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Abstract – This paper considers mobility tracking in wireless
communication networks based on received signal strength indi-
cator measurements. Mobility tracking involves on-line estimation
of the position and speed of a mobile unit. Mobility tracking is for-
mulated as an estimation problem of a hybrid system consisting of
a base state vector and a modal state vector. The command is
modelled as a first-order Markov process which can take values
from a finite set of acceleration levels. In order to cover the wide
range of acceleration changes, a set of acceleration values is pre-
determined. Sequential Monte Carlo algorithms – a particle filter
(PF) and a Rao-Blackwellised particle filter (RBPF) are proposed
and their performance evaluated over a synthetic data example.

Keywords: mobility tracking, Monte Carlo methods, wireless
networks, hybrid systems, Rao-Blackwellisation, Singer model

1 Introduction
Mobility tracking is one of the most important features of
wireless cellular communication networks. Data from two
types of stations are usually used: base stations which po-
sition is known and mobile stations (or mobile users) which
location and dynamic motion is being estimated.

Mobility tracking techniques can be divided in two
groups [1]: methods in which the position, speed, and ac-
celeration are estimated versus conventional geo-location
techniques, which only estimate the position coordinates.
Approaches for mobility tracking rely on Kalman filtering
[1, 2, 3, 1], hidden semi-Markov models [4, 5, 3] and se-
quential Monte Carlo filtering [6]. Two types of measure-
ments can be used: pilot signal strengths from different base
stations measured at the mobile unit and the corresponding
propagating times.

The Kalman-filtering algorithms developed in [1] for
real-time tracking of the location and dynamic motion of a
mobile station in a cellular network have all limitations and
advantages coming from the Kalman filtering framework:
necessity of linearisation and the coming from this inaccu-
racies. The two algorithms proposed in [1] use the pilot
signal strengths from neighbouring base stations, i.e., the
Received Signal Strength Indication (RSSI), although they
are suitable for signal measurements such as time-of-arrival
(TOA) information. The mobility model is linear driven

by a discrete command process that determines the mobile
station’s acceleration. The command process is modelled
as a semi-Markov process over a finite set of acceleration
levels. The first algorithm consists of an averaging filter
for processing pilot signal strength measurements and two
Kalman filters, one to estimate the discrete command pro-
cess and the other to estimate the mobility state. The sec-
ond algorithm employs a single Kalman filter without pre-
filtering the measurements and is able to track a mobile sta-
tion even when a limited set of pilot signal measurements
is available. Both of the proposed algorithms can be used
to predict future mobility behaviour, which can be used to
resource allocation applications.

Yang and Wang [6] developed a Monte Carlo algorithm
for joint mobility tracking and hard handoff detection in
cellular networks. In their work mobility tracking involves
on-line estimation of the location and speed of the mobile,
whereas handoff detection involves on-line prediction of the
pilot signal strength at some future time instants. The opti-
mal solution of both problems is prohibitively complex due
to the nonlinear nature of the system.

In this paper we focus on mobility tracking based on sig-
nal strength measurements. In contrast to previous works
[1, 2, 7, 6] mobility tracking in cellular networks is formu-
lated here as an estimation problem of hybrid systems which
are systems with a base state vector and a mode (modal)
state vector. The base states are continuously evolving,
whilst the modal states can undergo abrupt changes. This
formulation together with the sequential Monte Carlo ap-
proach provides us with a powerful tool for mobility track-
ing. A particle filter and a Rao-Blackwellised particle filter
are developed and their performance investigated.

The outline of the paper is as follows. Section 2 contains
the problem formulation. Section 3 presents the mobility
state and observation models. The mobility tracking and
prediction within Bayesian framework is given in section 4.
A particle filter for mobility estimation in wireless cellular
networks is presented in section 4 and a Rao-Blackwellised
particle filter is designed in Section 5. Their performance
evaluation is given in Section 7. Conclusions and ongoing
research issues are highlighted in the last Section 8.
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2 Problem Formulation

We consider the mobility tracking in cellular networks
within the sequential Monte Carlo framework. The dynam-
ics of the mobility unit is described by the equation

xk = f(xk−1,uk(mk),wk(mk)), (1)

where xk ∈ R
nx is the system base state, mk ∈ R

nm is the
modal state, uk ∈ R

nu specifies the command process, and
wk ∈ R

nx is the state noise, with k ∈ N being the discrete
time and N is the set of natural numbers. The measurement
equation is in the form

zk = h(xk,vk), (2)

where zk ∈ R
nz is the observation, and vk ∈ R

nv is the
measurement noise. Functions f(.) and h(.) are nonlinear
in general.

Assume that the observations are taken at discrete time
points T.k, with a discretisation time step T . A mobile user
may have abrupt and unexpected changes in acceleration
uk caused by different reasons such as traffic lights, road
turns. On the other hand, the acceleration of the mobile is
highly correlated. In order to model these both sides, fol-
lowing [6, 2, 7] we model the moving user as a dynamic
system driven by a command uk = (ux,k, uy,k)′ and a cor-
related random acceleration rk = (rx,k, ry,k)′ at time k,
i.e. the total acceleration is ak = uk + rk (see Fig. 1).
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Fig. 1: Structure of the mobility acceleration chain

The purpose is to estimate the current state of the moving
object on the basis of the measurements. Since the mea-
surement function is highly nonlinear and the measurement
errors are big, we propose a solution to the problem within
the sequential Monte Carlo framework.

3 Mobility State and Observation Models

Different state mobility models were previously used in cel-
lular networks such as the constant acceleration model [6]
and Singer-type models [3, 1]. In this paper we choose a
discrete-time Singer model [1] because it captures corre-
lated accelerations and allows for prediction of position,
speed, and acceleration of mobile users. Originally pro-
posed by Singer [8] for tracking targets in military systems,
the Singer model has served as a basis for developing many
effective maneuver models with various applications (see
[9] for a detailed survey), including for user mobility pat-
terns. In the original Singer model the command input is

supposed to be a Markov process, which has a time auto-
correlation, whilst the Singer-type model from [1] includes
a command process in explicit form.

For the sake of conciseness here we present directly the
discrete-time form of this Singer-type model. The deriva-
tion of the discrete-time model from the corresponding
continuous-time model is given in [1]. The state of the
moving mobile at time instant k is defined by the vector
xk = (xk, ẋk, ẍk, yk, ẏk, ÿk)′ where xk and yk specify
the position, ẋk and ẏk specify the speed, and ẍk and ÿk

specify the acceleration in the x and y directions in a two-
dimensional grid.

The motion of the mobility user can be described by the
equation

xk = A(T, α)xk−1 + B(T, α)uk + wk, (3)

where uk = (ux,k, uy,k)′ is a discrete-time command pro-
cess, the respective matrices in (3) are of the form

A(T, α) =
(

Ã 03×3

03×3 Ã

)
,B(T, α) =

(
B̃ 03×1

03×1 B̃

)
,

(4)

Ã =


1 T a

0 1 b
0 0 e−αT


 , B̃ =


 c

αa
αb


 , (5)

with a = (−1 + αT + e−αT )/α2, b = (1 − e−αT )/α,
c = (1 − αT + α2

2 T 2 − e−αT )/α2 . The random process
wk is a 6× 1 vector, T is the discretisation period, and α is
the reciprocal of the autocorrelation of the acceleration time
constant. Since wk is a white noise, E[wkwk+i] = 0, for
i �= 0. The covariance matrix Q of wk is Q = 2ασ2

1I2 ⊗
Q1(T ), where I denotes the unit matrix, ⊗ the Kronecker
product. The errors in xk and yk direction are assumed
the same (see [1] for details) and are characterised with the
standard deviation σ1. The matrix Q1(T ) is symmetric,
with dimension 3 × 3 and entries having the form:

q11 = (1 − e−2αT + 2αT + 2α3T 3/3 − 2α2T 2

−4αTe−αT )/(2α5), (6)

q12 = (e−2αT + 1 − 2e−αT + 2αTe−αT (7)

−2αT + α2T 2)/(2α4), (8)

q13 = (1 − e−2αT − 2αTe−αT )/(2α3), (9)

q22 = (4e−αT − 3 − e−2αT + 2αT )/(2α3), (10)

q23 = (e−2αT + 1 − 2e−αT )/(2α2), (11)

q33 = (1 − e−2αT )/(2α). (12)

The unknown command processes ux,k and uy,k are mod-
elled as a first-order Markov chain that takes values from
a set of acceleration levels A = {m1, . . . ,mM}, and the
process uk takes values from the set M = Ax ×Ay , with
transition probabilities πij = P (uk = mj |uk−1 = mi)
and initial probability distribution µi,0 = P{m = mi} for

modes mi ∈ A such that µi,0 ≥ 0 and
∑M

i=1 µi,0 = 1.



3.1 Observation Model

A commonly used model [1, 6] in cellular networks for
the distance between a mobile and a given base station (BS)
relies on the received signal strength indication (RSSI),
which is the average of the pilot signal strength received at
the mobiles. Denote zk,i the observation, the RSSI signal
received by a given mobile from the i-th BS with coordi-
nates (ai, bi) at time k. The RSSI can be modelled as a
sum of two terms: one due to path loss, and another due
to shadow fading. Fast fading is neglected assuming that a
low-pass filter is used to attenuate the Rayleigh or Rician
fade. Therefore, the RSSI (measured at dB) that the mo-
bile unit receives from a particular BS i at time k, can be
modelled as the following function

zk,i = z0,i − 10ηlog10(dk,i)1/2 + vk,i, (13)

where z0,i is a constant determined by the transmitted
power, wavelength, antenna height, and gain of cell i; η is
a slope index (typically η = 2 for highways and η = 4 for
microcells in a city); dk,i =

√
(xk − ai)2 + (yk − bi)2 is

the distance between the mobile unit and the base station;
(ai, bi) is the position of the i-th base station; vk,i is the
logarithm of the shadowing component, which is found to
be a zero mean, stationary Gaussian process with standard
deviation σv,i, typically from 4 – 8 dB [2]. The shadowing
component can considerably worsen the estimation process
as it is shown in [3, 1]. This difficulty can be overcome by
pre-filtering the measurements (e.g. by an averaging filter)
in order to reduce the observation noise.

To locate the mobile station in a two-dimensional plane,
three distance measurements to neighboring BSs are suf-
ficient. The necessary data are available in GSM systems
where within regular intervals the mobile samples the for-
ward signal levels of six neighbour links. For the consid-
ered problem the observation vector consists of the three
largest RSSI denoted zk,1, zk,2, zk,3. Hence, the measure-
ment equation is of the form

zk = h(xk) + vi,k, (14)

with h(xk) = (h1(xk), h2 (xk), h3(xk))′ , hi(xi,k) =
z0,i − 10ηlog(dk,i) a measurement vector
zk = (zk,1, zk,2, zk,3)′, shadowing components
vk,i = (vk,1, vk,2, vk,3)′ assumed to be uncorrelated
both in time and space, and having Gaussian distribution,
vk,i = N (0, σ2

v).

4 Mobility Tracking and Prediction within
Bayesian Framework

Now we look at the real-time estimation of the mobility of
a user within the Bayesian framework. Since the command
process u is unknown, a hybrid particle xk = {xk,mk}
is considered that fully characterises the target state and
mode. The mobility state xk can be evaluated at each time
instant from the conditional probability density function
p(xk|z1:k) and a set of measurements z1:k � {z1, . . . ,zk}

up to time instant k according to the Chapman-Kolmogorov
equation

p(xk|z1:k−1) =
∫

Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1.

(15)
After the arrival of the measurement zk at time k, the poste-
rior state probability density function (pdf) can be updated
via Bayes’ rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (16)

where p(zk|z1:k−1) is a normalising constant. The analyt-
ical solution to the above equations is very difficult and in-
tractable. We utilise the Monte Carlo technique [10] which
has proven to be very suitable and powerful for dealing with
nonlinear system dynamics.

The Monte Carlo approach relies on a sample-based con-
struction of these probability density functions. Multiple
particles (samples) of the variables of interest are generated,
each one associated with a weight characterising the quality
of a specific particle. An estimate of the variable of interest
is obtained by the weighted sum of particles. Two major
stages can be distinguished : prediction and update. Dur-
ing the prediction each particle is modified according to the
state model, including the addition of random noise in order
to simulate the effect of the noise on the variable of interest.
In the update stage, each particle’s weight is re-evaluated
based on the new sensor data. The resampling procedure is
dealing with the elimination of particles with small weights
and replicates the particles with higher weights.

4.1 A Particle Filter for Mobility Tracking
The developed particle filter (PF) is based on multiple mod-
els for the unknown acceleration u. Denote with N the
number of particles of the PF. A detailed scheme of the fil-
ter is given in Table 1.

Table 1. A particle filter for mobility tracking

Initialisation

1. k = 0, for j = 1, . . . , N ,
generate samples {x(j)

0 ∼ p(x0), m
(j)
0 ∼ P0(m) },

where P0(m) are the initial mode probabilities for the accel-
erations and set initial weights W (j) = 1/N .

Prediction Step

2. For k = 1, 2, . . . , j = 1, . . . , N ,
generate samples
x

(j)
k = A(T, α)x

(j)
k−1 + B(T )u(j)(m

(j)
k ) + w

(j)
k ,

where w
(j)
k ∼ N (0, Q(j)(0, m

(j)
k )),

m
(j)
k ∼ {π�m}M

�=1, m = 1, . . . , M for � = m
(j)
k−1;

Measurement Update: evaluate the importance weights

3. On the receipt of a new measurement, compute the weights

W
(j)
k = W

(j)
k−1L(zk|x(j)

k ). (17)

The likelihood L(zk|x(j)
k ) is calculated from (14)

L(zk|x(j)
k ) ∼ N (h(x

(j)
k ), σv).



4. Normalise the weights, Ŵ
(j)
k = W

(j)
k /

∑N
j=1 W

(j)
k .

Output

5. The posterior mean E[xk|z1:k]

x̂k = E[xk|z1:k] =
N∑

j=1

Ŵ
(j)
k x

(j)
k . (18)

Calculate posterior mode probabilities

6. P (mk = �|z1:k) =
∑N

j=1 1(m
(j)
k = �)Ŵ

(j)
k ,

where 1(.) is an indicator function such that
1(mk = �) = 1, if mk = �,
and 1(mk = �) = 0 otherwise.

Compute the effective sample size

7. Neff = 1/
∑N

j=1(Ŵ
(j)
k )2,

Selection step (resampling) if Neff < Nthresh

8. Multiply/ suppress samples {x(j)
k , m

(j)
k } with high/ low im-

portance weights Ŵ
(j)
k , in order to obtain N new random

samples approximately distributed according to the poste-
rior state distribution. The residual resampling algorithm
[11, 12] is applied. This is a two step process making use
of sampling-importance-resampling scheme.
* For i = 1, . . . , N , set W

(j)
k = Ŵ

(j)
k = 1/N .

9. Set k → k + 1 and return to step 2.

5 A Rao-Blackwellised Particle Filter for
Mobility Tracking

A major drawback of the particle filtering over sensor net-
works is that it might become prohibitively expensive when
a large number of particles is used. The mobility track-
ing algorithm has to possess such computational complex-
ity that allows an on-line implementation. The complexity
can be reduced and the estimation accuracy improved by a
procedure called Rao-Blackwellisation [13, 14, 15, 16, 17,
18, 19].

Rao-Blackwellisation is a technique improving particle
filtering by analytically marginalising out some of the vari-
ables (linear, Gaussian) from the joint posterior distribution,
and then the linear part of the system model is estimated by
a Kalman filter (KF), an optimal estimatior, whilst the non-
linear part is estimated by a PF. This leads to the fact that
a KF is attached to each particle. In the mobility tracking
problem the positions of the mobile unit are estimated with
a PF, the speeds and accelerations with a KF. Since the mea-
surement equation is highly nonlinear, the particle filter is
used to approximate this distribution. After the estimation
of the positions, these estimates are given to the KF as mea-
surements. As a result of the marginalisation, the variance
of the estimates is reduced compared to the standard PF.

Rather similar to the Rao-Blackwellisation approach is
the mixture Kalman filtering approach proposed by Chen
and Liu [20] where the system is represented by a lin-
ear conditional dynamic model and this way the problem
is solved by multiple Kalman filters run with the Monte

Carlo sampling approach. A formulation of the Rao-
Blackwellisation problem is done also in [21, 22] in a more
different way compared to [15].

The mobility model (1)-(2) is rewritten in the form

(
xpf

k

xkf
k

)
=

(
I Apf

0 Akf

)(
xpf

k−1

xkf
k−1

)
+

(
Bpf

u

Bkf
u

)
uk

+
(

Bpf
w

Bkf
w

)
wk, (19)

zk = h(xpf
k ) + vk, (20)

where xpf (pf short for particle filter) and xkf (kf short
for Kalman filter) is a partition of the state vector with w
assumed Gaussian. Assume that equations (19)-(20) have
the same properties like equations (1)-(2). Since the noise
wk is Gaussian,

wk =
(

wpf
k

wkf
k

)
∈ N ∼ (0,Q),Q =

(
Qpf Mpf

(Mpf )′ Qkf

)
.

(21)
Instead of directly estimating the pdf p(xk|z1:k), with the
entire state vector, consider the pdf p(xpf

k ,xkf
k |z1:k). Us-

ing the Bayes rule, this pdf can be factorised into two parts
according to

p(xpf
k ,xkf

k |z1:k) = p(xkf
k |xpf

k ,z1:k)p(xpf |z1:k). (22)

Since the measurements z1:k are conditionally independent
on xkf

k , the probability p(xkf
k |xpf

k ,z1:k) can be written as

p(xkf
k |xpf

k ,z1:k) = p(xkf
k |xpf

k ). (23)

Consider now the system

xkf
k = Akfxkf

k−1 + Bkf
u uk + Bkf

w wkf
k ,

zk = Apfxkf
k−1 + Bpf

u uk + Bpf
w wpf

k , (24)

where zk = xpf
k − f(xpf

k ). Since the system (24) is linear
and Gaussian, the optimal solution is provided by the KF.
We can assume a Gaussian form of the pdf (23), i.e.

p(xkf
k |xpf

k ) ∼ N (x̂kf
k|k−1,P

kf
k|k−1), (25)

where the estimate vector x̂kf
k|k−1 and the corresponding co-

variance matrix P kf
k|k−1 are calculated by the Kalman filter.

The mobility model is a Singer-type model which ac-
counts for correlations between the state vector compo-
nents. Hence, we cannot assume that the process noise wpf

is uncorrelated with wkf , i.e. M �= 0.
The second pdf from (22) can be written recursively [14]

p(xpf
k |z1:k) =

p(zk|xpf
k )p(xpf

k |xpf
1:k−1)

p(zk|z1:k−1)
p(xpf

1:k−1|z1:k−1).

(26)
Due to the nonlinear measurement equation we apply a

PF to solve (26). The weights are recursively calculated



based on the likelihoods p(zk|xpf,(j)
k ). The particles will

be sampled according to p(xpf,(j)
k |xpf,(j)

1:k−1). Using the state
equation for the xpf from (19) and having in mind (25), the
prediction step in the particle filter can be done as follows

x
pf,(j)
k+1 ∼ N (xpf,(j)

k + Apf x̂
kf,(j)
k|k−1 + Bpf

u u
(j)
k+1,

ApfP
kf,(j)
k|k−1(A

pf )′ + Bpf
w Qpf,(j)(Bpf

w )′. (27)

For each particle, one Kalman filter estimates
x

kf,(j)
k+1|k, j = 1, . . . , N . It should be noted that the

prediction of the nonlinear variables is used to improve the
estimates of the linear state variables.

Table 2 presents the developed Rao-Blackwellised Particle
Filter (RBPF).

Table 2. A Rao-Blackwellised PF for mobility tracking

Initialisation

1. k = 0, for j = 1, . . . , N ,
generate samples {xpf,(j)

0 ∼ p(xpf
0 ), m

(j)
0 ∼ P0(m) },

where P0(m) are the initial mode probabilities for the ac-
celerations. Initialise the Kalman filters by {x̂kf,(j)

0|−1 ∼
N

(
x̂kf

0|−1, P
kf
0|−1

)
} and set initial weights W

(j)
0 = 1/N .

Particle Filter Prediction Step

2. For j = 1, . . . , N ,
Predict the particles

x
pf,(j)
k+1 = N (x

pf,(j)
k + Apfx

kf,(j)

k|k−1 + Bpf
u u(m

(j)
k+1),

ApfP kf
k|k−1(A

pf )T + Bpf
w Qpf

w (Bpf
w )′), (28)

where m
(j)
k+1 ∼ {π�m}M

�=1 for � = m
(j)
k ;

3. Update step of the Kalman filters

Kk = P kf
k|k−1(A

pf
k )′(Sk)−1, (29)

P kf
k|k = P kf

k|k−1 − KkApfP kf
k|k−1, (30)

Sk = ApfP kf
k|k−1(A

pf )′ + Bpf
w Qpf (Bpf

w )′, (31)

For j = 1, 2, . . . , N

x
kf,(j)

k|k = x
kf,(j)

k|k−1 + Kk(z
(j)
k − Apf x̂

kf,(j)

k|k−1), (32)

where z
(j)
k = x

pf,(j)
k+1 − x

pf,(j)
k .

4. Prediction step of the Kalman filters

P kf
k+1|k = DP kf

k|kD′ + Bkf
w Q̄

kf
(Bkf

w )
′
, (33)

where

C = M ′(Qpf )−1, (34)

D = Akf − CApf , (35)

Q̄
kf

= Qkf − M ′(Qpf )−1M , (36)

For j = 1, 2, . . . , N

x
kf,(j)

k+1|k = Dx̂
kf,(j)

k|k + Cz
(j)
k + Bkf

u u(m
(j)
k+1). (37)

Measurement Update: evaluate the importance weights

5. Compute the weights

W
(j)
k+1 = W

(j)
k L(zk+1|xpf,(j)

k+1 ). (38)

The likelihood L(zk+1|xpf,(j)
k+1 ) is calculated from (14)

L(zk+1|xpf,(j)
k+1 ) ∼ N (h(x

pf,(j)
k+1 ), σv).

6. Normalise weights, Ŵ
(j)
k+1 = W

(j)
k+1/

∑N
j=1 W

(j)
k+1.

7. Output

x̂pf
k+1 ≈

N∑
i=1

Ŵ
(j)
k+1x

pf,(j)
k+1 , (39)

x̂kf
k+1 ≈

N∑
i=1

Ŵ
(j)
k+1x̂

kf,(j)

k+1|k, (40)

Calculate posterior mode probabilities

8. P (mk+1 = �|z1:k+1) =
∑N

j=1 1(m
(j)
k+1 = �)Ŵ

(j)
k+1,

where 1(.) is an indicator function such that
1(mk+1 = �) = 1, if mk+1 = �, and
1(mk+1 = �) = 0 otherwise.

Selection step (resampling)

9. If Neff < Nthresh resample
{xpf,(j)

k+1 , x
kf,(j)

k+1/k, m
(j)
k+1} in the same way as in the PF

from Table 1.

10. Set k → k + 1 and return to step 2.

Note that in the KF update and prediction step the filter
gain Kk, the predicted and estimated covariance matrices,
P kf

k|k, P kf
k−1|k are calculated once, which affords to reduce

the computational load.

5.1 Mobility Prediction
Based on the approximation of the filtering distribution
p(xk|z1:k) we seek to estimate the r-step ahead prediction
distribution (r ≥ 2 ). In a general prediction problem we
are interested in computing the posterior r-step ahead pre-
diction distribution p(xk+r|z1:k) given by ([21, 6])

p(xk+r|z1:k) =
∫

Rnx

p(xk|z1:k)

[
k+r∏

i=k+1

dxk:k+r−1

]
,

(41)
where xk+r = {xk,uk, . . . ,xk+r,uk+r}. The integrals in
(41) can be evaluated using the evolution equation (3), resp.
(19). Then the solution to the r step ahead prediction can
be given by performing the steps from Table 3.



Table 3. r step ahead prediction

• For i = 1, . . . , r, For j = 1, 2, . . . , N , sample
x

(j)
k+i = A(T, α)x(j)

k+i−1 +B(T )u(j)(mk+i)+w
(j)
k+i,

where w
(j)
k+i ∼ N (0,Q(j)(0,m

(j)
k+i)),

m
(j)
k+i ∼ {π�m}M

�=1, m = 1, . . . , M for � = m
(j)
k+i−1;

Then the predicted state estimate of the mobile unit is
equal to

x̂k+r/k =
Nmc∑
j=1

W
(j)
k x

(j)
k+r/k. (42)

6 Performance Evaluation

The developed Monte Carlo algorithms are evaluated over
a conventional hexagon cellular network (similar to those
in [6]). It is supposed that a map of the cellular network is
available and the centre coordinates of the base stations are
known.

7 Synthetic Data Example

The simulated service area contains 64 base stations with
cell radius of 2 km, as shown in Fig. 2. The mobile can
move to any cell of the network with varying speed and
acceleration. The discrete-time command processes ux,k

and uy,k can change within the range [−7 m/s2, 7 m/s2].
These commands ux,k and uy,k are assumed in the filters
to be independent Markov processes, each of them taking
values between the following acceleration levels

Ax = {0, 0, 1, −1, 0, 1, −1, 1, −1, 2.5, (43)

− 2.5, 2.5, −2.5, 5, −5, −5, 5},
Ay = {0, 1, 0, 0, −1, 1, 1, −1, −1, 2.5, (44)

− 2.5, −2.5, 2.5, 5, −5, 5, −5},

in units of [m/s2]. The simulated trajectory of the mo-
bile is generated according to the mobility model (3) and
with this trajectory the RSSI signals are randomly gener-
ated according to the observation equation (14) with differ-
ent noises for each simulation run. The randomness of the
RSSI comes from the randomness of the shadowing com-
ponent. At any sampling time, the observed RSSI signal is
chosen to be the three largest signal powers among all 64
BSs in the network. The simulation parameters are sum-
marised in Table 4. Additionally we take into account that
the estimated speed v̂ and acceleration â can not exceed

certain physical limits, i.e. v̂ =
√

ˆ̇x2 + ˆ̇y2 ∈ [0, 45] [m/s],

â =
√

ˆ̈x2 + ˆ̈y2 ∈ [−5, 5] [m/s2]. The particles that are
outside these intervals are eliminated (set to zero).
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Fig. 2: Centres of the base stations, the actual trajectory
of the mobility unit, estimated trajectories by the PF and
RBPF from a single realisation

Table 4. Simulation parameters

Discretisation time step T 0.5s
Correlation coefficient α 0.95

Path loss index η 2
Base station transmission power p0,i 0
Covariance σ2

w of the noise wk in (3) 1.95 m/s2

Transition probabilities pi,i 0.1
Initial mode probability vector µi,0 [1/i], i = 1, . . . , 17

Number of particles N = 2000

Threshold for resampling Nthresh = N/10

Number of Monte Carlo runs Nmc = 50

Covariance σ2
v of the noise vi,k 3 dB

After partitionning the state vector according to (19)
within the RBPF scheme the respective matrices of the PF
and KF are of the form

Apf =
(

T a 0 0
0 0 T a

)
,Bpf

u =
(

c 0
0 c

)
,Bpf

w = I2,

Qpf =
(

q11 0
0 q11

)
,M =

(
q12 q13 0 0
0 0 q12 q13

)
,

Akf =




1 b 0 0
0 e−αT 0 0
0 0 1 b
0 0 0 e−αT


 ,Bkf

u =




αa 0
αb 0
0 αa
0 αb


 ,

Bkf
w = I4,

Qkf =




q22 q23 0 0
q23 q33 0 0
0 0 q22 q23

0 0 q33 q33


 ,

where qij , i, j = 1, 2, 3 have the form (6)-(12).
The estimated and actual trajectories of the mobile unit

over a single realisation are given in Fig. 2. Figs. 3-4 show
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Fig. 3: Speed of the moving unit
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Fig. 4: Acceleration of the moving unit
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Fig. 5: RMSE of x and y positions combined
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Fig. 6: RMSE of x and y speeds combined

respectively the speed and acceleration of the testing sce-
nario. Short-time manoeuvers are followed by uniform mo-
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Fig. 7: RMSE of x and y accelerations combined
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Fig. 8: ME of x and y positions combined
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Fig. 9: Speed ME (x and y combined)

tions.
The root-mean-square error (RMSE) [23]

RMSE =
√

1
Nmc

∑Nmc

m=1
[(x̂k − xk)2 + (ŷk − yk)2]

(45)
is used to assess the closeness of the estimated trajectory
{x̂k, ŷk} to a given trajectory {xk, yk} over Nmc = 50
Monte Carlo runs. This position RMSE is presented in
Fig. 5. RMSEs are calculated also for the estimated speed
and acceleration components (Figs. 6-7). Both the PF and
RBPF have shown a reliable tracking performance. The
mean errors (MEs) combined in both coordinates are shown
in Figs. 8-10. The results show that the computational time
of the RBPF is reduced about 35% with respect to the PF.
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8 Conclusions

Two sequential Monte Carlo algorithms - a particle fil-
ter and a Rao-Blackwellised particle filter were developed.
They can be used to make efficient mobility tracking and
prediction in wireless networks. Their performance has
been evaluated over a synthetic data example. The Rao-
Blackwellised particle filter allows to decrease the compu-
tational complexity by reducing the number of required par-
ticles and shows slightly superior results to the particle filter
in terms of accuracy.

Open issues for future research are investigation of the
Monte Carlo framework for mobility tracking in ad hoc mo-
bile wireless networks with different propagation models,
different scenarios with single and multiple mobile units.
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