arriving on the scene of a fire is less than 0.9.

5. Polygonal data

The package spatsurv also handles survival data where the locations of individuals are only
known to the regional level, such as the SEER cancer data (Howlader et al. 2013). Note
that it is not possible to redistribute the SEER data, so we have not included an example
analysis in the present article, though this would largely proceed as in the examples above
but with the call to survspat as detailed below. In this chunk of code, FORM is a model
formula; cancerdata is a data.frame containing the covariate and survival data; DIST is
the assumed distribution for the baseline hazard function; COVMODEL is the spatial covariance
model; priors are the proirs, as set up in the first example above.
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R> mod <- survspat(formula = FORM,

+ data = cancerdata,

+ dist = DIST,

+ cov.model = COVMODEL,

+ mcmc.control = mcmcpars(nits = 500000,

+ burn = 10000,

+ thin = 490),

+ priors = priors,

+ shape = stateshp,

+ ids = list(shpid = "FIPS", dataid = "STCOUNTY"))

The penultimate argument shape is assigned an object stateshp; which can be either a
spatialPolygonsDataFrame or a spatialPointsDataFrame. In either case, as part of the
MCMC algorithm, the command coordinates(shape) will be called in order to compute
inter-region (or more technically, inter-point) distances. These inter-region distances are later
passed to the covariance function, so that in the case of a polygonal shape, the covariance
between regions is a function of the distance between the centroids of those regions. The
reason we have the option of accepting a SpatialPointsDataFrame object is so that it is
possible to use weighted centroids of the polygons to define the distance between two regions;
an example would be population weighted centroids. The package spatsurv does not include
any functionality for computing weighted centroids, but if they are available they may thus
be passed to the inferential algorithm, survspat.

The argument ids tells the program how to match the case data, data, to the shape argument;
it is assumed that there is a variable in each of these containing the names (or regional
identifiers) of the polygons of interest. This argument is a list object with two entries: shpid
is the name of the variable in the shape object with the polygon (or point) names; and dataid

is the name of the variable in the object cancerdata containing the polygon (or point) names
at the individual level. In the case of the SEER cancer data (not presented here), "FIPS"
would be the Federal Information Processing Standard code assigned to polygonal regions
labelling counties within states and "STCOUNTY" is the corresponding variable in the SEER
cancer data at the individual level.

6. Discussion

In this article, we have introduced a new R package, spatsurv, for the analysis of spatially
referenced survival data using parametric proportional hazards models. Our model for the
spatially-correlated frailties has assumed log-Gaussian form and the package is extensible in
the sense that it allows the user to construct their own baseline hazard and spatial covariance
functions. The package functions are able to cope with right, left or interval censored survival
data. For reference purposes, we have provided a statistical introduction to spatial survival
models and have demonstrated how to simulate and analyse data using advanced Markov
chain Monte Carlo methods. Our package provides simple functions for assessing model
convergence and post-processing tools for visualising key quantities of interest. We have also
introduced a model and computational method for handling large spatial survival datasets,
and demonstrate the performance of this method on a real-life example.

Developing reliable and efficient MCMC code for Bayesian inference with spatial survival
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models is a challenging task. We hope that the spatsurv package will prove useful to those
in the statistical/epidemiological and other communities who seek an off-the-shelf MCMC
algorithm they can straightforwardly apply to their data.
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A. User-defined covariance functions

In order to define a new covariance function for use with spatsurv, the user must provide
a list inheriting class c("covmodel","fromUserFunction"). An example of how to create
such a list is shown in the function ExponentialCovFct below. The essential elements of this
list are: npar, an integer specifying the number of parameters for the model (note typically
this should be a small number e.g., 2 or 3); parnames, names for the parameters – note that
at least one of the parameters must be named sigma and have the interpretation that σ2 is
the marginal variance of the latent field; itrans, a transformation applied to the working
parameters returning a vector the same length as the parameters; trans, the inverse of the
$itrans function, this is the scale on which the MCMC algorithm performs sampling (in
this case, the log-scale) and again this function must return a vector the same length as the
parameters; and eval, a function accepting a vector input of distances, u, and parameters,
pars, which evaluates the covariance function for each element of u.

R> ExponentialCovFct <- function(){

+ ans <- list()

+ ans$npar <- 2

+ ans$parnames <- c("sigma", "phi")

+ ans$itrans <- exp

+ ans$trans <- log

+ ans$eval <- function(u, pars){

+ ans<- pars[1] ^ 2 * exp(-u / pars[2])

+ return(ans)

+ }

http://arxiv.org/abs/1503.07709
http://www.jstatsoft.org/v52/i04/
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=spBayesSurv
http://CRAN.R-project.org/package=spBayesSurv


Journal of Statistical Software 27

+ class(ans) <- c("covmodel","fromUserFunction")

+ return(ans)

+ }

B. User-defined hazard functions

In this section, we give details on how to define new baseline hazard functions to be used with
the package spatsurv. This involves defining a function that returns a list whose elements
are themselves functions; the returned list must inherit the class "basehazardspec". The
package spatsurv calls these functions at various points during an MCMC run, or while post-
processing. The example code below is from the weibullHaz function, this particular function
has no arguments. We now discuss each of these functions individually.

The distinfo function is used to provide basic distribution specific information to other
spatsurv functions. The user is required to provide the following information in the returned
list: npars, the number of parameters in this distribution; parnames, the names of the pa-
rameters; trans, the transformation scale on which the priors will be provided; itrans, the
inverse transformation function that will be applied to the parameters before the hazard,
and other functions are evaluated; jacobian, the derivative of the inverse transformation
function with respect to each of the parameters; and hessian, the second derivatives of the
inverse transformation function with respect to each of the parameters – note that currently
the package spatsurv only allows the use of functions where the parameters are transformed
independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution
of interest. It returns a function that accepts as input a vector of times, t and returns a
vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function
with respect to the parameters, this typically returns a vector. It returns a function that
accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function.
It returns a function that accepts as input a vector of times, t and returns a list of hessian
matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for
the distribution of interest. It returns a function that accepts as input a vector of times, t
and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline
hazard function with respect to the parameters, this typically returns a vector. It returns a
function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline
hazard function. It returns a function that accepts as input a vector of times, t and returns
a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is not
required for running the MCMC, merely for use in post-processing with the predict function
where type="densityquantile". In the case of the Weibull model for the baseline hazard,
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it can be shown that the qth quantile is:

− log(1− q)
(λ exp{Xiβ + Yi})1/α

.

Note that quantiles of the density function are not always analytically tractable, in which case
the densityquantile function should not return anything, instead issuing an error, for ex-
ample, stop("Quantiles of the density function are not available"), or something
similar.

R> weibullHaz <- function(){

+

+ flist <- list()

+

+ flist$distinfo <- function(){

+ retlist <- list()

+ retlist$npars <- 2

+ retlist$parnames <- c("alpha", "lambda")

+ retlist$trans <- log

+ retlist$itrans <- exp

+ retlist$jacobian <- exp

+ retlist$hessian <- list(exp, exp)

+ return(retlist)

+ }

+

+ flist$basehazard <- function(pars){

+ fun <- function(t){

+ return(pars[2] * pars[1] * t ^ (pars[1] - 1))

+ }

+ return(fun)

+ }

+

+ flist$gradbasehazard <- function(pars){

+ fun <- function(t){

+ return(t ^ (pars[1] - 1) *

+ cbind(pars[2] * (1 + pars[1] * log(t)), pars[1]))

+ }

+ return(fun)

+ }

+

+ flist$hessbasehazard <- function(pars){

+ funfun <- function(t, pars){

+ m <- matrix(0, 2, 2)

+ m[1, 2] <- m[2, 1] <- t ^ (pars[1] - 1) *

+ (1 + pars[1] * log(t))

+ m[1, 1] <- pars[2] * t ^ (pars[1] - 1) *

+ log(t) * (2 + pars[1] * log(t))

+ return(m)
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+ }

+

+ fun <- function(t){

+ return(lapply(t, funfun, pars = pars))

+ }

+ return(fun)

+ }

+

+ flist$cumbasehazard <- function(pars){

+ fun <- function(t){

+ return(pars[2] * t ^ (pars[1]))

+ }

+ return(fun)

+ }

+

+ flist$gradcumbasehazard <- function(pars){

+ fun <- function(t){

+ return(t ^ (pars[1]) * cbind(pars[2] * log(t), 1))

+ }

+ return(fun)

+ }

+

+ flist$hesscumbasehazard <- function(pars){

+ funfun <- function(t, pars){

+ m <- matrix(0, 2, 2)

+ other <- log(t) * t ^ pars[1]

+ m[1, 2] <- m[2, 1] <- other

+ m[1, 1] <- pars[2] * other * log(t)

+ return(m)

+ }

+

+ fun <- function(t){

+ return(lapply(t, funfun, pars = pars))

+ }

+ return(fun)

+ }

+

+ flist$densityquantile <- function(pars, other){

+ fun <- function(probs){

+ return((-log(1 - probs) /

+ (pars[2] * other$expXbetaplusY)) ^ (1 / pars[1]))

+ }

+ return(fun)

+ }

+

+ class(flist) <- c("basehazardspec", "list")

+ return(flist)
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+ }

C. Details of the MCMC algorithm

In this section we discuss the MCMC algorithm employed in the package spatsurv. We do
not in usually sample ω and η directly, but because these parameters often only have support
on the positive real line or a subset of it, we perform MCMC on a transformed scale, an
appropriate transforms might be η̃ = log η, for instance. The posterior is as follows:

π(β, ω̃, η̃,Γ|data) =
π(data|β, ω̃, η̃,Γ)π(β, ω̃, η̃,Γ)

π(data)
∝ π(data|β, ω̃, η̃,Γ)π(β, ω̃, η̃,Γ);

where π(data) is the marginal likelihood. The conditional independence properties of this
model imply that π(data|β, ω̃, η̃,Γ) = π(data|β, ω̃,Γ).

The MCMC method we use in the package spatsurv is a Metropolis-Hastings sampling
scheme. Having initialised the chain at, {β(0), ω̃(0), η̃(0),Γ(0)}, the ith step consists of draw-
ing a candidate {β∗, ω̃∗, η̃∗,Γ∗} from a proposal density, q, and accepting it, that is setting
{β(i), ω̃(i), η̃(i), Y (i)} = {β∗, ω̃∗, η̃∗,Γ∗}, with probability

min

{
1,

π(β∗, ω̃∗, η̃∗,Γ∗|data)

π(β(i−1), ω̃(i−1), η̃(i−1),Γ(i−1)|data)

q(β(i−1), ω̃(i−1), η̃(i−1),Γ(i−1)|β∗, ω̃∗, η̃∗,Γ∗)
q(β∗, ω̃∗, η̃∗,Γ∗|β(i−1), ω̃(i−1), η̃(i−1),Γ(i−1))

}
.

Let ζ = (β, ω̃, η̃,Γ). In the package spatsurv, we use the following proposal:

q(ζ(i∗)|ζ(i−1)) = N
[
ζ(i∗);µζ(i−1) , h2Σ

]
. (7)

where

µζ(i−1) =



(β, ω̃)(i−1) +
h2h2

β,ω̃

2 Σβ,ω̃
∂ log{π(ζ(i−1)|Y )}

∂(β,ω̃)

η̃(i−1)

Γ(i−1) +
h2h2

Γ
2 ΣΓ

∂ log{π(ζ(i−1)|Y )}
∂Γ


and Σ =



h2
β,ω̃Σβ,ω̃ 0 0

0 ch2
η̃Ση̃

0 0 h2
ΓΣΓ


(8)

In Equation (8), Σβ,ω̃ is an approximation to the negative inverse of the observed information

matrix, {−E[I(β̂, ˆ̃ω)]}−1 conditional on an estimated Γ and η̃, and similarly for Ση̃ and ΣΓ.
Due to the size of ΣΓ, we use a diagonal matrix rather than the full covariance matrix. The
numeric constants h2

β,ω̃, h2
η̃ and h2

γ are approximately optimal scalings for Gaussian targets
explored by Gaussian random walk or MALA proposals (Roberts and Rosenthal 2001) and we
set these as h2

β,ω̃ = 1.652/[dim(β)+dim(ω̃)]1/3, h2
η̃ = 2.382/ dim(η̃) and h2

Γ = 1.652/ dim(Γ)1/3,
where dim is the dimension.
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The constant c is present because we adapt the value of h in our chain using a method
described in Andrieu and Thoms (2008) (see Taylor, Davies, Rowlingson, and Diggle (2013)
for details) to achieve an approximately optimal acceptance rate of 0.574 to suit the Langevin
kernels. This acceptance rate is too high for the random walk, so we set c = 0.4 which is
roughly the ratio of the approximate optimal acceptance rates for random walk and Langevin
kernels (0.234/0.574).

In the package spatsurv, we use a combination of maximum likelihood estimation and ad
hoc methods to obtain initial estimates of β, ω̃, η̃ and Γ; conditional on these, the matrices
Σβ,ω̃ and ΣΓ are obtained from the second derivative of the posterior with respect to those
parameters (Taylor 2015a). We initialise the MCMC run from these estimates apart from Γ,
which is initialised at Γ = 0.

D. Simulation study

We performed a simulation study to check that our code was able to estimate model param-
eters correctly. This study consisted of 16 simulated datasets (indexed by the ID column in
Table 2), and we ran the survspat function on each dataset three times. In the first 8 datasets
the data were simulated assuming an exponential baseline hazard and in the last 8 scenarios
we used a Weibull baseline hazard. When it came to analysing the data, we assumed the
functional form of the baseline hazard was known (i.e., we assumed an exponential model for
datasets 1–8 and a Weibull model for datasets 9–16). We simulated data using an exponential
covariance function for the spatial random effects and again assumed this was known when
analysing the data. We assumed that survival time depended on two covariates: age and sex
the former being treated as a continuous variable and the latter a binary.

The true and estimated parameters from each of the three runs for each of the 16 datasets are
shown in Table 2. We ran each MCMC sampler for 1,000,000 iterations with a burnin of 10,000
iterations and retaining every 990th sample. For each dataset, we assumed N(0, 102) priors for
β and logω; N(0, 0.5) priors for log σ; and N(−3, 0.4) for log φ. The results show that with the
exception of dataset 12 we obtain very good estimates of parameters; the columns with title
‘IN’ have a checkmark where the credible interval contains the true parameter value, though
note that due to the presence of the spatial random effects in the model, we do not necessarily
expect to obtain the true parameters back when we analyse these datasets. For dataset 12,
the discrepancy between true and simulated values in some of the estimated parameters is
likely due to either this combination of true parameters being ‘difficult’ to estimate, or the
spatial random effects masking the true effects.
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Run 1 Run 2 Run 3
Parameter ID True 2.5% 50% 97.5% IN 2.5% 50% 97.5% IN 2.5% 50% 97.5% IN

age 1 0.03 0.01 0.02 0.03 X 0.01 0.02 0.03 X 0.01 0.02 0.04 X
sex 1 0.03 -0.18 0.09 0.38 X -0.2 0.1 0.38 X -0.18 0.09 0.38 X
θ 1 0.25 0.21 0.31 0.49 X 0.21 0.31 0.47 X 0.21 0.32 0.49 X
σ 1 0.5 0.41 0.7 0.98 X 0.42 0.68 0.97 X 0.45 0.71 0.98 X
φ 1 0.02 0.02 0.03 0.06 X 0.02 0.03 0.06 X 0.02 0.03 0.06 X
age 2 0.06 0.04 0.05 0.07 X 0.04 0.05 0.07 X 0.04 0.05 0.07 X
sex 2 0.03 -0.33 -0.04 0.26 X -0.29 -0.04 0.24 X -0.3 -0.03 0.23 X
θ 2 0.5 0.33 0.48 0.7 X 0.34 0.48 0.71 X 0.34 0.48 0.7 X
σ 2 1 0.52 0.72 0.93 0.51 0.71 0.92 0.52 0.72 0.92
φ 2 0.02 0.02 0.03 0.05 X 0.02 0.03 0.05 X 0.02 0.03 0.05 X
age 3 0.09 0.07 0.09 0.1 X 0.07 0.09 0.1 X 0.07 0.09 0.1 X
sex 3 0.03 -0.14 0.18 0.48 X -0.12 0.18 0.48 X -0.1 0.2 0.5 X
θ 3 0.75 0.34 0.56 0.97 X 0.33 0.56 1.03 X 0.33 0.56 0.95 X
σ 3 1.5 1.19 1.39 1.62 X 1.21 1.39 1.62 X 1.2 1.4 1.61 X
φ 3 0.02 0.02 0.03 0.04 X 0.02 0.03 0.04 X 0.02 0.03 0.04 X
age 4 0.12 0.1 0.12 0.13 X 0.11 0.12 0.13 X 0.11 0.12 0.13 X
sex 4 0.03 -0.32 0.01 0.36 X -0.33 0.01 0.37 X -0.31 0.02 0.36 X
θ 4 1 0.32 0.56 1 X 0.31 0.55 1.03 X 0.31 0.56 1.08 X
σ 4 2 1.56 1.76 1.99 1.56 1.77 1.99 1.59 1.77 2 X
φ 4 0.02 0.02 0.02 0.03 X 0.02 0.02 0.03 X 0.02 0.02 0.04 X
age 5 0.03 0.02 0.03 0.05 X 0.02 0.03 0.05 X 0.02 0.03 0.05 X
sex 5 0.09 -0.37 -0.09 0.19 X -0.37 -0.09 0.2 X -0.37 -0.1 0.21 X
θ 5 1.25 0.96 1.47 2.33 X 0.97 1.48 2.2 X 1 1.47 2.31 X
σ 5 0.5 0.48 0.7 0.97 X 0.45 0.69 0.93 X 0.43 0.68 0.94 X
φ 5 0.05 0.02 0.04 0.07 X 0.02 0.04 0.07 X 0.02 0.04 0.08 X
age 6 0.06 0.05 0.06 0.07 X 0.05 0.06 0.07 X 0.05 0.06 0.07 X
sex 6 0.09 0.2 0.48 0.75 0.21 0.46 0.78 0.18 0.47 0.77
θ 6 1.5 0.72 1.11 1.78 X 0.7 1.14 1.8 X 0.73 1.14 1.83 X
σ 6 1 0.76 0.93 1.13 X 0.76 0.93 1.15 X 0.74 0.94 1.14 X
φ 6 0.05 0.03 0.04 0.07 X 0.03 0.04 0.07 X 0.03 0.04 0.07 X
age 7 0.09 0.07 0.09 0.1 X 0.07 0.09 0.1 X 0.07 0.08 0.1 X
sex 7 0.09 -0.14 0.17 0.44 X -0.14 0.16 0.45 X -0.11 0.17 0.47 X
θ 7 1.75 1.29 2.28 4.19 X 1.25 2.24 4.2 X 1.33 2.21 4.11 X
σ 7 1.5 1.17 1.38 1.63 X 1.18 1.37 1.61 X 1.18 1.37 1.58 X
φ 7 0.05 0.03 0.05 0.07 X 0.03 0.05 0.07 X 0.03 0.05 0.07 X
age 8 0.12 0.12 0.13 0.15 X 0.12 0.13 0.15 X 0.12 0.13 0.15 X
sex 8 0.09 -0.36 -0.03 0.32 X -0.35 -0.04 0.3 X -0.36 -0.03 0.3 X
θ 8 2 0.67 1.43 3.54 X 0.69 1.42 3.31 X 0.64 1.33 3.28 X
σ 8 2 1.71 1.95 2.23 X 1.73 1.95 2.24 X 1.69 1.93 2.19 X
φ 8 0.05 0.04 0.05 0.07 X 0.04 0.05 0.08 X 0.04 0.05 0.08 X
age 9 0.03 0.03 0.04 0.04 X 0.03 0.04 0.04 X 0.03 0.04 0.04 X
sex 9 0.15 -0.1 0.09 0.29 X -0.1 0.09 0.28 X -0.11 0.09 0.29 X
α 9 0.25 0.23 0.25 0.27 X 0.23 0.25 0.27 X 0.23 0.25 0.27 X
λ 9 1 0.68 0.89 1.21 X 0.67 0.91 1.24 X 0.66 0.9 1.23 X
σ 9 0.5 0.3 0.47 0.65 X 0.31 0.48 0.67 X 0.31 0.47 0.67 X
φ 9 0.1 0.04 0.07 0.12 X 0.03 0.07 0.12 X 0.04 0.07 0.13 X
age 10 0.06 0.05 0.06 0.07 X 0.05 0.06 0.07 X 0.05 0.06 0.07 X
sex 10 0.15 -0.01 0.21 0.44 X -0.02 0.21 0.43 X -0.01 0.21 0.43 X
α 10 0.5 0.41 0.45 0.5 X 0.41 0.45 0.5 X 0.41 0.45 0.51 X
λ 10 1 0.54 0.8 1.23 X 0.55 0.79 1.21 X 0.54 0.8 1.19 X
σ 10 1 0.5 0.69 0.94 0.5 0.69 0.95 0.48 0.69 0.93
φ 10 0.1 0.04 0.07 0.12 X 0.04 0.07 0.12 X 0.04 0.07 0.12 X
age 11 0.09 0.07 0.08 0.1 X 0.07 0.08 0.1 X 0.07 0.08 0.1 X
sex 11 0.15 0.09 0.36 0.62 X 0.11 0.36 0.62 X 0.09 0.35 0.63 X
α 11 0.75 0.6 0.68 0.77 X 0.61 0.68 0.77 X 0.61 0.68 0.77 X
λ 11 1 0.49 0.83 1.6 X 0.48 0.83 1.59 X 0.48 0.82 1.48 X
σ 11 1.5 0.88 1.14 1.47 0.9 1.14 1.46 0.89 1.14 1.44
φ 11 0.1 0.04 0.06 0.1 X 0.04 0.06 0.1 X 0.04 0.07 0.1 X
age 12 0.12 0.09 0.11 0.12 X 0.09 0.11 0.12 X 0.09 0.11 0.12 X
sex 12 0.15 0.19 0.44 0.72 0.17 0.46 0.72 0.18 0.45 0.73
α 12 1 0.78 0.87 0.98 0.78 0.87 0.98 0.77 0.87 0.98
λ 12 1 0.11 0.24 0.55 0.12 0.24 0.54 0.13 0.24 0.57
σ 12 2 1.14 1.41 1.76 1.11 1.42 1.79 1.11 1.43 1.78
φ 12 0.1 0.07 0.1 0.14 X 0.07 0.1 0.15 X 0.07 0.1 0.15 X
age 13 0.03 0.02 0.03 0.04 X 0.02 0.03 0.04 X 0.02 0.03 0.04 X
sex 13 0.21 -0.03 0.17 0.38 X -0.05 0.17 0.39 X -0.05 0.17 0.39 X
α 13 0.25 0.22 0.25 0.27 X 0.22 0.24 0.27 X 0.22 0.25 0.27 X
λ 13 2 1.43 2.01 3.05 X 1.38 1.99 3 X 1.38 1.99 3.26 X
σ 13 0.5 0.35 0.54 0.75 X 0.35 0.53 0.73 X 0.34 0.53 0.75 X
φ 13 0.15 0.04 0.07 0.13 0.04 0.07 0.13 0.04 0.07 0.12
age 14 0.06 0.04 0.06 0.07 X 0.05 0.06 0.07 X 0.05 0.06 0.07 X
sex 14 0.21 0.01 0.25 0.49 X 0.01 0.25 0.48 X -0.01 0.24 0.5 X
α 14 0.5 0.45 0.5 0.56 X 0.45 0.5 0.56 X 0.45 0.5 0.55 X
λ 14 2 2.19 3.76 7.2 2.15 3.67 7.3 2.22 3.77 6.62
σ 14 1 0.8 1.03 1.33 X 0.78 1.02 1.32 X 0.79 1.03 1.29 X
φ 14 0.15 0.05 0.08 0.13 0.05 0.08 0.13 0.05 0.07 0.12
age 15 0.09 0.07 0.08 0.1 X 0.07 0.08 0.1 X 0.07 0.08 0.1 X
sex 15 0.21 -0.16 0.09 0.32 X -0.15 0.09 0.33 X -0.16 0.08 0.35 X
α 15 0.75 0.65 0.72 0.8 X 0.65 0.72 0.8 X 0.65 0.72 0.8 X
λ 15 2 0.59 1.08 2.21 X 0.6 1.08 2.16 X 0.58 1.08 2.17 X
σ 15 1.5 0.88 1.12 1.43 0.87 1.12 1.42 0.86 1.12 1.41
φ 15 0.15 0.07 0.1 0.16 X 0.07 0.1 0.15 X 0.07 0.1 0.16 X
age 16 0.12 0.1 0.11 0.13 X 0.1 0.11 0.13 X 0.1 0.11 0.13 X
sex 16 0.21 -0.07 0.2 0.47 X -0.07 0.2 0.49 X -0.06 0.2 0.46 X
α 16 1 0.8 0.89 1 X 0.8 0.89 1 X 0.8 0.89 0.99
λ 16 2 0.53 1.35 5.56 X 0.55 1.42 4.31 X 0.55 1.31 3.76 X
σ 16 2 1.34 1.68 2.07 X 1.33 1.67 2.07 X 1.35 1.66 2.04 X
φ 16 0.15 0.09 0.13 0.2 X 0.09 0.13 0.19 X 0.09 0.13 0.19 X

Table 2: Results of the simulation study, see text for details.
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