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Abstract

This paper comprehensively investigates the role of realized jumps detected

from high frequency data in predicting future volatility from both statistical

and economic perspectives. Using seven major jump tests, we show that sepa-

rating jumps from diffusion improves volatility forecasting both in-sample and

out-of-sample. Moreover, we show that these statistical improvements can be

translated into economic value. We find a risk-averse investor can significantly

improve her portfolio performance by incorporating realized jumps into a volatil-

ity timing based portfolio strategy. Our results hold true across the majority of

jump tests, and are robust to controlling for microstructure effects and trans-

action costs.
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1 Introduction

The importance of jumps in asset pricing, option pricing, and risk management is

widely recognized (Ait-Sahalia 2004). Although, resorting on jumps as a modeling

device is not new, realized jumps were generally overlooked until recently. In this

paper, we comprehensively investigate the role of realized jumps detected from high

frequency data for the prediction of future volatility. Different from previous studies

with similar focus, we not only conduct an extensive statistical evaluation of volatil-

ity forecasting using all major jump tests, but also provide new economic insights in

the form of whether a risk-averse investor can significantly benefit from considering

realized jumps in volatility timing based portfolio allocation strategies.

The literature on this topic can be broadly categorized into two streams: The para-

metric literature starting with Merton (1976) includes jump-diffusion and stochastic-

volatility with jumps (SVJ) models in continuous time (Eraker, Johannes, and Polson

2003, Eraker 2004, Chernov, Gallant, Ghysels, and Tauchen 2003) and GARCH-J

models in discrete time (Maheu and McCurdy 2004, Duan, Ritchken, and Sun 2006,

Christoffersen, Jacobs, and Ornthanalai 2012). These parametric models are widely

used in portfolio choice, option pricing, and risk management applications and the

jumps introduced in models are ex ante in nature. As Backus, Chernov, and Martin

(2011) admit: “jumps are usually treated as a modeling device to generate non-normal

returns, which is economically meaningless per se”.

The second stream of the literature considers nonparametric approaches. Recently,

many nonparametric jump tests (Barndorff-Nielsen and Shephard 2006, Andersen,

Bollerslev, and Dobrev 2007, Ait-Sahalia and Jacod 2009) use high frequency data to

estimate ex post realized jumps. This stream of the literature primarily focuses on

issues such as why asset prices jump (e.g. macroeconomic new announcements) or

how often asset prices jump (e.g. less than one per day). However, only a very few

studies consider economic applications of realized jumps. We therefore aim to fill this

gap between two related but different streams of literature by considering economic

applications of realized jumps.

We focus on two research questions: Firstly, we are interested in whether realized

jumps can forecast future volatility. We apply seven main stream nonparametric jump

tests to identify realized jumps, decompose realized variance into jump and diffusion
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components, and then adapt them into a forecasting framework. Our findings suggest

that realized jumps do contain predictive information for future volatility for the ma-

jority of jump tests both in-sample and out-of-sample. We find that jump models in

general generate higher adjusted R squares and lower Mean Squared Prediction Er-

rors (MSPE) compared to the benchmark model, which does not separate jumps from

diffusion. Results hold true across the majority of jump specifications, and different

forecasting horizons. Existing studies investigate similar issues. However, they mainly

rely on one particular jump test and their results are mixed. For example, Andersen,

Bollerslev, and Diebold (2007) find a negative (but insignificant) relationship between

jumps and one period ahead volatility. Corsi, Pirino, and Reno (2010) on the contrary

show statistically significant evidence to support a positive relationship if a modified

jump test is applied. By using all major jump tests, our results contribute to the

debate whether in general realized jumps help to forecast volatility.

Incorporating realized jumps into volatility forecasting require accessing intraday high

frequency data and applying sophisticated nonparametric jump tests. Therefore, a

natural question arises whether it is worth to estimate and use realized jumps. Even

though separating jumps from diffusion improves volatility forecasting, it is interest-

ing to know whether the improvement is large, and more importantly whether the

improvement is economically valuable. Therefore, our second research question ex-

plicitly asks whether the potential statistical forecasting improvement obtained by

separating jumps from diffusion can be translated into tangible economic benefits for

a risk-averse investor. We construct a mean-variance portfolio strategy based on the

predicted volatility obtained from the previous step. Our findings suggest that the

statistical improvements are also economically significant. Under different risk aver-

sion levels and jump specifications, jump strategies can in general generate positive

and statistically significant performance fees relative to the benchmark strategy. A

few existing papers also consider the role of jumps in asset allocations. For example,

Liu, Longstaff, and Pan (2003) provide an analytical solution to the optimal portfolio

choice problem when event risk or jumps are considered. They find that jumps play

an important role in determining the optimal portfolio choice. Two recent studies

by Chen, Hyde, and Poon (2010) and Maheu, McCurdy, and Zhao (2012) are also

close to us in considering jumps in asset allocation. However, we differ from those

studies on a few aspects. Firstly, our nonparametric framework enables us to exploit

the information embedded in jump variations in a model free fashion while previous

papers rely on a parametric specification. Secondly, we use high frequency data to
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separate the jumps and the diffusion component precisely, while they mainly rely on

daily data to obtain relatively noisy proxies for jumps (i.e. large extraordinary move-

ment or middle size jumps etc). The high frequency data we use also allows us to

access intraday information, which is overlooked by previous studies.

We then conduct comprehensive robustness checks, and find that further controlling

for market microstructure effects and transaction costs does not change our main

results. We also investigate the predictive ability of realized jumps on alternative

realized moments. We find that realized jumps can predict realized volatility and its

signed components, but can hardly predict realized higher moments. We further show

that a mean-variance portfolio strategy based on predicting positive and negative

conditional volatilities separately can outperform the benchmark strategy based on

predicting total volatility, and incorporating realized jumps can additionally improve

economic benefits.

A few other studies are also related to ours. Firstly, our paper can be viewed as

a natural extension of the stream of literature considering the economic value of

volatility timing. Previous studies (Fleming, Kirby, and Ostdiek 2003, Bandi and

Russell 2006, Bandi, Russell, and Zhu 2008, Liu 2009) already document that volatility

timing performance can be improved by using high frequency data, optimal sampling,

and optimal rebalancing frequencies. We extend the above studies by considering

realized jumps. Secondly, our paper is also related to other uses of realized jumps

or applications of jump tests. For example, Dumitru and Urga (2012) and Theo-

dosiou and Zikes (2011) conduct comprehensive simulation studies to compare size

and power of jump tests. Tauchen and Zhou (2011) and Jiang and Yao (2012) use

detected realized jumps to predict bond risk premia and the cross-section of stock

returns respectively. We distinguish ours from previous studies by focusing on the

role of realized jumps in volatility timing.

The rest of the paper is structured as follows: Section 2 discusses the theoretical setup

and the jump tests. Section 3 describes the data and methodology. Section 4 discusses

empirical findings from both statistical and economic perspectives. Section 5 conducts

comprehensive robustness checks. Section 6 concludes.
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2 Jumps in Asset Prices

2.1 Theoretical Setup

Let pt denote the logarithmic price which follows a jump diffusion process given by

dpt = µtdt+ σtdWt + dJt (1)

where µt, σt, and dWt are drift, diffusion parameter, and standard brownian motion

respectively. Jt is a jump process, and Jt =
∑Nt

j=1 ctj , where ctj is the jump size and

Nt a counting process. For simplicity, we only consider finite activity jumps and we

assume that the jump and the diffusion components are independent. Let

rj,t = p(t−1)h+hj
M
− p

(t−1)h+h(j−1)
M

, j = 1, . . . ,M,

where h is the length of the intraday sampling interval andM is the number of intraday

returns during the day. Then the realized variance can be written as the sum of the

squared intraday returns

RVt = RVt,M =

M∑

j=1

r2j,t

Given the price dynamics of the jump diffusion process, the realized variance as an

approximation to the price’s quadratic variance can be further written as follows

lim
M→∞

RVt,M =

t∫

t−1

σ2
sds+

Nt∑

j=1

c2j (2)

Here
∫ t

t−1
σ2
sds is the integrated variance (IVt), and

∑Nt

j=1 c
2
j is the quadratic variation

of the jump part (JVt) over the period from t − 1 to t (often a day). Jump tests are

therefore designed to estimate JVt using high frequency data.

2.2 Jump Tests

We consider the use of seven major jump tests developed in the literature, includ-

ing Barndorff-Nielsen and Shephard (2006) (BNS), Ait-Sahalia and Jacod (2009)(AJ),

Jiang and Oomen (2008)(JO), Andersen, Dobrev, and Schaumburg (2012) (Med, Min),

Corsi, Pirino, and Reno (2010)(CPR), and Podolskij and Ziggel (2010) (PZ). In this

part, we only describe the BNS jump test in detail. Specifications of all other six tests

are described in Appendix 1. Andersen, Bollerslev, and Dobrev (2007) and Lee and
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Mykland (2008) are two other important tests that are however not studied in this

paper.1

Barndorff-Nielsen and Shephard (2006) developed a bipower based jump estimator.

The idea is using the calculated realized bipower variation to proxy the integrated

variance. Since jumps are rare and are unlikely to occur for two consecutive intraday

returns, when intervals are small enough, the realized bipower variation will converge

in probability to the integrated variance. The difference between realized variance and

realized bipower variation is then an estimator of the jump variation. The realized

bipower statistic is defined as

BVt,M =
µ−2
1 M

M − 1

M∑

j=2

|rtj−1
||rtj |,

lim
M→∞

BVt,M −→ IV =

t∫

0

σ2
sds.

Following Huang and Tauchen (2005), the standardized BVt,M/RVt,M ratio converges

to a standard normal distribution and the test statistic is given by

Jt,M =
1− BVt,M

RVt,M√
[( 2

π
)2 + π − 5] 1

M
max(1,

TQt,M

BV 2
t,M

)
−→ N(0, 1), (3)

where TQt refers to the tripower quarticity given by

TQt,M = Mµ−3
4/3

M

M − 2

n∑

j=3

|rj−2|4/3|rj−1|4/3|rj|4/3,

where µp = E(|U |)p = π−1/22p/2Γ(p+1
2
).

The jump variation can then be obtained as

JVt = (RVt −BVt)I[Jt,M≥φ−1
α ], (4)

where the φ−1
α is the α quantile of the normal distribution.

1The reason is that both of them are intraday jump tests that average daily bipower variation to

local volatility. Therefore, although they can identify which return contains a jump, they are not

significantly different from BNS in volatility forecasting when only daily jump variation is considered.
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3 Data and Methodology

3.1 Realized Jumps and Volatility Forecasting

We first investigate the role of realized jumps in volatility forecasting. There are many

approaches to forecast volatility using high frequency data. We use the Heterogeneous

Autoregressive (HAR) model of Corsi (2009) because it can be implemented easily and

it can capture the long memory property of volatility processes in a straightforward

way. Our benchmark model considers the use of daily, weekly, and monthly lagged

realized variances to forecast one step ahead realized variance. The HAR-RV specifi-

cation is as follows:

RVt,t+h−1 = β0 + βRV DRVt−1 + βRV WRVt−5,t−1 + βRV MRVt−22,t−1 + ǫt,t+h−1. (5)

To assess the role of jumps, we consider the following HAR-RV-CJ specification:

RVt,t+h−1 = β0 + βIV DIVt−1 + βIV W IVt−5,t−1 + βIV MIVt−22,t−1 + βJV DJVt−1 + ǫt,t+h−1,

(6)

where RVt,t+h = h−1[RVt+RVt+1...+RVt+h−1] is the averaged h-periods realized vari-

ance. IVt−1, IVt−5,t−1, IVt−22,t−1 are jump robust integrated variation estimators over

a lagged daily, weekly, and monthly horizon, JVt−1 is the daily lagged jump variation

detected using the jump tests introduced before.

3.2 Realized Jumps and Volatility Timing Based Portfolio

Strategy

We then conduct our economic evaluations by constructing volatility timing based

portfolio allocation strategies. We consider a risk-averse investor with mean-variance

preferences, who allocates her wealth into one risky asset (a market index ETF) and

one risk-free asset. Our one risky asset specification is similar to Marquering and Ver-

beek (2004). The economic intuition for this strategy is simple. Given the expected

return, when the volatility level is high, the investor allocates more wealth into the

risk-free asset, and when the volatility level is low, the investor allocates more wealth

into the risky asset. If separating jumps from diffusion components lead to more ac-

curate prediction of future volatility, then we should expect the investor to improve

her portfolio performance by actively rebalancing the portfolio based on the signal of

the predicted volatility.
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Although more sophisticated utility functions can be used, we stick to mean-variance

preferences because we are primarily interested in whether statistical improvements

in volatility forecasting by separating jumps from diffusion can be translated into eco-

nomic values. To concentrate on the impact of jumps, we consider only one market

index as the risky asset. We choose this setting to avoid dealing with jump tests in

multivariate settings and controlling for non-synchronicity of different assets, while

we still maintain the generality of our empirical results. We also assume that the

investor is myopic. Namely, the investor dynamically rebalances her portfolio period

by period, and she does not consider the intertemporal hedging demand in the port-

folio selection. We make this assumption both for simplicity to directly translate our

volatility forecasting results into portfolio performance and for consistency with the

existing volatility timing literature.

Hence, the investor solves the following optimization problem:

Max
wt

U [Et(rp,t+1), V art(rp,t+1)],

where Et(rp,t+1) is the conditional expected portfolio return and V art(rp,t+1) is the

conditional variance of the portfolio return. The portfolio return is Et(rp,t+1) = rf,t+1+

wt(Et(rm,t+1)−rf,t+1), where wt is the portfolio weight of the risky asset, Et(rm,t+1) is

the conditional expected return of the risky asset and rf,t+1 is the return for the risk

free asset, which we know ex ante.

The mean-variance utility function is given by

U [Et(rp,t+1), V art(rp,t+1)] = Et(rp,t+1)−
γ

2
V art(rp,t+1),

with γ the risk-aversion parameter. Hence, the optimal portfolio weight is given by

wt =
Et(rm,t+1)− rf,t+1

γV art(rm,t+1)
. (7)

We set the expected return for the risky asset equal to the in-sample mean 2, as over

a short horizon, expected return changes are negligible and we are only interested in

the volatility timing effect of realized jumps.

Fleming, Kirby, and Ostdiek (2003) show that using a dynamic volatility timing strat-

egy relying solely on realized volatilities can outperform both static strategies and

dynamic volatility timing strategies using lagged daily volatilities only. Therefore

2We also tried using other specifications such as rolling windows, results are similar.
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the question whether realized jumps are economically valuable can be translated into

whether our jump augmented volatility timing strategy (HAR-RV-CJ) can outperform

the benchmark strategy (HAR-RV) which does not separate jumps from the diffusion

component.

To implement the above strategy, we conduct two further adjustments. Firstly, we

impose a short selling constraint. Following Marquering and Verbeek (2004), we re-

strict the negative portfolio weights to zero and the greater than one portfolio weights

to one. Secondly, we also match the high frequency trading period (6.5 hour) to daily

frequency (24 hour). Therefore, rather than directly plugging in the predicted realized

variance, we adjust the predicted realized variance with a bias-correction factor. We

follow existing studies (Fleming, Kirby, and Ostdiek 2003, Bandi and Russell 2006)

and construct the bias-correction factor as follows:

BCF =
1/n

∑n
t=1 r

2
t

1/n
∑n

t=1 RVt
, (8)

where RVt is the daily realized variance for 6.5 trading hours and rt is the daily return

for 24 hours. We construct the bias-correction factor using all data from the in-sample

period. The conditional variance is estimated by predicted realized variance scaled by

the bias correction factor, namely V art(rm,t+1) = BCF · R̂V t+1, where R̂V t+1 is the

predicted realized variance obtained from the volatility forecasting part. We can then

plug in the conditional variance into the optimal portfolio weight function to estimate

the optimal portfolio weight.

3.3 Performance Evaluations

Following the volatility timing literature, we focus on the utility based performance

evaluation measure to assess whether investors can benefit from including realized

jumps into their information set. We follow Fleming, Kirby, and Ostdiek (2003) and

Marquering and Verbeek (2004) and rely on averaged realized utility to compare jump

strategies to the benchmark strategy.

The sample averaged realized utility for portfolio strategy p is given by

Ū(Rp) =
1

T

T−1∑

t=0

[rp,t+1 −
γ

2
V art(rp,t+1)]. (9)
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Given the optimal portfolio weights, we can compute daily time series of ex post portfo-

lio returns rp,t+1 = rf,t+1+wt(rm,t+1−rf,t+1) and variances V art(rp,t+1) = (rp,t+1−r̄p)
2,

and then plug that in to obtain the averaged realized utility.3

To quantify the economic benefit relative to the benchmark strategy, we use the per-

formance fee ∆ (in basis points), which is the fee an investor is willing to pay to switch

from the benchmark strategy (with portfolio return rbm,t ) to our strategy (e.g. strat-

egy p with portfolio return rp,t). In our analysis, we consider different risk aversion

levels (γ = 2, 6, 10). The performance fee is computed as follows:

1

T

T−1∑

t=0

[(rp,t+1 −∆)− γ

2
V art(rp,t+1)] =

1

T

T−1∑

t=0

[rbm,t+1 −
γ

2
V art(rbm,t+1)]. (10)

3.4 Statistical Significance of Economic Values

One of the major concerns of existing studies on the economic value of return/volatilty

prediction is the statistical significance of the economic value obtained. The economic

value computed is just a figure and usually not large (e.g in the unit of basis points),

hence we don’t know whether the value is significantly different from zero across

different strategies. Therefore different methods have been used to investigate the

statistical significance of economic values. Following Engle and Colacito (2006) and

Bandi, Russell, and Zhu (2008), we address this concern by viewing the economic gains

as loss differential in which we compare one portfolio to the benchmark portfolio. The

approach is in the spirit of Diebold and Mariano (1995). The Diebold-Mariano (DM)

test was designed to examine whether the loss differential of two forecasts is statisti-

cally significantly different from zero. The test can be used when the loss differential

series is covariance stationary. Engle and Colacito (2006) and Bandi, Russell, and

Zhu (2008) applied it to examine whether the ex post portfolio-volatility-difference

between a candidate strategy and a benchmark strategy is statistically significantly

different from zero. In our study, we investigate whether the performance fees (viewed

as loss differential) are significantly different from zero. We first compute the time se-

ries of daily “spot” realized utilities and then the time series of daily performance fees

for each strategy in comparison to the benchmark. Afterwards, we construct the DM

statistics and test whether the alternative strategies do not outperform the benchmark

3Alternatively, we can estimate the portfolio variance from the variance of the risky asset (we can

use ex post realized variance scaled with the bias correction factor) scaled by the squared weight,

V art(rp,t+1) = w2
t V art(rm,t+1) = w2

tBCF · RVt+1, results are similar.
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(null hypothesis) using a one-sided t-test with a robust variance covariance estimator.4

3.5 Data Description

In our empirical analysis we use the S&P500 ETF or SPDR contract (SPY) as the

risky asset, obtained from NYSE TAQ database. The contract tracks the S&P500

index and is very liquidly traded. Trading spans from 9:30 EST to 16:00 EST. Our

sample spans from Jan 2nd 2001 to Dec 31st 2010. To start with we compute the

realized volatility estimator based on equidistant observations sampled at the conven-

tional five minute frequency in order to control for market microstructure noise. In

the robustness checks section, we also report the results of a more advanced estimator

to control for market microstructure noise – the average RV estimator of Andersen,

Bollerslev, Christoffersen, and Diebold (2011). This estimator is a sub-sample esti-

mator that can also be constructed easily. Starting from one minute regular spaced

log-returns, we compute the average RV as an equally-weighted average of five overlap-

ping five minute RV estimators. Andersen, Bollerslev, and Meddahi (2011) found that

the average RV estimator can perform as well as more complex estimators (realized

kernel, multiple time scale, pre-averaging etc) in volatility forecasting. We implement

two further adjustments: Firstly, we remove the overnight periods. Secondly, we use

linear interpolation to correct for different trading hours, especially in December 2008

and afterwards. We also collect S&P500 ETF or SPDR contract (SPY) daily data

from CRSP in order to match intraday trading period to daily frequency. As the

risk-free asset we use the daily average of the one month US Treasury bill series.

4 Empirical Findings

4.1 Statistical Findings

This part presents volatility forecasting results using realized jumps. Table 1 docu-

ments the descriptive statistics for the realized variance and realized jump variations

using different jump tests. Although the statistics from different jump tests look dif-

ferent, they all share the same features, including high skewness and high kurtosis,

4An alternative way to assess the statistical significance of economic gains is to use bootrapping

methods. A recent study by McCracken and Valente (2013) provides a formal test of economic

values using the bootstrapping method.
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supporting the asymmetric and rare event nature of jumps. We first conduct in-sample

statistical evaluations by estimating our models with the whole sample data from 2001

and 2010.

Table 2 shows in-sample volatility forecasting results for the benchmark model and

models using different jump tests. We follow Andersen, Bollerslev, and Diebold (2007)

and use the Newey-West variance covariance matrix estimator with 5, 10 and 44 lags

for daily, weekly, and monthly ahead forecasts. For the benchmark HAR-RV model,

the one day ahead forecast shows that only the coefficient of weekly lagged realized

variance is significant at the 5% level, while for one week and one month ahead fore-

casts all three lagged realized variance coefficients are significant. The adjR2 takes

values of 0.562, 0.682 and 0.644 for the different forecasting horizons. We then look

at the HAR-RV-CJ models using different jump tests. At least four points are worth

mentioning. Firstly, although at weekly and monthly horizons, coefficients for the

integrated variances are all significant as in the benchmark model, the HAR-RV-CJ

results differ from the HAR-RV model at daily horizon. While weekly and monthly

lagged integrated variances remain insignificant, the daily lagged integrated variances

now become significant, indicating that jump robust integrated variation is more im-

portant than total realized variance in daily volatility forecasting. Secondly, the jump

signs are almost all negative.5 Our result is consistent with Andersen, Bollerslev, and

Diebold (2007), but is different from Corsi, Pirino, and Reno (2010). Therefore, Corsi,

Pirino, and Reno (2010)’s explanation that larger jumps lead to higher future volatil-

ity due to an increased level of disagreement may not hold in our setup. Instead, our

findings are more consistent with Andersen, Bollerslev, and Diebold (2007)’s explana-

tion that jumps are quickly mean reverting and hence can lead to a lower volatility

rather than a higher one. Thirdly, jump coefficients differ in terms of the significance.

Jump coefficients are significant across all horizons for BNS, JO and PZ, significant

only at daily horizon for Med, Min, CPR, and insignificant for AJ across all horizons

at the 5% level. Finally, we look at the goodness-of-fit of the models. We find that

almost all models with different jump specifications can outperform the benchmark

HAR-RV model at all forecasting horizons. At daily level, the highest adjR2 is PZ of

0.604 and the lowest is AJ of 0.562. BNS has an adjR2 of 0.592. Compared to BNS,

CPR, JO, and Med have higher adjR2s while Min has a lower adjR2. For weekly and

monthly ahead forecasts, adjR2s are all close to 0.70 and 0.65 respectively. Although

5The exception of AJ and its later relative weak statistical performance can mainly be justified by its

finite sample properties in a simulation analysis reported in the Appendix.
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we observe a clear inverse U shape pattern of adjR2s levels across forecasting horizons

for all models, the improvements in adjR2s compared to the benchmark model are

diminishing from about 3% on daily horizon to about 1% on average on weekly and

monthly horizons.

Although in-sample findings document a clear improvement in volatility forecasting

by separating jumps from diffusion, we are also interested in whether results hold

true out-of-sample. We first estimate model parameters using the first 1000 days of

the whole sample as the in-sample period, and then use the rest of the sample from

2006 to 2010 as the out-of-sample period. Table 3 reports our out-of-sample volatility

forecasting results. We report the Mean Squared Error (MSE) for the predicted value

compared to the realized value. Similar to the in-sample analysis, we find that all

HAR-RV-CJ models using different jump tests can outperform the benchmark HAR-

RV in terms of lower MSEs. This finding holds true for all daily, weekly, and monthly

horizons. Similar to the in-sample findings, we observe i) the largest statistical im-

provements at daily horizons and ii) improvements diminish when forecasting horizons

increase. When we compare out-of-sample findings across different jump tests, we find

that AJ has the lowest out-of-sample performance. Models using PZ, CPR, Med, or

JO outperform BNS while the model using Min underperforms BNS. Results are con-

sistent with in-sample findings and hold true across forecasting horizons.

4.2 Out-of-Sample Economic Findings

Given the significant statistical improvement by separating jump and diffusion com-

ponents, we are now interested in whether such statistical accuracy can be translated

into economic value for a risk-averse investor. We construct volatility timing strategies

as discussed above for our out-of-sample period (2006 to 2010). The largest statis-

tical forecasting improvement was observed for a daily horizon and given that the

jump effect is quickly mean reverting we concentrate on volatility timing with daily

re-balancing. To calculate the optimal portfolio weights we use the model-predicted

volatility as a predictor for conditional volatility, and then adjust it with the bias-

correction factor as illustrated in equation (8).

Table 4 reports the out-of-sample economic findings. Our main performance mea-

sure is performance fee, interpreted as the fee that an investor is willing to pay to

switch from a benchmark strategy to a jump augmented strategy. We consider three
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risk aversion levels γ = 2, 6, 10. We show that all jump strategies generate positive

performance fees in comparison to the benchmark strategy, and the economic val-

ues generated depend on different jump strategies and risk aversion levels. For the

moderate risk aversion level of 6, we show that highest performance fees are 20 basis

points for Med and Min, followed by 19 basis points for BNS and CPR, and 18 and 17

basis points for JO and PZ. AJ generates positive but very small performance fee; a

result that is consistent with its negligible forecasting improvement in the statistical

part. The economic magnitude is also affected by the change of the risk aversion level,

ranging from 59 basis points (γ = 2) to 11 basis points (γ = 10), indicating that the

strategy seems to work better for less risk averse investors. Around 0.6% annualized

performance fee looks small in magnitude, and we therefore also assess the statistical

significance of the economic value generated. We find that except for AJ, all jump

strategies generate positive and statistically significant performance fees with DM t-

statistics above 2. To summarize, we find that the separation of jumps from diffusion

components improves volatility timing strategies for almost all jump tests. The out-

of-sample economic findings are generally consistent with in-sample and out-of-sample

statistical findings, although it does not necessarily match with the ranking of the in

and out-of-sample volatility forecasting analyses. One possible explanation could be

that jumps not only affect the volatility process, but also the return process, which is

not captured by our volatility timing strategies.

5 Robustness Checks

In this section, we conduct comprehensive robustness checks. We focus on three issues:

Firstly, our main results are based on the RV estimator sampled as the conventional

five minutes sampling frequency. It is interesting to see whether our results still

hold true under a more stringent control of market microstructure noise. Secondly,

although we show that incorporating realized jumps in volatility timing generates

economic value, we are also interested in whether it is feasible for an investor to

exploit this in the presence of transaction costs. Thirdly, we also discuss whether

realized jumps can help to predict realized higher moments and semi-variances, and

whether performances can be improved using these in the portfolio allocation. Further

extensions and robustness checks including simulation analysis, good and bad jumps,
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and sub-sample analysis can be found in the Appendix6.

5.1 Market Microstructure Noises

We follow Andersen, Bollerslev, Christoffersen, and Diebold (2011) and Andersen,

Bollerslev, and Meddahi (2011) and construct average realized variances and bipower

variations. Table 5 reports the in-sample volatility forecasting results after further

controlling for market microstructure noises. Although the jump coefficient is still

negative and significant as shown in Section 3.2, the adjR2 is different. For the one

day ahead forecast, the adjR2 for the benchmark model raises from 0.562 to 0.588

when using the average RV estimator. Similarly, the adjusted adjR2 for the HAR-

RV-CJ with BNS raises from 0.592 to 0.628. A similar statistical improvement is also

found in the out-of-sample evaluation as shown in panel 1 of Table 6. Such statis-

tical improvements by using subsample estimators also indicate potential economic

improvements. The out-of-sample portfolio allocation results are shown in panel 2 of

Table 6. We find that performance fees remain positive and statistically significant.

Moreover, we show that economic magnitudes are larger using the microstructure noise

robust estimators compared to the conventional five minutes estimator. A risk-averse

investor is willing to pay performance fees ranging from 62 basis points (γ = 2) to 12

basis points (γ = 10) to use a jump strategy. Our findings suggest that the statistical

and economic improvements by separating jumps from diffusion are not likely to be

driven by market microstructure noises. Instead, we show that controlling for market

microstructure noises strengthens our findings. Our results are also consistent with

previous studies (Bandi and Russell 2006, Bandi, Russell, and Zhu 2008, Liu 2009)

that controlling for microstructure noises improve portfolio performances.

5.2 Transaction Costs

We then analyze the impact of transaction costs on our results. Different from existing

studies comparing dynamic and static strategies (Fleming, Kirby, and Ostdiek 2001)

or comparing two dynamic strategies which are based on high frequency and daily

information respectively (Fleming, Kirby, and Ostdiek 2003), our analysis compares

two dynamic strategies both using high frequency information. Therefore, we expect

that the effect of transaction costs will not be as strong as documented in the existing

6In our earlier version of the paper, we also show the results of an alternative parametric portfolio

allocation strategies using realized jumps, the economic values are positive but small in magnitude

and in general statistically insignificant.
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literature. Following Bandi, Russell, and Zhu (2008), we define the transaction cost

adjusted portfolio return in the following way:

r̄p,t+1 = rp,t+1 − ρ(1 + rp,t+1)|∆wt+1|, (11)

where r̄p,t+1 is the transaction cost adjusted portfolio return, rp,t+1 is pre-adjusted

return, ρ is transaction cost parameter, where we choose a high value of 0.0025, cor-

responding to a 2.5 cent half spread on a 10 dollar stock, ∆wt+1 is the change of the

weight from t to t+ 1, a proxy of trading turnover.

Table 7 presents the out-of-sample volatility timing results for all jump tests when

transaction costs are taken into consideration. All specifications yield positive perfor-

mance fees, implying that they can outperform the benchmark even when transaction

costs are considered. Moreover, those performance fees are also statistically significant

except for AJ. Jump strategies require incorporating recent information more quickly

while the benchmark strategy is smoother, therefore we are not surprised by the higher

turnover of the jump strategies compared to the benchmark strategy. Although the

performance fees are slightly lower when controlling for transaction costs, we find that

our results are generally consistent with our main findings in Section 4.4. Moreover,

the relative performance of alternative jump specifications is also consistent with that

in the main analysis, indicating that transaction costs have similar and only marginal

effects for most of jump based volatility timing strategies.

5.3 Realized Jumps and Alternative Realized Moments

In practice, portfolio allocations are also subject to the impact of higher moments.

Considering more general utility functions usually requires the prediction of higher

moments. In addition to the sophistication of incorporating realized jumps into the

portfolio allocation problem beyond mean-variance preferences, we present some sta-

tistical evidence of the predictive ability of realized jumps for alternative realized mo-

ments. We consider the use of realized jumps for predicting realized upside and down-

side volatilities, skewness, and kurtosis. We follow Barndorff-Nielsen, Kinnebrock,

and Shephard (2008) and Amaya, Christoffersen, Jacobs, and Vasquez (2013), and
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construct alternative realized moments in the following way,

RV +
t,M =

M∑

j=1

r2j,t1rj,t>0, RV −
t,M =

M∑

j=1

r2j,t1rj,t<0

RSKt,M =

√
M

∑M
j=1 r

3
j,t

(
∑M

j=1 r
2
i,t)

3/2
, RKUt,M =

M
∑M

j=1 r
4
j,t

(
∑M

j=1 r
2
i,t)

2

We first investigate the contemporaneous relationship between realized jumps and

alternative realized moments using the following regression equation:

RMt = β0 + βRJRJt + ǫt, (12)

where RMt is the realized moment including RV , RV +,RV −, RSK, and RKU . Table

8 presents the contemporaneous regression results. We find that realized jump vari-

ation is a significant determinant of contemporaneous realized variance, positive and

negative variances, and kurtosis, explaining 18% to 80% variation of realized moments

respectively. A large jump variation is associated with a large variance, upside and

downside variance, and kurtosis. Jump variation is also negatively related to realized

skewness, however the relation is only marginally significant, and jumps can only ex-

plain about 1% variation in skewness.

We are more interested in the predictive relationship of realized jump variation and

realized moments. Therefore we forecast realized moments using daily, weekly, and

monthly lagged realized moments in the fashion of the HAR model, just as we did

for realized variance in Section 4.1. We consider daily, weekly, and monthly ahead

forecasting horizons. The models are specified as follows:

RMt,t+h−1 = β0+βRMDRMt−1+βRMWRMt−5,t−1+βRMMRMt−22,t−1+ ǫt,t+h−1. (13)

To investigate the impact of jump, we then augment the model with realized jumps.

RMt,t+h−1 = β0+βRMDRMt−1+βRMWRMt−5,t−1+βRMMRMt−22,t−1+βJV DJVt−1+ǫt,t+h−1.

(14)

Table 9 reports in-sample forecasting results for realized moments. The results vary

across different realized moments and forecasting horizons. Firstly, we find that real-

ized jump helps to forecast realized variance, even though we do not use jump robust

integrated variance as we did in the main part of the analysis. For all the forecasting
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horizons, we observe negative and statistically significant jump coefficients. Moreover,

the adjusted R squares of the models including jumps are higher than those of the

models without jumps. This finding suggests that jumps do contain incremental infor-

mation for predicting future volatility and the statistical and economic improvements

we documented in the main analysis do not purely come from a better measurement

of jump robust integrated variance. We now discuss the role of jumps in predicting

alternative realized moments: We find that realized jumps have negative and statisti-

cally significant impacts on future downside volatility for all forecasting horizons and

improvements in adjusted R squares range from 1% to 3%. We also find that realized

jumps help to predict upside volatility at the daily horizon and generate improvements

in adjusted R squares of about 0.2%. However, we show that realized jumps do not

predict future realized skewness. Although realized jumps predict realized kurtosis at

daily and weekly horizons, improvements in adjusted R squares are almost negligible.

These results, suggest that realized jumps may not contain predictive information be-

yond second moments at least in our empirical setups.

We then consider a simple portfolio allocation within the mean variance framework

to quantify the predictive ability of realized jumps on alternative realized moments.

We focus on upside and downside volatilities. Since the optimal portfolio weight is a

function of the conditional variance of the risky asset, we can decompose it, as:

V art(rm,t+1) = V art(rm,t+1)
+ + V art(rm,t+1)

− = BCF (R̂V
+

t,t+1 + R̂V
−

t,t+1). (15)

Since jumps have different predictive abilities to forecast upside and downside volatil-

ities, an investor may improve portfolio performances by forecasting RV +
t,t+1 and

RV −
t,t+1 separately and combining and scaling them by the Bias Correction Factor

to obtain the total conditional variance V art(rm,t+1), which can then be plugged into

the portfolio weights function as shown in equation (7). We construct two portfolio

strategies: The first strategy is based on predicting upside and downside volatilities

with their lagged values in the HAR fashion. To improve forecasting performance, we

include both upside and downside components at daily, weekly, and monthly lagged

levels to predict each component one day ahead.

RV +
t,t+h−1 =β0 + βRV PDRV +

t−1 + βRV MDRV −
t−1 + βRV PWRV +

t−5,t−1 + βRV MWRV −
t−5,t−1

+ βRV PMRV +
t−22,t−1 + βRV MMRV −

t−22,t−1 + ǫt,t+h−1, (16)

RV −
t,t+h−1 =β0 + βRV PDRV +

t−1 + βRV MDRV −
t−1 + βRV PWRV +

t−5,t−1 + βRV MWRV −
t−5,t−1

+ βRV PMRV +
t−22,t−1 + βRV MMRV −

t−22,t−1 + ǫt,t+h−1. (17)
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The second strategy augments the first strategy with daily lagged realized jump vari-

ation as additional regressor.

RV +
t,t+h−1 =β0 + βRV PDRV +

t−1 + βRV MDRV −
t−1 + βRV PWRV +

t−5,t−1 + βRV MWRV −
t−5,t−1

+ βRV PMRV +
t−22,t−1 + βRV MMRV −

t−22,t−1 + βJV DJVt−1 + ǫt,t+h−1, (18)

RV −
t,t+h−1 =β0 + βRV PDRV +

t−1 + βRV MDRV −
t−1 + βRV PWRV +

t−5,t−1 + βRV MWRV −
t−5,t−1

+ βRV PMRV +
t−22,t−1 + βRV MMRV −

t−22,t−1 + βJV DJVt−1 + ǫt,t+h−1. (19)

We focus on out-of-sample performances and consider three comparisons. The first

comparison is between the first strategy based on equations (16) and (17) and the

benchmark strategy in the main analysis, which predicts the total variance using

HAR-RV in equation (5). The purpose is to assess whether predicting each volatility

component separately can be economically valuable in comparison to predicting the

total volatility. The second comparison is between the second strategy using jumps

in equations (18) and (19) and the benchmark strategy in equation (5). The third

comparison is between the first and second strategies, showing whether jumps con-

vey incremental economic improvements. Table 10 reports out-of-sample portfolio

performance fees for those three cases. We find that strategies based on predicting

each volatility component separately outperform the benchmark strategy based on

predicting total volatility, and can generate positive and statistically significant eco-

nomic values. To be specific, in the first comparison, if we only use lagged upside and

downside volatilities, we can generate annualized performance fees ranging from 13

basis points (γ = 2) to 2 basis points (γ = 10). If we include realized jumps, then

the performance fees increase to range from 45 basis points (γ = 2) to 8 basis points

(γ = 10). The third comparison suggests that including jump is important and can

generate incremental economic improvements from 31 basis points (γ = 2) to 6 basis

points (γ = 10) .

To summarize, we show that jumps do contain incremental predictive information

for future volatility and its signed components, however realized jumps can hardly

predict future realized higher moments. Therefore, the results suggest that realized

jumps do not contribute much to moment timing based portfolio strategies beyond

mean-variance approaches. If we remain in the mean-variance framework, predicting

positive and negative volatility components separately can generate tangible economic

improvements compared to predicting total volatility, and incorporating jumps can

further improve the magnitude of the economic value.
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6 Conclusion

Although a number of different nonparametric jump tests were developed in the lit-

erature, only very few studies analyze the potential use of realized jumps. Using high

frequency data and seven major nonparametric jump tests, this paper investigates

the predictive information content of realized jumps on volatility timing from both

statistical and economic perspectives.

Covering all major jump tests, we confirm that separating jumps from the diffusion

component does improve volatility forecasting in general. The result holds true both

in-sample and out-of-sample. Moreover, we show that using a simple volatility timing

strategy, a risk-averse investor can generate a significant economic value by separating

jumps from the diffusion component. We conduct comprehensive robustness checks.

We show that after controlling for microstructure noise and transaction costs, our

main results still hold. We also find that realized jumps can predict realized volatility

and its signed up and down components, and portfolio performance can be improved

by separately predicting each component.

Our paper contributes to the field on a few aspects: Firstly, we contribute to the

existing literature on the role of jumps in volatility forecasting. By using seven dif-

ferent jump tests, we show that jumps in general help to forecast volatility. Secondly,

we show that the statistical improvement can also be exploited in a mean-variance

portfolio allocation strategy. Hence, we also contribute to the literature on economic

value of volatility timing. Thirdly, we contribute to the literature on the use of high

frequency data and nonparametric jump tests. Our study can be viewed as evaluations

of alternative jump tests using real world data while most previous studies focus on

simulations. Further extensions include dealing with multivariate jumps (co-jumps),

using more sophisticated utility functions, and considering alternative economic ap-

plications. They are beyond the purpose of our paper, and we leave them to future

studies.
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Tables

Table 1: Descriptive Statistics

RV JVBNS JVAJ JVJO JVMed JVMin JVCPR JVPZ

Mean 1.324E-4 4.693E-6 1.313E-6 4.919E-6 6.377E-6 5.906E-6 8.223E-6 6.855E-6

Std 3.109E-4 7.692E-5 1.748E-5 7.689E-5 9.836E-5 9.805E-5 1.042E-4 7.836E-5

Skew 10.321 43.829 40.756 43.881 42.242 43.188 40.479 41.555

Kurt 158.187 2.056E+3 1.867E+3 2.060E+3 1.945E+3 2.040E+3 1.827E+3 1.906E+3

Min 3.468E-6 0 0 0 0 0 0 0

Max 0.0065 0.0037 8.131E-4 0.0037 0.0046 0.0046 0.0048 0.0037

Notes: The table summarizes the main descriptive statistics. We report realized

variance (RV), and realized jump variations for seven different jump tests (BNS, AJ,

JO, Med, Min, CPR, PZ). The sample period spans from Jan 1st 2001 to Dec 31st

2010. Both realized variance and realized jump variations are computed as shown

in Section 2 using the 5 minutes high frequency Spyder contract (SPY) tracking the

S&P500 index.
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Table 2: In-Sample Volatility Forecasting Results

RVt,t+h−1 = β0 + βRV DRVt−1 + βRV WRVt−5,t−1 + βRV MRVt−22,t−1 + ǫt,t+h−1

RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIV MIVt−22,t−1 + βJV DJVt−1 + ǫt+h−1

β0 βRV D βRV W βRV M adjR2

BM

h = 1 1.436E-5 0.278 0.425 0.187 0.562

(1.953) (1.887) (4.115) (1.767)

h = 5 2.204E-5 0.180 0.370 0.282 0.682

(2.779) (2.029) (4.643) (2.568)

h = 22 4.103E-5 0.092 0.290 0.303 0.644

(4.249) (2.211) (2.951) (3.401)

β0 βIV D βIV W βIV M βJV D adjR2

BNS

h = 1 1.601E-5 0.467 0.325 0.132 -0.359 0.592

(2.548) (3.897) (3.745) (1.372) (-4.121)

h = 5 2.354E-5 0.279 0.335 0.242 -0.158 0.699

(3.130) (3.197) (3.840) (2.143) (-2.451)

h = 22 4.223E-5 0.145 0.284 0.275 -0.097 0.654

(4.256) (4.390) (3.840) (2.855) (-2.001)

AJ

h = 1 1.362E-5 0.280 0.419 0.188 2.931 0.562

(1.845) (1.883) (4.061) (1.791) (1.641)

h = 5 1.991E-5 0.177 0.369 0.276 6.662 0.693

(2.436) (2.038) (4.544) (2.471) (1.608)

h = 22 3.996E-5 0.091 0.290 0.299 3.599 0.648

(4.261) (2.213) (2.944) (3.306) (1.647)

JO

h = 1 1.532E-5 0.466 0.338 0.128 -0.366 0.593

(2.503) (3.848) (3.958) (1.349) (-4.093)

h = 5 2.306E-5 0.287 0.337 0.239 -0.195 0.702

(3.173) (3.161) (4.039) (2.175) (-2.936)

h = 22 4.187E-5 0.147 0.281 0.279 -0.099 0.654

(4.219) (4.418) (2.806) (2.920) (-2.258)

Med

h = 1 1.594E-5 0.489 0.321 0.124 -0.214 0.597

(2.576) (4.040) (1.283) (1.283) (-5.021)
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β0 βIV D βIV W βIV M βJV D adjR2

h = 5 2.368E-5 0.297 0.313 0.254 -0.062 0.697

(3.181) (3.022) (2.358) (2.358) (-1.712)

h = 22 4.224E-5 0.146 0.280 0.285 -0.018 0.652

(4.253) (4.365) (2.962) (2.962) (-0.362)

Min

h = 1 1.670E-5 0.464 0.337 0.121 -0.162 0.592

(2.664) (3.887) (3.894) (1.283) (-3.046)

h = 5 2.431E-5 0.275 0.352 0.228 -0.049 0.699

(3.262) (3.174) (3.971) (2.010) (-1.355)

h = 22 4.307E-5 0.143 0.294 0.265 -0.024 0.653

(4.261) (4.569) (2.817) (2.748) (-0.617)

CPR

h = 1 1.725E-5 0.509 0.319 0.108 -0.188 0.598

(2.838) (4.019) (3.402) (1.133) (-3.836)

h = 5 2.490E-5 0.311 0.324 0.232 -0.070 0.702

(3.334) (3.327) (3.580) (2.057) (-1.849)

h = 22 4.333E-5 0.154 0.285 0.272 -0.021 0.653

(4.276) (4.932) (2.807) (2.787) (-0.505)

PZ

h = 1 1.665E-5 0.537 0.316 0.095 -0.498 0.604

(2.884) (4.311) (3.500) (1.052) (-4.035)

h = 5 2.406E-5 0.320 0.336 0.219 -0.248 0.705

(3.319) (3.306) (3.717) (2.001) (-2.481)

h = 22 4.268E-5 0.165 0.288 0.263 -0.133 0.655

(4.261 (4.781) (2.776) (2.621) (-3.403)

Notes: The table reports in-sample volatility forecasting results for the SPY contract from

2001 to 2010 using different jump test. The HAR-RV model is used as the benchmark

model. The HAR-RV-CJ models use realized jump variation detected using different jump

tests: BNS, AJ, JO, Med, Min, CPR, and PZ. We forecast one day, one week, and one

month ahead realized variances. The figures in parentheses are t-statistics computed using

Newey-West corrected standard error for autocorrelation orders 5, 10, and 44 respectively.

The adjR2 is the adjusted R square.
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Table 3: Out-of-Sample Volatility Forecasting Results

MSE h=1 h=5 h=22

BM 5.657E-8 3.532E-8 3.504E-8

BNS 4.830E-8 3.195E-8 3.268E-8

AJ 5.656E-8 3.517E-8 3.483E-8

JO 4.794E-8 3.150E-8 3.273E-8

Med 4.733E-8 3.219E-8 3.258E-8

Min 4.881E-8 3.179E-8 3.238E-8

CPR 4.653E-8 3.107E-8 3.222E-8

PZ 4.523E-8 3.017E-8 3.214E-8

Notes: The table reports out-of-sample volatility forecasting results for the SPY con-

tract for 2006 to 2010 using alternative jump tests. The HAR-RV model is used as

the benchmark model. The HAR-RV-CJ model use realized jump variation detected

using different jump tests: BNS, AJ, JO, Med, Min, CPR, and PZ. The out-of-sample

period ranges from 2006 to 2010. We report the Mean Squared Error (MSE) for

predicted volatility over one day, one week, and one month forecasting horizons.
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Table 4: Out-of-Sample Portfolio Performance: Daily Rebalancing

Volatility Timing: Performance Fees

Strategies γ = 2 γ = 6 γ = 10

BNS 0.0056 0.0019 0.0011

(2.5684) (2.5332) (2.4980)

AJ 3.2391E-5 1.0797E-5 6.4781E-6

(0.2951) (0.2895) (0.2839)

JO 0.0055 0.0018 0.0011

(2.5355) (2.5003) (2.4655)

Med 0.0059 0.0020 0.0012

(2.6870) (2.6521) (2.6171)

Min 0.0059 0.0020 0.0012

(2.5301) (2.4944) (2.4586)

CPR 0.0056 0.0019 0.0011

(2.6071) (2.5713) (2.5355)

PZ 0.0046 0.0017 9.5992E-4

(2.2351) (2.2001) (2.1652)

Notes: The table reports out-of-sample portfolio allocation results for the SPY con-

tract for 2006 to 2010 using alternative jump tests. The benchmark strategy uses the

HAR-RV model to predict one day ahead volatility, other strategies using HAR-RV-

CJ models with realized jump variation detected from the respective jump tests. We

report performance fees relative to the benchmark strategy under risk aversion levels

of 2, 6, and 10. Figures in parentheses are t-statistics for the DM test, where under

the null hypothesis it is assumed that the (mean) performance fee equals zero.
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Table 5: In-Sample Volatility Forecasting: Average RV

RVt,t+h−1 = β0 + βRV DRVt−1 + βRV WRVt−5,t−1 + βRV MRVt−22,t−1 + ǫt,t+h−1

RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIV MIVt−22,t−1 + βJV DJVt−1 + ǫt+h−1

β0 βRV D βRV W βRV M adjR2

BM

h = 1 1.348E-5 0.330 0.369 0.197 0.588

(1.897) (1.887) (2.984) (1.936)

h = 5 2.150E-5 0.207 0.331 0.294 0.685

(2.834) (1.971) (3.869) (2.647)

h = 22 3.960E-5 0.108 0.268 0.313 0.651

(4.202) (1.997) (2.738) (3.311)

β0 βIV D βIV W βIV M βJV D adjR2

BNS

h = 1 1.066E-5 0.669 0.195 0.097 -0.176 0.628

(1.834) (5.556) (1.891) (1.098) (-6.362)

h = 5 1.966E-5 0.372 0.292 0.225 -0.054 0.714

(2.645) (4.442) (2.916) (1.911) (-2.624)

h = 22 3.915E-5 0.195 0.274 0.262 -0.051 0.664

(4.031) (5.958) (2.420) (2.368) (-3.238)

Notes: The table reports in-sample volatility forecasting results for the SPY contract from

2001 to 2010 controlling for market microstructure noises. The HAR-RV model and the

HAR-RV-CJ model using a BNS jump test are applied to forecast one day, one week, and

one month ahead realized variances. The average realized variance is used in order to control

for market microstructure noise. The figures in parentheses are t-statistics using Newey-West

standard errors for autocorrelation orders of 5, 10, and 44. adjR2 is the adjusted R square.
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Table 6: Out-of-Sample Statistical and Economic Performances: Average RV

Panel 1: Volatility Forecasting

MSE h=1 h=5 h=22

BM 4.501E-8 3.246E-8 3.231E-8

BNS 3.262E-8 2.764E-8 2.846E-8

Panel 2: Volatility Timing: Daily

Strategies γ = 2 γ = 6 γ = 10

BNS 0.0062 0.0021 0.0012

(2.7019) (2.6660) (2.6301)

Notes: The table reports out-of-sample statistical and economic performances from

2006 to 2010 after controlling for market microstructure noises. Average realized

variance, integrated variance, and jump variation are used to control for market mi-

crostructure noise. Panel 1 reports out-of-sample volatility forecasting results. The

HAR-RV model is used as the benchmark model. The HAR-RV-CJ model using a BNS

jumps is also used. We report the Mean Squared Error for predicted volatility over

one day, one week, and one month forecasting horizons. Panel 2 reports out-of-sample

volatility timing results using the average RV estimator. Parameters are all estimated

in-sample (2001-2005) and out-of-sample volatility forecasting and volatility timing

are conducted out-of-sample (2006-2010). We report performance fees relative to the

benchmark strategy under risk aversion levels of 2, 6, and 10. Figures in parentheses

are t-statistics for the DM test, where under the null hypothesis it is assumed that

the (mean) performance fee equals zero.
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Table 7: Out-of-Sample Portfolio Allocation with Transaction Costs

γ = 2 γ = 6 γ = 10

Strategies PF TO PF TO PF TO

BM 0.0040 0.0013 7.9190E-4

BNS 0.0054 0.0267 0.0018 0.0089 0.0011 0.0053

(2.5088) (2.4736) (2.4385)

AJ 3.1067E-5 0.0044 1.0356E-5 0.0015 6.2134E-6 8.8352E-4

(0.2827) (0.2772) (0.2716)

JO 0.0053 0.0251 0.0018 0.0084 0.0011 0.0050

(2.4767) (2.4415) (2.4064)

Med 0.0058 0.0263 0.0019 0.0088 0.0012 0.0053

(2.6438) (2.6109) (2.5760)

Min 0.0054 0.0284 0.0018 0.0095 0.0011 0.0057

(2.5083) (2.4732) (2.4381)

CPR 0.0055 0.0254 0.0018 0.0085 0.0011 0.0051

(2.5537) (2.5180) (2.4823)

PZ 0.0045 0.0267 0.0015 0.0088 9.1207E-4 0.0053

(2.1772) (2.1427) (2.1081)

Notes: The table reports out-of-sample portfolio allocation results for the SPY con-

tract for 2006 to 2010 controlling for transaction costs. The parameters are estimated

in-sample from 2001 to 2005 and the ex post portfolio returns are obtained out-of-

sample (2006 to 2010). We report performance fees (PF) and turnovers (TO) for risk

aversion level of 2, 6, and 10. Figures in parentheses are t-statistics for the DM test.

The test has the null hypothesis that the (mean) performance fee equals to zero. TO

is the mean value of the absolute change of portfolio weight.
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Table 8: Contemporaneous Regressions of Realized Jumps

RMt = β0 + βJV DJVt + ǫt

RM β0 βJV D adjR2

RV 1.2392E-4 1.7351 0.3135

(10.5855) (124.7009)

RV + 6.4057E-5 0.3005 0.1831

(10.8169) (2.6581)

RV − 5.9861E-5 1.4346 0.4437

(10.2246) (11.9167)

RSK 0.0310 -1.1907E+3 0.0145

(2.1479) (-1.6645)

RKU 4.1987 1.7231E+4 0.8055

(88.9212) (3.7758)

Notes: This table reports the coefficients of the contemporaneous regressions of real-

ized moments including RV , RV +, RV −, RSK, RKU on realized jumps for the SPY

contract for 2001 to 2010 using the BNS jump test. adjR2 is the adjusted R square
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Table 9: Realized Moments Forecasting

RMt,t+h−1 = β0 + βRMDRMt−1 + βRMWRMt−5,t−1 + βRMMRMt−22,t−1 + ǫt,t+h−1

RMt,t+h−1 = β0 + βRMDRMt−1 + βRMWRMt−5,t−1 + βRMMRMt−22,t−1 + βJV DJVt−1 + ǫt+h−1

β0 βRMD βRMW βRMM βJV D adjR2

RV

h = 1 1.436E-5 0.278 0.425 0.187 0.562

(1.923) (1.887) (4.115) (1.767)

1.518E-5 0.485 0.286 0.147 -0.914 0.591

(2.4670) (4.012) (3.549) (1.659) (-4.687)

h = 5 2.204E-5 0.180 0.370 0.282 0.682

(2.568) (1.872) (4.137) (2.413)

2.252E-5 0.301 0.289 0.258 -0.536 0.697

(2.760) (2.966) (3.247) (2.340) (-3.292)

h = 22 4.103E-5 0.092 0.290 0.303 0.644

(6.329) (1.675) (2.903) (2.898)

4.133E-5 0.167 0.239 0.288 -0.333 0.651

(6.318) (2.784) (2.383) (2.765) (-3.086)

RV +

h = 1 6.326E-6 0.289 0.454 0.159 0.604

(1.923) (2.628) (3.714) (1.420)

6.634E-6 0.308 0.442 0.156 -.0.108 0.606

(2.047) (2.716) (3.589) (1.399) (-2.545)

h = 5 9.825E-6 0.186 0.411 0.252 0.717

(2.481) (2.336) (4.089) (2.087)

9.914E-6 0.191 0.408 0.251 -0.031 0.717

(2.511) (2.329) (4.028) (2.078) (-0.913)

h = 22 1.873E-5 0.098 0.301 0.310 0.668

(4.129) (4.149) (2.896) (3.059)

1.879E-5 0.102 0.299 0.309 -0.023 0.668

(4.139) (4.228) (2.903) (3.039) (-1.209)
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β0 βRMD βRMW βRMM βJV D adjR2

RV −

h = 1 1.030E-6 0.134 0.411 0.299 0.387

(2.072) (0.984) (3.493) (2.133)

1.035E-5 0.401 0.268 0.221 -0.647 0.419

(2.616) (3.299) (2.814) (2.352) (-3.501)

h = 5 1.402E-5 0.103 0.321 0.365 0.583

(2.959) (1.253) (3.007) (2.932)

1.405E-5 0.286 0.222 0.311 -0.445 0.609

(3.378) (3.062) (2.050) (3.233) (-3.110)

h = 22 2.362E-5 0.053 0.252 0.335 0.594

(4.113) (1.287) (2.307) (3.845)

2.364E-5 0.172 0.188 0.301 -0.289 0.609

(4.212) (2.638) (1.602) (4.224) (-2.725)

RSK

h = 1 0.027 -0.029 -0.087 0.050 0.003

(1.697) (-1.424) (-1.601) (0.422)

0.028 -0.030 -0.086 0.049 -102.129 0.003

(1.739) (-1.442) (-1.59) (0.413) (-1.188)

h = 5 0.027 -0.004 -0.100 0.079 0.013

(1.908) (-0.457) (-2.283) (0.746)

0.027 -0.004 -0.099 0.078 -42.374 0.013

(1.927) (-0.519) (-2.287) (0.742) (-0.950)

h = 22 0.026 -0.002 -0.010 0.023 0.027

(1.924) (-0.843) (-0.496) (0.225)

0.026 -0.002 -0.010 0.023 3.862 0.027

(1.918) (-0.825) (-0.497) (0.225) (0.429)

RKU

h = 1 3.333 -0.002 0.071 0.153 0.735

(7.858) (-0.120) (1.289) (1.533)

3.290 0.012 0.071 0.150 -925.924 0.735

(7.608) (0.550) (1.300) (1.513) (-2.190)

h = 5 3.245 0.007 0.021 0.214 0.926

(9.464) (0.602) (0.335) (2.382)

3.213 0.018 0.021 0.217 -686.931 0.926

(9.351) (1.448) (0.337) (2.353) (-2.516)

h = 22 3.378 -0.002 0.013 0.201 0.980

(12.221) (-0.345) (0.519) (2.842)
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3.374 -1.081E-4 0.013 0.201 -88.993 0.980

(12.073) (-0.020) (0.519) (2.849) (-0.558)

Notes: The table reports in-sample RM forecasting results for the SPY contract from 2001

to 2010. RV , RV +, RV −, RSK, RKU are RMs used. For each RM forecasting, the

HAR-RM model using its own daily, weekly, and monthly lagged RM, and the HAR-RM-J

model using also the jump variation from the BNS jump test are applied to obtain one day,

one week, and one month ahead forecasts. The figures in parentheses are t-statistics using

Newey-West standard errors for autocorrelation orders of 5, 10, and 44 respectively. The

adjR2 is adjusted R square.
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Table 10: Out-of-Sample Portfolio Performance: Alternative Realized Moments

Moment Timing: Performance Fees

Strategies γ = 2 γ = 6 γ = 10

RM 0.0013 4.4101E-4 2.6401E-4

(2.0816) (2.0566) (2.0316)

RM + JV 0.0045 0.0015 8.9427E-4

(2.1240) (2.0899) (2.0588)

JV 0.0031 0.0010 6.2967E-4

(1.7982) (1.7688) (1.7355)

Notes: The table reports out-of-sample portfolio allocation results for the SPY con-

tract for 2006 to 2010 by predicting upside and downside volatilities. The first case

compares portfolio performances between predicting upside and downside volatilities

and predicting total realized volatility. The second case compares portfolio perfor-

mances between predicting upside and downside volatilities with their past values and

jumps and predicting total realized volatility. The third case compares predicting

upside and downside volatilities with their past values and jumps. We report per-

formance fees relative to the benchmark strategy under risk aversion levels of 2, 6,

and 10. Figures in parentheses are t-statistics for DM test. The test has the null

hypothesis that the (mean) performance fee equals to zero.

36



Online Appendix

A Appendix 1: Jump Tests

In this part, we discuss specifications of six alternative jump tests, including Ait-Sahalia

and Jacod (2009)(AJ), Jiang and Oomen (2008)(JO), Andersen, Dobrev, and Schaumburg

(2012) (Med, Min) Corsi, Pirino, and Reno (2010)(CPR), and Podolskij and Ziggel (2010)

(PZ).

A.1 AJ

Ait-Sahalia and Jacod (2009) find that realized power variation is invariant to different

sampling scales when jumps are present. Therefore the AJ test detects the presence of

jumps using the ratio of realized power variation sampled from two scales. For the realized

power variation for the sampling scale h and kh with scalar k > 0 we have

PVt,M (p, h) =

M/h∑

j=1

|rj |p, and

Ŝt(p, k, h) =
P̂ V t,M (p, kh)

ˆPV t,M (p, h)
.

Then the test statistic is given by

AJt,M =
Ŝt(p, k, h) − kp/2−1

√
V̂t,M

−→ N(0, 1), (20)

where V̂t,M is the asymptotic variance of St(p, k, h).

V̂t,M =
N(p, k)Ât,M(2p)

MÂt,M(p)

,

N(p, k) = (1/µ2
p)(k

p−2(1 + k))µ2p + kp−2(k − 1)µ2
p − 2kp/2−1µk,p,

µk,p = E(|U |p|U +
√
k − 1V |p),

Ât,M(2p) =
(1/M)1−p/2

µp

M∑

j=1

|rtj |pI|rtj |<α(1/M)ω .

U , V are random variables that U ∼ N(0, 1) and V ∼ N(0, 1) and p, k, α, ω are parameters.

A.2 JO

The swap variance test developed by Jiang and Oomen (2008) is in the spirit of Neuberger

(1994)’s replicating strategy on the payoff of the variance swap contract. Different from
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the other tests, which generate jump robust estimators, the JO test constructs a jump

sensitive estimator. The difference between simple returns Rtj and logarithmic returns rtj
can capture one half of the integrated variance if there is no jump in the underlying sample

path. Therefore the difference between twice the return difference and the realized variance

can capture the jump component if a jump occurs.

SwVt,M = 2

M∑

j=1

(Rtj − rtj ).

Hence the test statistic using the ratio of SwVt,M and RVt,M is

JOt,M =
MBVt,M√

ΩSwV
(1− RVt,M

SwVt,M
) −→ N(0, 1), (21)

where ΩSwV is the asymptotic variance using estimated integrated sixicity.

ΩSwV =
µ6

9

M3µ−p
6/p

(M − p− 1)

M−p∑

j=0

∏
k = 1p|rtj |6/p.

p = 4 or 6 are suggested parameters.

A.3 Med and Min

Andersen, Dobrev, and Schaumburg (2012) introduced two simple to implement but powerful

estimators for integrated variance, which use nearest neighbour truncation to control for the

impact of market microstructure noise and zero returns.

MinRVt =
π

π − 2

m

m− 1

m∑

j=2

min(|rj |, |rj−1|)2, (22)

MedRVt =
π

6− 4
√
3 + π

m

m− 2

m∑

j=3

med(|rj |, |rj−1|, |rj−2|)2 (23)

The statistics are as follows,

1− MinRVt

RVt

1.81δmax(1, MinRQt

MinRV 2
t
)
−→ N(0, 1), (24)

1− MedRVt

RVt

0.96δmax(1, MedRQt

MedRV 2
t

)
−→ N(0, 1), (25)

where MinRQt,MedRQt are minimum and median realized quarticity to estimate the in-

tegrated quarticity. The specifications are as follow

MinRQt =
πm

3π − 8

m

m− 1

m∑

j=2

min(|rj |, |rj−1|)4, (26)

MedRQt =
3πm

9π + 72 − 52
√
3

m

m− 2

m∑

j=3

(|rj ||rj−1||rj−2|)4. (27)
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A.4 CPR

A recent study by Corsi, Pirino, and Reno (2010) extended the multipower variation in the

spirit of BNS by incorporating a threshold. The idea is that large returns can result in an

underrejection of jumps using multipower variation based tests. Therefore by introducing

a local variance based threshold to filter out large returns, the test expects to reduce the

bias. The corrected realized threshold bipower variation and corrected threshold tripower

quarticity are as follows,

ctBVt,M =
π

2

M∑

j=2

Z1(rtj , θtj )Z1(rtj−1 , θtj−1),

ctTQt,M = µ−3
4/3

M∑

j=3

Z1(rtj , θtj )Z1(rtj−1 , θtj−1)Z1(rtj−2 , θtj−2),

where µ4/3 = E(|U |)4/3, U ∼ N(0, 1), and θtj = c2θV̂tj , cθ is constant, and V̂tj is local

volatility. Z1(rtj , θtj ) is the threshold function given by,

Z1(rtj , θtj ) =




|rtj | r2tj < θtj ,

1.094θ
1/2
tj

r2tj > θtj

The statistic is as follows

1− ctBVt,M/RVt√
(π2/4 + π − 5)hmax(1, ctBVt,M/ctTQt,M )

−→ N(0, 1). (28)

A.5 PZ

Similar to CPR, Podolskij and Ziggel (2010)’s test is also inspired by the Mancini (2009)’s

threshold estimator. However, different from the CPR, PZ constructs the statistic based

on random perturbed intraday returns. The difference of realized power variation and the

truncated estimator captures the jump component. The estimator is as follows,

tMVt,M (p) =
1

M1−p/2

M∑

j=1

|rtj |p(1− ηjI|rtj |≤chω),

and the statistic is given by,

PZt,M (p) =
tMVt,M (p)√

V ar(ηj)MVt,M (2p)
−→ N(0, 1), (29)

where the perturbing variable ηj is drawn from the distribution P η = 1/2(δ1−τ + δ1+τ ), δ is

the Dirac measure and τ = 0.1 or 0.05.
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B Appendix 2: Additional Robustness Checks

In this part, we document additional robustness check results, which have not been in-

cluded in the main analysis. We first conduct a Monte Carlo simulation experiment to

understand finite sample properties of different jump tests. Then, we consider decomposing

jumps into positive and negative components and investigate their statistical and economic

performances. Finally we conduct sub-sample analyses.

B.1 Simulations

In this section, we conduct a comprehensive Monte Carlo simulation analysis to understand

the finite sample properties of different jump estimators. The purpose is to justify different

statistical and economic performance of different jump estimators documented in the main

part of the paper. Following Barndorff-Nielsen and Shephard (2004) and Huang and Tauchen

(2005), we generate sample paths through a one factor stochastic volatility model under the

null hypothesis of no jumps. The one factor stochastic volatility model is given by

dpt = µdt+ exp[β0 + β1vt]dWpt, (30)

dvt = αvvtdt+ dWvt, corr(dWpr, dWvt) = ρ.

The one factor model shows that the price dynamic is driven by the price diffusion term

dWpt and the volatility diffusion term dWvt, and these two terms are correlated in order to

allow for a leverage effect. Under the alternative hypothesis a jump component is added to

the price process, which is a compounded Poisson process with intensity λ and sizes drawn

from N(0, σ2
jump). To implement the simulation, we use the Euler scheme with increments

of 1 second. We generate 10000 trading days each with 6.5 hours. Then we sample with a

frequency of 1, 2, 5, 15 minutes.

Table 11: Simulation Results: Size
Median Mean reversion av = −0.100

h 1 2 5 15

BNS 0.0525 0.0485 0.0330 0.0405

AJ 0.0780 0.0700 0.0775 0.0890

JO 0.0705 0.0745 0.0840 0.1255

Med 0.0470 0.0495 0.0475 0.0480

Min 0.0500 0.0450 0.0380 0.0375

CPR 0.0465 0.0470 0.0485 0.0535

PZ 0.0650 0.0810 0.0820 0.0910

Notes: The table reports the simulation size for all seven jump tests we used, including BNS, AJ, JO, Med, Min, CPR, and PZ. We

report the type I errors for 1, 2, 5, and 15 minutes frequency compared to a significant level of 5%. The values are obtained through

simulations with 10,000 trading days under the null hypothesis that no jumps occur.

Table 11 shows the empirical sizes (α) for a 5% level of the different jump tests. We follow

Huang and Tauchen (2005) and Dumitru and Urga (2012) to choose parameters and set

40



av = −0.1 to represent a moderate level of mean reversion. The simulated data does not

include a noise component, therefore the sizes for the different frequencies should only reflect

the sizes of the tests and should not be affected by market microstructure noise as in real

world data. For the 1 minute frequency, Med RV, Min RV, and CPR have a better size

(closer to 5%) in comparison to the other jump tests, while AJ and JO seem to be a bit

oversized. The relative merits of Med RV, Min RV, and CPR generally hold true throughout

the other frequencies. The bipower variation test in general performs well across different

frequencies, but is slightly oversized at a 1 minute frequency.

Table 12: Simulation Results: Size Corrected Power with Varying Intensity
Median Mean reversion av = −0.100, Median Jump size σ = 1.5.

h 1 2 5 15

λ = 2

BNS 0.8554 0.8213 0.7627 0.6107

AJ 0.2467 0.1532 0.0575 0.0346

JO 0.8897 0.8671 0.8270 0.7776

Med 0.8437 0.8206 0.7606 0.6155

Min 0.8400 0.7963 0.7256 0.5397

CPR 0.8584 0.8484 0.8056 0.6857

PZ 0.8898 0.9064 0.8769 0.7943

λ = 1.5

BNS 0.7673 0.7257 0.6567 0.5367

AJ 0.2674 0.1688 0.0656 0.0456

JO 0.7999 0.7736 0.7320 0.6975

Med 0.7576 0.7322 0.6688 0.5541

Min 0.7532 0.7105 0.6393 0.4779

CPR 0.7740 0.7450 0.6942 0.5980

PZ 0.8080 0.8107 0.7941 0.7178

λ = 1.0

BNS 0.5995 0.5812 0.5253 0.4252

AJ 0.2614 0.1667 0.0699 0.0587

JO 0.6299 0.6256 0.6075 0.5975

Med 0.5971 0.5850 0.5391 0.4627

Min 0.5832 0.5649 0.5005 0.3844

CPR 0.6051 0.6028 0.5665 0.4849

PZ 0.6508 0.6551 0.6220 0.5545

λ = 0.5

BNS 0.3794 0.3305 0.3268 0.2465

AJ 0.2034 0.1403 0.0759 0.0840

JO 0.4024 0.3663 0.3936 0.4105

Med 0.3820 0.3372 0.3381 0.2757

Min 0.3668 0.3215 0.3160 0.2286

CPR 0.3907 0.3452 0.3505 0.2932

PZ 0.4214 0.4353 0.4101 0.3768

Notes: The table reports the simulation power for all seven jump tests we used, including BNS, AJ, JO, Med, Min, CPR, and PZ. We

report one minus type II errors for 1, 2, 5, and 15 minutes frequency compared to a significant level of 5%. The values are obtained

through simulations with 10,000 trading days under the alternative hypothesis with jumps. We report how the power of test varies when

the jump intensity λ changes.

Tables 12 and 13 report the empirical power (1 − β) for the different jump tests when the

jump intensity and/or the jump size is varying. Similar to the size part, we fix the mean

reversion parameter to a median level of av = −0.1. Firstly, we allow for a changing jump

intensity while keeping the jump size fixed equal to its median level σ = 1.5 as shown in

Table 12. When the jump intensity decreases, the power for all tests also decreases as there

are less jumps in the data. Moreover, when the sampling frequency is reduced, the power of

the tests monotonically decreases in general. One exception is the PZ test. Here the highest
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power is found for the 2 min sampling frequency. The highest powers are found for PZ, JO,

and CPR, while Med RV and Min RV have powers close to the baseline BNS test. AJ is

found to have the lowest power for all frequencies and levels of intensities.

Table 13: Simulation Results: Size Corrected Power with Varying Size
Median Mean reversion av = −0.100, Median Jump Intensity λ = 1.

h 1 2 5 15

σ = 2

BNS 0.6327 0.5949 0.5724 0.4815

AJ 0.2614 0.1769 0.0656 0.0582

JO 0.6573 0.6451 0.6496 0.6209

Med 0.6270 0.5986 0.5869 0.5016

Min 0.6232 0.5775 0.5593 0.4426

CPR 0.6424 0.6107 0.6143 0.5357

PZ 0.6535 0.6708 0.6552 0.6568

σ = 1.5

BNS 0.6137 0.5770 0.5109 0.4070

AJ 0.2473 0.1726 0.0721 0.0615

JO 0.6514 0.6294 0.5944 0.5603

Med 0.6133 0.5813 0.5249 0.4307

Min 0.6053 0.5602 0.4922 0.3714

CPR 0.6214 0.5965 0.5518 0.4638

PZ 0.6567 0.6649 0.6285 0.5825

σ = 1.0

BNS 0.5520 0.5255 0.4390 0.3007

AJ 0.2218 0.1683 0.0900 0.0703

JO 0.5933 0.5808 0.5393 0.4923

Med 0.5514 0.5397 0.4572 0.3451

Min 0.5326 0.5079 0.4210 0.2540

CPR 0.5721 0.5509 0.4924 0.3693

PZ 0.6134 0.6126 0.5861 0.4895

σ = 0.5

BNS 0.4084 0.3594 0.2404 0.1042

AJ 0.1773 0.1065 0.0726 0.0873

JO 0.4825 0.4392 0.3652 0.2613

Med 0.4171 0.3730 0.2724 0.1308

Min 0.3800 0.3115 0.2095 0.0774

CPR 0.4457 0.3977 0.3079 0.1490

PZ 0.5947 0.5212 0.4112 0.2503

Notes: The table reports the simulation power for all seven jump tests we used, including BNS, AJ, JO, Med, Min, CPR, and PZ. We

report one minus type II errors for 1, 2, 5, and 15 minutes frequency compared to a significant level of 5%. The values are obtained

through simulations with 10,000 trading days under the alternative hypothesis with jumps. We report how the power of test varying

when jump intensity σ changes.

Secondly, we fix the jump intensity and allow for the value of the jump size to vary. Table

13 reports that the power of the tests decreases when jump size decreases. This result holds

true for all jump tests, indicating that all existing jump tests have difficulties to detect small

jumps or to distinguish volatility bursts from jumps. As before, the power decreases with

lower sampling frequency. Similar to the size part, we also find a peak of power for the PZ

test for a 2 min frequency, but only when the jump size is large σ = 2 or σ = 1.5. The

highest power is again found for the tests: PZ, JO, and CPR. Moreover, both PZ and JO

seem to have high power even when the sampling frequency is relative low (15 min).

The relative ranking is similar to the case when intensity is varying. Med RV and Min RV

have similar power in comparison to the baseline bipower test. To summarize, we show

that the finite sample properties of different jump tests are varying across sampling frequen-
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cies and jump characteristics. Med RV, Min RV, and CPR have the best size properties

while PZ, JO, and CPR have the best power properties. In general, the performance of the

different tests in the simulation study reflects very well the trade-off between size and power.

B.2 Good and Bad Jumps

As reported in the descriptive statistics in Table 1, the jump densities are significantly

skewed. The conventional view is that negative jumps should matter more than positive

jumps. Therefore, we analyze in this section whether further decomposing jump variations

into positive and negative jumps can improve statistical and economic performances. We fol-

low Barndorff-Nielsen, Kinnebrock, and Shephard (2008) and Patton and Sheppard (2011)

and use realized semivariances for this purpose.

Following Patton and Sheppard (2011), we define realized semivariances as follows:

RV − =
n∑

i=1

r2i I[ri<0], (31)

RV + =
n∑

i=1

r2i I[ri>0]. (32)

Realized semivariances converge to the sum of half the integrated variance and jump varia-

tion for positive and negative returns respectively:

RV − → 1

2

t∫

t−1

σ2
sds+

Nt∑

j=1

c2jI[cj<0], (33)

RV + → 1

2

t∫

t−1

σ2
sds+

Nt∑

j=1

c2jI[cj>0]. (34)

Therefore, the difference of the two realized semivariances ensures that the half integrated

variation terms vanishes, so that the signed jump variation is given by

∆J2 = RV + −RV − →
Nt∑

j=1

c2jI[cj>0] −
Nt∑

j=1

c2jI[cj<0]. (35)

The negative and positive jump components are given by

∆J2+ = (RV + −RV −)I[(RV +−RV −)>0], (36)

∆J2− = (RV + −RV −)I[(RV +−RV −)<0]. (37)
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Using these measures we discuss four alternative HAR-RV-CJ specifications to evaluate

volatility timing statistically and economically.

RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIVMIVt−22,t−1 + βJSDJSDt−1 + ǫt,t+h−1,

RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIVMIVt−22,t−1 + βJNDJNDt−1 + ǫt,t+h−1,

RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIVMIVt−22,t−1 + βJPDJPDt−1 + ǫt,t+h−1,

RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIVMIVt−22,t−1 + βJNDJNDt−1 + βJPDJPDt−1 + ǫt,t+h−1.

(38)

where JSD is the daily lagged signed jump variation, JND and JPD are the negative

and positive jump components, respectively.

Table 14 presents in-sample volatility forecasting results. The sign of the jump compo-

nent is positive for negative jumps and negative for positive jumps, just as suggested

in Patton and Sheppard (2011). Therefore, a large price drop is likely to increase the

volatility in the future while a price increase tends to reduce volatility. Moreover,

the coefficients for signed jumps are positive, implying that negative jumps play a

dominant role. However, we also find that for a daily horizon, the coefficients for

jump specifications are insignificant, which is different from our main findings using

jump variations. Then the coefficients turn significant for weekly and monthly hori-

zons. Similar to before, we observe that all four models can lead to an improvement

in adjusted R2s compared to the benchmark HAR-RV model. For the one day ahead

horizon, the adjusted R2 is on average about 2% higher than that of the HAR-RV

model. The adjusted R2s are close to each other for all four specifications, however,

the adjusted R2 for the negative jump model is slightly higher than that for the posi-

tive jump model, which is consistent with Patton and Sheppard (2011).

The out-of-sample volatility forecasting results are reported in Table 15 panel 1. For

the daily horizon, all four specifications lead to better forecasts than the HAR-RV

model. The negative jump model generates lower MSEs than the positive jump

model, which is in line with the in-sample findings. However, we show that using

signed jumps without separating them into positive and negative could generate lower

MSEs. Moreover, all MSEs are close to the MSEs of the baseline HAR-RV-CJ models

using the BNS test. Nevertheless, although coefficients become significant for weekly

and monthly horizons, the out-of-sample performance deteriorates when the forecast-

ing horizon is extended.

Table 15 panel 2 presents volatility timing performances for these models. We find that

all those four specifications can outperform the benchmark HAR-RV model, and can
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Table 14: In-Sample Volatility Forecasting Results
β0 βIV D βIV W βIV M βJSD βJND βJPD adjR2

JS

h = 1 1.527E-5 0.435 0.350 0.133 0.089 0.587

(2.358) (3.850) (4.023) (1.351) (0.545)

h = 5 2.316E-5 0.260 0.349 0.245 0.009 0.697

(3.048) (4.643) (4.019) (2.148) (0.095)

h = 22 4.198E-5 0.131 0.294 0.277 -0.010 0.653

(4.257) (4.418) (2.858) (2.862) (-0.120)

JN

h = 1 1.544E-5 0.461 0.341 0.133 0.181 0.589

(2.430) (3.778) (3.852) (1.381) (1.275)

h = 5 2.333E-5 0.282 0.340 0.242 0.105 0.699

(3.100) (3.334) (3.832) (2.141) (2.052)

h = 22 4.206E-5 0.142 0.289 0.275 0.042 0.654

(4.254) (4.450) (2.776) (2.858) (0.662)

JP

h = 1 1.515E-5 0.433 0.359 0.145 -0.194 0.587

(2.352) (3.440) (3.871) (1.476) (-0.698)

h = 5 2.318E-5 0.282 0.351 0.258 -0.364 0.701

(3.102) (3.357) (4.055) (2.295) (-2.720)

h = 22 4.201E-5 0.147 0.294 0.284 -0.218 0.655

(4.260) (4.421) (2.831) (2.980) (-2.189)

JN, JP

h = 1 1.551E-5 0.487 0.339 0.142 0.212 -0.285 0.590

(2.469) (3.629) (3.798) (1.453) (1.618) (-1.061)

h = 5 2.344E-5 0.321 0.336 0.256 0.153 -0.429 0.704

(3.173) (3.586) (3.828) (2.275) (2.934) (-2.907)

h = 22 4.213E-5 0.164 0.287 0.283 0.069 -0.247 0.656

(4.255) (4.637) (2.754) (2.961) (1.321) (-2.426)

Notes: The table reports in-sample volatility forecasting results for the SPY contract from 2001 to 2010 using good and bad jumps. The

HAR-RV-CJ model is applied to forecast one day, one week, and one month ahead realized variance. We consider four specifications:

realized semivariance, negative jumps, positive jumps, and both negative and positive jumps. The figures in parentheses are t-statistics

using Newey-West standard errors for autocorrelation order 5, 10, and 44 respectively. adjR2 is the adjusted R square.

generate positive and statistically significant performance fees at the 5% significance

level. For the signed jump model, we show that annualized performance fees range

from 40 (γ = 2) to 8 (γ = 10) basis points. We also find that the negative jump model

(from 47 basis points for γ = 2 to 9 basis points for γ = 10) outperforms its positive

counterpart (37 basis points for γ = 2 to 7 basis points for γ = 10) slightly, which is

consistent with both our statistical findings and the existing literature. Including both

positive and negative jumps can further improve portfolio performances, and generate

economic value from 52 basis points (γ = 2) to 10 basis points (γ = 10). Our findings

suggest that separating jumps from diffusion improve volatility timing performances

even without the use of nonparametric jump tests. And decomposing jumps into

positive and negative components can further improve economic performances.

B.3 Sub-Sample Analysis

We then conduct a sub-sample analysis in order to understand whether the results

hold true for different time periods. We split the whole data sample into period 1

(2001 to 2005) and period 2 (2006 to 2010). In each period, we use the first two

years as the in-sample period and the remaining years as the out-of-sample period.
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Table 15: Out-of-Sample Statistical and Economic Performances: Good and Bad

Jumps
Panel 1: Volatility Forecasting

MSE h=1 h=5 h=22

BM 5.657E-8 3.532E-8 3.504E-8

JS 4.719E-8 3.100E-8 3.194E-8

JN 4.778E-8 4.700E-8 5.516E-8

JP 4.791E-8 4.881E-8 5.834E-8

JN, JP 4.811E-8 4.613E-8 5.348E-8

Panel 2: Volatility Timing: Daily

Strategies γ = 2 γ = 6 γ = 10

JS (0.0040) 0.0013 8.2063E-4

(2.6780) (2.6450) (2.6100)

JN (0.0047) 0.0016 9.4140E-4

(2.6512) (2.6171) (2.6512)

JP (0.0037) 0.0012 7.4159E-4

(3.3700) (3.3357) (3.3015)

JN, JP (0.0052) 0.0017 0.0010

(2.7244) (2.6901) (2.6558)

Notes: The table reports out-of-sample statistical and economic performances for 2001 to 2010 using good and bad jumps. Panel 1

reports out-of-sample volatility forecasting results. The HAR-RV model is used as the benchmark model. The HAR-RV-CJ model

with semivariance (JS), negative jumps (JN), positive jumps(JP ), and both negative and positive jumps (JN, JP ). Panel 2 reports

out-of-sample volatility timing results. Parameters are estimated in-sample (from 2001 to 2005). The volatility forecasting and volatility

timing results are obtained out-of-sample (from 2006 to 2010). We report performance fees relative to benchmark for risk aversion levels

of 2, 6, and 10. Figures in parentheses are t-statistics for DM test. The test has the null hypothesis that the (mean) performance fee

equals to zero.

Table 16 summarizes the out-of-sample volatility forecasting results for different jump

tests. Initially, we find that the MSE in period 1 is significantly lower than in period

2. This finding can be attributed to the financial crisis period covered in period 2,

which yields time varying parameters (especially for the in-sample period for 2006 to

2008). In period 1, the estimated in-sample parameters are more stable across the

out-of-sample period and hence produce better forecast. Secondly, almost all HAR-

RV-CJ models can outperform the benchmark HAR-RV in period 1 for all forecasting

horizons. In period 2, only CPR and Med can outperform the benchmark at daily

and weekly horizons, but not at a monthly horizon. During the financial crisis, local

volatility is higher, hence jumps are more difficult to detect. When the forecasting

horizon increases the reduction in forecasting accuracy is expected during the financial

crisis period as the parameters are not immediately updated with the changing high

local volatility information.

Table 17 illustrates out-of-sample volatility timing results for period 1 and 2. In period

1, the realized utility criteria show that all tests but AJ can outperform the bench-

mark. This result is consistent with the out-of-sample volatility forecasting results

shown in Table 16, and with the whole in and out-of-sample volatility forecasting re-

sults. The performance fees are also statistically significant for almost all models. We

find that all but the AJ jump strategies can generate positive and statistically signifi-
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Table 16: Out-of-Sample Volatility Forecasting HAR-RV-CJ: Sub Samples
RVt,t+h−1 = β0 + βIV DIVt−1 + βIDW IVt−5,t−1 + βIV M IVt−22,t−1 + βJV DJVt−1 + ǫt,t+h−1

Period 1 Period 2

MSE h=1 h=5 h=22 h=1 h=5 h=22

BM 1.528E-9 2.071E-9 4.511E-9 3.385E-8 1.356E-8 7.585E-9

BNS 6.698E-10 1.118E-9 3.280E-9 3.393E-8 1.374E-8 8.370E-9

AJ 1.522E-9 2.080E-9 4.496E-9 3.502E-8 1.892E-8 3.483E-8

JO 6.684E-10 1.120E-9 3.275E-9 3.388E-8 1.464E-8 8.576E-9

Med 6.686E-10 1.090E-9 3.194E-9 3.833E-8 1.397E-8 7.590E-9

Min 6.381E-10 1.063E-9 3.199E-9 3.396E-8 1.367E-8 8.508E-9

CPR 6.616E-10 1.085E-9 3.197E-9 3.124E-8 1.345E-8 1.578E-8

PZ 7.108E-10 1.193E-9 3.350E-9 3.386E-8 1.122E-8 8.601E-9

Notes: The table reports out-of-sample volatility forecasting results for the SPY contract for period 1 (2001 to 2005) and period 2

(2006 to 2010). HAR-RV model is used as the benchmark model.HAR-RV-CJ model with different jumps are used. The parameters

are estimated in-sample from 2001 to 2003 for period 1 and 2006 to 2008 for period 2. The forecasting studies are implemented in the

out-of-sample period 2004 to 2005 for period 1 and 2009 to 2010 for period 2. We report the Mean Squared Error (MSE) for predicted

volatility over one day, one week, and one month forecasting horizons.

cant economic values. Moreover, the economic magnitudes are higher than those using

the whole sample in the main part of the paper. In period 2, only AJ can outperform

the benchmark. The t-statistics are all lower than the single tail 5% critical value.

The results show that economic values in period 2 are either negative or insignificant.

Table 17: Out-of-Sample Volatility Timing: Sub-Samples
Period 1 Period 2

Strategies γ = 2 γ = 6 γ = 10 γ = 2 γ = 62 γ = 10

BNS 0.0299 0.0273 0.0247 -1.7027E-5 -7.6982E-5 -1.3654E-4

(2.5814) (2.3650) (2.1464) (-0.161) (-0.0724) (-0.1279)

AJ -1.0276E-4 -1.1435E-4 -1.2586E-4 0.0015 0.0015 0.00015

(-0.3415) (-0.3812) (-0.4212) (0.2168) (0.2131) (0.2093)

JO 0.0279 0.0252 0.0226 -3.2155E-4 -4.0598E-4 -4.8986E-4

(2.4002) (2.1824) (1.9622) (-0.1845) (-0.2317) (-0.2776)

Med 0.0307 0.0280 0.0254 -0.0105 -0.0099 -0.0093

(2.6058) (2.3884) (2.1687) (-1.1615) (-1.0998) (-1.0316)

Min 0.0322 0.0293 0.0263 -2.3896E-4 -4.0598E-4 -5.6343E-4

(2.5149) (2.2936) (2.0699) (-0.0865) (-0.1418) (-0.1940)

CPR 0.0289 0.0262 0.0236 -0.0021 -0.0028 -0.0035

(2.4808) (2.2623) (2.0416) (-0.3326) (-0.4455) (-0.5537)

PZ 0.0256 0.0233 0.0209 -0.0706 -0.0723 -0.0741

(2.3422) (2.1933) (1.9149) (-1.5079) (-1.1793) (-2.4810)

Notes: The table reports out-of-sample volatility timing results for the SPY contract for period 1 (2001 to 2005) and period 2 (2006

to 2008). The benchmark strategy uses the HAR-RV to predict one day ahead volatility, and other strategies using the HAR-RV-CJ

to predict one day ahead volatility with realized jump variation detected from respective jump test. The parameters are estimated

in-sample (2001 to 2003 for period 1 and 2006 to 2008 for period 2) , the predicted volatility and the ex post portfolio returns are

obtained out-of-sample (2004 to 2005 for period 1 and 2009 to 2010 for period 2). We report performance fee relative to benchmark

strategy under risk aversion of 2, 6, and 10. Figures in parentheses are t-statistics for DM test. The test has the null hypothesis that

the (mean) performance fee equals to zero.

To summarize, due to the short sample period of 10 years, our sub-sample periods

covered the recent financial crisis, which leads to unstable parameter estimation and

high local volatility. We suggest that separating the integrated variance from the jump

components precisely is more difficult during a high local volatility regime and models

have more difficulties to update time varying parameters. Hence, we find that our

main result is stronger in the first sub-sample period, where the economic environ-
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ment is relatively stable. Nevertheless, our main findings still holds true in general for

both sub sample periods: The separation of jumps from diffusion component rather

than jump itself is responsible for delivering statistically significant economic values.
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