
Fraglight: Shedding Light on Broken Pointcuts
in Evolving Aspect-Oriented Software

Raffi Khatchadourian
City University of New York, USA
rkhatchadourian@citytech.cuny.edu

Awais Rashid
Lancaster University, UK
awais@comp.lancs.ac.uk

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Takuya Watanabe
Edirium K.K., Japan

sodium@edirium.co.jp

Abstract
Pointcut fragility is a well-documented problem in Aspect-Oriented
Programming; changes to the base-code can lead to join points in-
correctly falling in or out of the scope of pointcuts. Deciding which
pointcuts have broken due to base-code changes is a daunting ven-
ture, especially in large and complex systems. We demonstrate
an automated tool called FRAGLIGHT that recommends a set of
pointcuts that are likely to require modification due to a particular
base-code change. The underlying approach is rooted in harnessing
unique and arbitrarily deep structural commonality between pro-
gram elements corresponding to join points selected by a pointcut
in a particular software version. Patterns describing such common-
ality are used to recommend pointcuts that have potentially broken
with a degree of confidence as the developer is typing. Our tool
is implemented as an extension to the Mylyn Eclipse IDE plug-in,
which maintains focused contexts of entities relevant to a task.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

Keywords Aspect-Oriented programming, software evolution

1. Introduction
Although using Aspect-Oriented Programming (AOP) [9] can be
beneficial to developers in many ways, such systems have potential
for new problems unique to the paradigm. A key construct that al-
lows code to be situated in a single location but affect many system
modules is a query-like mechanism called a pointcut expression
(PCE). PCEs specify well-defined locations (join points) in the ex-
ecution of the program (base-code) where code (advice) is to be
executed. In AspectJ [10], an AOP extension of Java, join points
may include calls to certain methods, accesses to particular fields,
and modifications to the run time stack. In this way, AOP allows for
localized implementations of so-called crosscutting concerns (or

aspects), e.g., logging, persistence, security. Without AOP, aspect
code would be scattered and tangled with other code implementing
the core functionality of the modules.

As the base-code changes with possibly new functionality being
added, PCEs may become invalidated, i.e., they may fail to select or
inadvertently select new places in the program’s execution, a prob-
lem known as pointcut fragility [11]. Deciding which PCEs have
broken is a daunting venture, especially in large and complex sys-
tems. In software with many PCEs, seemingly innocuous changes
can have wide effects. To catch these errors early, developers must
manually check all PCEs upon base-code changes, which is tedious
(potentially distracting developers), time-consuming (there can be
many PCEs), error-prone (broken PCEs may not be fixed properly),
and omission-prone (PCEs may be missed).

Several approaches offer tool-support for detecting broken
PCEs. The AspectJ Development Tools (AJDT) [1], which dis-
plays current join point and PCE matching information, does not
indicate which PCEs do not select a given join point nor which
are likely broken due to a new join point. Ye and Volder [13] aug-
ment the AJDT with almost matching join point information by
relaxing PCEs using developer-minded heuristics but do not detect
situations where join points are unintentionally selected by PCEs.
Wloka et al. [12] automatically fix PCEs broken by refactorings,
however, manual base-code edits may also break PCEs. In our pre-
vious work [7], we periodically suggest join points that may require
inclusion by a PCE. Yet, developers must manually detect broken
PCEs, as well as determine how frequently to check.

We demonstrate an automated approach that recommends PCEs
that are likely to require modification due to base-code changes [8].
Our approach has been implemented as an automated AspectJ
source-level inferencing tool called FRAGLIGHT, which is a plug-in
to the popular Eclipse IDE (http://eclipse.org). FRAGLIGHT
identifies, as the developer is making changes to the base-code,
PCEs that have likely broken within a degree of change confi-
dence. Based on how “confident” we are in the PCE being broken,
FRAGLIGHT presents the results to the developer by manipulating
the Degree of Interest (DOI) model of the Mylyn context [5].

Mylyn (http://eclipse.org/mylyn) is a standard Eclipse
plug-in that facilitates software evolution by focusing graphical
components of the IDE so that only artifacts related the currently
active task are revealed to the developer [6]. The context is com-
prised of the relevant elements, along with information pertaining
to how interesting the elements are to the related task. The more a
developer interacts with an element (e.g., navigates to the file, edits

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
c� 2015 ACM. 978-1-4503-3722-9/15/10...

http://dx.doi.org/10.1145/2814189.2814195

17

http://eclipse.org
http://eclipse.org/mylyn


the file) when working on a task, the more interesting the element
is deemed to be, and vice-versa.

In Mylyn, elements may also become interesting implicitly, e.g.,
a package may become interesting if a class within the package
is edited. FRAGLIGHT implicitly makes PCEs that are more likely
to be broken more interesting, i.e., by increasing its DOI value,
while implicitly making PCEs that are less likely to be broken less
interesting, i.e., by decreasing its DOI value. In this way, possibly
broken PCEs are presented to the developer in a variably invasive
way. In other words, PCEs that likely need the attention of the
developer are presented more prominently in the IDE than ones that
are less likely. The developer can then make alteration decisions
based on FRAGLIGHT’s recommendations, possibly adjusting the
PCE or the base-code to rectify the problem. Our approach enables
developers to discover problematic PCEs early in development so
that they may be fixed before causing bugs that may compound over
time, making these systems easier to maintain.

FRAGLIGHT’s recommendations are based on harnessing unique
and arbitrarily deep structural commonality between program ele-
ments corresponding to join points selected by a PCE in a particular
software version. In [7], we showed that the majority of program el-
ements corresponding to join points selected by a PCE in one base-
code version shared such characteristics between them, and that
these relationships persisted in subsequent versions. FRAGLIGHT
uses this premise to detect broken PCEs on-the-fly.

2. Implementation
FRAGLIGHT is implemented as a relation provider extension to
the standard Mylyn Eclipse plug-in. The JayFX fact extractor [2],
which we extended for use with modern Java languages and As-
pectJ, is used to generate “facts,” using class hierarchical analysis
(CHA) [3], pertaining to structural properties and relationships be-
tween program elements, e.g., field accesses, method calls, in a par-
ticular project. Its lightweight representation of program elements
makes for an efficient analysis. Source code and transitively refer-
enced libraries (possibly in binary format) are analyzed.

The AJDT is used to conservatively associate a PCE with
structural properties. For a given PCE, the AJDT produces the
Java program elements, e.g., method declarations, method calls,
field sets, correlated with selected join points. Pattern extrac-
tion and pattern matching are implemented via the Drools Rules
Engine (http://drools.org), which uses a modified RETE
algorithm [4]. Drools provides a natural query language and
an efficient solution to the many-to-many matching problem. A
prototype implementation of FRAGLIGHT is publicly available
(http://github.com/khatchad/fraglight).

Due to a present Eclipse framework limitation, the AJDT
is not able to reconcile AspectJ code without first saving it to
disk (see http://bugs.eclipse.org/bugs/show_bug.cgi?

id=310046). As such, our prototype implementation saves the cur-
rent editor buffer every time it detects a new join point being added.
In the future, we plan to add in-memory reconciliation to the AJDT
so that the use of FRAGLIGHT would be more developer-friendly.

FRAGLIGHT’s implementation is unique in that, as far as we
know, it is the first change prediction tool to be integrated with
Mylyn. Mylyn is a natural vehicle for change predictions as it pro-
grammatically determines the next elements of the developer’s in-
terest through IDE interactions. FRAGLIGHT’s statistical approach
adds to Mylyn by using static analysis to manipulate the DOI.

In a preliminary empirical evaluation, we ran our tool on
projects ranging from ⇡ 1.4�6K non-blank, non-commented lines
of code (LOC). We found the analysis time to be practical, averag-
ing ⇡ 1.05 secs per KLOC and ⇡ 0.14 secs per PCE. Moreover,
we found the prediction time to be, on average, ⇡ 2.61 per added
join point, which is also practical, especially since the tool runs in

the background. Lastly, we found that the average DOI value of
PCEs that actually broke were, on average, 2.5 times greater than
those that did not break, which is promising. In the future, we plan
to administer a full empirical evaluation.

3. Demonstration
We will portray a hypothetical developer session using FRAGLIGHT.
The example software will be of modest yet understandable size.
It will include two PCEs, each representing different crosscutting
concerns. We will then evolve the software in a series of ways, in-
cluding bug fixes and feature additions. During these changes, one
of the two PCEs will break. Will will see how FRAGLIGHT manip-
ulates the DOI so that the broken PCE programmatically becomes
more prominent in the IDE, while the unbroken PCE becomes less
prominent. We will also bring to light the internal pattern matching
being performed by FRAGLIGHT in the background.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant No. OISE-1015773 and the Japan Society
for the Promotion of Science under Grant No. SP10024. We would
like to thank Phil Greenwood, Amir Aryani, Sai Zhang, and Yu
Lin for their answers to our many technical- and research-related
questions and for referring us to related work. We would also
like to thank the anonymous reviewers for their extremely useful
comments and suggestions.

References
[1] A. Clement, A. Colyer, and M. Kersten. Aspect-oriented programming

with ajdt. In ECOOP Workshop on Analysis of Aspect-Oriented
Software, 2003.

[2] B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillard. Inferring
structural patterns for concern traceability in evolving software. In
International Conference on Automated Software Engineering, 2007.

[3] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. In European Con-
ference on Object-Oriented Programming, 1995.

[4] C. L. Forgy. Rete: a fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 1982.

[5] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model
for IDEs. In International Conference on Aspect-Oriented Software
Development, 2005.

[6] M. Kersten and G. C. Murphy. Using task context to improve program-
mer productivity. In ACM SIGSOFT Symposium on the Foundations
of Software Engineering, 2006.

[7] R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu. Point-
cut rejuvenation: Recovering pointcut expressions in evolving aspect-
oriented software. IEEE Transactions on Software Engineering, 2012.

[8] R. Khatchadourian, A. Rashid, H. Masuhara, and T. Watanabe. De-
tecting broken pointcuts using structural commonality and degree of
interest. In International Conference on Automated Software Engi-
neering, 2015.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin. Aspect oriented programming. In European Con-
ference on Object-Oriented Programming, 1997.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In European Conference on
Object-Oriented Programming, 2001.

[11] C. Koppen and M. Stoerzer. PCDiff: Attacking the fragile pointcut
problem. In Eur. Int. Workshop on Aspects in Software, 2004.

[12] J. Wloka, R. Hirschfeld, and J. Hänsel. Tool-supported refactoring
of aspect-oriented programs. In International Conference on Aspect-
Oriented Software Development, 2008.

[13] L. Ye and K. D. Volder. Tool Support For Understanding and Diag-
nosing Pointcut Expressions. In International Conference on Aspect-
Oriented Software Development, 2008.

18

http://drools.org
http://github.com/khatchad/fraglight
http://bugs.eclipse.org/bugs/show_bug.cgi?id=310046
http://bugs.eclipse.org/bugs/show_bug.cgi?id=310046

	Introduction
	Implementation
	Demonstration

