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Abstract. A recent result of Leung (Proceedings of the American Mathematical Society

2015) states that the Banach algebra B(X) of bounded, linear operators on the Banach space
X =

(⊕
n∈N `

n
∞
)
`1
contains a unique maximal ideal. We show that the same conclusion holds

true for the Banach spaces X =
(⊕

n∈N `n∞
)
`p

and X =
(⊕

n∈N `
n
1

)
`p

whenever p ∈ (1,∞).

To appear in Mathematical Proceedings of the Cambridge Philosophical Society.

1. Introduction and statement of main results

For p ∈ [1,∞), consider the Banach space

Wp =

(⊕
n∈N

`n∞

)
`p

.

Denny Leung [12] has recently proved that the Banach algebra B(W1) of all (bounded, linear)
operators acting on W1 has a unique maximal ideal, thus establishing the dual version of
[11, Theorem 3.2]. We shall show that Leung's conclusion extends to B(Wp) for p ∈ (1,∞)
and to B(W ∗p ), where W

∗
p
∼=
(⊕

n∈N `
n
1

)
`q

is the dual Banach space of Wp, with q ∈ (1,∞)

denoting the conjugate exponent of p. More precisely, using the following piece of notation

MX = {T ∈ B(X) : the identity operator on X does not factor through T} (1.1)

for a Banach space X, we can state our main result as follows.

Theorem 1.1. For each p ∈ (1,∞), the sets MWp and MW ∗p given by (1.1) are the unique

maximal ideals of the Banach algebras B(Wp) and B(W ∗p ), respectively.

This theorem adds the spaces Wp and W ∗p for p ∈ (1,∞) to the already substantial list,
summarized in [8, p. 4832], of Banach spaces X for which the set MX is known to be the
unique maximal ideal of B(X).

In general, Dosev and Johnson [6, p. 166] observed that, for a Banach space X, the set MX

given by (1.1) is an ideal of B(X) if (and only if) MX is closed under addition, and in
the positive case, MX is automatically the unique maximal ideal of B(X). Thus, to prove
Theorem 1.1, it su�ces to show that the sets MWp and MW ∗p are closed under addition.

Our approach is completely di�erent from Leung's. Let us here describe the two most
important results that we establish en route to Theorem 1.1, as they outline our strategy, and
they may be of some independent interest. First, in Section 2, we introduce a new operator
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ideal in the following way. For p ∈ [1,∞] and Banach spaces X and Y , de�ne

S{`np : n∈N}(X,Y ) ={
T ∈ B(X,Y ) : T does not �x the family {`np : n ∈ N} uniformly

}
. (1.2)

(Details of this terminology can be found in De�nitions 2.2 and 2.9.)

Theorem 1.2. The class S{`np : n∈N} given by (1.2) is a closed operator ideal in the sense of

Pietsch for each p ∈ [1,∞].

Second, in Section 3, we show that the ideal S{`n∞ : n∈N}(Wp) is equal to the set MWp .

Theorem 1.3. Let p ∈ (1,∞). An operator T ∈ B(Wp) �xes the family {`n∞ : n ∈ N}
uniformly if and only if the identity operator on Wp factors through T .

Ultraproducts play a key role in the proofs of both of these theorems.

2. Operators fixing certain Banach spaces and the proof of Theorem 1.2

Throughout this paper, all Banach spaces are supposed to be over the same scalar �eld K,
either the real or the complex numbers. By an ideal, we understand a two-sided, algebraic
ideal. The term operator means a bounded, linear mapping between Banach spaces. Given
two Banach spaces X and Y , we write B(X,Y ) for the Banach space of all operators from X
to Y , and we set B(X) = B(X,X).

An operator T : X → Y is bounded below by a constant c > 0 if ‖Tx‖ > c‖x‖ for each
x ∈ X. This is equivalent to saying that T is an isomorphism onto its range T [X], which
is closed, and the inverse operator from T [X] onto X has norm at most c−1. The class of
operators which are bounded below is open in the norm topology; more precisely, we have the
following estimate, which is an immediate consequence of the subadditivity of the norm.

Lemma 2.1. Let X and Y be Banach spaces, let c > ε > 0 be constants, and let S, T : X → Y
be operators such that ‖S − T‖ 6 ε and T is bounded below by c. Then S is bounded below

by c− ε.

De�nition 2.2. Let E, X and Y be Banach spaces, let T : X → Y be an operator, and let
C > 1 be a constant. We say that T C-�xes a copy of E if there is an operator S : E → X of
norm at most C such that the composite operator TS is bounded below by 1/C. In the case
where the value of the constant C is not important, we shall simply say that T �xes a copy

of E.
An operator which does not �x a copy of E is called E-strictly singular; the set of E-strictly

singular operators from X to Y is denoted by SE(X,Y ).

We note for later reference that an operator which C-�xes a non-zero Banach space for
some constant C > 1 must have norm at least 1/C2.

A straightforward application of Lemma 2.1 leads to the following conclusion.

Corollary 2.3. Let E, X and Y be Banach spaces, let C ′ > C > 1 be constants, and let

S, T : X → Y be operators such that T C-�xes a copy of E and ‖S − T‖ 6 (C ′ − C)/C2C ′.
Then S C ′-�xes a copy of E.

It follows in particular that the set SE(X,Y ) is norm-closed in B(X,Y ) for all Banach
spaces E, X and Y . Moreover, the class SE is clearly closed under arbitrary compositions, in
the sense that STR ∈ SE(W,Z) whenever R ∈ B(W,X), T ∈ SE(X,Y ) and S ∈ B(Y,Z)



UNIQUENESS OF THE MAXIMAL IDEAL OF OPERATORS 3

(and W , X, Y and Z are Banach spaces). Thus SE is a closed operator ideal in the sense
of Pietsch if (and only if) it is closed under addition. We shall now show that this is the
case provided that the Banach space E is minimal, in the sense that E is in�nite-dimensional
and each of its closed, in�nite-dimensional subspaces contains a further subspace which is
isomorphic to E. Examples of minimal Banach spaces include the classical sequence spaces c0
and `p for 1 6 p < ∞ (Peªczy«ski [14]), the dual of Tsirelson's space (Casazza, Johnson and
Tzafriri [3]; note that we follow the convention, originating from [7], that the term `Tsirelson's
space' refers to the dual of the space originally constructed by Tsirelson) and Schlumprecht's
space (Schlumprecht [2]). On the other hand, we note in passing that Tsirelson's space is not
itself minimal [4].

We shall require the following lemma (see [13, Proposition 2.c.4], where it is attributed to
Kato [9]), whose statement involves the following standard piece of terminology: an operator
is approximable if it belongs to the norm-closure of the set of �nite-rank operators.

Lemma 2.4. Let X and Y be in�nite-dimensional Banach spaces, and let T : X → Y be an

operator which is not bounded below on any �nite-codimensional subspace of X. Then, for

each ε > 0, X contains a closed, in�nite-dimensional subspace W such that the restriction

of T to the subspace W is approximable and has norm at most ε.

Proposition 2.5. Let E be a minimal Banach space. Then the class SE of E-strictly singular

operators is a closed operator ideal in the sense of Pietsch.

Proof. By the remarks above, it su�ces to show that, for each pair X,Y of Banach spaces,
the set SE(X,Y ) is closed under addition. To verify this, suppose that S ∈ SE(X,Y ) and
T ∈ B(X,Y ) are operators such that S + T /∈ SE(X,Y ); we must show that T /∈ SE(X,Y ).
Choose an operator R : E → X such that (S + T )R is bounded below by c > 0, say. Since
S ∈ SE(X,Y ) and E is minimal, the restriction of SR to any in�nite-dimensional subspace
of E is not bounded below. Hence Lemma 2.4 implies that E contains a closed, in�nite-
dimensional subspace F such that ‖SR|F ‖ 6 c/2. After replacing F with a suitably chosen
subspace, we may in addition suppose that F is isomorphic to E. Lemma 2.1 shows that
TR|F is bounded below by c/2, and so T /∈ SE(X,Y ). �

Remark 2.6. A more general version of Proposition 2.5 can be deduced from a result of
Stephani [15, Theorem 2.1], as Rosenberger observed in his Mathematical Review (MR582517)
of Stephani's paper.

The connection between Proposition 2.5 and Theorem 1.2 goes via ultraproducts. We refer
the reader to [1, Section 11.1] or [5, Chapter 8] for basic facts and notation involving ultra-
products. The following lemma is essentially a quantitative version of the fact that each
ultrapower of a Banach space X is �nitely representable in X.

Lemma 2.7. Let E, X and Y be Banach spaces, where E is �nite-dimensional, let C ′ > C > 1
be constants, let T : X → Y be an operator, and let U be a free ultra�lter on N such that the

ultrapower TU : XU → YU C-�xes a copy of E. Then T C ′-�xes a copy of E.

To prove it, we shall require the following simple variant of [1, Lemma 11.1.11], where we
keep record of the constants involved.

Lemma 2.8. Let T be an operator from a non-zero, �nite-dimensional Banach space E into

a Banach space X, let N be a �nite ε-net in the unit sphere of E for some ε ∈ (0, 1), and let
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η 6 minx∈N ‖Tx‖ and ξ > maxx∈N ‖Tx‖. Then

η − ε(ξ + η)

1− ε
‖x‖ 6 ‖Tx‖ 6 ξ

1− ε
‖x‖ (x ∈ E).

Proof of Lemma 2.7. We may suppose that E is non-zero, so that E has a normalized basis
(ej)

n
j=1; denote by (fj)

n
j=1 the corresponding coordinate functionals. Choose C ′′ ∈ (C,C ′),

and let N be a �nite ε-net in the unit sphere of E, where

ε =
C ′ − C ′′

C ′(C ′′)2‖T‖+ C ′ − C ′′
∈ (0, 1).

By the assumption, there is an operator S : E → XU of norm at most C such that the composite
operator TUS is bounded below by 1/C. For each j ∈ {1, . . . , n}, let (xj,k)k∈N ∈ `∞(N, X) be
a representative of the equivalence class of Sej in XU. Then, for each x ∈ N , we have

lim
k,U

∥∥∥∥ n∑
j=1

〈x, fj〉xj,k
∥∥∥∥ = ‖Sx‖ 6 C < C ′′ and lim

k,U

∥∥∥∥ n∑
j=1

〈x, fj〉Txj,k
∥∥∥∥ = ‖TUSx‖ >

1

C
>

1

C ′′
.

Since N is �nite and U is closed under �nite intersections, the set

M =

{
k ∈ N :

∥∥∥∥ n∑
j=1

〈x, fj〉xj,k
∥∥∥∥ < C ′′ and

∥∥∥∥ n∑
j=1

〈x, fj〉Txj,k
∥∥∥∥ > 1

C ′′
(x ∈ N)

}
(2.1)

belongs to U, and it is therefore non-empty; choose k ∈M , and de�ne a mapping R : E → X
by setting Rej = xj,k for each j ∈ {1, . . . , n} and extending by linearity. The estimates given
in (2.1) together with Lemma 2.8 and the choice of ε imply that ‖R‖ 6 C ′′/(1 − ε) 6 C ′,
where the �nal inequality follows from the fact that ‖T‖ = ‖TU‖ > 1/C2 > 1/C ′C ′′, and TR
is bounded below by

1/C ′′ − ε(‖T‖C ′′ + 1/C ′′)

1− ε
=

1

C ′
,

so that T C ′-�xes a copy of E. �

De�nition 2.9. Let F be a non-empty family of Banach spaces. We say that an operator T
�xes the family F uniformly if there is a constant C > 1 such that T C-�xes a copy of each
Banach space in F.

To state our next result concisely, it is convenient to introduce the notation Ep = `p for
p ∈ [1,∞) and E∞ = c0.

Corollary 2.10. Let X and Y be Banach spaces, let T ∈ B(X,Y ), and let p ∈ [1,∞]. Then

the following three conditions are equivalent:

(a) the operator T �xes the family {`np : n ∈ N} uniformly;

(b) for every free ultra�lter U on N, the ultrapower TU : XU → YU �xes a copy of Ep;

(c) there exists a free ultra�lter U on N such that the ultrapower TU : XU → YU �xes the

family {`np : n ∈ N} uniformly.

Proof. (a)⇒(b). Suppose that there exists a constant C > 1 such that, for each n ∈ N, we
can �nd an operator Sn : `

n
p → X of norm at most C such that the composite operator TSn

is bounded below by 1/C, and let U be a free ultra�lter on N. Then we have an operator
S = (

∏
Sn)U of norm at most C from the ultraproduct (

∏
`np )U into the ultrapower XU, and

the composite operator TUS is bounded below by 1/C. For each n ∈ N, `np is an Lp(µ)-space
for p < ∞ and a C(K)-space for p = ∞, and these classes are preserved by ultraproducts
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(see, e.g., [5, Theorem 8.7]). Thus the domain of S is an in�nite-dimensional Lp(µ)-space for
p < ∞ and an in�nite-dimensional C(K)-space for p = ∞, so that in either case it contains
an isomorphic copy of Ep. Taking an operator R : Ep → (

∏
`np )U which is bounded below, we

see that TUSR is also bounded below, so that TU �xes a copy of Ep.
The implication (b)⇒(c) is obvious, while (c)⇒(a) follows from Lemma 2.7. �

Proof of Theorem 1.2. The class S{`np : n∈N} is clearly closed under arbitrary compositions and

contains all �nite-rank operators, while Corollary 2.3 shows that it is closed in the opera-
tor norm. Now suppose that S, T ∈ S{`np : n∈N}(X,Y ) for some Banach spaces X and Y .

Corollary 2.10 implies that SU, TU ∈ SEp(XU, YU) for every free ultra�lter U on N, where
we recall that Ep = `p for p < ∞ and Ep = c0 for p = ∞. Consequently, we have
(S + T )U = SU + TU ∈ SEp(XU, YU) by Proposition 2.5, and hence another application of
Corollary 2.10 shows that S + T ∈ S{`np : n∈N}(X,Y ). �

3. The proofs of Theorems 1.3 and 1.1

We begin by establishing some lemmas and introducing some notation that will be required
in the proof of Theorem 1.3. Our �rst lemma needs no proof: it follows immediately from the
1-injectivity of the Banach space `n∞.

Lemma 3.1. Let n ∈ N, let X be a Banach space, and let T : `n∞ → X be an operator which

is bounded below by c > 0. Then T has a left inverse X → `n∞ of norm at most c−1.

Our second lemma concerns strictly singular perturbations of operators that �x `p for some
p ∈ [1,∞) or c0.

Lemma 3.2. Let X and Y be Banach spaces, let E = `p for some p ∈ [1,∞) or E = c0,
let C ′ > C > 1 be constants, and let S, T : X → Y be operators, where S is strictly singular

and T C-�xes a copy of E. Then S + T C ′-�xes a copy of E.

Proof. By the assumption, we can choose an operator R : E → X such that ‖R‖ 6 C and
TR is bounded below by 1/C. Set ε = (C ′ − C)/C ′(C + 1) ∈ (0, 1). Since SR is strictly
singular, Lemma 2.4 implies that E contains a closed, in�nite-dimensional subspace F such
that ‖SR|F ‖ 6 ε. Keeping careful track of the constants in the proof of Peªczy«ski's theorem
that E is minimal, as it is given in [1, Proposition 2.2.1], for instance, as well as in the
proof of [1, Theorem 1.3.9], we see that in fact every closed, in�nite-dimensional subspace
of E contains almost isometric copies of E. We can therefore �nd an operator U : E → F
such that (1− ε)‖x‖ 6 ‖Ux‖ 6 ‖x‖ for each x ∈ E. Hence we have ‖RU‖ 6 ‖R‖ < C ′,
‖SRU‖ 6 ‖SR|F ‖ ‖U‖ 6 ε and

‖TRUx‖ > 1

C
‖Ux‖ > 1− ε

C
‖x‖ (x ∈ E),

so that (S + T )RU is bounded below by (1− ε)/C − ε = 1/C ′ by Lemma 2.1 and the choice
of ε. This shows that S + T C ′-�xes a copy of E. �

We shall next introduce some notation and terminology related to Banach spaces of the
form

X =

(⊕
n∈N

Xn

)
`p

=

{
(xn)n∈N : xn ∈ Xn (n ∈ N) and

∞∑
n=1

‖xn‖p <∞
}
, (3.1)

where (Xn)n∈N is a sequence of Banach spaces and p ∈ [1,∞). For each n ∈ N, we write
ιn : Xn → X and πn : X → Xn for the canonical nth coordinate embedding and projection,
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respectively. Given an operator T on X, we associate with it the (N×N)-matrix (Tj,k), where
Tj,k = πjTιk : Xk → Xj for each pair j, k ∈ N. We say that T has �nite rows if, for each
j ∈ N, there exists k0 ∈ N such that Tj,k = 0 whenever k > k0, and that T has �nite columns

if, for each k ∈ N, there exists j0 ∈ N such that Tj,k = 0 whenever j > j0.
The following elementary perturbation result is a special case of [10, Lemma 2.7].

Lemma 3.3. Let T be an operator on a Banach space X of the form (3.1), where Xn is �nite-

dimensional for each n ∈ N and p ∈ (1,∞). Then, for each ε > 0, there exists an operator

T ′ ∈ B(X) with �nite rows and �nite columns such that the operator T − T ′ is approximable

and has norm at most ε.

Set P0 = 0 and Pn =
∑n

j=1 ιjπj for n ∈ N. We can then state our �nal lemma as follows.

Lemma 3.4. Let X be a Banach space of the form (3.1), let 0 6 k1 < k′1 6 k2 < k′2 6 · · ·
be an increasing sequence of integers, and let (Rn : Xn → X)n∈N and (Sn : X → Xn)n∈N be

uniformly bounded sequences of operators. Then

Rx =

∞∑
n=1

(Pk′n − Pkn)Rnxn and Sx = (Sn(Pk′n − Pkn)x)n∈N, (3.2)

where x = (xn)n∈N ∈ X, de�ne operators R and S on X of norms at most supn∈N ‖Rn‖ and
supn∈N ‖Sn‖, respectively.

Proof. Set C1 = supn∈N ‖Rn‖ and C2 = supn∈N ‖Sn‖, and let x = (xn)n∈N ∈ X be given.
We must show that the elements Rx and Sx de�ned by (3.2) belong to X and have norms
at most C1‖x‖ and C2‖x‖, respectively; the result will then follow because the mappings R
and S thus de�ned are easily seen to be linear.

The required estimate for S is straightforward:
∞∑
n=1

‖Sn(Pk′n − Pkn)x‖p 6 C
p
2

∞∑
n=1

‖(Pk′n − Pkn)x‖p 6 C
p
2‖x‖

p.

Concerning R, we de�ne yj ∈ Xj for each j ∈ N as follows: yj = πjRnxn if kn < j 6 k′n for
some (necessarily unique) n ∈ N, and yj = 0 otherwise. Then, for each m ∈ N, we have

∞∑
j=km+1

‖yj‖p =
∞∑

n=m

k′n∑
j=kn+1

‖πjRnxn‖p =
∞∑

n=m

‖(Pk′n − Pkn)Rnxn‖p 6 Cp
1‖(IX − Pm−1)x‖p.

Taking m = 1, we see that y = (yj)j∈N belongs to X with norm at most C1‖x‖. Moreover,
we deduce that the series

∑∞
n=1(Pk′n − Pkn)Rnxn is convergent with sum y because∥∥∥∥y − m∑

n=1

(Pk′n − Pkn)Rnxn

∥∥∥∥p = ∞∑
j=km+1+1

‖yj‖p 6 Cp
1‖(IX − Pm)x‖p → 0 as m→∞,

so that Rx = y, and the conclusion follows. �

Proof of Theorem 1.3. The implication⇐ is easy to verify. Suppose that IWp = STR for some

operators R,S ∈ B(Wp), and let C =
√
‖R‖ ‖S‖. By replacing R and S with CR/‖R‖ and

CS/‖S‖, respectively, we may suppose that ‖R‖ = ‖S‖ = C. Then, for each n ∈ N, the com-
posite operator TRιn : `

n
∞ → Wp is bounded below by 1/‖S‖ = 1/C and ‖Rιn‖ 6 ‖R‖ = C,

so that T C-�xes `n∞.
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Conversely, suppose that T �xes the family {`n∞ : n ∈ N} uniformly. We may without loss of
generality suppose that ‖T‖ = 1. Take a free ultra�lter U on N. Corollary 2.10 shows that the
ultrapower TU C-�xes a copy of c0 for some C > 1. Choose constants C1 > C2 > C3 > C4 > C,
and set ε = min{(C4 − C)/C2C4, 1/C

2
1} ∈ (0, 1). By Lemma 3.3, we can �nd an operator

T ′ ∈ B(Wp) with �nite rows and columns such that ‖T −T ′‖ < ε/2. Set T ′′ = T ′/‖T ′‖. Since

‖TU − T ′′U‖ = ‖T − T ′′‖ 6 ‖T − T ′‖+
∥∥∥∥(1− 1

‖T ′‖

)
T ′
∥∥∥∥

= ‖T − T ′‖+
∣∣‖T ′‖ − ‖T‖∣∣ < ε 6

C4 − C
C2C4

,

Corollary 2.3 implies that T ′′U C4-�xes a copy of c0.
By induction, we shall construct sequences 0 = k0 = k′0 6 k1 < k′1 6 k2 < k′2 6 · · · and 0 =

m0 < m1 < m2 < · · · of integers and sequences (Rn : `
n
∞ →Wp)n∈N0 and (Sn : Wp → `n∞)n∈N0

of operators, each having norm at most C1, such that

(IWp − Pmn)T
′′Pk′n = 0 = Pmn−1T

′′(IWp − Pkn) (3.3)

and the diagram

`n∞
I`n∞ //

Rn

���������
`n∞

Wp

Pk′n − Pkn ��7777777
Wp

Sn
[[8888888

Wp
T ′′ // Wp

Pmn − Pmn−1

CC������

(3.4)

is commutative for each n ∈ N.
The only reason that we have included the case n = 0 is that it makes the start of the

induction trivial (whereas if we began with n = 1, we would need to carry out a small amount
of checking, which would duplicate parts of the induction step). Indeed, we can simply take
R0 = S0 = 0 (as well as k0 = k′0 = m0 = 0, as already stated).

Now assume that, for some N ∈ N0, integers 0 = k0 = k′0 6 k1 < k′1 6 · · · 6 kN < k′N and
0 = m0 < m1 < · · · < mN and operators (Rn : `

n
∞ →Wp)

N
n=0 and (Sn : Wp → `n∞)Nn=0 of norms

at most C1 have been chosen in accordance with (3.3)�(3.4). Since T ′′ has �nite rows, we can
choose kN+1 > k′N such that T ′′r,s = 0 whenever 1 6 r 6 mN and s > kN+1. Then we have
PmNT

′′(IWp − PkN+1
) = 0. For convenience, set T ′′N+1 = (IWp − PmN )T

′′(IWp − PkN+1
). This

is a �nite-rank perturbation of T ′′, and consequently (T ′′N+1)U is a �nite-rank perturbation
of T ′′U because ultrapowers of �nite-rank operators have �nite rank. Hence Lemma 3.2 implies

that (T ′′N+1)U C3-�xes a copy of c0, and thus of `N+1
∞ . This, in turn, means that T ′′N+1 C2-�xes

a copy of `N+1
∞ by Lemma 2.7; that is, we can �nd an operator RN+1 : `

N+1
∞ → Wp of norm

at most C2 such that T ′′N+1RN+1 is bounded below by 1/C2. The fact that RN+1 has �nite
rank means that we can take k′N+1 > kN+1 such that ‖(IWp − Pk′N+1

)RN+1‖ 6 1/C2 − 1/C1.

Lemma 2.1 then shows that (IWp −PmN )T
′′(Pk′N+1

−PkN+1
)RN+1 is bounded below by 1/C1.

Since T ′′ has �nite columns, we can choosemN+1 > mN such that T ′′r,s = 0 whenever r > mN+1

and 1 6 s 6 k′N+1. This implies that (IWp − PmN+1)T
′′Pk′N+1

= 0, and consequently

(PmN+1 − PmN )T
′′(Pk′N+1

− PkN+1
)RN+1 = (IWp − PmN )T

′′(Pk′N+1
− PkN+1

)RN+1,
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which is bounded below by 1/C1, so Lemma 3.1 gives an operator SN+1 : Wp → `N+1
∞ of

norm at most C1 such that the diagram (3.4) commutes for n = N + 1. Hence the induction
continues.

As in Lemma 3.4, we can now de�ne operators R and S on Wp of norms at most C1 by

Rx =
∞∑
n=1

(Pk′n − Pkn)Rnxn and Sx = (Sn(Pmn − Pmn−1)x)n∈N (x = (xn)n∈N ∈Wp).

Then, for each r, s ∈ N, we have

πr(ST
′′R)ιs(x) = Sr(Pmr − Pmr−1)T

′′(Pk′s − Pks)Rsx =

{
x if r = s

0 otherwise
(x ∈ `s∞)

by (3.3)�(3.4), and therefore ST ′′R = IWp . Since

‖STR− IWp‖ 6 ‖S‖ ‖T − T ′′‖ ‖R‖ < C2
1ε 6 1

by the choice of ε, we conclude that the operator STR is invertible, and the result follows. �

Proof of Theorem 1.1. Theorem 1.3 shows that MWp = S{`n∞ : n∈N}(Wp), which is an ideal by
Theorem 1.2, and it is therefore the unique maximal ideal of B(Wp) by the observation of
Dosev and Johnson that was stated in the Introduction.

The Banach space Wp is re�exive because p ∈ (1,∞). Hence the mapping T 7→ T ∗, which
maps an operator T to its adjoint T ∗, is a linear, anti-multiplicative, isometric bijection of
the Banach algebra B(Wp) onto B(W ∗p ), and so it induces an order isomorphism between the
lattices of ideals of these two Banach algebras. In particular, the image under this mapping
of the unique maximal ideal MWp of B(Wp) is the unique maximal ideal of B(W ∗p ), and this
ideal is given by

{T ∗ : IWp 6= STR (R,S ∈ B(Wp))} = {T ∗ : IW ∗p 6= R∗T ∗S∗ (R,S ∈ B(Wp))} = MW ∗p . �
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