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Abstract. Since the environment for businesses is becoming more com-
petitive by the day, business organizations have to be more adaptive to
environmental changes and are constantly in a process of optimization.
Fundamental parts of these organizations are their business processes.
Discovering and understanding the actual execution flow of the processes
deployed in organizations is an important enabler for the management,
analysis, and optimization of both, the processes and the business. This
has become increasingly difficult since business processes are now often
dynamically changing and may produce hundreds of events per second.
The basis for this paper is the Constructs Competition Miner (CCM): A
divide-and-conquer algorithm which discovers block-structured processes
from event logs possibly consisting of exceptional behaviour. In this pa-
per we propose a set of modifications for the CCM to enable dynamic
business process discovery of a run-time process model from a stream of
events. We describe the different modifications with a particular focus
on the influence of individual events, i.e. ageing techniques. We further-
more investigate the behaviour and performance of the algorithm and the
ageing techniques on event streams of dynamically changing processes.

Key words: run-time models, business process management, process
mining, complex event processing, event streaming, big data

1 Introduction

The success of modern organizations has become increasingly dependent on the
efficiency and performance of their employed business processes (BPs). These
processes dictate the execution order of singular tasks to achieve certain business
goals and hence represent fundamental parts of most organizations. In the con-
text of business process management, the recent emergence of Big Data yields
new challenges, e.g. more analytical possibilities but also additional run-time
constraints. An important discipline in this area is Process Discovery: It is con-
cerned with deriving process-related information from event logs and, thus, en-
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abling the business analyst to extract and understand the actual behaviour of
a business process. Even though they are now increasingly used in commercial
settings, many of the developed process discovery algorithms were designed to
work in a static fashion, e.g. as provided by the ProM framework [21], but are
not easily applicable for processing real-time event streams. Additionally, the
emergence of Big Data results in a new set of challenges for process discovery
on event streams, for instance [16, 22]: (1) high event frequency (e.g. thousands
of events per second), and (2) less rigid processes (e.g. BPs found on the opera-
tional level of e-Health and security use-cases are usually subjected to frequent
changes).

In order to address the challenges we propose modifications for the Con-
structs Competition Miner (CCM) [15] to enable dynamic process discovery as
proposed in [16]. The CCM is a process discovery algorithm that follows a divide-
and-conquer approach to directly mine a block-structured process model which
consists of common BP-domain constructs and represents the main behaviour
of the process. This is achieved by calculating global relations between activities
and letting different constructs compete with each other for the most suitable
solution from top to bottom using ”soft” constraints and behaviour approxima-
tions. The CCM was designed to deal with noise and not-supported behaviour.
To apply the CCM on event streams the algorithm was split up into two indi-
vidually operating parts:

1. Run-time footprint calculation, i.e. the current footprint1, which repre-
sents the abstract ”state” of the system, is updated with occurrence of each
event. The influence of individual events on the run-time footprint is deter-
mined by two different strategies: time-based and occurrence-based ageing.
Since every occurring event constitutes a system state transition, the algo-
rithmic execution-time needs to be kept to a minimum.

2. Scheduled footprint interpretation, i.e. from the footprint the current
business process is discovered in a scheduled, reoccurring fashion. Since this
part is executed in a different lifecycle it has less execution-time constraints.
In this step the abstract ”computer-centric” footprint is transformed into a
”human-centric” business process representation.

The remainder of this paper provides essential background information (Sec-
tion 2), a discussion of related work (Section 3), a summarized description of the
original CCM (Section 4), the modifications that were carried out on top of the
CCM to enable Scalable Dynamic Process Discovery (Section 5), an evaluation
of the behaviour of the resulting algorithm for event streams of dynamically
changing processes (Section 6), and an outlook of future work (Section 7).

1 footprint is a term used in the process discovery domain, abstractly representing
existent ”behaviour” of a log, e.g. activity ”a” is followed by activity ”b”
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2 Background

Business Processes are an integral part of modern organizations, describing the
set of activities that need to be performed, their order of execution, and the en-
tities that execute them. Prominent BP examples are Order-to-Cash or Procure-
to-Pay. According to Ko et al. BPs are defined as ”...a series or network of value-
added activities, performed by their relevant roles or collaborators, to purposefully
achieve the common business goal” [8]. A BP is usually described by a process
model conforming to a business process standard, e.g. Business Process Model
and Notation (BPMN) [14], or Yet Another Workflow Language (YAWL) [19].
In this paper, we will focus on business processes consisting of a set of common
control-flow elements, supported by most of the existing BP standards: start and
end events, activities (i.e. process steps), parallel gateways (AND-Split/Join),
and exclusive gateways (XOR-Split/Join) (see [14, 19]). In Figure 1 an example
process involving all the introduced elements is displayed. Formally, we define a
business process model as follows [15]:

Definition 1 A business process model is a tupel BP = (A,S, J,Es, Ee, C)
where A is a finite set of activities, S a finite set of splits, J a finite set of joins,
Es a finite set of start events, Ee a finite set of end events, and C ⊆ F × F the
path connection relation, with F = A ∪ S ∪ J ∪ Es ∪ Ee, such that

– C = {(c1, c2) ∈ F × F | c1 6= c2 ∧ c1 /∈ Ee ∧ c2 /∈ Es},
– ∀a ∈ A ∪ J ∪ Es : |{(a, b) ∈ C | b ∈ F}| = 1,
– ∀a ∈ A ∪ S ∪ Ee : |{(b, a) ∈ C | b ∈ F}| = 1,
– ∀a ∈ J : |{(b, a) ∈ C | b ∈ F}| ≥ 2,
– ∀a ∈ S : |{(a, b) ∈ C | b ∈ F}| ≥ 2, and
– all elements e ∈ F in the graph (F,C) are on a path from a start event a ∈ Es

to an end event b ∈ Ee.

For a block-structured BP model it is furthermore required that the process
is hierarchically organised [15], i.e. it consists of unique join-split-pairs, each
representing either a single entry or a single exit point of a non-sequential BP
construct, e.g. Choice, Parallel, Loop, etc. The example process in Figure 1 is a
block-structured process. A similar representation gaining popularity in recent
years is the process tree, as defined based on Petri nets/workflow nets in [9].
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Fig. 1. Example business process with all element types included
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When a business process is automatically or semi-automatically executed
with a BP execution engine, e.g. with a Business Process Management System
(BPMS), an event log is produced, i.e. a all occurred events are logged and
stored. These logs and their contained events may capture different aspects of a
process execution, e.g. a different granularity of events are logged. In this paper
however, we only focus on a minimal set of event features: In order to allow the
discovery of the control-flow, every event is required to have a reference (1) to the
associated process instance and (2) to the corresponding activity. Furthermore,
we assume that the log contains exactly one event for each activity execution, i.e.
activity lifecycle events are not regarded. All events resulting from the execution
of the same process instance are captured in one trace. A trace is assumed to be
independent from other traces, i.e. the execution order of a process instance is
not in any way dependent on the execution of a second instance. Accordingly,
an event e is represented by a pair e = (t, a) where t ∈ N is the unique identifier
of the trace and a ∈ A is a unique reference to the executed activity.

The research area of Process Discovery is concerned with the extraction of
a business process model from event logs without using any a-priori informa-
tion [23]. Conventional challenges in process discovery originate from the moti-
vation to achieve a high quality of results, i.e. discovered processes should sup-
port as accurately as possible the behaviour contained in the log. In particular
that means, process discovery algorithms have to deal with multiple objectives,
e.g. precision, simplicity, fitness - over-fitting vs. under-fitting (see [23]). Process
discovery algorithms are usually assumed to be carried out in an static way as an
”offline” method. This is reflected by the fact that the input for these algorithms
is an entire log as conceptually shown by the following definition:

Definition 2 Let the log Ln = [e0, e1, ...en] be a sequence of n+1 events ordered
by time of occurrence ( ∀i < j∧ei, ej ∈ Ln : time(ei) ≤ time(ej)) and BPn be the
business process model representing the behaviour in Ln, then process discovery
is defined as a function that maps a log Ln to a process BPn:

ProcessDiscovery : [e0, e1, ..., en]⇒ BPn

3 Related Work

A large number of process discovery algorithms exist, e.g. Inductive Miner [9],
HeuristicsMiner [25], alpha-miner [20] and CCM [15]. These and many algo-
rithms have in common that at first a footprint of the log is created based on
which the process is constructed. Similar to the CCM, the following related al-
gorithms also discover block-structured processes: (1) Genetic process discovery
algorithms that restrict the search space to block-structured process models,
e.g. [4]. However, these are non-deterministic and generally have a high exe-
cution time due to exponentially expanding search space. (2) Another relevant
approach that is conceptually similar to the CCM is proposed in [9], the Induc-
tive Miner (IM): A top-down approach is applied to discover block-structured
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Petri nets. The original algorithm evaluates constraints based on local relation-
ships between activities in order to identify the representing construct in an
inductive fashion. In recent work, the IM has also been extended to deal with
noise [10]. Generally, in all discovery approaches based on footprints known to
the authors the footprint is represented by a direct neighbours matrix represent-
ing information about the local relations between the activities, e.g. for the BP
of Figure 1: h can only appear directly after g or e. As discussed in Section 4 the
CCM on the other hand extracts the process from a footprint based on global
relations between activities, e.g. h appears at some point after g or e.

However, of little importance for conventional process discovery algorithms
is their practicality with regards to an application during run-time: as defined
in Definition 2 process discovery is a static method that analyses an event log
in its entirety. An alternative to this approach is the immediate processing of
events when they occur to information of an higher abstraction level in order
to enable a real-time analysis. This approach is called Complex Event Process-
ing (CEP): a method that deals with the event-driven behaviour of large, dis-
tributed enterprise systems [11]. More specifically, in CEP events produced by
the systems are captured, filtered, aggregated, and finally abstracted to complex
events representing high-level information about the situational status of the
system, e.g. performance, control-flow, etc. The need for monitoring aspects of
business processes at run-time by applying CEP methodologies has been iden-
tified by Ammon et al., thus coining the term Event-Driven Business Process
Management (EDBPM) - a combination of two disciplines: Business Process
Management (BPM) and Complex Event Processing [1]. The dynamic process
discovery solution proposed in this paper is an application of EDBPM (see Sec-
tion 5). The motivation is to have a run-time reflection of the employed processes
based on up-to-date rather than historical information which essentially allows
business analysts to react quicker to changes or occurring bottlenecks etc. in
order to optimise the overall performance of the monitored processes. In accor-
dance to this objective process discovery algorithms for event streams have to
deal with two additional challenges as opposed to the traditional process discov-
ery algorithms:

1. The application of process discovery on event streams is executed in a real-
time setting and thus is required to conform to special memory and execution
time constraints. Especially with regards to many modern systems produc-
ing ”big data”, i.e. data that is too large and complex to store and process
all of it [12]. This means in particular, that online algorithms should be able
to (1) process an infinite number of events without exceeding a certain mem-
ory threshold and (2) process each event within a small and near-constant
amount of time [5].

2. Real-life BPs are often subject to externally or internally initiated change
which has to be reflected in the results of an process discovery algorithm
analysing an event stream. The observed characteristic of dynamically chang-
ing processes is also called concept drift and has been identified as a major
challenge for process discovery algorithms [22, 23, 2]. Generally, discovery
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algorithms on event streams should be able to (1) reflect newly appearing
behaviour as well as (2) forget outdated behaviour.

Although not specifically, incremental process mining as introduced in [3]
does attempt to anticipate the problem of concept drift to some extent. Here,
the assumption is that a log does not yet contain the entire behaviour of the
process (i.e. an incomplete log) at the time of the discovery of the initial (declar-
ative) process. Additional behaviour, that occurred after the initial discovery
and captured in a second log, is analysed separately and the new information
is then added to the existing BP model. This is possible due to structure of
declarative BP specifications. The process of incrementally analysing log seg-
ments and then extending the BP model accordingly, i.e. incremental process
mining, is motivated by the assumption that the update of an already exist-
ing (declarative) BP model is easier than to always analyse the complete log
from scratch [3]. Another approach called incremental worklfow mining is based
on the same principle but does discover and adapt a Petri Net from incremen-
tally processing log segments [6, 7]. It is a semi-automatic (and prototypical)
approach specifically designed for dealing with process flexibility in Document
Management Systems that does not anticipate incomplete or noisy logs. A third
incremental approach is presented in [18] which utilises the theory of regions to
create transition systems for successive sub-logs and eventually transform them
into a Petri Net. Albeit based on a slightly different concept, incremental process
mining approaches can be considered for process discovery on event streams since
the event processing could be designed to group a number of successive traces
into sub-logs which are then individually analysed and incrementally extend the
overall BP. However, a conceptual weakness of incremental mining approaches
is the lacking ability of forgetting outdated behaviour.

In the context of process discovery on event streams, a synonymous term
sometimes used is Streaming Process Discovery (SPD). SPD was coined by Bu-
rattin et al. in [5]. In their work the HeuristicsMiner [25] has been modified
for this purpose and a comprehensive evaluation of different event stream pro-
cessing types was carried out. The fundamentals of the HeuristicsMiner remain
the same but the direct-neighbours-footprint is dynamically adapted or rebuilt
while processing the individual events. From this the Causal Net is periodically
extracted, e.g. for every event or every 1000 events, using the traditional Heuric-
ticsMiner. For instance, for the evaluation of the different streaming methods
the HM discovery was triggered every 50 events [5]. Three different groups of
event streaming methods have been implemented and investigated:

Event Queue: The basic methodology of this approach is to collect events in
a queue which is representing a log that can be analysed in the traditional
way of process discovery. Three basic types can be differentiated: (1) In the
sliding window approach the queue is a FIFO (First-In-First-Out), i.e. when the
maximum queue length (queue memory) is reached for every new event inserted,
the oldest event in the queue is removed; (2) In the periodic reset approach
the queue is reset whenever the maximum queue length is reached. The main
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advantage of these approaches are that the event queue can be regarded as event
log and enables the analysis via traditional discovery/mining algorithms on event
logs. Two of the main disadvantages are: Each event is handled at least twice:
once to store it in the queue and once or more to discover the model from the
queue; Also, it does only allow for a rather simplistic interpretation of ”history”,
i.e. an older event is either still in the queue and has same influence as a newer
event, or it is completely forgotten.

Stream-specific Approaches: Stream-specific approaches already process events
into footprint information, i.e. queues that consist of a fixed size hold information
about the latest occurring activities and directly-follows relations. When a new
event occurs all values in the queues are updated and/or replaced. Burattin et
al. distinguish between the following three update operations: (1) Stationary,
i.e. the queues function as a ”sliding window” over the event stream and every
queue entry has the same weight, (2) Ageing, i.e. the weight of the latest entry
is increased and the weights of older entries in the queue are decreased, and
(3) Self-Adaptive Ageing, i.e. the factor with which the influence of older entries
decreases is dependent on the fitness of the discovered model in relation to latest
events stored in an additional sample queue of a fixed size: quickly decreasing for
a low fitness and slowly decreasing for a high fitness. Generally, stream-specific
approaches are assumed to be a more balanced approach since events are only
handled once and directly processed into footprint information [5]. Burattin et
al. also argue that ageing-based approaches have a more realistic interpretation
of ”history” since older events have less influence than newer events [5]. One
disadvantage is that the footprint is captured through a set of queues with a
fixed size: if this size is set too low, behaviour is prematurely forgotten; if this
size is set too high some of the old behaviour is never forgotten.

Lossy Counting: Lossy Counting is a technique adopted and modified from [13]
that uses approximate frequency count and divides the stream into a fixed num-
ber of buckets.

Another approach for discovering concept drifts on event streams of less
relevance to the paper’s topic is presented in [12]: A discovery approach for
declarative process models using the sliding window approach and lossy counting
to update a set of valid business constraints according to the events occurring
in the stream.

4 Static Constructs Competition Miner

The CCM as described in [15] is a deterministic process discovery algorithm that
operates in a static fashion and follows a divide-and-conquer approach which,
from a given event log, directly mines a block-structured process model that rep-
resents the main behaviour of the process. The CCM has the following main fea-
tures [15]: (1) A deadlock-free, block-structured business process without dupli-
cated activities is mined; (2) The following BP constructs are supported and can
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Fig. 2. Business Process Constructs Supported by the CCM [15]

Algorithm 1: Methodology of the CCM in Pseudocode
Data: Log L
Result: BP bp

1 begin
2 A← getSetOfAllActivitiesInLog(L);
3 BP bp ← buildInitialBPWithStartAndEnd();
4 bp ← getFootprintAndBuildConstruct(A,L, bp);
5 return bp;

6 Function getFootprintAndBuildConstruct(Am , Log L,BP bp)
7 Footprint fp = extractFootprintForActivities(Am, L);
8 if |Am| = 1 then
9 Construct c← analyseConstructForSingleActivity(fp);

10 bp ← createSingleActivityConstruct(c, Am);

11 else
12 ConstructsSuitability[] cs ← calculateSuitabilityForConstructs(fp, Am);
13 (Construct c, Afirst , Asecond ) ← constructCompetition(cs, Am);
14 bp ← createBlockConstruct(c, bp);
15 bp ← getFootprintAndBuildConstruct(Afirst , L, bp);
16 bp ← getFootprintAndBuildConstruct(Asecond , L, bp);

17 return bp;

be discovered for single activities: Normal, Optional, Loopover, and Loopback;
or for a set of activities: Choice, Sequence, Parallel, Loop, Loopover-Sequence,
Loopover-Choice, Loopover-Parallel (see Figure 2), and additionally all of them
as optional constructs - these are constructs supported by the majority of busi-
ness process standards like BPMN or YAWL; (3) If conflicting or exceptional
behaviour exists in the log, the CCM picks the ”best” fitting BP construct.

Algorithm 1 shows the conceptual methodology of the CCM algorithm in
pseudocode. The CCM applies the divide-and-conquer paradigm and is im-
plemented in a recursive fashion (see lines 7, 16, and 17). At the beginning
getFootprintAndBuildConstruct is initially called for all involved activities
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(Am = A) with the process bp consisting of only a start and end element. The
recursive function is first creating a footprint fp from the given log L only consid-
ering the activities specified in set Am (at the beginning all involved activities).
In a next step it will be decided which is the best construct to represent the
behaviour captured by fp: (1) if the activity set Am only consists of one element,
it will be decided which of the single activity constructs (see bottom of Figure 2)
fits best - the process bp will then be enriched with the new single activity con-
struct (see line 11); (2) If the activity set Am contains more than one element,
the suitability for each of the different constructs is calculated for any two activ-
ities x, y ∈ Am based on ”soft” constraints and behaviour approximations, e.g.
activities a and b are in a strong Sequence relationship. The result of this calcu-
lation (line 13) is a number of suitability matrices, one for each construct. In the
subsequent competition algorithm it is determined what is the best combination
of (A) the construct type c ∈ {Sequence,Choice,Loop, ...}, and (B) the two sub-
sets Afirst and Asecond of Am with Afirst ∪ Asecond = Am, Afirst ∩ Asecond = {},
and Afirst , Asecond 6= {}, that best accommodate all x, y-pair relations of the
corresponding matrix of construct c (line 14). The construct is then created and
added to the existing process model bp (line 15), e.g. XOR-split and -join if the
winning construct c was Choice. At this stage the recursive method calls will be
executed to analyse and construct the respective behaviour for the subsets Afirst

and Asecond . The split up of the set Am continues in a recursive fashion until
it cannot be divided any more, i.e. the set consists of a single activity (see case
(1)). The process is completely constructed when the top recursive call returns.

Of particular interest for the transformation of the CCM algorithm to a
solution for dynamic process discovery is the composition of the footprint and its
calculation from the log. As opposed to many other process discovery algorithms,
e.g. alpha-miner [20], the footprint does not consist of absolute relations, e.g. h is
followed by a (see example in Figure 1), but instead holds relative relation values,
e.g. a is eventually followed by g in 0.4 ∼= 40% of the traces. Furthermore, the
footprint only contains global relations between activities in order to guarantee a
low polynomial execution time for the footprint interpretation [15]. The footprint
of the CCM contains information about: (1) the occurrence of each involved
activities x ∈ Am, i.e. how many times x appears at least once per trace, how
many times an x appears on average per trace, and how many times the trace
started with x; (2) the global relations of each activity pair x, y ∈ Am, i.e. in
how many traces x appears sometime before the first occurrence of y in the
trace, and in how many traces x appears sometime before any occurrence of y
in the trace2. All measures in the footprint are relative to the number of traces
in the log. Furthermore, not only one overall footprint is created for the CCM
but also for every subset Afirst and Asecond , that is created during execution, a
new sub-footprint is created (see Algorithm 1).

2 This stands in contrast to existing discovery solutions since in the CCM the foot-
print and its interpretation is not based on local relationships between activity oc-
currences, e.g. direct neighbours, but based on global relationships between them.
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5 Dynamic Constructs Competition Miner

As established in Section 1, increasingly dynamic processes and the need for im-
mediate insight require current research in the domain of process mining to be
driven by a set of additional challenges. To address these challenges the concept
of Scalable Dynamic Process Discovery (SDPD), an interdisciplinary concept
employing principles of CEP, Process Discovery, and EDBPM, has been intro-
duced in [16]: ”SDPD describes the method of monitoring one or more BPMSs
in order to provide at any point in time a reasonably accurate representation of
the current state of the processes deployed in the systems with regards to their
control-flow, resource, and performance perspectives as well as the state of still
open traces.” That means, any potential changes in the mentioned aspects of
the processes in the system that occur during run-time have to be recognized
and reflected in the continuously updated ”current state” of the process. Due to
its purpose, for solutions of SDPD an additional set of requirements applies. For
this paper, the most relevant of them are [16]:

– Detection of Change: An SDPD solution is required to detect change in two
different levels defined in [17]: (1) Reflectivity: A change in a process instance
(trace), i.e. every single event represents a change in the state of the associated
trace. (2) Dynamism: A change on the business process level, e.g. because
events/traces occurred that contradicts with the currently assumed process.

– Algorithmic Run-time: An SDPD solution is applied as CEP concept and has
to be able deal with large business processes operating with a high frequency,
i.e. the actual run-time of the algorithms becomes very important. The key
algorithms should be run-time effective to cope with increasing workload at
minimal possible additional computational cost.

Motivated by these challenges the initial process discovery approach was altered
to allow for dynamic process discovery. As opposed to the traditional static
methodology (see Definition 2), dynamic process discovery is an iterative ap-
proach as defined in the following:

Definition 3 Let log Ln = [e0, e1, ...en] be a sequence of n+ 1 events ordered by
time of occurrence ( ∀i < j ∧ ei, ej ∈ Ln : time(ei) ≤ time(ej)) and BPn be the
business process model representing the behaviour in Ln, then dynamic process
discovery is defined as a function that projects the tuple (en, BPn−1) to BPn:

DynamicProcessDiscovery : (en, BPn−1)⇒ BPn

As described in Section 4, the CCM is a static mining algorithm and has to be
modified in order to enable SDPD. The result of this modifications is called Dy-
namic CCM (DCCM). However, two restrictions for the DCCM with regards to
the previously mentioned requirements of SDPD apply: (1) instead of discovering
change on the BP perspectives control-flow, resources, and performance perspec-
tive, the DCCM described in this paper only focuses on discovering change in
the control-flow, and (2) only change on the abstraction level of Dynamism is
detected, i.e. whether or not the control-flow of the process has changed - the
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detection of change on the abstraction level of Reflectivity will not be supported
by the DCCM. Additionally to the requirements of SDPD the DCCM features
the following important aspects: (1) robust : if conflicting, exceptional, or not
representable behaviour occurs in the event stream, the DCCM does not fail but
always picks the BP construct that best accommodates the recorded behaviour;
(2) deterministic: the DCCM yields the exact same output BP for the same
input stream of events.

Four different modifications were applied to the default CCM to create the
DCCM. These modifications are summarised in the following list and described
in more detail in the following sub-sections:

1. Splitting up the algorithm in two separate parts: one for dynamically up-
dating the current footprint(s) complying to the requirement of extremely
low algorithmic run-time, and one for interpreting the footprint into a BP
model which has less restrictions with regards to its run-time.

2. In the CCM the footprint is calculated in relation to all occurring traces.
This is not applicable for SDPD since the number of traces should not have
an influence on the execution-time of any component of an SDPD solution.
For this reason the footprint has to be calculated in a dynamic fashion, i.e.
an event-wise footprint update independent from the previously occurred
number of events or traces.

3. The original behaviour of the CCM to carry out a footprint calculation
for every subset that has been created by the divide-and-conquer approach
is not optimal as then the DCCM would have to extract up to 2 ∗ n + 1
different footprints if only one activity was split-up from the main set for each
recursion.3 This has been improved for the DCCM: for the most common
constructs Choice and Sequence the sub-footprints are automatically derived
from the parent footprint.

4. In rare cases it can happen that for every appearing event the state of the
process is alternating between a number of different control-flows. This is
caused by ”footprint equivalent” BP models, i.e. two models are footprint
equivalent if they both express the behaviour captured by the footprint. We
introduce a measure which favours the last control-flow state in order to
prevent the described behaviour.

5.1 Methodology of the Dynamic CCM

The original CCM algorithm had to be split up into two separate parts in order
to comply to the SDPD’s requirement of low algorithmic run-time for the event
processing. A component triggered by the occurrence of a new event to update
the dynamic footprint and a component decoupled from the event processing

3 e.g. for A = {a, b, c, d} : (a, b, c, d) → ((a, b, c), (d)) → (((a), (b, c)), (d)) →
(((a), ((b), (c))), (d)), seven different footprints for sets {a, b, c, d}, {a, b, c}, {b, c}, {a},
{b}, {c}, {d} need to be created - (, ) denote the nested blocks that emerge while
splitting the sets recursively.
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Fig. 3. Conceptual Methodology of the Dynamic CCM

which interprets the footprint into a BP Model. The conceptual methodology of
the DCCM is depicted in Figure 3. The components, models, and functionality of
the DCCM are described in the following: Events from the monitored Enterprise
System, in which the end-to-end process is deployed, are fed into an event stream.
The Footprint Update component is the receiver of these events and processes
them directly into changes on the overall Dynamic Footprint which represents
the abstract state of the monitored business process. If additional footprints for
subsets of activities are required as specified by the Sub-Footprint Configurations,
e.g. if a Loop or Parallel construct was identified, then these sub-footprints are
also updated (or created if they were not existent before). The Dynamic Foot-
print(s) can then at any point in time be compiled to a human-centric repre-
sentation of the business process by the Footprint Interpretation component, i.e.
the abstract footprint representation is interpreted into knowledge conforming
to a block-structured BP model. In the DCCM this interpretation is scheduled
dependent on how many new completed traces appeared, e.g. the footprint in-
terpretation is executed once every 10 terminated traces. If the interpretation
frequency m ∈ N of the DCCM is set to 1 a footprint interpretation is executed
for every single trace that terminated. The Footprint Interpretation algorithm
works similar to the CCM algorithm shown in Algorithm 1; but instead of ex-
tracting footprints from a log (line 8), the modified algorithm requests the readily
available Dynamic Footprint(s). If a sub-footprint is not yet available (e.g. at the
beginning or if the process changed) the Footprint Interpretation specifies the
request for a sub-footprint in the Sub-Footprint Configurations in the fashion
of a feedback loop. Thus, Sub-Footprint Configurations and Dynamic Footprints
act as interfaces between the two components, Footprint Update and Footprint
Interpretation. The Footprint Interpretation cannot continue to analyse the sub-
sets if no sub-footprint for these exist yet. In this case, usually occurring in the
warm-up or transition phase, an intermediate BP model is created with activities
containing all elements of the unresolved sets as depicted in Figure 4.
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Fig. 4. Result of the Footprint Interpretation on an event stream produced by the
example from Figure 1 if no sub-footprints for {a, b, c, d} and {e, f, g, h} are available
yet - only the top-level loop has been discovered

5.2 Run-time Update of the Dynamic Footprint

The Footprint Update component processes events to changes in the Dynamic
Footprint, i.e. updates the abstract representation of the process state. The orig-
inal footprint extraction of the CCM algorithm calculates all values in relation
to the number of occurred traces, i.e. every trace’s influence on the footprint is
equal: 1

|traces| . To keep the algorithmic run-time to a minimum and allow for

scalability the footprint update calculation should only take a fixed amount of
time, independent from the total number of previously occurred events or traces.
An increase of the total number of involved activities can cause, however, a linear
increase of the execution-time due to the recalculation of the relations between
the occurred activity and, in the worst case, all other activities. The indepen-
dence from previous traces is the reason the footprint is calculated in a dynamic
fashion, i.e. the dynamic footprint is incrementally updated in a way that older
events ”age” and thus have less influence than more recent events.

The general ageing approach that is utilized in the Footprint Update of the
DCCM is based on the calculation of an individual trace footprint4 (TFP) for
each trace which influences the dynamic overall footprint (DFP). For the n-th
new TFPn the DFP is updated in the following way: Given a specified trace
influence factor tif ∈ R with 0 < tif ≤ 1 the old DFPn−1 is aged by the ageing
factor af = 1− tif , i.e.

DFPn = tif ∗ TFPn + (1− tif ) ∗DFPn−1 (1)

E.g., for trace influence factor tif = 0.01: DFPn = 0.01∗TFPn +0.99∗DFPn−1.
Two different ageing methods have been developed which will be evaluated
against each other in Section 6: Occurrence-based Ageing and Time-based Ageing.

Occurrence-based Ageing is an ageing method similar to the approach of Burretin
et al. [5] discussed in Section 3. In this case the trace influence tif is a fixed
value and the DFP ages the same proportion for every time a trace footprint
is added indeterminate from how much time has passed since the last footprint
update. For example, assuming tif = 0.01 the trace footprint TFPn has the

4 the occurrence values for activities as well as the global relations (see end of Sec-
tion 4) are represented in the trace footprint by absolute statements true ≡ 1 if it
occurred and false ≡ 0 if not
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Fig. 5. Development of the influence of a trace for different trace influence factors(tif )

influence of 0.01 when it first occurs (see Equation 1); after another TFPn+1

has occurred the influence of TFPn decreases to 0.01 ∗ 0.99, and after another
0.01∗0.992 and so on. By applying this incremental method, older TFP are losing
influence in the overall dynamic footprint. Figure 5 shows how the influence of
a trace is dependent on its ”age”: If tif = 0.1, the influence of a trace that
appeared 60 traces ago became almost irrelevant. At the same time if tif = 0.01
the influence of a trace of the same age is still a little more than half of its
initial influence when it first appeared. Essentially, the purpose of the trace
influence factor tif is to configure both, the ”memory” and the adaptation rate,
of the footprint update component, i.e. a high tif means quick adaptation but
short memory but a small tif means a slow adaptation but a long memory.
Finding the correct trace influence is an issue of balancing these two inversely
proportional effects, e.g. it might be generally desirable to have a high adaptation
rate (tif = 0.1) but if some behaviour of the process only occurs once in every 60
traces it will already be ”forgotten” when it reappears (see Figure 5) essentially
resulting in a continuously alternating business process. However, while applying
this method it was observed that at the beginning of the event streaming an
unnecessarily long time to ”warm-up” was required until the DFP reflected the
correct behaviour of the business process. In order to shorten the ”warm-up”
phase of the Footprint Update a more dynamic method was adopted: If the
overall amount of so far occurred traces |traces| < 1

tif
then the influence of the

dynamic overall footprint is |traces|
|traces|+1 and of the new trace footprint 1− 1

|traces|+1 .

As a result all traces that occur while |traces| < 1
tif

have the same influence in

the DFP of 1
|traces| . For instance if tif = 0.01 and |traces| = 9 then a new

dynamic footprint is calculated with DFP10 = 1
10 ∗ TFP + 9

10 ∗ DFP9 and for
the next trace DFP11 = 1

11 ∗ TFP + 10
11 ∗ DFP10. As soon as |traces| ≥ 1

tif
the

standard occurrence ageing with a fixed influence factor is adopted:

DFPn =


TFPn if n = 0
1
n ∗ TFPn + n−1

n ∗DFPn−1 if 0 < n < 1
tif

tif ∗ TFPn + (1− tif ) ∗DFPn−1 if n ≥ 1
tif

(2)
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Because of this implementation the ”warm-up” phase of the Footprint Update
could be drastically reduced, i.e. processes were already completely discovered a
few traces after the start of the monitoring which will be shown in Section 6.

Time-based Ageing is an ageing method based on the time that has passed since
the last trace occurred. The more time has passed the less influence the old
DFPn−1 has on the updated DFPn. This is achieved in a similar way than in
the occurrence-based ageing but instead of having an ageing factor af relative
to the trace occurrence it is now relative to the the time passed. That means
that ageing factor af and trace influence factor tif are not fixed for each trace
occurrence but calculated based on an ageing rate ar per passed time unit tur ,
i.e. in particular time tn has passed since the last trace occurred then

af = a
tn
tur
r and tif = 1− af

If tn = tur then the dynamic overall footprint ages exactly the same as with
the occurrence-based ageing, if tn > tur then it ages quicker, and if tn < tur it
ages slower. For instance, with ageing rate ar = 0.99 and time unit tur = 1s:
If the new trace occurred tn = 2s after the last footprint update then the new
dynamic overall footprint DFPn = (1−0.992)∗TFPn+0.992∗DFPn−1. Through
time-based ageing the influence development of passed traces behaves similarly
to the occurrence-based ageing in Figure 5 apart from that the ageing is not
based on trace-oldness but on time-oldness (the numbers on the x-axis now
represent the passed time units since the trace occurred). For the time-based
ageing a similar problem was observed during the warm-up phase than with the
occurrence-based ageing: Since the DFP only consists of zeros when initialised it
takes an unnecessary long time to converge towards a footprint representing the
correct behaviour of the business process. For this reason an alternative linear
ageing relative to the overall passed time since the first trace recorded tur was
adopted as well. The final ageing factor af is the minimum of both calculated
values as shown in Equation 3.

af = min(1− tn
tall

, a
tn
tur
r ) (3)

DFPn = (1− af ) ∗ TFPn + af ∗DFPn−1 (4)

Considering the example from earlier where ar = 0.99, time unit tur = 1s, the
new trace TFPn occurred 2s after the last update, and the first trace recorded
was tall = 4s then af = min(1 − 2s

4s , 0.992) = 0.5 and according to Equation 4:
DFPn = (1−0.5)∗TFPn +0.5∗DFPn−1. In this way the warm-up phase can be
shortened similar to the occurrence-based approach but still be based on time.

Another important dynamism feature that had to be implemented was the
possibility to add an activity that has not appeared before. A new activity is
first recorded in the respective trace footprint. When the trace is terminated
it will be added to the overall footprint in which it is not contained yet. The
factored summation of both footprints to build the new dynamic footprint is
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carried out by assuming that a not previously in the dynamic overall footprint
contained relation value is 0. Furthermore, activities that do not appear any
more during operation should be removed from the dynamic footprint. This was
implemented in the DCCM in the following way: If the occurrence once value of
an activity drops below a removal threshold tr ∈ R, tr < tif it will be removed
from the dynamic footprint, i.e. all values and relations to other activities are
discarded.

The fact that especially many Choice and Sequence constructs are present
in common business processes, motivates an automated sub-footprint creation
in the Footprint Interpretation based on the parent footprint rather then cre-
ating the sub-footprint from the event stream. This step helps to decrease the
execution-time of the Footprint Update and was achieved by introducing an ex-
tra relation to the footprint5 - the direct neighbours relation as used by other
mining algorithms (see Section 3). In the Footprint Interpretation this relation is
then used for creating the respective sub-footprints for Sequence and Choice con-
structs but not for identifying BP constructs since the direct neighbours relation
does not represent a global relation between activities.

5.3 Modifications in the Footprint Interpretation Component

As analysed in the beginning of this section, the original behaviour of the CCM
to retrieve a sub-footprint for each subset that has been created by the divide-
and-conquer approach is not optimal. This is why, in the Footprint Interpretation
the DCCM calculates the sub-footprints for the most common constructs, Choice
and Sequence, from the available parent footprint: (1) For the Choice construct
the probability of the exclusive paths are calculated with pfirst =

∑
x∈Afirst

Fel(x)

and psecond =
∑

x∈Asecond
Fel(x) with Fel(x) being the occurrences of x as first el-

ement (see CCM footprint description in Section 4). Then the relevant values of
the parent footprint are copied into their respective new sub-footprints and nor-
malized, i.e. multiplied with 1

pfirst
and 1

psecond
, respectively. (2) The sub-footprints

for the Sequence construct are similarly built, but without the normalization.
Instead, the direct neighbours relation, now also part of the dynamic footprint,
is used to calculate the new overall probabilities of the sub-footprints.

If two or more BP constructs are almost identically suitable for one and the
same footprint, a slight change of the dynamic footprint might result in a differ-
ently discovered BP. This may cause an alternating behaviour for the footprint
interpretation, i.e. with almost every footprint update the result of the inter-
pretation changes. This is undesirable behaviour which is why the competition
algorithm was additionally modified as follows: All combinations of BP con-
struct and subsets are by default penalized by a very small value, e.g.

tif

10 , with
the exception of the combination corresponding to the previously discovered BP
model, hence reducing the risk of discovering alternating BP models.

5 In rare cases (if Loop and Parallel constructs dominate) this modification can have a
negative effect on the execution-time since extra information needs to be extracted
without the benefit of mining less sub-footprints
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6 Evaluation

The static CCM algorithm has been tested in detail for its accuracy in [15]: (1) in
a qualitative analysis the CCM was able to rediscover 64 out of 67 processes for
which a log was produced through simulation. (2) in the second part of the
evaluation the discovery performance of the CCM was compared to the mining
algorithms HeuristicsMiner (HM) [25], Inductive Miner (IM) [10], and the Flower
Miner (FM), all of which are readily available in the ProM nightly build [21]. For
ten given logs (including real-life logs and publicly available logs) the results of
the algorithms (each configured with their default parameters) were evaluated
for their trace fitness ftf , precision fpr, generalization fg, and simplicity fs with
the help of the PNetReplayer plugin [24]. The averaged results of the detailed
analysis are shown in Table 1 [15]; Note, that a lower simplicity value is better.

Table 1. Conformance results of the different discovery algorithms [15]

Trace Fitness ftf Precision fpr Generalization fg Simplicity fs
HM IM FM CCM HM IM FM CCM HM IM FM CCM HM IM FM CCM
0.919 0.966 1.0 0.979 0.718 0.622 0.124 0.663 0.941 0.915 0.992 0.930 155.3 122.8 56.4 111.9

In the remainder of this section evaluation results of the DCCM are pre-
sented with regards to its capability of initially discovering the correct process
and how it reacts to certain changes of a real-time monitored business process.
Furthermore, a comparative analysis is carried out to determine the advantages
and disadvantages of the two ageing strategies, occurrence-based and time-based
ageing.

6.1 Experiment Setup

The experiments revolve around the concept of process rediscovery, i.e. that a
source business process is executed and produces an event stream which is fed to
the DCCM which then should discover a process behaviourally equivalent to the
executed source process. Figure 6 shows three measures (tw, td, and ttr ) which
we use to evaluate the quality of the DCCM. In the figure BP1 and BP2 are the
business processes deployed in the monitored system and BP ′1 to BP ′n are the
models discovered by the DCCM. Additionally, BP1 and BP ′m are equivalent
(BP1 ≡ BP ′m) as well as BP2 and BP ′n (BP2 ≡ BP ′n). For this part of the
evaluation the following measures are of interest:

– Warm-up: tw ∈ N the amount of completed traces the DCCM needs as input
at the start until the resulting model equivalently represents the process in
the system, i.e. until BP1 ≡ BP ′m.

– Change Detection: td ∈ N the amount of completed traces it takes to detect a
certain change in the monitored process - from the point at which the process
changed in the system to the point at which a different process was detected.
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Fig. 6. Measures for Detection of BP Change in System

When the change is detected the newly discovered process is usually not equiv-
alent to the new process in the system BP2 but instead represents parts of
the behaviour of both processes, BP1 and BP2.

– Change Transition Period: ttr ∈ N the amount of completed traces it takes
to re-detect a changed process - from the point at which the process change
was detected to the point at which the correct process representation was
identified, i.e. until BP2 ≡ BP ′n. In this period multiple different business
processes may be detected, each best representing the dynamic footprint at
the respective point in time.

The basis of our evaluation is the example model in Figure 1 which is simulated
and the resulting event stream fed into the DCCM. In order to get reliable values
for the three measures tw, td, and ttr , this is repeated 60 times for each configu-
ration. From these 60 runs the highest and lowest 5 values for each measure are
discarded and the average is calculated over the remaining 50 values. For each
experiment the CCM core is configured with its default parameters (see [15]).

6.2 Warm-up Evaluation

The first experiment will evaluate how the DCCM behaves at the beginning
when first exposed to the event stream, more particularly, we want to determine
the duration of the warm-up phase tw. Figure 7 shows the development of the
first few BP models extracted by the DCCM using Occurrence Ageing with trace
influence factor tif = 0.01 (see Section 5.2) and interpretation frequency m = 10,
i.e. an interpretation is executed every 10 completed traces: After the first trace
the discovered process is a sequence reflecting the single trace that defines the
process at that point in time. At trace 10, which is the next scheduled foot-
print interpretation, the algorithm discovers a Loop construct but cannot further
analyse the subsets since the corresponding sub-footprint was not requested yet.
Because of that, the feedback mechanism via the Sub-Footprint Configurations
is utilized by the Footprint Interpretation algorithm to register the creation of
the missing sub-footprints. In the next scheduled run of the footprint interpre-
tation, the Parallel construct of a, b, c, and d is discovered but again the analysis
can not advance since a sub-footprint for the individual activity subsets has not
been created yet. Activities e, f, g, and h seem to have appeared only in exactly
this sequence until trace 20. Skipping one of the interpretation steps, we can see
that at trace 40 the complete process has been mined, i.e. tw = 40.
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Fig. 7. The Evolution of the Discovered BP Model During the Warm-up Phase

In Figure 8 the development of warm-up duration tw for of the DCCM with
Occurrence Ageing for different m ∈ {1, 2, 3, 6, 10} and tif ∈ {0.001, 0.002, 0.005,
0.01, 0.018, 0.03} is depicted. The warm-up phase seems generally very short and
not strongly influenced by tif . For m = 10 the warm-up phase cannot be any
shorter because the example process consists of a block-depth of 3: Parallel-in-
Parallel-in-Loop, i.e. 3 subsequent requests for sub-footprints have to be made.
This is an indicator that the modification effort to shorten the warm-up phase
had a positive effect. No significant changes of tw can be noticed when increasing
or decreasing the trace influence factor tif . This is caused by the optimisation
rule that essentially nullifies the default ageing via tif (see Equation 2 in Sec-
tion 5.2).

Fig. 8. Warm-up Time with the Occurrence Ageing in Relation to the Trace Influence
Factor
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Fig. 9. Warm-up Time with Time Ageing in Relation to the Trace Influence Factor

A similar sensitivity experiment was carried out for the warm-up duration tw
with the Time-based Ageing (Section 5.2): In order to make the results compara-
ble the ageing time unit was set to one minute (tur = 1min) and the simulation
produced on average approximately one instance per minute (instance occur-
rence: 1/min; deviation: 0.5). As a result similar tif for the occurrence-based
and time-based6 ageing should yield results of a similar magnitude and are thus
comparable, i.e. 10 traces ≈ 10 minutes. In Figure 9 the development of warm-
up duration tw for the DCCM with Time Ageing for different m ∈ {1, 5} and
tif ∈ {0.005, 0.01, 0.02, 0.05, 0.1} is depicted. As a reference the results of the
Occurrence Ageing with m = 1 were also added to the graph. Similar to the
occurrence-based ageing, the development of the warm-up duration tw seems
to be in no relation to the trace influence factor tif for the time-based ageing.
This indicates that the optimisation rule for the time-based ageing successfully
improves and nullifies the default ageing method for the warm-up phase (see
Equations 3 and 4 in Section 5.2). Additionally, it can be seen that the result of
the two different ageing types with a similar configuration yield similar results
(for m = 1).

In order to examine the effect of the optimisations for both of the ageing
methods, the same experiments were repeated without the respective optimisa-
tions (only for m = 1). Figure 10 shows that especially for the occurrence ageing
a sizeable improvement was achieved through the application of the proposed
optimisations, e.g. for tif = 0.02 the non-optimized occurrence ageing took on
average 341 traces until the model was rediscovered but the optimised version
was already successful after 8.44 traces (on average). The non-optimised time-
based ageing already yielded comparatively good results which could be further
improved by the optimisation proposed (see Equation 3 in Section 5.2), e.g. for
tif = 0.02 the non-optimized time ageing took on average 37.16 minutes (≈ num-
ber of traces) until the model was rediscovered but the optimised version was
already successful after an average of 8.42 minutes.

6 Time-based ageing is technically based on an ageing rate ar rather than trace influ-
ence factor tif . However, ar can be derived from tif , i.e. ar = 1− tif
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Fig. 10. Warm-up Time without Optimisation in Relation to the Trace Influence
Factor with m = 1

6.3 Change Evaluation

In a second experiment we applied three changes of different extent to the busi-
ness process (moving of an activity, adding an activity, and a complete process
swap) during execution and are interested in the behaviour of the DCCM as well
as in the change detection td and the change transition period ttr .

Moving of Activity ”A” The change applied is the move of activity A from the
position before the inner Parallel construct to the position behind it. Figure 11
shows the evolution of the discovered BP models with occurrence ageing and
trace influence factor tif = 0.01 and interpretation frequency m = 10. The
change was applied after 5753 traces. The footprint interpretation detects at the
first chance to discover the change (trace 5760) a concept drift and finds via com-
petition the best fitting construct: Parallel of a, c and b, d. The change detection
td seemed to be unrelated to m and tif for all experiment runs and was immedi-
ately recognized every time7. In Figure 12 the development of ttr for both ageing
approaches different m ∈ {1, 10} and tif ∈ {0.005, 0.01, 0.02, 0.05, 0.1} is shown.
For this change a clear difference between the performance of the occurrence-
based and the time-based ageing can be observed: The time-based ageing is sig-
nificantly slower to finally detect the correct changed process, e.g. for tif = 0.02
and m = 1 the time-based method detects the correct process BP2 after on
average 345 traces/minutes while the occurrence-based method recognises the
new process correctly already after 105 traces (on average). Furthermore, it is
observable that the change transition period ttr was not particularly influenced
by the interpretation frequency m but strongly influenced by tif . If the value
was very small (tif = 0.005) a change took on average 450 traces (occurrence-
based) or 1382 traces/minutes (time-based) in order to be reflected correctly
in the discovered BP model. On the other hand if the trace influence factor is

7 Note, that other changes like deletion of an activity will take longer to recognise,
since their existence still ”lingers” in the footprints ”memory” for some time.
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Fig. 11. The Evolution of the Discovered BP Model During a Change (Move of Activity
”A”)

Fig. 12. The Change Transition Period in Relation to the Trace Influence Factor (for
Recognising Move of Activity ”A”)

chosen very high, e.g. tif = 0.1, the new process is correctly discovered after 21.1
(occurrence-based) or 67 (time-based) traces/minutes.

Adding of Activity ”I” The change applied in this scenario is the addition of ac-
tivity I at the end of the process. Figure 13 shows the evolution of the discovered
BP models with occurrence ageing and trace influence factor tif = 0.01 and in-
terpretation frequency m = 10 while the change was applied after 5753 traces. It
can be observed that the change detection td was again immediate, i.e. unrelated
to m and tif . However, it took on average 140 traces longer for the transition
phase to be completed than for the previous scenario, i.e. on average 690 traces
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Fig. 13. The Evolution of the Discovered BP Model During a Change (Addition of
Activity ”I”)

were necessary. The intermediate model which was valid from trace 5760 until
6450 (exclusively) recognises the relative position of activity I correctly (at the
end of the process) but makes the activity optional. This is due to the fact that
the ”memory” of the dynamic overall footprint still contains behaviour from the
original process in which the process ended without an activity I. Only after a
certain amount of traces (dependent on the trace influence factor tif ) the mem-
ory of this behaviour became insignificant. Figure 14 shows an overview of the
development of ttr for all changes and both ageing approaches with m = 1 and
tif ∈ {0.005, 0.01, 0.02, 0.05, 0.1}. Both ageing approaches behave similarly for
the change of introducing the new activity I: even though the time-based age-
ing was usually slightly quicker, e.g. for tif = 0.01: 687 (occurrence-based) vs.
684 (time-based) traces/minutes, the transition periods essentially only differed
marginally (2 to 6 traces). When comparing the transition period ttr for the
occurrence-based method we can conclude that the movement of an activity was
quicker detected correctly than the addition of a new activity (tif = 0.01: 209
(move A) vs. 687 (add I)). However, for the time-based ageing only a relatively
small difference was observed (tif = 0.01: 691 (move A) vs. 684 (add I)).

Complex Change (Swap of Complete Process) The change applied in third sce-
nario is a complete exchange of the original process during runtime, i.e. a rev-
olutionary change. Figure 15 shows the evolution of the discovered BP models
with occurrence ageing and trace influence factor tif = 0.01 and interpretation
frequency m = 10 with the change being applied after 5753 traces. The change
detection td was again immediate (not displayed in Figure 15), thus being unre-
lated to m and tif . Many different process versions occurred during the transition
phase of which only the version at trace 6310 is exemplary shown in the figure.
Process BP2 which is extremely different from BP1 was finally correctly detected
at trace 6680, i.e. on average 927 traces after the change was applied and 230
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Fig. 14. The Change Transition Period in Relation to the Trace Influence Factor for
all three Changes (m=1)

Fig. 15. The Evolution of the Discovered BP Model During a Change (Complex
Change)

traces later than the introduction of a new activity (second scenario). When
comparing the performance of occurrence-based and time-based ageing it can be
observed that both develop similarly in relation to the trace influence factor tif
(see top two graphs in Figure 14). This scenario can be considered the baseline
scenario for how long a the transition phase may last at maximum for any tif .
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6.4 Occurrence-based vs. Time-based Ageing

A first observation is that the change detection td for all changes and ageing
configuration was always quasi-immediate, i.e. whenever the first interpretation
occurred after a change it was detected that the process has changed. This is
mainly due to the configuration of the core CCM component and may change
if different interpretation thresholds are selected. The ageing strategy, however,
seems to not influence this directly (unless an extremely low trace influence tif
is selected).

A second observation is that there is a significant difference for the transition
duration ttr depending on the extent of the change, e.g. the movement of activity
A took on average only ttr = 209 traces to be correctly recognised whereas
swapping process BP1 with an entirely different process took on average ttr =
932 to be recognised by the DCCM with occurrence-based ageing and tif = 0.01
and m = 1.

Thirdly, time-based and occurrence-based ageing perform in most cases simi-
larly well, with the exception of change scenario 1, in which activity A was moved
to a different position within the process. Here, the occurrence-based ageing was
able to detect the change significantly earlier than the time-based method, e.g.
for tif = 0.1 the new process is correctly discovered after 21.1 (occurrence-based)
or 67 (time-based) traces/minutes. However, a fact not shown in the graphs is
the number of exceptional results: While the time-based ageing did not suffer
any exceptional experiment results it was observed that in approximately 4% of
the experiments for the occurrence-based method disproportionately high values
for ttr occurred. Due to the experiment setup, these results were ignored (see
Section 6.1 - removal of the five highest and lowest values). In this context it
was furthermore observed that a very high trace influence tif >> 0.1 (not part
of the above experiments) resulted in frequently changing/alternating discov-
ered BP models even though the source process producing the events did not
change. The reason for this behaviour is that not all variations of the process
are included in the current dynamic footprint because they have already been
”forgotten” before they reappeared. It was observed that for the examined sce-
narios the occurrence-based ageing is slightly more susceptible to this issue than
the time-based approach. Generally, the issue of ”forgetting” too quickly is more
likely to occur in large business processes containing rarely executed but still
relevant behaviour and emphasises the importance of setting the trace influence
factor tif correctly to balance between timely correct discovery (higher tif ) and a
sufficiently long memory (lower tif ) to not forget frequently occurring behaviour.

Additionally to the warm-up and change evaluation, first performance tests
have been carried out for large artificially produced processes. For a randomly
created and strongly nested process consisting of 100 activities the throughput
of the footprint update was close to 100, 000 events per second and the foot-
print interpretation successfully discovered the process in a matter of seconds.
Although not tested yet in a real-life setting, the shown results indicate that the
DCCM is very suitable for discovering and monitoring large enterprise processes.
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7 Conclusion and Future Work

In this paper we suggested modifications for the Constructs Competition Miner
to enable Scalable Dynamic Process Discovery as proposed in [16]. The CCM
is a process discovery algorithm that follows a divide-and-conquer approach to
directly mine a block-structured process model which consists of common BP-
domain constructs and represents the main behaviour of the process. This is
achieved by calculating global relations between activities and letting the differ-
ent supported constructs compete with each other for the most suitable solution
from top to bottom using ”soft” constraints and behaviour approximations. The
CCM was designed to deal with noise and not-supported behaviour. To apply
the CCM in a real-time environment it was split up into two separate parts,
executed on different occasions: (1) the footprint update which is called for ev-
ery occurring event and updates the dynamic footprint(s) and (2) the footprint
interpretation which derives the BP model from the dynamic footprint through
applying a modified top-down competition approach of the original CCM algo-
rithm. The modifications on the CCM were mostly motivated by the objective
to keep algorithmic run-time of the individual algorithms to a minimum. This
was successfully implemented which is shown by the performance results in the
evaluation section. Both possible ageing methods, occurrence-based and time-
based ageing, showed reasonably good results, especially with the optimisations
to reduce the warm-up duration tw. It was furthermore shown that changes in
the monitored process are almost instantly detected, i.e. td ≈ 0.

The presented approach of Dynamic CCM (DCCM) is driven by the require-
ments of real life industrial use cases provided by business partners within the
EU funded project TIMBUS. During the evaluation in the context of the use-
cases it became apparent that this concept still has a number of limitations which
are considered to be future work: (1) Changes in the state of the business pro-
cess are usually detected almost immediately but it may take a long time until
the new state of the system is reflected appropriately in the extracted business
process model. This behaviour originates from the fact that the footprint and
the interpreted business process are in a sort of intermediate state for a while
until the influence of the old version of the business process has disappeared.
Furthermore, the trace influence factor tif is a pre-specified value but in real-
ity it is dependent on how many traces we need to regard to represent all the
”behaviour” of the model8. This in turn is strongly dependent on the amount
of activities in the model, since more activities usually mean more control-flow
behaviour. A possible future modification could be to have the influence factor
dynamically adapt, i.e. similar to the self-adapting ageing proposed in [5]. (2) If
no sub-footprint is available for a set of activities, the footprint interpreter does
not further analyse this set. Through approximations or the use of the direct
neighbours relation at least a ”close enough” control-flow for the subset could
be retrieved. (3) The discovery of the state of a business process should also

8 if tif is set too high normal behaviour unintentionally becomes exceptional behaviour
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comprise information of other perspectives than the control-flow, e.g. resource
and performance.
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