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Abstract— Dielectric wire media are modelled both numerically using CST Microwave studio
and analytically as media with spatially dispersion. In the latter case this leads to a differential
equation that can be solved in terms of Mathieu functions. A periodic variation in the radii of the
wires is considered as a method for shaping the propagating mode shape. A profile is proposed
which gives a flatter shaped mode. Such a mode would increase the acceleration of particles in a
particle accelerator.

1. INTRODUCTION

In this article we model the electromagnetic response to a dielectric wire grid with periodic variation
in the radii of the wires (see figure 1). Being periodic in all three dimensions, such a medium can
be modelled into a standard 3D electromagnetic simulator by considering its unit cell wrapped into
periodic boundary conditions. In this article we also model it as one dimensional spatially dispersive
medium with a periodic inhomogeneity. Being spatially dispersive requires that the permittivity
ǫ depends on k, whereas being inhomogeneous requires that the permittivity also depends on x.
However k and x are Fourier conjugate variables so we need to consider what it means for a function
to depends simultaneously on both k and x. In [1, 2, 3] we solve this by working in the x domain
and considering the permittivity relation to be a differential equation in x, with parameters that
depend on x. An alternative interpretation is in terms of a susceptibility kernel [4, 5].

Wire medium has many applications. The advantage here is that we can approximate it by
a one dimensional epsilon near zero (ENZ) medium [6, 7]. As such it supports a purely electric
longitudinal mode. Such modes may be used to accelerate particles. Although in general the phase
velocity of such a mode is not equal to the speed of light. Therefore one may require drift tubes in
order to provide positive acceleration.

By altering the shape of the wires, along the longitudinal direction, one may change the mode
shape. This would enable one to flatten the shape of the mode from the usual sinusoidal shape.
This would have definite advantages in that for the same power, the beam will experience enhanced
acceleration. By contrast in signal transmission one may desire a higher peak for a given total
energy.

In section 2 we summarise the results of [1], when applied to longitudinal modes in a dielectric
wire media. In this case the differential equation for the polarization corresponds to the Mathieu
equations and therefore the modes can be written in terms of Mathieu functions. In section 3 we
compare these results to numerical simulations. We show that for a dielectric wire, the electric
field is primarily in the longitudinal direction and that the average magnetic field is very low and
therefore one may consider it to be modelled well by a one dimensional longitudinal wire.

2. WIRE MEDIA

Since the electric and polarization fields are longitudinal and the magnetic field vanishes, i.e. E =
E(t, x)e1, P = P (t, x)e1 and B = 0, then Maxwell’s equations are automatically satisfied if

ǫ0E + P = 0 (1)

I.e. D = 0, thus we are looking for epsilon near zero (ENZ) media. When the medium is homoge-
neous we will use an empirical model of the permittivity via

P̃ (ω, k) =
−ǫ0 k

2
p

ω2 − β2k2
Ẽ(ω, k) (2)
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Figure 1: Wire medium with a periodic variation in the radius of the wires. The inter wire spacing are
(by, bz) and the period of the longitudinal variation is a.

where ω is the temporal frequency, k is the wave number, β is the limiting phase velocity and kp is
the “plasma frequency”. The Fourier transform of P (t, x) with respect to t and x is given by

P̃ (ω, k) =

∫
∞

−∞

∫
∞

−∞

e−2πi(ωt+kx)P (t, x)dt dx (3)

The plasma frequency will be a function of the inter wire spacing (by, bz), the thickness of the wires
r and the dielectric permittivity of the wires ǫwire. The denominator on the right hand side of (2)
is motivated by the conducting wire medium [8, 9] and is valid when r ≪ a.

Combining (1) and (2) we obtain the dispersion relation

ω2 − β2k2 = k2p (4)

By using CST Microwave Studio for a range of k with fixed a we can test the general form of the
equation. In addition varying a we can get the dependence of kp on a.

The simplest method to include an inhomogeneity in the permittivity is to let the plasma
frequency kp to depend on position x, that is kp = kp(x). Since kp depends on the radius r of the
wires the easiest way to achieve this it to let the radius of the wires vary whilst keeping the inter wire
spacing (by, bz) constant. In order to extend the permittivity (2) to include inhomogeneous medium

we work in the frequency-time domain. Thus (2) becomes a differential equation for P̂ (ω, x), which

using (1) we may write as a differential equation1 for P̂ (ω, x)

β2

(2π)2
∂2P̂

∂x2
+ ω2P̂ = kp(x)

2P̂ (5)

where

P̂ (ω, x) =

∫
∞

−∞

e−2πiωtP (t, x)dt (6)

The simplest modification to make the system inhomogeneous and periodic is to let the plasma
frequency vary with x:

k2p = k20 − 2Λ cos(2πx/a) (7)

As stated in the introduction, this can be constructed by varying r(x) periodically.
From (5) this gives the Mathieu equation

β2

(2π)2
∂2P̂

∂x2
+
(
ω2 − k20 + 2Λ cos(2πx/a)

)
P̂ = 0 (8)

1Note that we work with the polarization P instead of the electric field so that we can directly compare the results with [1].
Clearly one may use (1) to convert into E.
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Figure 2: The electric (in the (x, y) plane, left) and magnetic field (in the (y, z) plane, right) for a square
dielectric rod ǫwire = 1600ǫ0 (BST ceramic material) of width 0.4mm. The frequency was 5.39GHz, k =
163.6m−1, a = 30mm, (by, bz) = (22.86mm, 10.16mm).

From Floquet’s theorem the solution can be written

P̂ (ω, x) = e2πiκx/aP(ω, x) (9)

where P(ω, x) is periodic in x, i.e. P(ω, x+ 1) = P(ω, x). For each κ in the range 0 ≤ κ < a there
exist an infinite number of values

ω2
n − k20 = An

(
κ,Λ/β2

)
(10)

such that (9) is a solution to (8) with the periodicity of P(ω, x). One may therefore regard (10) as
a dispersion relation. The solution to (8) is given in terms of the Mathieu Function F .

P̂ (ωn, x) = F
(4a2(ω2

n − k20)

β2
,
4a2Λ

β2
,
πx

a

)
(11)

In the case when Λ = 0 and hence kp = k0 then (5) reduces to the simple harmonic oscillator

and has solution Ê(ω, x) = e2πkx. From (9) we may set P(ω, x) = e2πinx/a where n ∈ Z, so that
(4) becomes the dispersion relation, for the unperturbed frequency ωn,

Ωn =
√

k20 + β2(κ+ n)2/a2 (12)

and hence

An(κ, 0) = β2(κ+ n)2/a2 (13)

In [1] we look the approximation for small Λ. In order to make the translation we observe that

fq(ω) = ω2 − k20 − β2(q + κ)2/a2 (14)

and hence fn(Ωn) = 0. In this case

Fq = fq(Ωn) = k20 −
β2(n+ κ)2

a2
−

(
k20 −

β2(q + κ)2

a2

)
=

β2

a2
(n− q)(n+ q + 2κ) (15)

and F ′

q = f ′

q(Ωn) = 2Ωn. In this case we see that

ωn = Ωn +
Λ2 a2

2Ωn β2

( 1

2n+ 2κ− 1
−

1

2n+ 2κ+ 1

)
+O(Λ4) (16)

we then take the spatial Fourier series

Pn(x) =

∞∑

m=−∞

e2πmx Pn
m

and calculate the Fourier the approximate value of Pn
m, given in equation (33) of [1]. One of the

key results of [1] is the observation that this approximation scheme brakes down in the case when
κ = 0 or κ = 1

2 . This can be seen in the (15) above, where F−n = 0 if κ = 0 and F−n−1 = 0 if

κ = 1
2 . This is because the approximate modes couple. The existence of coupled modes is a new

feature of spatial dispersion. See [1] for details.
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Figure 3: Dispersion relation ω versus k for a range of
different widths w

The approximation scheme described in [1]
is more general since it will deal with fourth
order differential equations applicable to trans-
verse modes. Indeed it can be seen that the
method is appropriate for any order differential
equation in x.

3. NUMERICAL RESULTS

The eigen mode solver of CST Microwave Stu-
dio is used to perform mode analysis of the
metamaterial unit cell. The unit cell has di-
mensions in the transverse plane (by, bz) =
(22.86mm, 10.16mm). Inside was a uniform di-
electric rod ǫwire = 1600ǫ0, with square cross
section of width between w = 0.2mm to w =
0.5mm. This reproduced results in the litera-
ture [10]. This the cross section was uniform for
these simulations, the result was independent of
the x longitudinal period of the unit cell. How-
ever for computational reasons this was set to
10.16mm. By looking at at the fields, in figure
2 it is clear that, away from the wires, the elec-
tric field is in the longitudinal direction (x) and
that the magnetic field H is in the transverse plane. Not only is magnetic field concentrated near
the rod, but the magnetic field averaged over the transverse plane is zero. Therefore this dielectric
wire is modelled well by looking at longitudinal electric modes in an epsilon near zero medium.
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Figure 4: Proposed profile of dielectric wire to give a
the periodic plasma frequency (7).

The dispersion (ω, k) curves for a variety of
wire widths are given in figure 3. It is clear
that for thin wires there is a hyperbolic rela-
tion (4) whereas this relation breaks down for
thicker wires at high frequency. Mapping the
hyperbolic portions onto (4) we get the follow-
ing values for the limiting phase velocity β and
the unperturbed plasma frequency k20.

w β k2p = k20

0.2mm 0.157c 257c2m−2

0.3mm 0.155c 157c2m−2

0.4mm 0.154c 101c2m−2

0.5mm 0.155c 97c2m−2

(17)

It is clear from the table (17) that we can use
a constant phase velocity β = 0.155c. The re-
lationship between w and k2p may be approxi-
mated by a quadratic equation given by

kp(w)
2 ≈ c2(2420w2 − 2230w + 607) (18)

3.1. Proposed model of periodic structure

We wish to find a function for the width w(x) such that the plasma frequency given by (18)
becomes (7). For this we set the unperturbed plasma frequency k20 = 100c2 s−2 = (2.997GHz)2 and
β = 0.155c. We need to choose the period a to be longer than the inter wire spacing, 22.86mm.
A reasonable value is to set a = 0.1m. The flattest mode shape can be achieved when the second
argument of F in (11) is equal to 1. I.e. 4a2Λ/β2 = 1. This gives a value for Λ = 0.618c2m−2 =
(0.236GHz)2. Thus the with of the wires w(x) varies between 0.404mm and 0.413mm its shape is
given in figure 4.
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Figure 5: Mode shape of the polarization P̂ (ω, x) and

the electric field Ê(ω, x).

We also choose κ = 0. Placing these val-
ues into (10) and (11) we find that the a low-
est mode has it’s frequency only slightly altered
ω0 = 3.015GHz, The mode shape will then be
given by figure 5.

4. CONCLUSION

We have described how to shape the spatial
modes of longitudinal mode by varying the
width of a dielectric wire. We have also show
how to model this in terms of a spatially dis-
persive media. There is clearly many excit-
ing directions for this research. The next step
will be to look at the modes numerically using
CST studio or similar in order to compare the
modes with the expected mode. If one wished
to further shape the mode one could include a
Λ1 cos(4πx/a) in (8). The corresponding differ-
ential equation can then be solved using Heun
functions. In addition, by removing one of the
wires, one could create a photonic band gap
structure which will maximise the fields in one
region.
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