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Abstract

Although software product lines are widely used in practice, their
maintenance is challenging. Features as units of behaviour can be
heavily scattered across the source code of a product line, hindering
modular reasoning. To alleviate this problem, feature interfaces aim
at enhancing modular reasoning about features. However, consid-
ering all members of a feature interface is cumbersome, especially
due to the large number of members arising in practice. To address
this problem, we present an approach to group members of a fea-
ture interface. We argue that often only a subset of all interface
members is relevant to a single maintenance task. Therefore, we
propose a graph representation that is able to capture the collabo-
ration between members and apply a clustering algorithm to it to
group highly-related members and segregate non-related members.
On a set of ten versions of a real-world product line, we evaluate the
effectiveness of our approach, by comparing the two types of fea-
ture interfaces (segregated vs. original interfaces) with co-change
information from the version-control system. We found a potential
reduction of 62% of the interface members to be considered in a
single maintenance task. This way, the effort to reason about fea-
tures can be reduced.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Modules and interfaces;
K.6.3 [Software Engineering]: Software Management—Software
Maintenance

General Terms Design, Software Maintenance, Configurable
Systems

Keywords Software Product Lines, Feature Interface, Feature De-
pendencies.
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1. Introduction

Software product lines have gained considerable momentum in re-
cent years both in industry and in academia [2]. Product-line en-
gineering facilitates software reuse by decomposing software into
units of functionality, called features [46]. Features are cohesive
units of behaviour and used to express commonalities and variabil-
ities of the products of a product line [7, 38]. Features often need
to cooperate with other features to fulfil specific tasks [46], induc-
ing feature dependencies. A feature dependency manifests in the
source code of a product line whenever one or more program ele-
ments (e.g., code blocks, methods, or fields) inside the boundaries
of a feature depend on elements external to that feature [42]. A sim-
ple example is a variable defined in one feature and used in another
feature.

The maintenance of industry-strength product lines is partic-
ularly hard due to the lack of feature modularity [12, 41]. First,
features are often scattered across the source code [22]. Hence,
product-line developers are forced to consider all scattered code to
reason about a given feature during a maintenance task. This prob-
lem is exacerbated in preprocessor-based software lines, which are
very common in the software industry [21]. Second and more im-
portantly, the communication between a feature with other features
is often realised by many code-level dependencies also scattered
across the source code [42]. As a consequence, a lot of effort spent
in product-line maintenance is devoted to identifying and under-
standing program elements responsible for giving external access
to other features as well as to reading code of potentially affected
features [42].

Developers cope with the complexity of maintaining software
systems by reasoning about interfaces [37]. The benefits of iden-
tifying and structuring interfaces in software systems have been a
major focus of studies in the 80s [35, 37, 43], but there is a also
growing interest in understanding how to tame the complexity of
so-called feature interfaces in software product lines [11, 23, 27,
41]. In the context of software product lines, the interface of a fea-
ture contains the program elements in the source code that are re-
sponsible for providing external access to other features [12, 42].
In particular, researchers have found for software product lines that
explicitly reasoning about feature interfaces reduces the effort of
developers to maintain the system [41]. However, only identify-
ing and making feature interface members explicit may be insuf-
ficient for enhancing modular reasoning of features [12]. First of
all, feature interfaces may have many members responsible for the
communication between features. As a consequence, feature in-



terfaces may be large and not helpful for supporting developers
during maintenance. Furthermore, according to previous experi-
ence [12, 44], among the many members of a feature interface, only
a small group of members may be relevant to a single maintenance
task—as it contains a set of highly related members always used
together, for example. So, a simple list of all interface members
might rather hinder than enhance modular reasoning of features.
As an extension to existing studies, we investigate how to support
developers in identifying and structuring feature interfaces.

To tackle this problem, we propose a technique for automat-
ing the segregation of feature interfaces (i.e., grouping of inter-
face members). The background is that developers cope with the
complexity of large software systems by grouping (clustering) re-
lated members into cohesive groups [35]. In object-oriented design,
for instance, interface members are segregated into more cohesive
groups according to their clients [35]. In the same vein, feature in-
terfaces shall be segregated into cohesive clusters of members, such
that the members of a cluster collaborate closely to accomplish a
part of the overall purpose of a feature in cooperation with another
feature (i.e., feature dependency). If a change must be made in a
member of a cluster, the members of the same cluster are likely
highly relevant to be revised during maintenance. In other words,
only a subset of all interface members may be relevant to a single
maintenance task.

To achieve this goal, we formulate interface segregation as a
clustering problem and conduct a study on an industrial product
line. While using the maintenance tasks (i.e., the commits) as a
foundation, we analyse the number of interface members likely to
be unnecessarily considered by developers to the clusters of the
segregated feature interface, on the one hand, and to the original
interface (i.e., one subset of all interface members), on the other
hand. To this end, we propose a graph representation to capture the
collaboration between interface members, and apply a clustering al-
gorithm on this representation to identify the clusters of members,
containing only members that are highly related. The results show
a pronounced difference (/2 62%) in favour of segregated interfaces
regarding the reduction of interface members likely unnecessarily
considered by developers — i.e., members not changed in a com-
mit — during maintenance. Therefore, by capturing cooperating
interface members and clustering them, we are able to reduce the
overall amount of code considered by developers during a mainte-
nance task. In summary, our contributions are:

e A graph representation for relating feature-interface members.

e A computation of segregated interfaces for all features of
10 versions of BusyBox.

e Evaluation of our approach of segregating interfaces by com-
paring the original feature interfaces with the segregated inter-
faces by means of the Jaccard distance (using the co-changed
interface members as oracle); we found that segregated inter-
faces potentially reduce the overall amount of code considered
by developers in product-line maintenance.

The remainder of this paper is structured as follows. Section 2
presents background on the main topics of this paper. Section 3
describes the proposed approach to segregate feature interfaces. A
complete description of our evaluation is provided in Section 4.
Section 5 presents the data collected during the study and Section 6
provides an analysis of the data. Section 7 discusses the limitations
of this work. Finally, Section 8 presents related work and Section 9
concludes the paper with some remarks and future work.

2. Preliminaries

To lay a foundation for the subsequent sections, we introduce the
relevant concepts of software product lines, features, and feature

dependencies. Furthermore, we introduce a motivating example to
illustrate the problem of understanding feature dependencies by
means of feature interfaces.

2.1 Software Product Lines and Features

A software product line is “a set of software intensive systems that
share a common managed set of features satisfying the specific
needs of a particular market segment or mission” [13]. Software
product lines enable the systematic construction of individual soft-
ware products via mass customisation. Customers tailor their prod-
ucts by selecting particular combinations of product-line features.
The use of software product lines promises significant benefits,
such as a reduction of development costs, enhancement of qual-
ity, and reduction of time-to-market [13, 38]. To this end, product
lines are organised and structured in terms of features. Features are
units of behaviour of by which different products within a product
line can be differentiated and defined [2, 45], thus, playing a key
role for mass customisation.

In this work, we look at product lines implemented with a
preprocessor and conditional compilation, which is a widely-used
approach to implement and configure product-line features [21].
The preprocessor identifies the code that should be compiled or
not based on preprocessor directives and propositional expressions
over features they contain, called the presence conditions. In this
setting, a feature is a set of program elements surrounded by pre-
processor directives using the same presence condition. It is impor-
tant to notice that features might be scattered accross several mod-
ules (e.g., compilation units) of the source code and tangled with
other feature code. Hence, the maintenance of product-line features
is often more challenging than the maintenance of modules.

As an example, we will use a simple product line for managing
devices (such as printers, displays, and the like), implemented us-
ing preprocessor directives and conditional compilation. The user
is able to control devices, either via the internal screen or externally
via a terminal connection. Figure 1 illustrates a code snippet of how
a feature might be represented in the source code in our exemplary
product line, specifically, parts of the feature SCREEN implement-
ing the basic internal screen functionality. In this snippet, we show
the declaration of the fields responsible for the width and height of
the screen (Lines 4-5), and the methods responsible for setting the
values of these fields (Lines 9-14).

public class General {

#ifdef SCREEN
int width;
int height;

#endif

#ifdef SCREEN
public void setWidth(int x) {
this.width = x;
}
public void setHeight(int y) {
this.height = y;
}
#endif

Figure 1. Excerpt of the code of feature SCREEN.

2.2 Feature Dependencies and Feature Interfaces

A feature dependency defines which program elements of a feature
depend on other elements of other features (e.g., a method is de-
fined in one feature and called by another feature) [12]. In other
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words, feature dependencies arise, among others, from structural
dependencies (such as feature control-flow dependencies and in-
heritance calls) between program elements of different features.

Figure 2 illustrates an example of a feature dependency between
the feature ADMINPANEL and SCREEN in our example. AD-
MINPANEL is responsible for setting values to devices. The fea-
ture dependency arises from the method calls highlighted in Lines
5,6,7,8, 16, and 17, while some of these methods belong to fea-
ture SCREEN (Lines 9-14, Figure 1). Thus, a part of the ADMIN-
PANEL feature depends on elements of feature SCREEN. Further-
more, we have a feature INFOPANEL responsible for presenting
the current settings to the user (no code snippet given), which ac-
cesses the methods getFrequency and getResolution, among
others, that just read the values configured.

public class Controller {

#ifdef ADMINPANEL
public void resetConfig() {
scr.setWidth(1920);
scr.setHeight (1080) ;
scr.setBrightness(80);

scr.setContrast (30) ;

) oo

[.n.ll.)lic void correctAspectRatio(int x, int y) {
/./-a.djust aspect ratio if necessary

scr.setWidth(x*factorW) ;
scr.setHeight (y*factorH) ;

}
#endif

Figure 2. Excerpt of the code of feature ADMINPANEL, giving
rise to a feature dependency (underlined).

A feature interface consists of the program elements that are
responsible for providing external access to other features. A pro-
vided feature interface, similarly to a provided module interface,
consists of the program elements belonging to a feature and used
by another feature. We focus on provided feature interfaces as re-
quired feature interfaces can be inferred once the former ones have
been identified. So, from hereafter, unless otherwise stated, the term
“feature interface” is used to refer to the provided feature inter-
face. The methods called in Lines 5, 6, 7, 8, 16, and 17 of Fig-
ure 2 are the elements responsible for providing external access to
feature SCREEN. Therefore, the methods setWidth, setHeight,
setBrightness, and setContrast are members of the feature
interface SCREEN.

2.3 A Maintenance Problem

We now introduce an example of a maintenance problem to il-
lustrate the need for feature interfaces. In our exemplary prod-
uct line, there are two sets of functions belonging to feature
SCREEN that participate in feature dependencies: (i) the func-
tions showFrequency and showResolution are responsible for
giving external access to feature SCREEN by providing neces-
sary information, and (ii) the functions setWidth, setHeight,
setBrightness, and setContrast allow the user to set config-
uration parameters. These elements, all belonging to the feature
SCREEN, are scattered across several files of the code base, as
shown in Figure 3.

Let us suppose a maintenance task where the developer is go-
ing to limit the size of the screen to values between a minimum

Image.java General.java Conf.java
setBrightness () setWidth () getFrequency ()
setContrast () setHeight () getResolution ()

Figure 3. Methods of feature SCREEN involved in feature depen-
dencies.
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Figure 4. Features ADMINPANEL and INFOPANEL accessing
methods of feature SCREEN.

and maximum possible size. So, it is expected a change in fea-
ture SCREEN to accomplish the maintenance task. However, since
features the ADMINPANEL and INFOPANEL depend on feature
SCREEN, the developer should revisit the code of all these depen-
dent features to ensure that their expectations are met. Figure 4
illustrates the interface of feature SCREEN.

Making feature-interface members explicit would help spotting
feature dependencies. For instance, developers can associate mem-
bers starting with the prefix set with the feature ADMINPANEL.
However, despite the seeming benefit, reasoning solely about a list
of interface members — the so-called original feature interface
— may be still too complicated. Original feature interfaces may
be large and not helpful for supporting developers during mainte-
nance. A simple list of all interface members might rather hinder
than enhance modular reasoning of features. In the subject system
of our study (Section 4.2), for instance, we found interfaces with
more than 20 members. In this case, analysing each feature inter-
face member to reason about feature dependencies during a main-
tenance task may be even worse than not having a explicit feature
interface.

In the context of our example, the previously-mentioned main-
tenance task would touch the interface members setWidth and
setHeight of feature SCREEN. In addition, it may also demand
changes to the code of feature ADMINPANEL, which is referring
to setWidth and setHeight. On the other hand, the other inter-
face members of feature SCREEN, other parts of feature ADMIN-
PANEL, and the code of feature INFOPANEL may not be impor-
tant to be considered in this specific maintenance task. Therefore,
the key idea is to group members of a feature interface that are
closely related, which may help developers to focus only on impor-
tant members of the feature interface relevant to the maintenance
task. This way, the lack of modular reasoning of features could
be reduced as well as the maintenance-task difficulty. Developers
would need to consider a fewer number of potentially related pro-
gram elements.

3. Automated Interface Segregation

Creating a human-perceivable model of the structure of a complex
system is one of the many problems of software engineering [33].
In our attempt to alleviate the complexity of reasoning about fea-
tures as modular units of behaviour, we propose a technique for au-
tomated feature-interface segregation to support developers creat-



ing a more understandable model of the program structure in terms
of features and their dependencies. The goal of our approach is
to automatically partition' the members of a feature interface into
clusters based on their dependencies to other features. By doing
that, the resulting clusters increase the chance of interface members
of the same cluster being important to be understood together. The
clusters, once discovered, will represent a higher-level abstraction
of a feature interface based on the global feature-dependency struc-
ture. Each cluster contains a set of interface members that cooperate
to perform a high-level function together. The following sections
detail our approach to organise feature interfaces using clustering.

3.1 Interface Organisation as a Clustering Problem

Clustering is the task of grouping a set of objects, such that objects
in the same group (i.e., on the same cluster) are more similar (in
some sense or another) to each other than to those in other groups
(clusters). Clustering is widely used in many applications, such as
data mining, Web analysis, and computational biology [16].

By grouping related members of a feature interface together—
i.e., members that cooperate to perform a high-level function
together—developers should be pointed to members that actu-
ally correspond to the current maintenance task. This way, the
effort to comprehend dependencies could be reduced, and thus the
maintenance-task difficulty and number of potentially related pro-
gram elements to observe.

To cluster feature interfaces, we use relationships between in-
terface members. Using this representation, it is possible to apply a
clustering algorithm to partition the members of feature interfaces
according to our approach. In Section 3.2, we define the graph rep-
resentation used to capture those relationships.

3.2 Member Relationship Graph

To cluster the members of a feature interface, the straightforward
representation is a graph, which we call Member Relationship
Graph (MRG). Formally, an MRG = (M, R) consists of two
components M and R, where M is the set of members in a spe-
cific feature interface, and R C M Xx M is a set of pairs of the
form (u, v) which represents the members’ relationships. Figure 5
illustrates the idea of the MRG by means of our example.

setHeight

MRG Clustered MRG
Feature SCREEN Feature SCREEN
Cluster 2
1 cwsterT
w P " —
| Cluster 3
setContrast
b

setHeight

getFrequency getFrequency

uster 4

getResolution getResolution

Figure 5. Example of an MRG of feature SCREEN before and
after clustering.

A relationship between two feature interface members of a
single feature exists when the same program element of a de-
pendent feature refers to both feature interface members. For in-
stance, based on the example presented in Section 2.3, the inter-
face members setWidth and setHeight of feature SCREEN
are referred to by two program elements (resetConfig and

'We use the term partition in the traditional mathematical sense, that is, the
decomposition of a set of elements (e.g., nodes of a graph) into mutually
disjoint clusters.

correctAspectRatio). The rationale behind this graph structure
is that interface members referred to by the same program element
from another feature are likely to cooperate to perform part of the
functionality the other feature needs. As a consequence, they likely
give together a more complete insight into the corresponding fea-
ture dependency. In addition, each edge of the graph has a weight.
The weight of an edge represents the number of distinct program
elements referring to the pair of members. The more the pair is used
together the more related they are in the source code. An edge be-
tween two vertices with a high weight means the elements should
be in the same cluster. In our example presented in Section 2.3,
the interface members setWidth and setHeight are referred to
together twice by different program elements (resetConfig and
correctAspectRatio). This means they are closely related. In
this example, only these elements are together in the same cluster
likely due to the weight of the edge.

The idea of applying clustering to this representation is to iden-
tify close feature-interface members as clusters, such that the over-
all number of program elements that must be considered during fea-
ture maintenance will be reduced guided by the clusters of the seg-
regated feature interfaces. Figure 5 (right part) illustrates a possible
clustering the MRG extracted from the feature interface SCREEN
(cf. Section 2.3).

4. Methodology

In this section, we describe our study in terms of its goal (Sec-
tion 4.1), the subject system used to evaluate the segregation of
feature interfaces (Section 4.2), and the evaluation procedure used
to conduct the study (Section 4.3).

4.1 Research Question

The goal of our study is to analyse how well segregated feature in-
terfaces can be used to perform maintenance tasks against the orig-
inal feature interface. We use the co-changes of interface members
in commits as our oracle for the relevant subset of interface mem-
bers. Then, we compare the number of interface members likely
to be unnecessarily considered by developers to the clusters of the
segregated feature interface, on the one hand, and to the original
interface, on the other hand. Therefore, we formulate the following
research question:

RQ: How well can segregated feature interfaces be used to per-
form code maintenance in software product lines, compared to the
original feature interfaces?

4.2 Subject System

We selected BusyBox® as a paradigmatic case study, represent-
ing many other product-line implementations based on conditional
compilation [23]. BusyBox is a real-world resource-efficient prod-
uct line of UNIX utilities implemented in C. BusyBox runs in a va-
riety of POSIX environments, such as Linux, Android, FreeBSD,
and others [23]. Variability in BusyBox includes both variability
at the composition level, automated by the build system, and vari-
ability at source-code level, encoded with preprocessor directives.
In our study, we focus on variability at the source-code level. We
selected 10 major versions of BusyBox. Table 1 provides general
data about the 10 versions, including lines of code (KLOC), num-
ber of features (# Features), and number of feature dependencies
(# Dependencies).

We chose BusyBox because of three main reasons: (i) BusyBox
is a widely-known system already used in different studies, and
its sources (and commits) are openly accessible; (ii) it is a real-
world product line with a large number of features and feature

2http://busybox.net/



Table 1. BusyBox releases selected for our study.

Release KLOC  #Features # Dependencies
1.13 183 646 630
1.14 188 668 620
1.15 185 696 671
1.16 191 722 702
1.17 196 738 681
1.18 209 759 718

1.18.5 199 759 719
1.19 192 776 761
1.20 194 781 762
1.21 195 766 749

mean 193 731 701

dependencies; and (iii) BusyBox has been developed by an open-
source community since 1999 and is still evolving. Furthermore, we
aim at conducting a longitudinal study of one single product line.
The idea was to carefully analyse the feature interfaces proposed
before and after clustering to discuss in-depth the implications of
our results and answer the research question. To do so, we needed
to understand the semantics of the interface members as well as the
semantics of feature dependencies. This would not be possible if
we conduct a wider and more superficial study using many different
product lines.

4.3 Evaluation Procedure

Our study is divided in three major phases: (i) data extraction
of feature dependencies, feature interfaces, member relationship
graphs (MRG), and co-changes of interface members, (ii) cluster-
ing, and (iii) evaluation. In the following, we give more details on
the three major phases of our study.

4.3.1 Data Extraction

We extracted 10 releases of BusyBox based on the corresponding
tags in the version-control system. We scanned each C file in the
selected releases (in total, 6,858 source-code files) to mine feature
dependencies in the source code using the tool TypeChef [25]. It is
important to mention that we have a feature model for BusyBox,
which we used by supplying it to TypeChef. Therefore, we only
consider configuration-relevant features in our approach.

Feature-dependency and feature-interface extraction. To ex-
tract feature dependencies, we analyse the variability-aware control-
flow graph [29] of each release of BusyBox using TypeChef. Each
node of the control-flow graph, representing a program element,
is associated with a feature or set of features. Feature dependen-
cies are identified by control flows between nodes (i.e., program
elements) of different features. In the context of our study, we con-
sider a dependency between features A and B if: (i) A references
an attribute of B, or (ii) A calls a method of B. Once we extracted
all nodes (i.e., program elements) participating in feature depen-
dencies, we group them in dependee and dependent features. Then,
we classify nodes of a feature that have incident edges (i.e., they
are used by another feature) as members of such feature’s provided
interface—that is, program elements of a dependee feature.

Feature-interface filtering and MRG construction. Once we ex-
tracted all feature interfaces, we select only interfaces with more
than one member, as we do not need to segregate the feature in-
terface for these cases. After that, we construct the MRG (cf. Sec-
tion 3.2). To this end, we developed a TypeChef extension that takes
the variability-aware CFG output from TypeChef and constructs the
MRG from it. Furthermore, we used R scripts® for graph process-
ing. The aim of this step is to relate feature interface members.

3http://www.r-project.org/

Edges between nodes in the MRG, therefore, represent the rela-
tionships that exist between the members of a feature interface. In
this case, the topology of the graph becomes informative regarding
the structure of feature dependencies.

Co-change extraction. The last step of data extraction is to mine
changes on interface members from the BusyBox repository using
Codeface* [20]. The idea is to identify interface members that co-
change (i.e., simultaneously change) in a single commit.

Overall, we extracted 2,286 feature interfaces out of 7,311 fea-
tures. After filtering out feature interfaces with only one member,
the resulting number of feature interfaces was 650. The total num-
ber of feature-interface members under analysis was 3,154; the
biggest feature interface contains 46 members. The total number of
analysed feature dependencies is 7,013, while the maximum num-
ber in a release is 762. Regarding the co-changes extracted from
the BusyBox repository, we extracted a total of 3,382 changes in
program elements, comprising 2,592 commits for the 10 releases
of BusyBox.

4.3.2 Clustering

We use the Markov Cluster (MCL) algorithm [14] to cluster the
extracted MRGs. MCL is a cluster algorithm for graphs based on
the simulation of stochastic flows in graphs. It is based on the
graph-clustering paradigm, which postulates that natural groups in
graphs have the following property: “A random walk in a graph
that visits a dense cluster will likely not leave the cluster until many
of its vertices have been visited” [14]. Natural groups (clusters)
in a graph are characterised by the presence of many edges (or
more weighted edges) between the members of that cluster. In
particular, this number should be high, relative to node pairs that
span different clusters. In other words, random walks on the graph
will infrequently go from one cluster to another.

The MCL algorithm finds cluster structures in graphs by a math-
ematical bootstrapping procedure. The MCL algorithm respects
edge weights and considers them as a means of similarity. The pro-
cess deterministically computes (the probabilities of) random walks
through edges and edge weights in the graph. This way, the algo-
rithm uses stochastic matrices (also called Markov matrices) that
capture the mathematical concept of random walks on a graph.

The MCL algorithm simulates random walks in a graph by alter-
nation of two operators called expansion and inflation. Expansion
computes random walks of high length, which means random walks
with many steps. An expansion associates new probabilities to all
pairs of nodes, where one node is the point of departure and the
other is the destination. Since high-length paths are more common
inside clusters than between different clusters, the probabilities as-
sociated with node pairs lying in the same cluster will be relatively
large [14]. Inflation will have the effect of boosting the probabilities
of intra-cluster walks and will relegate inter-cluster walks. Iterating
expansion and inflation results in the separation of the graph into
different segments. The collection of resulting segments is then in-
terpreted as a clustering [14].

We chose the MCL cluster algorithm because of several advan-
tages. First, the algorithm fits our idea of a cluster in the MRG:
functions that are densely linked and, hence, are used together in a
workflow are in the same cluster. A developer will likely use many
other functions of a single cluster in a workflow before using a
function of a different cluster, thus matching the MCL algorithm
property. Second, it performs two simple algebraic operations on
matrices. There are no high-level procedural instructions for as-
sembling, joining, or splitting of groups. In other words, the MCL
algorithm was designed with the consideration of scalability, which

“http://siemens.github.io/codeface/



is very important for our use case. Third, in the MCL algorithm,
the number of clusters can not be specified in advance, differently
from other well-known clustering algorithms (e.g., K-means [31],
Lloyd’s [30], etc.).

The MCL algorithm was applied to the MRGs of the BusyBox
using an R library called MCL’. To calibrate the MCL algorithm
regarding its only parameter (i.e., the inflation parameter), we used
a tool called clm dist, implemented by the creator of the MCL
algorithm and located in the same library of the algorithm. The
tool can suggest the value of the parameter based on the number
of elements to be clustered. After generating the clusters for all
BusyBox releases, we executed the clm dist tool. The value 2 was
the suggested value to be used in our case.

4.3.3 Evaluation

To validate the segregation of feature interfaces produced by the
MCL algorithm, we used the Jaccard distance between the fea-
ture interfaces (segregated and original), on the one side, and co-
changes of interface members within a commit, on the other side.
The Jaccard distance is a statistic used for measuring the dissim-
ilarity between finite sample sets, and it is defined by subtracting
the size of the intersection from the size of the union, divided by
the size of the union of the sample sets:

AUB|—-|ANB
dJ(AvB):% (D

Values of the Jaccard distance are bound between 0 and 1. Val-
ues closer to 1 mean a higher dissimilarity between the sets. Values
closer to 0 mean lower dissimilarity between the sets. By using
the Jaccard distance, we are able to find the number of interface
members unnecessarily considered by the developer during a sin-
gle maintenance task based on our ideal model of clusters (i.e., the
commits of the product line). For instance, in our example pre-
sented in Section 2.3, two interface members would change in a
commit (our ideal cluster). In the original interface, the Jaccard dis-
tance would be d (A, B) ~ 0.67, being A the set of members of a
commit and B the set of members of a specific cluster. In the orig-
inal interface, we consider the whole interface as a single cluster.
Therefore, we are able to use the results and make statements such
as “67% of the members of a feature interface (or a cluster of a fea-
ture interface) have been unnecessarily considered by developers
during a maintenance task”.

Our goal is to reduce the number of interface members that
are likely to be unnecessarily considered by developers dur-
ing maintenance. In our example presented in Section 2.3, the
members setBrightness, getFrequency, getResolution and
setContrast would be unnecessarily considered by a developer
in the context of this maintenance task. Those interface members
increase the complexity of reasoning about feature and their de-
pendencies. Therefore, the more dissimilar a cluster of interface
members is, when compared to the commit changes, the worse is
the feature-interface organisation (segregated or original interface).

We conducted the comparison of feature interfaces with the co-
changes as follows. For each set of co-changes of interface mem-
bers, we compute the Jaccard distance with every cluster of feature
interfaces generated by the MCL algorithm. In an original feature
interface, we consider the whole interface as a single cluster to sim-
ulate the mindset of members to be considered by the developer in a
maintenance task. We calculate the Jaccard distance between all el-
ements of the commit belonging to a single feature and each cluster
of the feature interface (original and segregated). To have a single
value for each interface, the average Jaccard distance is calculated

Shttps://cran.r-project.org/web/packages/MCL/

using the values found for each interface cluster. Finally, the Jac-
card distance found for each commit is used to calculate the average
of a release. Therefore, we have a Jaccard distance for each release
and the type of feature interface (original and segregated).

5. Results

The rationale of our study is to show the amount of code a devel-
oper needs to consider in a change task with a segregated interface
compared to the original interface. A high Jaccard distance indi-
cates the percentage of interface members that might have been
inspected unnecessarily during product-line maintenance based on
commit changes. Table 2 shows the results of the Jaccard distance
for both types of feature interfaces for each release analysed of
BusyBox.

Table 2. Jaccard distances for both types of feature interfaces.

Release Segregated Interface  Original Interface
1.13 0.2263464 0.9015086
1.14 0.3745138 0.8869625
1.15 0.2767011 0.8712999
1.16 0.1973850 0.8545383
1.17 0.2588888 0.9149021
1.18 0.2375843 0.9578755

1.18.5 03611111 0.9007790
1.19 0.1918869 0.8614765
1.20 0.4325397 0.8878205
1.21 0.1071429 0.8289116
mean 0.2764 0.8866

Looking at Table 2, we notice that the values for segregated in-
terfaces ranges between 0.1 and 0.4. That is, in the worst case, the
number of feature members likely to be unnecessarily considered
by developers is, at most, 40% of the interface members. The con-
centration of Jaccard distance distribution for the original interface
close to 0.9 means that approximately 90% of the feature-interface
members were not related to the commits.

The Jaccard distance for segregated interfaces is always lower
when compared to the original interfaces. In addition, the differ-
ence of mean between segregated and original interface is almost
62%. This means that, using segregated interfaces, reduces the
number of interface members unnecessarily analysed by 62%. So,
since we are using the Jaccard distance in our study as a measure of
the number of elements likely to be unnecessarily revisited during
maintenance, we can say the number of feature interface members
to be considered in a maintenance task is lower than the one in a
original interface.

To gain confidence in this result, we computed the difference
between Jaccard distances for segregated and original interfaces us-
ing the paired Mann-Whitney test [34] and the paired Cliff’s Delta
effect size [18]. We used these tests because the data are not nor-
mally distributed. First, we used the Mann-Whitney test to analyse
whether there is a significant difference between the Jaccard dis-
tances of clustered and non-clustered interfaces. Significant differ-
ences are indicated by p-values lower than 0.01. Then, we use the
Cliff’s Delta effect size (d) to measure the magnitude of the differ-
ence between the Jaccard distance between segregated and original
interfaces. Cliff’s Delta is bound between +1 and -1. Values close
to +1 mean that all selected values from one group are higher than
the selected values in the other group, values close to -1 when the
reverse is true. The value 0 expresses two overlapping distributions.
The effect size is considered negligible for |d| < 0.147, small for
0.147 < |d| < 0.33, medium for 0.33 < |d| < 0.47, and large for
|d| > 0.47 [18].



The p-value of the Mann-Whitney test is smaller than 9e-5. This
result suggests that the difference between the two distributions is
statistically significant. The Cliff’s Delta measured on both distri-
butions is d = —1. This means that the effect size is statistically
large and the difference between both distributions is relevant. In
other words, based on the results, we argue that segregated fea-
ture interfaces have the potential to support developers in reason-
ing about features and their dependencies during maintenance of
product lines.

To answer the research question, the results of the Jaccard
distance as well as the p-value and Cliff’s Delta effect size
allow us to say the segregated feature interfaces can better
support developers to perform maintenance tasks in software
product lines when compared against original feature inter-
faces.

6. Discussion

6.1 The Impact of Segregating Feature Interfaces

The difference when comparing the Jaccard distance between seg-
regated and original interfaces (Table 2) indicates a significant re-
duction of the number of members that need to be considered when
developers need to reason about product-line maintenance (== 62%
of reduction, on average).

As an example to illustrate such reduction, commit 2127 from
release 1.17 of BusyBox touched only one interface member (the
method expand_vars_to_list) of feature CONFIG_HUSH. This
feature has 23 interface members, in total, though. Figure 6 illus-
trates the original interface of the feature CONFIG_HUSH.

CONFIG_HUSH

expand_vars_to_list done_command
save_and_replace_G_args find_builtin_helper
syntax_error_at expand_pseudo_dquoted

syntax_error_unterm_ch new_pipe

run_pipe builtin_eval
setup_string_in_str syntax_error_unexpected_ch
o_addstr add_string_to_strings

syntax_error
expand_string_to_string
o_addQchr
setup_file_in_str
run_applet_main

o_finalize_list

o_addchr

free_strings
syntax_error_unterm_str

Figure 6. Original interface of CONFIG_HUSH.

In a original interface, a simple change in expand_vars_to_
1list would demand that the other 22 (out of 23) interface members
need to be considered by the developer when reasoning about the
effects of this change—that is, about 96% of the members would
have been unnecessarily considered in commit 2127. In the seg-
regated interface of feature CONFIG_HUSH, there are five clus-
ters. The cluster containing the member touched in commit 2127
(expand_vars_to_list) has only two members. Figure 7 illus-
trates the segregated feature interface of feature CONFIG_HUSH.
With our segregated interface, among the 23 members, the de-
veloper needs to consider only one member more (o_finalize_
list) out of 23 interface members (i.e. =~ 4%). Members of other
clusters are unlikely to be related to expand_vars_to_ list, thus
do not need to be considered by developers.

Despite the benefits, our approach may produce wrong re-
sults. Figure 7 illustrates one possible improvement in our clus-
tering approach. The member syntax_error_unexpected_ch

CONFIG_HUSH

expand_vars_to_list C/Uster Liadd string_to_strings
o_finalize_list expand_string_to_string
free_strings

Cluster 2 o_addchr

done_command

run_applet_main o_addQchr
save_and_replace_G_args o_addstr Cluster 4
setup_file_in_str

Cluster 5

syntax_error_unexpected_ch iinew_pipe
run_pipe
setup_string_in_str

Cluster 3

builtin_eval
expand_pseudo_dquoted
find_builtin_helper
syntax_error
syntax_error_at
syntax_error_unterm_ch
syntax_error_unterm_str

Figure 7. Segregated interface of CONFIG_HUSH.

seems to be located in the wrong cluster. Members starting with
the prefix syntax_error_ may be related and should be con-
sidered together by developers. However, four members starting
with the prefix syntax_error_ are located in one cluster while
syntax_error_unexpected_ch is in a different one. A possi-
ble reason for the wrong location is related to the MRG (cf.
Section 3.2). The MRG represents relationships between inter-
face members found in the source code. In this specific case, the
weight of the edge between the members starting with the prefix
syntax_error_ and syntax_error_unexpected_ch had a low
value. As a consequence, the clustering algorithm segregated parts
of the MRG, thus relating syntax_error_unexpected_ch to the
other members. As future work, we shall consider the similarity of
names as a variable in our MRG (i.e., semantic coupling ). Simi-
lar names could have different weights in the MRG, thus avoiding
segregation of related members.

6.2 Stability of interfaces

An important issue for the adoption of our approach is the stability
of the segregated interfaces. A stable interface is an interface that is
not subject to significant changes of its members during evolution.
Frequent changes of clustered interfaces during evolution could be
a barrier for the adoption of our solution. Developers would need
to become familiar with a new organisation of interfaces again and
again. However, we observed that, since there are no considerable
changes in the structure of the product line, the clustered interfaces
also does not suffer many changes in their structure. This fact can
be observed in Table 3. We can notice that situation by observing
that the number of features, number of feature members, and the
average number of members in a cluster do not vary widely during
the evolution of BusyBox.

For instance, Table 3 shows a variation of 7 features from
the first release (54 features) to the last release (61 features). In
addition, the number of feature members (variation of 68 members)
remained stable. It is also important to mention that we observed
the members themselves also experienced only few changes along
the evolution. So, we can consider that the evolution of BusyBox
was not subject to considerable changes. In this case, we should
expect that the average number of members in a cluster remains
stable. In fact, the average number of members in a cluster showed
a very low variation along the evolution of BusyBox. Moreover, the
structure of each cluster also did not suffer considerable changes
along the evolution. Based on this result, we conclude that it is
likely that features and their dependencies stabilise as the product-
line evolution also stabilise. As a consequence, it is also likely that



Table 3. Information about the number of feature interface mem-
bers of BusyBox.

# of # of feature Avg. # of

Release f feature members
eatures members
per cluster
1.13 54 263 3.81
1.14 57 309 3.96
1.15 59 315 3.89
1.16 60 314 3.83
1.17 55 304 4.11
1.18 58 325 4.11
1.18.5 59 326 4.07
1.19 62 334 4.07
1.20 61 333 4.06
1.21 61 331 4.04
mean 58.6 3154 3.9

segregated interfaces also stabilise with time. In this context, we
argue that the adoption of our approach in evolving product lines
does not demand a lot of effort from developers to become familiar
with segregated interfaces.

6.3 Nature of Changes

Another important factor that impacts our results are the commits
used to validate our approach. Depending on characteristics of the
commit, the Jaccard distance for some segregated interfaces tends
to be high when compared to the majority of the results. For in-
stance, commit 2121 involved changes to 20 interface members of
9 different features. One can notice that many interface members
(possibly from multiple features) have been changed in this single
commit. In this commit, the number of features being changed is
exceptionally high. The reasons for a coarse-grained commit like
that are many. For example, intrinsic characteristics of the mainte-
nance task may demand changes in several interface members. The
problem is that, the more members are changed in a single commit,
the lower is the chance that a cluster comprises all these members.
Developers might have to analyse several interface clusters within
a feature to comprise all members that must be considered. Even
worse, when commits involve changes of members from different
features, it is challenging to reach a good result, since we are us-
ing commits as our ideal model of cluster. In the example presented
here, we can notice that the number of members changed in a single
commit (20 interface members of 9 different features) is higher than
the average number of members within a cluster (3.9 members per
cluster, see Table 3). As a consequence, the Jaccard distance mea-
sured for this commit is expected to be high. Therefore, we can say
that coarse-grained commits can compromise the effectiveness of
our solution.

Despite of the aforementioned issues, the majority of the com-
mits usually comprise changes in program elements that are some-
how related. Table 4 provides information regarding the number of
commits, number of program elements changed in a release, and
average of program elements changed per commit. One can ob-
serve that, in general, releases with an average number of program
elements per commit greater than the total average number (i.e.,
1.86 elements per commit) had the longest Jaccard distances (see
Table 2). In this case, we can argue that only exceptional cases of
commits may compromise our approach. Still, the results are better
than the obtained results for original interfaces.

Table 4. Information about the number of program elements
changed per commit.

# of

# of Avg. # of elements
Release . elements .
commits changed per commit
changed

1.13 384 626 1.63
1.14 272 535 1.97
1.15 438 775 1.77
1.16 422 646 1.53
1.17 356 485 1.36
1.18 5 30 6.00
1.18.5 49 48 0.98
1.19 229 283 1.24
1.20 166 197 1.19
1.21 271 257 0.95
mean 259.2 388.2 1.86

7. Threats to Validity

Conclusion validity. Conclusion validity concerns the relation-
ship between the treatment and the outcome. In this study, potential
threats arise from the statistical tests used to support our conclu-
sions. To mitigate this threat wherever possible, we used statistical
tests obeying the characteristics of our data. In particular, we used
non-parametric tests, which do not make any assumption on the
underlying data distribution regarding variances and types.

Internal validity. Internal validity is the degree to which conclu-
sions can be drawn about the causal effect of independent variables
on the dependent variables. In our study, potential threats arise from
the tuning of the MCL algorithm that may affect the results. Chang-
ing the only parameter of the algorithm (i.e., the inflation parame-
ter) will affect the granularity of the clusters, thus affecting the Jac-
card distances used to compare the results. We mitigated this threat
by calibrating the algorithm to use the recommended value indi-
cated by the author of the algorithm, which is based on the number
of members to be clustered (Section 4.3.2). A further threat arises
from the fact that we focus on conditional compilation as the vari-
ability mechanism for implementing features in the source code.
With conditional compilation, features are often tangled and scat-
tered in the source code. This choice means that a feature may have
(1) many members in its interface, and (ii) many of them may not be
cohesively related to each other and, therefore, may not be relevant
for each change propagation. This situation could have been dif-
ferent if we had decided to analyse product lines implemented us-
ing a compositional approach (e.g., aspect-oriented programming).
However, we argue that conditional compilation is the most-widely
used mechanism to implement product-line features [21]. More-
over, BusyBox (Section 4.2) is an industrial project. So, we be-
lieve the results extracted from this product line can be a first step
towards the generalisation of the results. In fact, BusyBox con-
tains categories of features implemented in a wide range of differ-
ent ways: from fully-modularized features to highly-scattered and
highly-tangled features.

External validity. Threats associated with external validity con-
cern the degree to which the findings can be generalised to the
wider classes of subjects from which the experimental work has
drawn a sample [39]. In our work, this is a particularly important
threat to validity in face of the wide range of diverse product lines
implemented using conditional compilation. In the experiment re-
ported here, this threat to validity is somewhat mitigated by the
fact that we selected BusyBox (Section 4.2) to conduct our study.
BusyBox can be considered as a paradigmatic case study, which



represents many other product-line implementations based on con-
ditional compilation due to, for example, its size, number of fea-
tures, and number of valid configurations [23]. In addition, since
we are analysing different releases of the same product line, there
is no risk that the variation due to individual differences of releases
is larger than due to the treatment.

8. Related Work

Feature modularity. Feature modularity has been a long-standing
goal of feature-oriented software development [2]. While some re-
searchers view features as modular units of behavior and composi-
tion, others pointed out that, at the source-code level, most imple-
mentation mechanisms provide merely syntactic compositions, and
thus lack proper interface abstractions and modular reasoning. In
this context, Késtner et al. pinpoint two different notions of feature
modularity: one based on locality and cohesion, and another based
on information hiding and interfaces [22]. Modularity means local-
ity and cohesion when a feature is viewed as a unit of composition
that has the goal of making itself explicit in design and implemen-
tation [2]. Therefore, everything related to a feature is placed into a
separate structure called feature module [5].

Another view of feature modularity is rooted in the concept of
information hiding and interfaces. The idea is to distinguish be-
tween an internal and an external part of a feature module. The in-
ternal part is hidden. The external part is called interface and con-
trols the communication between different feature modules [22].
Most of the work on feature modularity has focused on locality and
cohesion of features as a criterion for system decomposition and
assembly. Examples of approaches for improving feature modular-
ity include architecture-based product lines (based on frameworks
or components) [8], feature-oriented programming [3, 10, 40], as-
pectual feature modules [5], and superimposition [4]. Despite the
improvement of feature modularity in those cases, simple solutions
such as conditional compilation prevail in practice [15, 17, 24].
Nevertheless, there is a lack of studies driving efforts towards fea-
ture interfaces in solutions based on (i) locality and cohesion, and
(i1) in widespread adopted solutions such as conditional compila-
tion. Our work suggests a way of organising feature interface. This
organisation is based on structural properties of feature dependen-
cies agnostic of the implementation approach. This way, our work
enhances feature modularity by providing organised feature inter-
faces to support change propagation in both compositional and an-
notative approaches.

Finally, there is substantial progress in solving problems that
threat modularity of features. The feature-interaction problem is
considered a major threat to modularity in that the behavior of
one feature may be affected by the presence of another feature [6].
So, developers must analyse the consequences of all possible fea-
ture interactions to find the undesired ones. In other words, the
feature-interaction problem also hinders independent feature main-
tenance. Some studies address with feature interactions and its
problems [3, 6, 9]. Despite the similar focus of these studies to
our approach, none of them aims at improving feature interfaces to
support product-line maintenance.

Feature interfaces. Ribeiro et al. proposed an approach for gen-
erating interfaces of product-line features [41, 42]. They defined
the concept of emergent interfaces for product lines implemented
with conditional compilation. Their approach aims at establishing
interfaces between features on demand — based on source code —,
with the goal of preventing developers from breaking other features
when performing maintenance tasks. Despite the generation of in-
terfaces, this approach generates only interfaces related to specific
parts of the source code that are of interest, and thus do not allow
having a global view of the system. In other words, unlike our work,

emergent interfaces do not address the problem of large/monolithic
interfaces by segregating them.

Schréter et al. proposed the idea of feature-context interfaces
for composition-based product lines [44]. The idea is to show the
developer of a feature the interface members of other features that
can be safely accessed from the current context without risking dan-
gling references. The reasoning about the presence of the feature
interface members is based on the feature model. We also use the
current context in our approach, but, in contrast, we aim at identi-
fying related interface members within the same feature interface.
Furthermore, we focus on preprocessor-based product lines and we
do not use the feature model to reason about the presence of other
features in the current context.

There is further work that concentrates on interfaces in ap-
proaches used to implement product lines or in variability-aware
analysis approaches supported by interfaces. For example, Késtner
and colleagues propose a variability-aware module system for
product lines [23]. This approach infers interfaces for modules
focusing on type checking of product-line configurations. Kicza-
les and Mezini propose aspect-aware interfaces, computing an as-
pect’s dependencies on a system’s join points and displaying these
dependencies as annotations on the explicit interfaces of advised
code [26]. Li et al. propose a new methodology to verify cross-
cutting features as open systems by using a model of semantic inter-
faces that supports automated, compositional, and feature-oriented
model checking [27, 28]. Blundell et al. propose a parametrised in-
terface for verifying product-lines [11]. Such interface lifts proper-
ties of individual features to composed features, to verify temporal
properties of such features. However, none of these studies consid-
ers interfaces in the light of for supporting maintenance tasks.

Automatic Modularisation. The problem of automatic modular-
isation (also referred to as automatic-system clustering) has been
extensively studied [33]. The idea is to help developers creating a
good mental model of system’s organisation. The field was estab-
lished by the seminal work of Mancoridis et al. [19, 32, 33, 36, 43].
In this work, the authors use a hill-climbing algorithm as the pri-
mary search technique for automated software-module clustering.
Several other meta-heuristic search techniques have been applied,
including genetic algorithms [19, 32, 36]. However, all these stud-
ies focus on the most common application of clustering in auto-
matic modularisation: software-module clustering. We apply the
idea of clustering to enhance the modularity of features by seg-
regating feature interfaces. Regarding the automatic modularisa-
tion of interfaces, after the introduction of the interface segrega-
tion principle [35], some studies have proposed ways of segregat-
ing feature interfaces. For instance, in a recent work, Romano et al.
propose a way of refactoring fat interfaces (i.e., interfaces whose
clients invoke different subsets of their members) of classes of
object-oriented programs using genetic algorithms [43]. We do not
consider refactoring ill-defined interfaces. Furthermore, identify-
ing the interfaces of classes in an object-oriented program is much
easier than in conditional-compilation-based product lines since all
the classes are already modularised. We focus on segregating in-
terfaces of product-line features instead of classes’ interfaces. Our
study was the first to systematically investigate and compare the
co-relation of segregated interfaces and original interfaces.

9. Conclusion

In practice, the lack of feature modularity complicates the mainte-
nance of complex preprocessor-based product lines [2]. As features
can be heavily scattered across the source code, developers need to
consider many program elements to understand the feature itself
and its dependencies. Developers usually cope with the complexity
during maintenance using interfaces. Analogously, a feature inter-



face contains all program elements of the source code belonging to
the feature that provides external access for other features. As rea-
soning about all feature interface members alone is complex, we
argue that often only a subset of interface members is relevant to a
single maintenance task.

In this paper, we proposed a technique for automating the seg-
regation of feature interfaces to maximise the cohesion of interface
members that are highly related, to identify the usefulness of the
reduced feature interface in practice. We proposed a representation
(the member relationship graph, MRG) that is able to capture the
collaboration between interface members and apply a clustering al-
gorithm on it to group highly-related members. To evaluate our ap-
proach, we selected ten versions of Busybox, we constructed the
MRG:s for all versions and re-organised the feature interfaces using
our technique. Using changes in the commits of the subject system
as a foundation, we analysed how well segregated feature interfaces
can support developers with maintenance tasks in comparison to the
original feature interfaces. In other words, we analysed the number
of interface members likely to be unnecessarily considered by de-
velopers in both types of feature interfaces. The results of our study
show a pronounced difference of approximately 62% in favour of
segregated interfaces regarding the reduction of interface members
likely unnecessarily considered by developers during maintenance.
Furthermore, we observed that our segregated interfaces stabilise
with time. So, the adoption of our approach in product-line evo-
Iution does not demand a lot of effort from developers to become
familiar with our segregated interface after every change in a re-
lease. Finally, we learned that segregating feature interfaces may
help developers to refer to members that potentially correspond to
a maintenance task. This way, the effort to reason modularly about
features can be reduced, and thus the maintenance-task difficulty
and number of potentially related program elements to observe.

As far as future work is concerned, we plan (i) to use additional
software product lines in our experimentation, (ii) to use product
lines implemented with other approaches (e.g., aspect-oriented pro-
gramming, feature-oriented programming, etc.), (iii) to use other
maintenance factors (e.g., bugs) instead of only relying on co-
changes in order to assess the usefulness of segregated interfaces,
(iv) to evaluate our approach using different clustering algorithms
and other techniques to improve the clustering based on other prop-
erties (e.g., similarity of methods’ names [1]), and (v) to incorpo-
rate approaches to select only relevant commits to be considered in
our study (e.g., [47]).
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