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Abstract—Resilience is the ability of the network to maintain
an acceptable level of operation in the face of anomalies, such
as malicious attacks, operational overload or misconfigurations.
Techniques for anomaly traffic classification are often used to
characterize suspicious network traffic, thus supporting anomaly
detection schemes in network resilience strategies. In this paper,
we extend the PReSET toolset to allow the investigation, compar-
ison and analysis of algorithms for anomaly traffic classification
based on machine learning. PReSET was designed to allow
the simulation-based evaluation of resilience strategies, thus
enabling the comparison of optimal configurations and policies for
combating different types of attacks (e.g., DDoS attacks, worms)
and other anomalies. In such resilience strategies, policies written
in the Ponder2 language can be used to activate/reconfigure
traffic classification modules and other mechanisms (e.g., traffic
shaping), depending on monitored results in the simulation envi-
ronment. Our results show that PReSET can be a valuable tool
for network operators to evaluate anomaly traffic classification
techniques in terms of standard performance metrics.

I. INTRODUCTION

Computer and communication networks are becoming in-
creasingly important in supporting business, leisure and ev-
eryday activities in general. However, due to the possibility
of cyber-attacks and security threats, there is a growing need
for resilience to become a key property in computer networks.
Resilience is the ability of the network to maintain an ac-
ceptable level of operation, even in the face of anomalies
such as malicious attacks, operational overload, configuration
problems or equipment failures [1].

Resilience strategies can be defined in terms of the con-
figuration of mechanisms for detection and remediation. On
the one hand, detection mechanisms such as link monitors,
anomaly detection systems and traffic classifiers allow the
identification and characterization of network conditions. On
the other hand, remediation mechanisms such as traffic limiters
are used in the subsequent mitigation of undesirable char-
acteristics in the network. Resilience management requires
the configuration of these mechanisms to be dynamically
refined when new information about the network becomes
available in response to, for example, high resource utilization,
performance degradation or application specific alarms.

In particular, traffic classification corresponds to a set of
techniques and algorithms that aim to categorize network

traffic. These techniques can be broken down into several
domains, including Internet application protocol classification
(i.e., classifying transport flows according to their correspond-
ing application layer protocol), packet classification (i.e., cate-
gorizing packets into transport flows), and traffic classification
for anomaly detection (i.e., separating malicious and non-
malicious flows). According to the result of the classification,
traffic belonging to a given class can be treated differently.
Due to the variety of applications, protocols and traffic profiles
involved, an approach that can adapt and learn from past
experiences is desirable. With this in mind, machine learning
techniques show a promising trend in this field [2].

As part of an integrated framework [3] for network re-
silience, PReSET [4] was designed in order to allow the off-line
evaluation of resilience strategies, through a simulation envi-
ronment. It allows network operators to analyze and identify
optimal configurations to combat different types of attacks and
other anomalies. PReSET (Policy-driven Resilience Strategy
Evaluation Toolset) comprises a series of network components
implementing resilience functions and services, integrated into
a policy-based management (PBM) framework. PBM [5] can
be used to control the operation of these mechanisms, and
to specify how they should be reconfigured dynamically as
information about the state of the network is obtained.

Anomaly classification so far has been missing within
the overall PReSET framework. In this paper, we extend
PReSET to allow the evaluation of anomaly traffic classifi-
cation techniques based on machine learning. Our primary
contribution is to offer to network operators and administrators
a toolset for the simulation and analysis of a variety of anomaly
classification algorithms, thus allowing the easy identification
of the best configuration parameters and network policies,
when different types of attacks and anomalies are simulated.
Furthermore, policies written in the Ponder2 [6] language
can then be used to enable/disable classification modules, or
replace the algorithm being used, depending on the quality
of the monitored results in PReSET. As a result, network
operators can be more confident when deploying the actual
mechanisms and configuration policies in the physical network.
We focus on two algorithms that have been widely used for the
classification of network traffic [2]: K-means and Naive Bayes,
which are used to categorize malicious and benign network
traffic behavior. Our results show that PReSET can be used to



evaluate anomaly traffic classification techniques in terms of
standard performance metrics.

This paper is organized as follows: Section II presents an
overview of PReSET. Section III outlines the problem of traffic
classification, as well as K-means and Naive Bayes. Section IV
describes our implementation and evaluation results. Section V
outlines the related work, and Section VI concludes the paper.

II. PRESET: A NETWORK RESILIENCE SIMULATOR

PReSET [4] has been developed to allow the simulation of
policy-based resilience strategies. It is based on the integration
of the OMNeT++ network simulator [7] and the Ponder2
policy framework [6]. PReSET supports the simulation of
network attacks and anomalies, and the evaluation of the
corresponding resilience strategies. Ponder2 policies can be
used to orchestrate the behavior of resilience mechanisms, e.g.,
components for intrusion detection and rate limiting, which
are implemented as OMNeT++ modules. PReSET enables the
design of optimal resilience strategies, and the identification
of configuration parameters and policies, which can then be
easily ported to physical devices.

Events generated by resilience mechanisms running within
OMNeT++ are sent to the policy framework using a socket
connection. These events indicate conditions observed, such
as the detection of an attack. An event can trigger one or
more event-condition-action (ECA) policies, and the actions
specified by a policy will determine which resilience mecha-
nism, running in the simulation, should be reconfigured and
how. For this, OMNeT++ modules are instrumented with an
XML-RPC server, which registers and exports a management
interface for each resilience mechanism available. Ponder2 can
then use these interfaces to invoke management actions to
adapt the operation of simulated components, for example, to
adjust the parameters of a traffic classification algorithm. The
measurement capabilities of the simulator allow the prompt
evaluation of management actions, for example, in terms of key
performance indicators. A number of mechanisms have been
implemented as OMNeT++ modules, including: LinkMonitor,
FlowExporter, RateLimiter and EntropyDetection [8].

III. NETWORK TRAFFIC CLASSIFICATION

Traffic classification techniques are capable of identifying
patterns in the sampled network traffic. Their purpose ranges
from the identification of malicious traffic up to the catego-
rization of Internet traffic for QoS support. However, with
the increasing sophistication of applications, protocols and
traffic profiles, strategies based on port numbers do not offer
reliable classification. Further, strategies based on payload
inspection can be very accurate if packets are not encrypted,
but at a high processing cost [9]. An alternative is the use
of machine learning. Traffic classification based on machine
learning can be used as part of anomaly detection schemes,
in order to separate flows into classes. In this paper we
focus on binary anomaly classification, i.e., malicious and non-
malicious classes. However, the same principles can be used
to separate network traffic into different classes of anomalies.

Next we describe the two algorithms used in this study: K-
means and Naive Bayes. We chose these due to their simplicity
and wide use in several investigations [2]. Note, PReSET is
extensible and other algorithms can be used instead.

A. K-means

K-means is an unsupervised clustering algorithm in which
data can be described by n general features. The grouping of
these features into a tuple of size n represents a point in an n-
dimensional space. A centroid is determined from the average
of the m closest points. Each centroid is represented as c; for
1 =0, ..., k, where k is the maximum number of centroids that
can be created during the clustering process. Each sample p
has its centroid ¢, defined by the following equation:

cp = minj_ \/Z?:o(Pj = ();)?

When a point is associated with the nearest centroid, the
centroid coordinates will be updated, which in turn will trigger
the recalculation of the closest centroid for all samples. K-
means is frequently used for traffic classification, and typically
few features are needed to describe a flow in K-means [2].

After all centroids have been calculated, it is necessary to
label the clusters, since K-means is only able to group similar
data with respect to certain features. Although K-means can
be used for Internet traffic classification in general (e.g., VoIP,
P2P) [9], we focus on separating benign from malicious traffic
because of the impact it has in network resilience.

B. Naive Bayes

Naive Bayes uses the theory of conditional probability of
a sample s belonging to class ¢. It is calculated as:

P(s|t)xP

P(t]s) = Zepi

Where P(t|s) is the conditional probability of class ¢
given the occurrence of sample s, P(s|t) is the conditional
probability of a sample s given the occurrence of class ¢, and
P(t) and P(s) are the probabilities of occurrence of class ¢
and sample s, respectively. Assuming a set of classes and s as
a data sample, a bayesian classifier estimates the most likely
class Cyyr, considering the s; constituent features of sample
s, where ¢ = 0, ..., n in the following manner:

_ P(51,52,83,...,sn|t)*P(t
CyrL = argmazier 0] nlt)*P(t)

Naive Bayes uses the naive hypothesis that the probability
associated with each flow feature is independent from the
others for a given class ¢. It is a supervised algorithm, which
means it must be provided with a classification model called
training set. The training set is a database where each entry
has a sample value for a given flow feature and a class label.
Our training set is based on the attack traces obtained from
simulations in PReSET.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

K-means and Naive Bayes have been implemented and
integrated in PReSET. We analyze two main aspects regarding
the use of these algorithms: (a) which flow features are
necessary for the classification; (b) what are the performance
metrics of these algorithms. We chose these algorithms to
illustrate how accurate flow classification can be observed
with the proposed classifier in the PReSET toolset, rather than
showing an exhaustive list of machine learning algorithms.



A. Prototype implementation and evaluation set-up

Figure 1 presents an overview of our Classifier
implementation and its integration within PReSET. The
Classifier module runs alongside other resilience com-
ponents (e.g., FlowExporter) deployed in the simulated
topology. It receives flow records periodically (customized
via a policy) from the FlowExporter component. The
Classifier pre-processes the received flows, by extracting
the relevant features (feature selection is discussed in Sec-
tion IV-B) and calculating their statistics. The Classifier
is extensible and a range of anomaly classification algorithms
can be used. Whenever a decision about a malicious flow is
made, an event is published into Ponder2, and ECA policies
will be used to decide how the network should be reconfigured
(e.g., specify that packets belonging to the malicious flow
must be dropped). To support the invocation of reconfiguration
actions by policies, XMLRPC adaptors are used to interface
with simulated components.
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Fig. 1. Overview of the Classifier implementation and PReSET integration

The scenario simulated was a Distributed Denial of Service
(DDoS) attack, which is based on the set of programs Tribe
Flood Network [10]. The general characteristics of this sim-
ulation scenario are summarized in Table I. In this scenario,
some parameters of the simulation were changed (such as start
time of the attack), generating sub-scenarios of interest.

TABLE 1. SIMULATION AND ATTACK TRAFFIC PARAMETERS
[ Parameter [ Value |
simulation total time 160 s
attack start time 40 s
malicious packet size 64 bytes
port to attack 80
probability of attack 0.1

To simulate large-scale IP networks and attacks, PReSET
relies on ReaSE [3], which permits the creation of realistic
topologies and the generation of background and attack traffic.
The simulation in our experiments included 912 hosts, 82
web servers and 188 routers. The traffic profile used in our
experiments is described in Table II.

TABLE II. TRAFFIC PROFILE PARAMETERS

[ Parameter [ Value |
type Web Traffic
request length 200 bytes
requests per session 10
reply length 1000 bytes
time between requests 2s
time to respond 0.5s
time between sessions 3s

In total, 843 flows were observed, of which 32 were ma-
licious. Malicious flows come from malicious hosts launching
the DDoS attack. It is noteworthy that each flow is considered
unidirectional.
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Fig. 2. All features distribution

B. Preliminary analysis and feature selection

Each flow is represented by the 5-tuple (destination IP,
source IP, destination port, source port, protocol). During
the simulation, the following four traffic features (which are
widely used in the literature [2]) were collected for each
flow: packet count, byte count, flow duration and mean packet
inter-arrival-time. Although feature selection is typically a
challenging issue, it is still possible to find a set of relevant
features by inspection. Based on the data collected from
the simulator, a two-dimensional plot on each feature was
produced, and the distribution of data was observed. These
results can be seen in Figure 2, which shows all flows with
their respective feature values. Observing the distributions, the
packet count and byte count features seem to more clearly
distinguish different flow samples. In order to validate the
classification given by the learning algorithms in this paper,
all the malicious flows were manually identified. This was
possible due to the ease of customization offered by PReSET.
This manual classification could then be used to benchmark the
performance of the algorithms analyzed in the next sections.

C. K-means analysis

The K-means implementation for the Classifier was
executed on all 843 flows involved in the PReSET simulation.
The primary goal of this experiment was to identify malicious
flows, by separating them in a specific centroid. In a first
analysis, we used K-means configured with two centroids
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Fig. 4. K-means classification k=3
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Fig. 5. K-means classification k=5

(k = 2). The result of this clustering is illustrated in Figure 3.
In total, all flow features defined in Section IV-B were used
and all possible 2 by 2 combinations for plotting the data
were considered. However, due to space limitations, Figure 3
presents only the cases in which a better separation of clusters
was observed. In particular, we confirmed that byte count and
packet count were good discriminators for the type of flow.
By using manual flow labeling we benchmarked the results in
Figure 3. We noted that the K-means algorithm clustered some
of the benign flows in centroid 1, and all the malicious flows
in centroid 2. However, it also wrongly assigned a few benign
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flows to centroid 2.

The use of K-means with a larger number of centroids
enables an increase in the degree of clustering, thereby allow-
ing more homogeneous centroids. For 3 centroids (k = 3),
flows that were previously misclassified now belong to a
specific centroid. The final clustering in this case is shown
in Figure 4, demonstrating that the isolation of the centroids
representing malicious flows is achieved (in centroid 3, data
type 1). Since K-means groups flows using feature information,
the centroids generated should represent flows that share a
similar profile.
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Fig. 6. Classification performance metrics for K-means with 3 centroids

For the execution of K-means with three centroids, Fig-
ure 6 summarizes our results with respect to the standard
performance metrics for classification algorithms [11]. The
performance metrics commonly used are true positive rate
(TPR), specificity (SPC), precision (p), negative predictive
value (NPV), false positive rate (FPR), false discovery rate
(FDR), accuracy (ACC) and F1-score. False positive flows are
those that should have been marked as benign, but were marked
as malicious. In contrast, false negatives are flows that should
have been classified as malicious, but were marked as benign.
According to Figure 6, 0.2% of the flows were misclassified
(FDR) using the K-means implementation.

However, the use of K-means poses some difficulties. The
first issue is to determine the optimal number of centroids.
Although it is feasible to choose the number of centroids using
standard mathematical methods (information criterion or the
Elbow method), it is still common to select the optimal number
based on manual inspection. To illustrate this, we extended our
analysis. Figure 5 shows the result when we run K-means with
five centroids (k = 5). Notice that new traffic classes arise even
within the centroid representing only the group of malicious
flows, which is due to overfitting. Also, there is an issue in
defining the optimal set of features to use, and in our case this
decision was made by analyzing the results through manual
inspection of the plots. Finally, K-means requires an oracle
to provide the labeling and the nature of a centroid; this is
because at the end of a run all centroids are determined, but
the information they represent is not known.

D. Naive Bayes analysis

Naive Bayes has been implemented as a complementary
approach to the classification provided by K-means, mainly to
assist in the labeling of the centroids produced. A training set
containing samples of malicious traffic manually classified and
other general samples was used. This training set consisted of
562 flows, divided into malicious and non-malicious samples.
During the test phase, all 843 flows were used.

The algorithm calculates the conditional probability of a
given flow being malicious or not using the training set. Given
a flow f with a feature value v, an interval threshold ¢ (defined
a priori) is used such that all entries that are within the
interval [v — t,v + t] are considered candidates for labeling
f. These entries are separated in malicious and non-malicious

and used to calculate the most likely class for f using the
conditional probability for every feature. The results of this
classification can be seen in Figure 7 where each flow has a
likelihood of being malicious and non-malicious. Notice that
every flow has two probabilities calculated: malicious and non-
malicious probability!. Subsequently to the calculation of the
class probabilities, the Naive Bayes algorithm chooses the most
probable class for a flow and outputs this class. When the
training set is unable to provide sufficient information for the
classification, a zero probability is returned and in case of tied
probabilities, none of the classes is returned and the PReSET
classifier module assumes that the flow is non-malicious.
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Figure 8 summarizes the standard classification perfor-
mance metrics for the Naive Bayes algorithm. According to
Moore and Zuev [12], a precision of about 60% is expected
for an implementation of Naive Bayes without advanced tech-
niques, such as kernel estimation. In our results, we observed
a precision of 59.2%, and also a low FPR of only 1.58%.
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Fig. 8. Classification performance metrics for the Naive Bayes algorithm

E. Discussion

New flows could be captured by K-means and assigned
to a centroid. In this case, it would be enough for the Naive
Bayes algorithm to classify at least one flow within the centroid

'Naive Bayes can be used to classify flows. However, it also provides
classification of individual packets. In this case, a flow is considered malicious
when the number of packets classified as malicious exceeds a certain limit.



to identify all other remaining flows in this cluster. Samples
that could not be classified by Naive Bayes could be clus-
tered by K-means and thereby have their class inferred from
other flows within the same cluster. Given the complementary
characteristics of K-means and Naive Bayes, their joint use
seems to be a viable option. As part of our future work, we
will investigate how PReSET can be used to combine different
classification techniques. A key feature of PReSET is that it
allows the use of policies written in Ponder2 to dynamically
reconfigure resilience mechanisms in response to monitored
events in the simulation. Future work will also investigate
how the algorithms analyzed in this paper can be reconfigured
through policies [8] (e.g., dynamically altering the parameters
of the algorithms or recorded traffic features, according to the
performance of the classifier). Furthermore, more complete
resilience strategies will be evaluated, by having policies to
block or limit malicious traffic that is identified.

V. RELATED WORK

Gamer and Mayer [13] describe the use of OMNeT++ to
evaluate the detection of large-scale network attacks, such as
DDoS and worm propagations. In particular, OMNeT++ has
been integrated with Distack [14], a framework for evaluating
detection mechanisms. These mechanisms are based on a
combination of shared libraries for basic functions, such as
packet inspection, filtering, and sampling. PReSET itself uses
some of the functionality provided by Distack. Further, Lam
et al. [15] present techniques for the evaluation of resilience
strategies against a variety of attacks also in OMNeT++. The
authors demonstrate metrics to assign scores, which identify
the parameters that influence the performance of resilience
strategies. While these investigations have similarities with
the theme of our paper (evaluation of resilience strategies in
simulation environments), our work differs in the sense that it
focuses specifically on the evaluation of traffic classification
mechanisms. The contributions presented in this paper not
only complement the work in [13], [14] and [15], but also
extend PReSET with the ability to allow the development and
evaluation of strategies for anomaly traffic classification.

VI. CONCLUSIONS

Traffic classification is an important component in strate-
gies used to ensure network resilience against, for example,
malicious attacks. Classification allows categorizing the net-
work traffic in a number of classes. Further, as result of the
classification, traffic belonging to a particular class can be
treated differently (e.g., dropped or rate limited). In this paper,
two algorithms for anomaly traffic classification based on
machine learning were implemented and analyzed in PReSET.

Our main goal with this paper is to offer to network opera-
tors a toolset for the simulation and analysis of anomaly traffic
classification algorithms, thus allowing the easy identification
of the best algorithms, configuration parameters and network
policies, when different types of attacks and anomalies are
simulated. The toolset supports the analysis and comparison
of classification techniques. By using characteristics observed
in the simulation, for example, the required sampling rate,
the computational cost, the classification accuracy and the
percentage of false positives, PReSET permits the execution of
reconfiguration mechanisms. As future work, we will evaluate

policies written in Ponder2 to enable/reconfigure classification
modules, depending on the quality of the results. We also plan
to extend PReSET with alternative classification algorithms,
including Support Vector Machine (SVM) and AutoClass [2].
This will permit a more systematic and comprehensive com-
parison of classification techniques.
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