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Abstract

Spatial dispersion is the effect where media respond not only to a signal at one partic-

ular point, but to signals in an area around that point. While temporal dispersion is a

well studied topic, spatial dispersion is relatively unexplored. This thesis investigates

the behaviour of electromagnetic waves in spatially dispersive, inhomogeneous media.

In particular, two types of inhomogeneity are considered: media formed from two

homogeneous regions with a common interface, and those with a periodic structure.

For a material made of two homogeneous regions joined together we establish

a set of boundary conditions to describe the behaviour of waves at this interface.

These boundary conditions are additional to the standard ones provided by Maxwell’s

equations. The conditions found are shown to reduce to those established previously

by Pekar in the case of a boundary between a spatially dispersive region and a purely

temporally dispersive region.

The polarisation is also found for a spatially dispersive medium with periodic struc-

ture. Numeric solutions are found and non-divergent modes are identified. Analytic

solutions are also found for small magnitudes of the inhomogeneity. Most interestingly

these results show that, for certain conditions, there exist coupled mode solutions.

This is an unusual phenomena which arises as a result of the spatial dispersion in the

system.
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Chapter 1

Introduction

This thesis investigates two problems pertaining to the topic of the propagation of

electromagnetic waves in spatially inhomogeneous media with consideration to the

effects of both temporal and spatial dispersion. While the effects of temporal disper-

sion are widely known, spatial dispersion is a less studied field and as such presents

the opportunity for new results to be found.

Typically spatial dispersion, or non-locality as it is also known, is considered only

to be a small modification to local models and is usually ignored. Typically, only in

the short wavelength limit is the effect considered to be significant enough to have

a measurable effect. However, it has been shown that there exist structures, such as

wire media, in which non-local, dispersive behaviour is observed for all frequencies,

including the large wavelength limit [2]. Hence, this suggests that spatial dispersion

can be a physically significant effect and in some cases an essential factor in modelling

certain materials.

As mentioned, wire media are a major focus of research regarding spatial disper-

sion. These are artificial dielectrics formed by a rectangular array of thin, perfectly

conducting wires (as shown in figure 1.1) and have been shown to exhibit spatial

dispersion effects [3]. In the case where the spacing of these wires is much smaller
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Figure 1.1: Artificial dielectric formed by a periodic array of thin, uniform wires.
Spatially dispersive effects become stronger when the lattice constants a, b become
significantly smaller than the wavelength [9].

than the wavelength then strong spatial dispersion is observed [2]. Such strong spatial

dispersion can result in negative diffraction [4] which makes it possible to construct

a perfect lens, potentially capable of imaging with unlimited resolution, from a wire

medium [5, 6, 7, 8].

Recent research has also shown the importance of non-locality in graphene, a ma-

terial made of a single atom layer of graphite and a substance of major interest in

modern physics. Including spatial dispersion in the calculation of the conductivity of

graphene can be used to explain the previously known dependence of the conductivity

on temperature and pressure [10]. It has also been shown that an effective medium

formed of a periodic lattice of graphene layers displays non-local effects. In partic-

ular, the emergence of additional waves, excitation of graphene plasmons, and the

occurrence of negative refraction [11].

This thesis investigates two types of spatially dispersive inhomogeneous media:

those composed of two homogeneous region (chapters 2 and 3) and those with a

periodic structure (chapter 4).

In chapter 2 the response function is calculated for homogeneous media, and it
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is shown that this solution is damped in the direction of propagation. This result

provides the foundation for the subsequent chapter.

In chapter 3 we construct an inhomogeneous medium by joining two spatially

dispersive, homogeneous regions together. We then consider the boundary between

these two regions and obtain a complete set of boundary conditions for the system. In

the case where the boundary is between a spatially dispersive homogeneous medium

and the vacuum these boundary conditions have been found previously by Pekar [12].

We obtain a set of boundary conditions through two alternative methods which, for

appropriate choices, reduce to the Pekar result in the limiting case where one of the

media is no longer spatially dispersive. This result has been published in [1], however

a more exhaustive version is presented here.

In chapter 4 we investigate spatially dispersive media with periodic structure and

present both numeric solutions as well as approximate analytic solutions to Maxwell’s

equations in the case where the magnitude of the inhomogeneity is small. This is

a continuation and advancement on the work that was present in an early form in

[1]. While there have been some studies into such materials there have been none

that provide analytic solutions to Maxwell’s equations for these media with spatial

dispersion. However, some properties of spatially dispersive, periodic structures have

been concluded previously, in particular a parabolic-like dispersion, and the potential

for double eigenwaves [13]. This parabolic-like dispersion will also be seen in our

approach to the problem.

1.1 Spatially Dispersive Media

Spatial dispersion refers to the phenomenon where the polarisation at a given point

is determined not only by the value of the electric field at the point, but also the

field values in the neighbourhood of the point [14]. The term ‘spatial dispersion’

3



was first used for this effect by Gertsenshtein in 1952 [15]. Mathematically, spatial

dispersion refers to the inclusion of a wave vector dependence in the permittivity, as

was demonstrated by Born’s microscopic theory [16].

A simple illustration of spatial dispersion is shown in figure 1.2. These series of

springs represent, in the infinite limit, dielectrics. The addition of springs connecting

the masses in (b) provides a secondary method of energy transfer which causes the

system to become non-local.

Belov [2] shows that spatial dispersion can be significant for all frequencies and

shows that in wire media the physical results are very different for local and non-local

models, hence spatial dispersion is an essential consideration.

The physical effect of spatial dispersion on reflectivity in crystals was shown by

Hopfield [17], where a theoretical model for spatial dispersion was presented which

predicted a number of anomalies not present in a classical medium. These were verified

experimentally, giving strong support to the validity of considering spatial dispersion

as a physical effect. This study primarily considered the effect of spatial dispersion

as a second mechanism of energy transport within a crystal.

A comprehensive summary of early research into the electrodynamics of spatially

dispersive media is given by Rukhadze [18]. In particular, this paper shows that,

in a typical dielectric, the effects of spatial dispersion become more significant when

the fields vary rapidly in space and can often be ignored for sufficiently smooth field

variations. Additionally, Rukhadze shows that, when spatial dispersion is considered,

there may exist a number of transverse waves propagating in the medium with the

same frequency but with different indices of refraction.

A potential interesting application of spatial dispersion is that, for sufficiently

strong spatial dispersion, any dielectric medium may exhibit negative group velocity

[4]. This is an effect normally seen only when the permittivity and permeability are

negative, ε < 0 and µ < 0. These negative refraction meta-materials are the subject

4



(a) Classical dielectric (b) With spatial dispersion

6
P

-
x

Figure 1.2: Spring and charged point-mass model representing a classical dielectric,
(a); and a dielectric with spatial dispersion, (b) [17].

of much interest and many novel applications rely on this property.

While spatial dispersion can be beneficial in a number of materials, such as those

mentioned above, this is not always the case. Such as negative-index metamaterials,

in which these non-local effects are detrimental to the desired behaviour [19].

1.2 Maxwell’s Equations

Maxwell’s equations for electromagnetic fields in a medium, which were first derived

in the 1860s, are

∇ ·D = ρc, ∇ ·B = 0,

∇×H =
∂D

∂t
+ J, ∇× E = −∂B

∂t
.

Here E and H are, respectively, the electric and magnetic fields, D the electric

displacement, and B the magnetic induction. In this work we disregard the source

terms, ρc and J, in the above and hence use Maxwell’s equations in the source-free

5



form

∇ ·D = 0, ∇ ·B = 0, (1.1)

∇×H =
∂D

∂t
, ∇× E = −∂B

∂t
. (1.2)

We also work with the polarisation density, P, which is defined as the average

electric dipole moment per unit volume. This is used in the mathematical definition

of the electric displacement

D(t,x) = ε0E(t,x) + P(t,x).

For the sake of simplifying the analysis we make the following assumptions which

will hold throughout the work:

• There is no magnetisation, so we have that H = µ−1
0 B.

• All fields are functions of time, t, and one spatial coordinate only, x = x1, and

independent of x2, x3. Likewise in the frequency domain k2 = k3 = 0 and we set

k = k1.

• We take the polarisation, electric and magnetic fields to be transverse fields,

hence E1(t, x) = 0, P1(t, x) = 0, and B1(t, x) = 0. This automatically satisfies

the two non-dynamic Maxwell’s equations, (1.1).

• Linearly polarised waves are chosen such that, in the (e1, e2, e3) frame, we have

E(t, x) = E(t, x)e2, P(t, x) = P (t, x)e2, and B(t, x) = B(t, x)e3

From these assumptions we can rewrite the two remaining Maxwell’s equations,

(1.2), as

1

µ0

∂B

∂x
= − ∂

∂t
(ε0E + P ) and

∂E

∂x
= −∂B

∂t

6



which, taking derivatives of t and x respectively, give

∂2B

∂x∂t
= − ∂2

∂t2

(
1

c2
E + µ0P

)
and

∂2E

∂x2
= − ∂

2B

∂t∂x
.

These can be combined to give a single equation,

∂2E(t, x)

∂x2
= µ0

∂2P (t, x)

∂t2
+

1

c2

∂2E(t, x)

∂t2
. (1.3)

1.3 Constitutive Relation

In this thesis we consider a linear constitutive relation1 between E(t,x) and P(t,x).

In other words P is a single-valued, linear functional of E. For an inhomogeneous

medium, in general, this constitutive relation is given by

Pi(t,x) =
3∑
j=1

ε0

∫∫∫∫ ∞
−∞

χij(t, t
′,x,x′)Ej(t

′,x′)dt′dx′ (1.4)

where χ is the electric susceptibility which is related to the permittivity of the medium,

ε, by the expression

ε = (1 + χ)ε0.

In this thesis we will only consider media which are homogeneous in time and this

simplification, along with the assumptions made above, reduces (1.4) to

P (t,x) = ε0

∫∫∫∫ ∞
−∞

ψ(t− t′,x,x′)E(t′,x′)dt′dx′ (1.5)

where ψ(t − t′, x, x′) = χ22(t − t′, x, x′). Limiting our consideration to time homo-

geneous media allows us to take the Fourier transform with respect to t without

difficulty.

1We will consider only a linear relation in this work, for a discussion of nonlinear constitutive
relations see, for example, [20].
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We will consider only one type of spatial dispersion here, where the spatial disper-

sion appears on a second derivative in x. While this is not the only type of dispersion

which can be considered, it is the simplest. Making this choice ensures that parity is

preserved as there is no first order derivative. In this model of spatial dispersion, which

will be used throughout this thesis, the electric and polarisation fields are related by

L(ω, x)P̂ (ω, x) +
∂

∂x

(
β(ω, x)2

(2π)2

∂P̂ (ω, x)

∂x

)
= ε0Ê(ω, x) (1.6)

where

P̂ (ω, x) =

∫ ∞
−∞

e−2πiωtP (t, x)dt, (1.7)

is our chosen definition for the Fourier transform of P (t, x) with respect to t only.

Note that in this work ω denotes the temporal frequency rather than the angular

frequency for which it is commonly used.

The function L(ω, x) contains the properties of the particular medium, the x de-

pendence representing an inhomogeneous medium, and β is the speed of wave propa-

gation in the medium. The temporal dispersion is contained entirely within L(ω, x).

Along with this, we also have a corresponding partial differential equation for the

response function, ψ,

L(x)ψ +
∂

∂x

(
β(x)2

(2π)2

∂ψ

∂x

)
= ε0δ(t− t′, x, x′). (1.8)

Note that when the x dependency is removed, that is L(ω, x) = L(ω) and β(ω, x) =

β(ω), then taking the Fourier transform of (1.6) with respect to the spatial coordinate

gives the permittivity relation2

P̃ (ω, k) =
ε0Ẽ(ω, k)

L(ω)− β(ω)2|k|2
(1.9)

2Since this system has damping then causality dictates that all poles will be found entirely in
the upper-half plane (as will be seen later) and so there are no poles along the real axis. Hence this
function is well defined for real ω, k.
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where

P̃ (ω, k) =

∫ ∞
−∞

∫ ∞
−∞

e−2πi(ωt+kx)P (t, x)dtdx (1.10)

is the Fourier transform of P (t, x), and likewise for Ẽ.

1.4 Floquet Theory

This section provides a brief introduction to Floquet theory, which will be necessary

for the study of periodically structured media in chapter 4. Floquet theory refers to

the study of a particular set of linear differential equations with periodic coefficients,

and is often the preferred method in analysing periodic structures [21, 22]. The key

result of this theory is Floquet’s Theorem[23] which determines the solutions to linear

homogeneous differential equations of the form

P (y) =
dmy

dxm
+ p1

dm−1y

dxm−1
+ p2

dm−2y

dxm−2
+ . . .+ pmy = 0, (1.11)

where the coefficients pj are periodic in x, with a consistent period r. Floquet’s

Theorem then tells us that the solution y must be of the form

y = eνxP(x) (1.12)

where ν is constant and P(x) is periodic with period r,

P(x+ r) = P(x).

A similar result was established by Bloch in 1928 [24] to describe an electron in a

crystal lattice. These solutions are known as Bloch waves and consist of a plane wave
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multiplied by a periodic function,

ψ(x) = eik·xu(x)

where x is the position, k is the crystal wave vector, and u(x) is periodic. Bloch’s the-

orem states that the energy eigenstates of an electron in a crystal structure can always

be written as Bloch waves. This has important physical consequences, particularly in

defining the electronic band structure of the crystal.

Other results regarding the solutions to second order linear differential equations

with periodic coefficients were derived, independently, in the late 19th century by Hill

[25], and Mathieu [26]. While these can be seen to be only specific cases of Floquet’s

Theorem they are, however, still used in many physical applications particularly in

quantum systems [27, 28].

Recent work has shown that Floquet theory can be extended to more general

systems including media with hysteresis and non-local potentials [29].

10



Chapter 2

Response in Homogeneous Media

2.1 Introduction

This chapter is concerned with the propagation of electromagnetic waves in a homo-

geneous medium. In addition to Maxwell’s equations, (1.3), we need a constitutive

relation between the polarisation and the electric field. For a homogeneous medium,

and with the assumptions made in section 1.2, this constitutive relation is given by

P (t, x) = ε0

∫∫ ∞
−∞

ψ(t, x, x′)E(t, x)dx′ (2.1)

where the response ψ = χ22 and x′ is the location of a point source. In this chapter

we will consider a permittivity relation that is a generalisation of the Lorentz single-

resonance model [30], so that

P̃ (ω, k) =
ε0Ẽ(ω, k)

(2πiω + λ)2 + α2 + (2π)2β2|k|2
. (2.2)

The terms λ and α represent, respectively, the damping of the medium and the

resonant frequency of the polarisation.

The aim of this chapter is to find solutions for the response function and show
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that such solutions decay appropriately as they propagate through the medium. This

result provides the foundation for the subsequent chapter where the boundary between

homogeneous media is considered.

2.2 Response Function

Taking the inverse Fourier transform of (2.2) gives the partial differential equation

∂2P (t, x)

∂t2
− β2∂

2P (t, x)

∂x2
+ 2λ

∂P (t, x)

∂t
+ (λ2 + α2)P (t, x) = ε0E(t, x). (2.3)

We see from (2.1) that ψ(t, x, x′) is a Green’s function hence (2.3) becomes a partial

differential equation for ψ

∂2ψ(t, x, x′)

∂t2
− β2∂

2ψ(t, x, x′)

∂x2
+ 2λ

∂ψ(t, x, x′)

∂t
+ (λ2 + α2)ψ(t, x, x′) = δ(t, x− x′).

For now, however, we consider a source at the origin and so x′ = 0. This gives us

∂2ψ(t, x)

∂t2
− β2∂

2ψ(t, x)

∂x2
+ 2λ

∂ψ(t, x)

∂t
+ (λ2 + α2)ψ(t, x) = δ(t, x). (2.4)

We solve (2.4) by Fourier methods. The Fourier transform of (2.4) is given by

−ω2ψ̂(ω, x)− β2∂
2ψ̂(ω, x)

∂x2
+ 2iλωψ̂(ω, x) + (λ2 + α2)ψ̂(ω, x) = δ(x). (2.5)

which is solved by (2.14) given below. To guarantee causality we present the inverse

Fourier transform of this, ψ(t, x), first.

Lemma 2.2.1. The differential equation (2.4) is solved by the function

ψ(t, x) =


1

2β
e−λtJ0

(
α
√
t2 − x2

β2

)
for t ≥ ±x

β
≥ 0

0 otherwise

(2.6)
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where J0 is the zero order Bessel function of the first kind.

Proof. To prove that this is indeed a solution to (2.4) we must first make the following

substitution

ψ = e−λtφ

then (2.4) becomes

∂2φ

∂t2
+ α2φ− β2∂

2φ

∂x2
= eλtδ(t, x) = δ(t, x). (2.7)

The next step is to employ a change of variable: u = t + x/β and v = t− x/β. This

gives the transformed derivatives as

∂

∂u
=

1

2

(
∂

∂t
+ β

∂

∂x

)
and

∂

∂v
=

1

2

(
∂

∂t
− β ∂

∂x

)

hence

∂2

∂u∂v
=

1

4

(
∂2

∂t2
− β2 ∂

2

∂x2

)
.

Using this, along with the transform of δ(t, x) given in appendix A.1, (2.7) becomes

4
∂2φ

∂u∂v
+ α2φ =

2

β
δ(u)δ(v). (2.8)

Applying these transforms to the solution, (2.6), gives

φ(u, v) =


1

2β
J0 (α

√
uv) for u ≥ 0 and v ≥ 0

0 otherwise.

(2.9)

There are three cases to consider: away from the boundaries (u > 0, v > 0), the

boundary u = 0, v > 0 (which, by symmetry, is identical to the boundary u > 0,

v = 0), and the boundary point u = 0, v = 0.

Firstly, looking away from the boundaries (u > 0, v > 0), this result is shown by
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a trivial substitution of (2.9) into (2.8)

4
∂2

∂u∂v

(
1

2β
J0(α
√
uv)

)
+ α2 1

2β
J0(α
√
uv)

= 4

(
− 1

2β

α

4
√
uv
J1(α
√
uv) +

1

2β

α

4
√
uv
J1(α
√
uv)− 1

2β

α2

4
J0(α
√
uv)

)
+ α2 1

2β
J0(α
√
uv)

= −α2 1

2β
J0(α
√
uv) + α2 1

2β
J0(α
√
uv)

= 0

as required.

Next, consider the boundary where v > 0, u = 0. As mentioned, due to the

symmetry of u and v in this problem this also covers the boundary u = 0, v > 0.

Take a test function h(u, v) with support bounded by 0 < v1 < v < v2. Since v > 0

we have

∂φ

∂v
=


− 1

2β

α

2

√
u

v
J1(α
√
uv) for u ≥ 0

0 for u < 0.

In this case we are considering only the range 0 ≤ u < ε, for any ε ∈ R, so there

is no need to integrate beyond this scope. For small x J0(x) ≈ 1 and J1(x) ≈ x. So,

for 0 < u < ε

φ ≈ 1

2β

∂φ

∂v
≈ − 1

2β

α2

2
u

and, for u < 0,

φ =
∂φ

∂v
= 0
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so

I[h] =

∫ v2

v1

dv

∫ ε

−ε
du

(
4
∂2φ

∂u∂v
+ α2φ

)
h(u, v)

=

∫ v2

v1

(∫ ε

−ε
4
∂φ

∂v

∂h

∂u
du−

[
4h(u, v)

∂φ

∂v

]ε
−ε

+

∫ ε

−ε
α2φh(u, v)du

)
dv

≈
∫ v2

v1

(∫ ε

−ε
− 1

β
α2u

∂h

∂u
du︸ ︷︷ ︸

O(ε2)

+

[
1

β
α2uh(u, v)

]ε
−ε

+
1

2β
α2h(ε, v)

∫ ε

−ε
du
)
dv

=

∫ v2

v1

( 1

β
α2ε+

1

β
α2ε
)
h(ε, v)dv +O(ε2)

hence the result as ε→ 0.

Finally, we look at the boundary point where u = v = 0. In this case we integrate

over the range 0 < u < ε1 and 0 < v < ε2, for any ε1, ε2 ∈ R. Again, taking a test

function h(u, v),

I[h] =

∫ ε1

−ε1
dv

∫ ε2

−ε2
du

(
4
∂2φ

∂u∂v
+ α2φ− 2

β
δ(u)δ(v)

)
h(u, v)

=
[
[4φh(u, v)]ε1u=−ε1

]ε2
v=−ε2

+

∫ ε1

−ε1

∫ ε2

−ε2
α2φh(u, v)dvdu− 2

β
h(0, 0)

≈ 2

β
h(ε1, ε2) +

1

2β
α2h(0, 0)

∫ ε1

0

∫ ε2

0

dvdu︸ ︷︷ ︸
O(ε1ε2)

− 2

β
h(0, 0)

=
2

β
h(ε1, ε2)− 2

β
h(0, 0) +O(ε1ε2)

hence as ε1, ε2 → 0 we have the result as required.

Figure 2.1 shows a three-dimensional plot of the response function ψ(t, x). From

this the causal structure is clearly visible (since ψ = 0 outside of t ≥ ±x/β ≥ 0), as

well as the damping of the wave over time.
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ψ(t, x)

t

x
x

t

Figure 2.1: Plot of the response function ψ(t, x) where α = 0.9, β = 0.7, and λ = 0.1.
The image on the right shows this plot from above, in which the causal structure is
more clearly seen.

2.2.1 Fourier Transform of the Response Function

We will now work in the frequency domain, and so we take the Fourier transform of

(2.6) with respect to t. This, however, is not a simple integral to calculate and thus

some preliminary steps are required. It is also necessary to consider separately the

cases where x ≥ 0 and x < 0.

Firstly, looking at x ≥ 0. The Fourier transform with respect to t is written

ψ̂(ω, x) =

∫ ∞
x/β

exp (−(2πiω + λ)t)
1

2β
J0

(
α

√
t2 − x2

β2

)
dt. (2.10)

Now applying the variable transformation τ = t− x/β, (2.10) then becomes

ψ̂(ω, x) =
1

2β
exp

(
−(2πiω + λ)

x

β

)∫ ∞
0

exp (−(2πiω + λ)τ) J0

(
α

√
τ 2 + 2

x

β
τ

)
dτ.

(2.11)

The solution to the integral in (2.11) can be found in section 6.616 of Gradshteyn
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[31], ∫ ∞
0

e−ryJ0(s
√
y2 + 2wy)dy =

1√
r2 + s2

exp
(
w(r −

√
r2 + s2)

)
.

Using this we can solve (2.11) to give

ψ̂(ω, x) =
1

2β

exp
(
−(2πiω + λ)x

β

)
√
−(2πω − iλ))2 + α2

exp

[
x

β

(
(2πiω + λ)−

√
−(2πω − iλ))2 + α2

)]
=

1

2β

1

i
√

(2πω − iλ))2 − α2
exp

[
x

β

(
−i
√

(2πω − iλ))2 − α2
)]

=
1

2β

1

iβLH
exp

[
x

β
(−iβLH)

]
=

1

2iβ2LH
e−iLHx

where

LH =

√
(2πω − iλ)2 − α2

β
. (2.12)

Similarly, for x < 0 the Fourier transform of ψ is

ψ̂(ω, x) =

∫ ∞
−x/β

exp (−(2πiω + λ)t)
1

2β
J0

(
α

√
t2 − x2

β2

)
dt. (2.13)

This time we use the transformation τ = t+ x/β,

ψ̂(ω, x) =

∫ ∞
0

exp (−(2πiω + λ)(τ − x/β))
1

2β
J0

(
α

√
τ 2 − 2

x

β
τ

)
dτ

=
1

2β
exp ((2πiω + λ)(x/β))

∫ ∞
0

exp (−(2πiω + λ)τ) J0

(
α

√
τ 2 − 2

x

β
τ

)
dτ

=
1

2β

exp ((2πiω + λ)(x/β))

i
√

(2πω − iλ))2 − α2
exp

[
−x
β

(
(2πiω + λ)−

√
−(2πω − iλ))2 + α2

)]
=

1

2β

1

i
√

(2πω − iλ))2 − α2
exp

[
x

β

(
i
√

(2πω − iλ))2 − α2
)]

=
1

2iβ2LH
eiLHx.
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Hence the complete result for the Fourier transformed response function

ψ̂(ω, x) =


e−iLHx

2iβ2LH
x ≥ 0

eiLHx

2iβ2LH
x < 0.

(2.14)

2.2.2 Damping of Solutions

In this section we show that ψ̂(ω, x)→ 0 as x→ ±∞, which we refer to as the solution

being damped. Note that damping typically refers to a system dissipating energy,

which is seen as the amplitude of the wave tending to zero as time increases. However,

here we are looking at ψ̂(ω, x) which has no t dependence, so cannot experience

damping according to this definition. The behaviour we are looking for, an exponential

decay, is the same as that seen for evanescent waves. Evanescent waves, though, are

found when the wave number is purely imaginary which is not the situation here

either. Since neither of these existing terms is an exact description of the behaviour

of ψ̂(ω, x) we choose to describe the response as being damped as this is the most

appropriate term.

In order to guarantee that ψ̂ is damped in the direction of propagation, we must

consider the branch structure of LH(ω). Observe that if ω is extended to the complex

plane then LH has branch points at 2πω = iλ±α. Since we are considering a damped

system we have that λ > 0 and so both these branch points are located in the upper

half plane.

Looking at the high frequency limit, ω → ±∞, then we have LH(ω)→ 2π
β

(ω− iλ),

hence we must take the branch cut such that it runs parallel to the real axis. Further,

we make the choice that the branch cut runs between the two branch points as shown

in figure 2.2. This choice is ultimately arbitrary, however this is the simplest structure

we can choose in which the branch cut does not cross the real axis, including the point

at infinity.
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−α + iλ α + iλ

Re

Im

Figure 2.2: Diagram indicating the chosen branch cut and the branch points of LH(ω).

Observe that both branch points, as well as our choice of branch cut, are located

entirely in the upper-half plane and thus this fulfils the requirements of causality. To

see this, consider a function g(t) such that its Fourier transform, ĝ(ω), is analytic for

Im(ω) ≤ 0. For causality to hold we require that g(t) = 0 for t < 0. Taking the

inverse transform of ĝ(ω) gives, for ω ∈ R,

g(t) =

∫ ∞
−∞

ĝ(ω)e2πiωtdω. (2.15)

Extending ω to the complex plane, we can construct the path C with two parts, C0

and C1, as shown in figure 2.3. The integral along C0 is the inverse Fourier transform

given by (2.15). Having assumed that ĝ(ω) is analytic for Im(ω) ≤ 0 then, from

Cauchy’s Integral Theorem, we have that the integral over the entire path C is

∫
C

ĝ(ω)e2πiωtdω = 0.

To show that the integral along C1 is also zero, observe that e2πiωt → 0 as ω → −i∞

for t < 0. Hence, for t < 0,

∫
C0

ĝ(ω)e2πiωtdω = g(t) = 0.

19



C0

C1

Re

Figure 2.3: Integral path over ω on complex plane.

Having made the choice of branch cut we now need to make a choice regarding

which branch we are on. Considering L(0) = ±iβ−1
√
λ2 + α2 we see that the correct

choice is the negative square root.

To progress we require the following lemma,

Lemma 2.2.2. Given z ∈ C and α ∈ R, α > 0, then

Sign
(

Im
(√

z2 − α2
))

= Sign (Im (z)) (2.16)

if the branch cut for
√
z2 − α2 lies entirely along the real axis between z = −α and

z = α and the branch is chosen such that
√
z2 − α2 → z as z →∞.

Proof. Let z = t + iy, where t, y ∈ R and y > 0, and then consider the function

g(t) =
√

(t+ iy)2 − α2. The branch structure, as given in the statement of the

lemma, is shown in figure 2.4. This choice of branch cut means we must take the

positive square root, hence

Im(g(t))→ y > 0 as t→∞.

Observe that
√
z2 − α2 ∈ R if z ∈ R and |z| > α, hence g(t) /∈ R ∀ t. Since g(t) is a

continuous function of t then, for all t,

Im(g(t)) > 0.
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Figure 2.4: Branch structure of g(t).

By setting z = (2πω− iλ) in lemma 2.2.2 we can apply this result to the definition

of LH ,

Sign (Im (LH(ω))) = Sign

(
Im

(√
(2πω − iλ)2 − α2

β

))

= Sign (Im (2πω − iλ)) .

Note that β > 0 and so has no effect on the overall sign. Hence, for real ω,

Im (LH(ω)) < 0.

Returning to our solutions, (2.14), we see that there are two limits to consider:

eiLHx x→ −∞ and e−iLHx x→∞.

Since Im (LH(ω)) < 0 then we see that iLH(ω) = −Im (LH(ω)) > 0 and as such the

result of both of these limits is a convergence to zero, giving the damped solutions we

require.
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2.3 Dispersion Relation

Before we calculate the polarisation induced by the above response it is first neces-

sary to look at the dispersion relation for our system. Taking (2.2) and the Fourier

transform of (1.3) we have

ω2µ0P̃ (ω, k) =

(
k2 − ω2

c2

)
Ẽ(ω, k)

and

P̃ (ω, k) =
ε0Ẽ(ω, k)

(2πiω + λ)2 + α2 + β2k2
=

ε0Ẽ(ω, k)

−L2
Hβ

2 + β2k2
,

hence from these we can obtain the following dispersion relation

ω2

c2
= β2

(
k2 − L2

H

)(
k2 − ω2

c2

)
. (2.17)

This relation can be solved to find k, which will have four values for each ω These

are given by {
ki, i = 1, . . . , 4

}
=
{
k+,−k+, k−,−k−

}
(2.18)

where

k± =
1√
2

√√√√
L2
H +

ω2

c2
±

√(
L2
H −

ω2

c2

)2

+ 4
ω2

β2c2
. (2.19)

From this we can thus write the electric field for the medium

Ê(ω, x) = A+(ω)e2πik+x + A−(ω)e−2πik+x +B+(ω)e2πik−x +B−(ω)e−2πik−x. (2.20)

This expansion of the electric field in homogeneous, spatially dispersive media was

first derived by Agarwal [32].

We will show the following,
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Theorem 2.3.1. The modes given by (2.20) are damped in the direction of propaga-

tion.

In order to do this, however, we first need to establish the following result

Lemma 2.3.2. Given numbers u ∈ R and v ∈ C, where u > 0, then

(
Im(−iu+

√
v) < 0 & Im(−iu−

√
v) < 0

)
⇐⇒ Re(v)− Im(v)2

4u2
+ u2 > 0.

(2.21)

Proof. set v = (a+ bi)2 = a2 − b2 + 2abi, where a and b are real. This gives us

Re(v)− Im(v)2

4u2
+ u2 = a2 − b2 − a2b2

u2
+ u2

=
1

u2

(
a2u2 − b2u2 − a2b2 + u4

)
=

1

u2

(
u2 − b2

) (
a2 + u2

)
which, since a and u are both real, tells us that

Re(v)− Im(v)2

4u2
+ u2 > 0 ⇐⇒ u2 − b2 > 0.

Since u > 0 then u2 − b2 > 0 is equivalent to u > b & u > −b. Hence

0 > −u+ b = Im(−iu+ bi) & 0 > −u− b = Im(−iu− bi)

= Im(−iu+
√
v) = Im(−iu−

√
v)

as required.

From this we can present a further lemma,

Lemma 2.3.3.

Im((k±)2) < 0. (2.22)
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Proof. Using lemma 2.3.2 where

u =
4πωλ

β2
and v =

(
L2
H −

ω2

c2

)2

+ 4
ω2

β2c2

with ω > 0. To make use of the above lemma we need to calculate the real and

imaginary parts of v, this is done by writing

v = (Re(Z) + iIm(Z))2 + 4
ω2

β2c2

= (Re(Z))2 − (Im(Z))2 + 2iRe(Z)Im(Z) + 4
ω2

β2c2

where

Z = L2
H −

ω2

c2
.

From the definition of LH we see that

Im(Z) = −4πωλ

β2
= −u

and so

Re(v)− Im(v)2

4u2
+ u2 = (Re(Z))2 − u2 + 4

ω2

β2c2
−
(
−2Re(Z)u

2u

)2

+ u2

= (Re(Z))2 + 4
ω2

β2c2
− (Re(Z))2

= 4
ω2

β2c2
> 0

hence from lemma 2.3.2 and (3.14) we have that

Im((k±)2) < 0.
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For ω < 0 we repeat the above calculations but instead use

u = −4πωλ

β2
.

Observe that in the proof we only use u2 terms, and so this change in sign will have

no effect on the result.

This tells us that k± lies either in the upper left or lower right quadrants of the

complex plane, that is either

Re(k±) > 0 and Im(k±) < 0 (2.23)

or

Re(k±) < 0 and Im(k±) > 0. (2.24)

For the case where we have (2.23) we see that the corresponding Fourier modes,

e2πi(ωt+k±x), are left moving and that

e2πik±x → 0 as x→ −∞ and e2πik±x →∞ as x→∞

hence the mode is damped in the direction of motion. Likewise for the right moving

modes, e2πi(ωt−k±x).

In the case of (2.24) the limits of the modes are

e2πik±x →∞ as x→ −∞ and e2πik±x → 0 as x→∞.

Now e2πi(ωt+k±x) are right moving modes and e2πi(ωt−k±x) are left moving, so again

the modes are damped in the direction of propagation. Hence this completely shows

theorem 2.3.1.
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Chapter 3

Boundary Between Spatially

Dispersive Homogeneous Media

3.1 Introduction

In the study of inhomogeneous media a common approach is to build these materials

by combining a number of homogeneous regions into a single block [33, 34, 35, 36].

While this is common practice in general, little work has been done with media where

these two regions are both spatially dispersive. The goal of this work is to investigate

such a medium.

To understand the behaviour of such constructed materials, it is necessary to have

a full set of boundary conditions for the interface between these two regions. Suitable

boundary conditions have been found previously using the energy theorem [37],

P is continuous and β2∂P

∂x
is continuous, (3.1)

as well as the continuity of E and its first spatial derivative which are standard for

Maxwell’s equations. We seek to find equivalent boundary conditions through different

methods. Firstly, this is done by applying the response function calculated in chapter
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2 on either side of a boundary, and calculating boundary conditions between these two

regions. Secondly, a Lagrangian formulation is presented and it is seen that taking

appropriate variations gives the same set of boundary conditions.

It has been shown that discrepancies in the additional boundary conditions ob-

tained [17, 32, 38] for spatially dispersive media is due to the choice of model used

[39]. As such there is benefit in deriving boundary conditions using different methods

as we have done here.

In the case of the boundary between a homogeneous region and the vacuum a com-

plete set of boundary conditions has been established [12]. This can be considered as

a special, limiting case of the boundary between two spatially dispersive homogeneous

media.

It is worth highlighting here that our use of the term ‘boundary’ is not necessarily

adhering to the exact definition. Strictly speaking, a boundary is the interface at the

outer edge of a medium, whereas an interface within a medium is referred to as a

junction. In this work we use the term boundary to describe the interface between

any two differing regions.

Combining (2.2) and the Fourier transform of (1.3), and taking the inverse Fourier

transform, we have a fourth order partial differential equation for P̂ ,

β2

(2π)2

∂4P̂

∂x4
+

(
β2ω2

c2
− L(ω)

(2π)2

)
∂2P̂

∂x2
− ω2

c2
(L(ω) + 1) = 0. (3.2)

While we have a fourth order differential equation for the system, the standard bound-

ary conditions for Maxwell’s equations only give us two conditions, that the electric

field and its first spatial derivative are continuous. As such, two additional constraints

are required for a full specification.
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Figure 3.1: The response at the boundary of two homogeneous media, with a delta
source at the point (0, x′) where x′ < 0.

3.2 Response Function Across Boundary

In this section we consider a medium formed of two semi-infinite homogeneous media,

each as described in chapter 2, which share a common interface at x = 0. We assign

the parameters for each medium as

(α, β, λ) =

 (aL, βL, λL) x < 0

(aR, βR, λR) x > 0.
(3.3)

Define also the quantity Lµ, as an extension of (2.12),

Lµ = Lµ(ω) =

√
(2πω − iλµ)2 − α2

µ

βµ
(3.4)
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where µ = L,R. Figure 3.1 shows that there are three regions where the response is

non-zero, R1, R2 and R3. Outside of these regions would be non-causal and as such

no response is present. Observe that for R1 the response is ψ̂ = ψ̂0 where ψ̂0 is the

homogeneous case given by (2.14). For regions R2 and R3 the response is given by

ψ̂ = ψ̂0 + ψ̂L and ψ̂ = ψ̂R respectively, where

ψ̂L = aL(ω)eiLLx and ψ̂R = aR(ω)e−iLRx.

The unknown functions aL(ω) and aR(ω) are determined by imposing boundary con-

ditions for ψ̂.

Taking the above we can write the complete response function for x′ < 0

ψ̂(ω, x, x′) =



aL(ω)eiLLx +
eiLL(x−x′)

2iβ2
LLL

x ≤ x′ ≤ 0

aL(ω)eiLLx +
e−iLL(x−x′)

2iβ2
LLL

x′ ≤ x ≤ 0

aR(ω)e−iLRx x′ ≤ 0 ≤ x.

(3.5)

In order to determine the unknown functions in the above it is necessary to make

assumptions about the boundary conditions for ψ̂,

[
ψ̂
]

= 0 and

[
β(x)2∂ψ̂

∂x

]
= 0 (3.6)

where [ψ̂] is the discontinuity [ψ̂] = limx→0+ ψ̂(x) − limx→0− ψ̂(x). We choose these

assumptions for ψ̂ so that the resulting boundary conditions for P̂ and Ê are consistent

with those that are already known, (3.1).

These assumptions give us the conditions

ψ̂(ω, 0, x′) = aL(ω) +
eiLLx

′

2iβ2
LLL

= aR(ω) (3.7)
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and

β(x)2∂ψ̂

∂x
(ω, 0, x′) = iβ2

LLLaL(ω)− eiLLx
′

2
= −iβ2

RLRaR(ω). (3.8)

Hence

aL = γ
eiLLx

′

2iβ2
LLL

and aR = (1 + γ)
eiLLx

′

2iβ2
LLL

(3.9)

where

γ =
LLβ

2
L − LRβ

2
R

LLβ2
L + LRβ2

R

. (3.10)

Substituting these solutions back into (3.5) gives us

ψ̂(ω, x, x′) =



1

2iβ2
LLL

(
γeiLLx

′
+ e−iLLx

′)
eiLLx x ≤ x′ ≤ 0

1

2iβ2
LLL

(
γeiLLx + e−iLLx

)
eiLLx

′
x′ ≤ x ≤ 0

1 + γ

2iβ2
LLL

eiLLx
′
e−iLRx x′ ≤ 0 ≤ x.

(3.11)

This completes the result when the source is in the left hand medium, it now

remains to calculate the response for a source located in the right hand medium, that

is x′ ≥ 0.

Figure 3.2 shows the regions in this situation. Again R1 is the same as the homo-

geneous result. Region R3 is a purely left moving solution and R2 is a superposition

of the homogeneous solution ψ0 and a purely right moving wave. Hence, for x′ > 0,

the response is written

ψ̂(ω, x, x′) =



bL(ω)eiLLx x ≤ 0 ≤ x′

bR(ω)e−iLRx +
eiLR(x−x′)

2iβ2
RLR

0 ≤ x ≤ x′

bR(ω)e−iLRx +
e−iLR(x−x′)

2iβ2
RLR

0 ≤ x′ ≤ x
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Figure 3.2: The response at the boundary of two homogeneous media, with a delta
source at the point (0, x′) where x′ > 0.

where bL(ω) and bR(ω) are to be determined. Using the same continuity assumptions

as in (3.6) gives the expressions

ψ̂(ω, 0, x′) = bL(ω) = bR(ω) +
e−iLRx

′

2iβ2
RLR

and

β(x)2∂ψ̂

∂x
(ω, 0, x′) = iβ2

LLLbL(ω) = −iβ2
RLRbR(ω) +

e−iLRx
′

2

hence

bL(ω) = (1− γ)
e−iLRx

′

2iβ2
RLR

and bR(ω) = −γ e
−iLRx

′

2iβ2
RLR

.

These solutions, along with the previous part of the result (3.11), gives us the
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response function for the full range of x and x′

ψ̂(ω, x, x′) =



1

2iβ2
LLL

(
γeiLLx

′
+ e−iLLx

′)
eiLLx x ≤ x′ ≤ 0

1

2iβ2
LLL

(
γeiLLx + e−iLLx

)
eiLLx

′
x′ ≤ x ≤ 0

1 + γ

2iβ2
LLL

eiLLx
′
e−iLRx x′ ≤ 0 ≤ x

1− γ
2iβ2

RLR

e−iLRx
′
eiLLx x ≤ 0 ≤ x′

1

2iβ2
RLR

(
eiLRx − γe−iLRx

)
e−iLRx

′
0 ≤ x ≤ x′

1

2iβ2
RLR

(
eiLRx

′ − γe−iLRx
′)
e−iLRx 0 ≤ x′ ≤ x.

(3.12)

3.2.1 Dispersion Relation

As in (2.17), the dispersion relation for each medium is given by

ω2

c2
= β2

µ

(
k2 − L2

µ

)(
k2 − ω2

c2

)
(3.13)

solving gives, for each of the media,

{
kiµ, i = 1, . . . , 4

}
=
{
k+
µ ,−k+

µ , k
−
µ ,−k−µ

}
where

k±µ =
1√
2

√√√√L2
µ +

ω2

c2
±

√(
L2
µ −

ω2

c2

)2

+ 4
ω2

β2
µc

2
. (3.14)
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Hence we can write the expansion of the electric field

Ê(x) = A+
µ e

2πik+µ x + A−µ e
−2πik+µ x +B+

µ e
2πik−µ x +B−µ e

−2πik−µ x

=
4∑

a=1

Aaµeik
a
µx
′

(3.15)

and hence,

P̂ (ω, x) =
A+
µ e

2πik+µ x + A−µ e
−2πik+µ x

β2
µL

2
µ + (2π)2(k+

µ )2β2
µ

+
B+
µ e

2πik−µ x +B−µ e
−2πik−µ x

β2
µL

2
µ + (2π)2(k−µ )2β2

µ

. (3.16)

These modes, in each of the two media, are shown in figure 3.3. That these solutions

are damped is detailed in section 2.2.2. The standard scattering problem is to assume

that the incoming modes, {A−L , B
−
L , A

+
R, B

+
R}, are known and to then find the four

outgoing modes, {A+
L , B

+
L , A

−
R, B

−
R}. As such four boundary conditions are required

for a full description.

3.2.2 Boundary Conditions for the Polarisation

Having calculated the response, (3.12), in the previous section the next step is to use

this, along with the electric field given by (2.20), to calculate the polarisation density

according to the definition

P̂ (ω, x) =

∫ ∞
−∞

ψ̂(ω, x, x′)Ê(ω, x′)dx′. (3.17)

Since the response given in (3.12) has six components it is necessary to calculate

the integral in (3.17) separately for each of these six cases. First, we take the three
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Incoming (left moving) modes

Outgoing (right moving) modes

Figure 3.3: Incoming and outgoing solutions to the dispersion relation.

cases for which x < 0. For x ≤ x′ ≤ 0,

∫ 0

x

ψ̂(ω, x, x′)Ê(ω, x′)dx′ =

∫ 0

x

1

2iβ2
LLL

(
γeiLLx

′
+ e−iLLx

′
)
eiLLx

4∑
a=1

AaL(ω)eik
a
Lx
′
dx′

=
eiLLx

2iβ2
LLL

4∑
a=1

AaL(ω)

∫ 0

x

γei(LL+kaL)x′ + ei(k
a
L−LL)x′dx′

=
eiLLx

2iβ2
LLL

4∑
a=1

AaL(ω)

[
γei(LL+kaL)x′

i(LL + kaL)
+
ei(k

a
L−LL)x′

i(kaL − LL)

]0

x

=
eiLLx

2iβ2
LLL

4∑
a=1

AaL(ω)

(
γ

i(LL + kaL)
+

1

i(kaL − LL)
− γei(LL+kaL)x

i(LL + kaL)
− ei(k

a
L−LL)x

i(kaL − LL)

)

=
eiLLx

2β2
LLL

4∑
a=1

AaL(ω)

(
γei(LL+kaL)x

LL + kaL
+
ei(k

a
L−LL)x

kaL − LL

− (γ + 1)kaL + (1− γ)LL

(kaL)2 − L2
L

)

=
4∑

a=1

AaL(ω)

2β2
LLL

(
γei(2LL+kaL)x

LL + kaL
+

eik
a
Lx

kaL − LL

− (γ + 1)kaL + (1− γ)LL

(kaL)2 − L2
L

eiLLx

)
. (3.18)
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For x′ < x < 0,

∫ x

−∞
ψ̂(ω, x, x′)Ê(ω, x′)dx′ =

∫ x

−∞

1

2iβ2
LLL

(
γeiLLx + e−iLLx

)
eiLLx

′
4∑

a=1

AaL(ω)eik
a
Lx
′
dx′

=
γeiLLx + e−iLLx

2iβ2
LLL

4∑
a=1

AaL(ω)

∫ x

−∞
ei(LL+kaL)x′dx′

=
γeiLLx + e−iLLx

2iβ2
LLL

4∑
a=1

AaL(ω)

[
ei(LL+kaL)x′

i(LL + kaL)

]x
−∞

= −
4∑

a=1

AaL(ω)

2β2
LLL

γei(2LL+kaL)x + eik
a
Lx

LL + kaL
. (3.19)

The term ei(LL+kaL)x′ → 0 as x → −∞ due to the results presented in sections 2.2.2

and 2.3. This applies also to the infinite limits that appear in several other of the

following integrals. For x < 0 < x′,

∫ ∞
0

ψ̂(ω, x, x′)Ê(ω, x′)dx′ =

∫ ∞
0

1− γ
2iβ2

RLR

e−iLRx
′
eiLLx

4∑
a=1

AaR(ω)eik
a
Rx
′
dx′

=
1− γ

2iβ2
RLR

eiLLx

4∑
a=1

AaR(ω)

∫ ∞
0

ei(k
a
R−LR)x′dx′

=
1− γ

2iβ2
RLR

eiLLx

4∑
a=1

AaR(ω)

[
ei(k

a
R−LR)x′

i(kaR − LR)

]∞
0

=
4∑

a=1

1− γ
2β2

RLR

AaR(ω)eiLLx

kaR − LR

. (3.20)

Hence, for x < 0 we take the sum of (3.18), (3.19) and (3.20) to give

P̂ (ω, x) =

∫ ∞
−∞

ψ̂(ω, x, x′)Ê(ω, x′)dx′

=
4∑

a=1

AaL(ω)

β2
L ((kaL)2 − L2

L)

(
eik

a
Lx − kaLβ

2
L + LRβ

2
R

LLβ2
L + LRβ2

R

eiLLx

)
+

AaR(ω)eiLLx

(LLβ2
L + LRβ2

R) (kaR − LR)
.

(3.21)

Likewise for the case where x > 0 we must calculate another three integrals. For

35



x′ < 0 < x,

∫ 0

−∞
ψ̂(ω, x, x′)Ê(ω, x′)dx′ =

∫ 0

−∞

1 + γ

2iβ2
LLL

eiLLx
′
e−iLRx

4∑
a=1

AaL(ω)eik
a
Lx
′
dx′

=
1 + γ

2iβ2
LLL

e−iLRx

4∑
a=1

AaL(ω)

∫ 0

−∞
ei(LL+kaL)x′dx′

=
1 + γ

2iβ2
LLL

e−iLRx

4∑
a=1

AaL(ω)

[
ei(LL+kaL)x′

i(LL + kaL)

]0

−∞

= −
4∑

a=1

1 + γ

2β2
LLL

AaL(ω)e−iLRx

LL + kaL
. (3.22)

For 0 < x′ < x,

∫ x

0

ψ̂(ω, x, x′)Ê(ω, x′)dx′

=

∫ x

0

1

2iβ2
RLR

(
eiLRx

′ − γe−iLRx
′
)
e−iLRx

4∑
a=1

AaR(ω)eik
a
Rx
′
dx′

=
e−iLRx

2iβ2
RLR

4∑
a=1

AaR(ω)

∫ x

0

ei(LR+kaR)x′ − γei(kaR−LR)x′dx′

=
e−iLRx

2iβ2
RLR

4∑
a=1

AaR(ω)

[
ei(LR+kaR)x′

i(LR + kaR)
− γei(k

a
R−LR)x′

i(kaR − LR)

]x
0

=
e−iLRx

2iβ2
RLR

4∑
a=1

AaR(ω)

(
ei(LR+kaR)x

i(LR + kaR)
− γei(k

a
R−LR)x

i(kaR − LR)
− 1

i(LR + kaR)
+

γ

i(kaR − LR)

)

=
4∑

a=1

AaR(ω)

2β2
RLR

(
γei(k

a
R−2LR)x

kaR − LR

− eik
a
Rx

LR + kaR
+

(1− γ)kaR − (γ + 1)LR

(kaR)2 − L2
R

e−iLRx

)
. (3.23)
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Finally, for 0 < x < x′,

∫ ∞
x

ψ̂(ω, x, x′)Ê(ω, x′)dx′ =

∫ ∞
x

1

2iβ2
RLR

(eiLRx − γe−iLRx)e−iLRx
′

4∑
a=1

AaR(ω)eik
a
Rx
′
dx′

=
1

2iβ2
RLR

(eiLRx − γe−iLRx)
4∑

a=1

AaR(ω)

∫ ∞
x

ei(k
a
R−LR)x′dx′

=
1

2iβ2
RLR

(eiLRx − γe−iLRx)
4∑

a=1

AaR(ω)
[
ei(k

a
R−LR)x′

]∞
x

=
4∑

a=1

AaR(ω)

2β2
RLR

(eiLRx − γe−iLRx)
ei(k

a
R−LR)x

kaR − LR

=
4∑

a=1

AaR(ω)

2β2
RLR

eik
a
Rx − γei(kaR−2LR)x

kaR − LR

. (3.24)

Summing (3.22), (3.23) and (3.24) gives P (ω, x) for x > 0

P̂ (ω, x) =

∫ ∞
−∞

ψ̂(ω, x, x′)Ê(ω, x′)dx′

=
4∑

a=1

AaR(ω)

β2
R ((kaR)2 − L2

R)

(
eik

a
Rx +

kaRβ
2
R − LLβ

2
L

LLβ2
L + LRβ2

R

e−iLRx

)
− AaL(ω)e−iLRx

(LLβ2
L + LRβ2

R)(LL + kaL)
. (3.25)

From (3.21) and (3.25) it is trivial to see that P̂ is continuous at the x = 0

boundary. We know already from the standard boundary conditions of Maxwell’s

equations that Ê and its first derivative are continuous at this boundary, hence we

have now have a set of three boundary conditions. For a complete description we need

37



one more condition and so we take the first spatial derivatives of (3.21) and (3.25),

∂P̂

∂x
=

4∑
a=1

iAaL(ω)

β2
L ((kaL)2 − L2

L)

(
kaLe

ikaLx − LL
kaLβ

2
L + LRβ

2
R

LLβ2
L + LRβ2

R

eiLLx

)
+

iLLAaR(ω)eiLLx

(LLβ2
L + LRβ2

R) (kaR − LR)

∂P̂

∂x
=

4∑
a=1

iAaR(ω)

β2
R ((kaR)2 − L2

R)

(
kaRe

ikaRx − LR
kaRβ

2
R − LLβ

2
L

LLβ2
L + LRβ2

R

e−iLRx

)
+

iLRAaL(ω)e−iLRx

(LLβ2
L + LRβ2

R)(LL + kaL)

for x < 0 and x > 0 respectively. Evaluating at x = 0 these two derivatives reduce to

∂P̂

∂x

∣∣∣∣∣
x=0−

=
4∑

a=1

iβ2
RLRAaL(ω)

β2
L(LLβ2

L + LRβ2
R)(kaL + LL)

+
iLLAaR(ω)

(LLβ2
L + LRβ2

R)(kaR − LR)

∂P̂

∂x

∣∣∣∣∣
x=0+

=
4∑

a=1

iLRAaL(ω)

(LLβ2
L + LRβ2

R)(kaL + LL)
+

iβ2
LLLAaR(ω)

β2
R(LLβ2

L + LRβ2
R)(kaR − LR)

and so, clearly, we have

β2
L

∂P̂

∂x

∣∣∣∣∣
x=0−

= β2
R

∂P̂

∂x

∣∣∣∣∣
x=0+

.

Hence our complete boundary conditions are

[
Ê
]

= 0

[
∂Ê

∂x

]
= 0 (3.26)

[
P̂
]

= 0

[
β(x)2∂P̂

∂x

]
= 0. (3.27)

In terms of the coefficients {A±µ , B±µ } these boundary conditions are found by substi-
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tuting (3.15) and (3.16) into (3.26) and (3.27),

A+
L + A−L +B+

L +B−L = A+
R + A−R +B+

R +B−R (3.28)

k+
LA

+
L − k

+
LA
−
L + k−LB

+
L − k

−
LB

−
L = k+

RA
+
R − k

+
RA
−
R + k−RB

+
R − k

−
RB

−
R (3.29)

A+
L + A−L

β2
LL

2
L + (k+

L )2β2
L

+
B+

L +B−L
β2
LL

2
L + (k−L )2β2

L

=
A+

R + A−R
β2
RL

2
R + (k+

R)2β2
R

+
B+

R +B−R
β2
RL

2
R + (k−R)2β2

R

(3.30)

k+
L (A+

L − A
−
L)

L2
L + (k+

L )2
+
k−L (B+

L −B
−
L )

L2
L + (k−L )2

=
k+
R(A+

R − A
−
R)

L2
R + (k+

R)2
+
k−R(B+

R −B
−
R)

L2
R + (k−R)2

. (3.31)

The continuity of the electric field and its first derivative are standard boundary con-

ditions. The condition [P̂ ] = 0 tells us that the polarisation is a wave with continuity

across the boundary. This, along with [Ê] = 0, also means that the displacement field

D is continuous across the boundary. From (3.14) we see that kL 6= kR are both fixed

and so, in order for the polarisation to be continuous, the derivative of P must be

discontinuous as seen in this result.

3.3 Lagrangian Formulation

Another approach to this problem is to use a Lagrangian formulation. This work has

been presented in a more condensed form in [1]. Due to the damping in the system

it is non-trivial to find a Lagrangian which satisfies both Maxwell’s equations, (1.3),

as well as the constitutive relation (2.2). Fortunately, since we are interested only

in finding boundary conditions we are able to use instead the Fourier transformed
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equations,

1

(2π)2

∂2Ê

∂x2
= −ω2

(
Ê + P̂

)
and

1

(2π)2

∂

∂x

(
β(x)2∂P̂

∂x

)
+ L(x)P̂ = Ê where L(x) = (2πiω + λ(x))2 + α(x)2.

The parameters α(x), β(x), λ(x) are defined to be piecewise constant, that is

α(x) = αLθ(−x) + αRθ(x), β(x) = βLθ(−x) + βRθ(x), λ(x) = λLθ(−x) + λRθ(x)

where θ(x) is the Heaviside function

θ(x) =

 0 for x < 0

1 for x > 0.

These equations can be derived by varying the action

S[Ê, P̂ ] =

∫
L

(
Ê,

∂Ê

∂x
, P̂ ,

∂P̂

∂x
, x

)
dx (3.32)

with

L

(
Ê,

∂Ê

∂x
, P̂ ,

∂P̂

∂x
, x

)

=
1

2

 1

(2π)2ω2

(
∂Ê

∂x

)2

− Ê2 − β(x)2

(2π)2

(
∂P̂

∂x

)2

+ L(ω)P̂ 2

− ÊP̂ . (3.33)

In order for the definition of this Lagrangian to be valid we required that E and P

are both continuous for all x, in particular [E] = 0 and [P ] = 0.
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Varying this with respect to Ê (away from the boundary)

d

dε

∫
L

(
Ê + εδE,

∂

∂x

(
Ê + εδE

)
, P̂ ,

∂P̂

∂x

)
dx

∣∣∣∣∣
ε=0

= 0

and write ζ(P̂ ) for any terms that depend only on P̂ and not Ê

L

(
Ê + εδE,

∂

∂x

(
Ê + εδE

)
, P̂ ,

∂P̂

∂x

)

=
1

2

( ∂

∂x

(
Ê + εδE

2πω

))2

− (Ê + εδE)2 + ζ(P̂ )

− (Ê + εδE)P̂

=
1

2

 1

(2πω)2

(∂Ê
∂x

)2

+ 2
∂Ê

∂x

∂

∂x
(εδE)

− Ê2 − 2εÊδE + ζ(P̂ )


− (Ê + εδE)P̂ +O(ε2).

Then

d

dε
S[Ê + εδE, P̂ ]

∣∣∣∣
ε=0

=

∫
1

(2πω)2

∂Ê

∂x

∂(δE)

∂x
− ÊδE − P̂ δEdx

=

∫
1

(2πω)2

(
∂

∂x

(
∂Ê

∂x
δE

)
− ∂2Ê

∂x2
δE

)
− ÊδE − P̂ δEdx

=
1

(2πω)2

∫
∂

∂x

(
∂Ê

∂x
δE

)
dx−

∫
1

(2πω)2

(
∂2Ê

∂x2
δE

)
+ ÊδE + P̂ δEdx.

However since δE has compact support then the first integral in the above vanishes

leaving us with

d

dε
S[Ê + εδE, P̂ ]

∣∣∣∣
ε=0

= −
∫ (

1

(2πω)2

∂2Ê

∂x2
+ Ê + P̂

)
δEdx = 0

for all δE, hence

1

(2π)2

∂2Ê

∂x2
= −ω2(Ê + P̂ ) (3.34)

41



as required.

Varying with respect to P̂ (away from the boundary)

d

dε

∫
L

(
Ê,

∂Ê

∂x
, P̂ + εδP,

∂

∂x

(
P̂ + εδP

))
dx

∣∣∣∣∣
ε=0

= 0

and denote by ζ(Ê) terms that depend only on Ê and not P̂ ,

L

(
Ê,

∂Ê

∂x
, P̂ + εδP,

∂

∂x

(
P̂ + εδP

))

=
1

2

ζ(Ê)− β(x)2

(2π)2

(
∂P̂

∂x
+ ε

∂(δP )

∂x

)2

+ L(ω)
(
P̂ + εδP

)2

− Ê(P̂ + εδP )

=
1

2

ζ(Ê)− β(x)2

(2π)2

(∂P̂
∂x

)2

+ 2ε
∂P̂

∂x

∂(δP )

∂x

+ L(ω)
(
P̂ 2 + 2εP̂ δP

)
− Ê(P̂ + εδP ) +O(ε2).

Therefore

d

dε
S[Ê, P̂ + εδP ]

∣∣∣∣
ε=0

=

∫
−β(x)2

(2π)2

∂P̂

∂x

∂(δP )

∂x
+ L(ω)P̂ δP − ÊδPdx

=

∫
∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x

)
δP − ∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x
δP

)
+ L(ω)P̂ δP − ÊδPdx

= −
∫

∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x
δP

)
dx+

∫ (
∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x

)
+ L(ω)P̂ − Ê

)
δPdx.

The first integral in the above vanishes due to the compact support of δP leaving us

with

d

dε
S[Ê, P̂ + εδP ]

∣∣∣∣
ε=0

=

∫ (
∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x

)
+ L(ω)P̂ − Ê

)
δPdx
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for all δP , hence

∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x

)
+ L(ω)P̂ = Ê (3.35)

as required.

3.3.1 Boundary Conditions

In order to find boundary conditions at the boundary x = 0 we again look at variations

with respect to Ê and P̂ but this time consider that δE and δP have support that

includes x = 0. As mentioned earlier, our definition of the Lagrangian requires that

[Ê] = 0 and [P̂ ] = 0 (3.36)

hence giving two boundary conditions immediately.

Varying (3.32) with respect to to Ê

d

dε
S[Ê + εδE, P̂ ]

∣∣∣∣
ε=0

=

∫ ∞
−∞

1

(2πω)2

∂Ê

∂x

∂(δE)

∂x
− ÊδE − P̂ δEdx

=

∫ ∞
−∞

1

(2πω)2

(
∂

∂x

(
∂Ê

∂x
δE

)
− ∂2Ê

∂x2
δE

)
− ÊδE − P̂ δEdx

using (3.34) we have that the last three terms in this integral vanish, thus we have

d

dε
S[Ê + εδE, P̂ ]

∣∣∣∣
ε=0

=

∫ ∞
−∞

1

(2πω)2

∂

∂x

(
∂Ê

∂x
δE

)
dx

=
1

(2πω)2

(∫ 0

−∞

∂

∂x

(
∂Ê

∂x
δE

)
dx+

∫ ∞
0

∂

∂x

(
∂Ê

∂x
δE

)
dx

)

=

[
∂Ê

∂x

]
δE

for all δE therefore [
∂Ê

∂x

]
= 0. (3.37)
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Now varying (3.32) with respect to P̂ , where the support of δP includes x = 0,

d

dε
S[Ê, P̂ + εδP ]

∣∣∣∣
ε=0

=

∫ ∞
−∞
−β(x)2

(2π)2

∂P̂

∂x

∂(δP )

∂x
+ L(ω)P̂ δP − ÊδPdx

= −
∫ ∞
−∞

∂

∂x

(
β(x)2

(2π)2

∂P̂

∂x
δP

)
+

(
β(x)2

(2π)2

∂2P̂

∂x2
+ L(ω)P̂ − Ê

)
δPdx.

Using (3.35) gives that the second part of this integral is zero, leaving

d

dε
S[Ê, P̂ + εδP ]

∣∣∣∣
ε=0

= − 1

(2π)2

∫ ∞
−∞

∂

∂x

(
β(x)2∂P̂

∂x
δP

)
dx

= −

[
β(x)2∂P̂

∂x

]
δP

for all δP , hence [
β(x)2∂P̂

∂x

]
= 0. (3.38)

We have now arrived at a complete set of boundary conditions with (3.36), (3.37),

(3.38).

3.4 Limiting Case

In the limit where βµ → 0 that region becomes only temporally dispersive, and is no

longer spatially dispersive. In the case of a boundary between a purely temporally

dispersive region and a region which also has spatial dispersion the corresponding

boundary conditions are those given by Pekar, which are

[
Ê
]

= 0,

[
∂Ê

∂x

]
= 0,

[
P̂
]

= 0. (3.39)

Observe, from (3.2), that βµ → 0 is a singular limit because the highest order

derivative vanishes. As such, care must be taken when taking this limit.

Lemma 3.4.1. Given the conditions in (3.39) and the electric and polarisation fields,
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Ê and P̂ , are bounded for all x, then we can choose the coefficients {A±µ , B±µ } such

that

lim
βL→0

lim
x→0−

β2
L

∂P̂ (ω, x)

∂x
= lim

x→0+
β2
R

∂P̂ (ω, x)

∂x
(3.40)

even though in general

lim
x→0−

lim
βL→0

β2
L

∂P̂ (ω, x)

∂x
6= lim

x→0+
β2
R

∂P̂ (ω, x)

∂x
. (3.41)

Proof. For this proof redefine Lµ so that it no longer has a dependency on βµ, that is

Lµ = βµLµ. (3.42)

The solutions to the dispersion relation, (3.13), are then

k±µ =
1√
2βµ

√√√√L2
µ +

β2
µω

2

c2
±

√(
L2
µ −

β2
µω

2

c2

)2

+ 4
β2
µω

2

c2
. (3.43)

Observe that there are two solutions which diverge and two which converge as βµ → 0.

Choose the branch structure of the inner square root in (3.43) so that the expansion

of k±µ gives

k+
L ∼

LL

βL
and k−L ∼

ω

c

√
1− 1

L2
L

(3.44)

and to higher order

L2
L − (k+

L )2β2
L ∼ −

ω2

c2LL

β2
L and L2

L − (k−L )2β2
L ∼ L2

L. (3.45)

From (3.15) this gives

Ê(ω, x) ≈ A+
Le

2πiLLx/βL + A−Le
−2πiLLx/βL +B+

L e
2πiωx/c

√
1−1/L2

L +B−L e
−2πiωx/c

√
1−1/L2

L .

(3.46)
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Although the coefficients {A±L , B
±
L } are constant with respect to x, in general they

will depend on βL. Since Im(LL) < 0 then for x < 0 we have Re(iLLx/βL) < 0

hence e2πiLLx/βL → 0 and
∣∣e−2πiLLx/βL

∣∣→∞ as βL → 0. Hence for physical solutions

A−L → 0. Additionally, since we require A−Le
−2πiLLx/βL to be bounded for all x < 0

as βL → 0 then we must have A−Le
−2πiLLx/βL → 0 for all x < 0 and hence A−L = 0.

Alternatively, in order to ensure A+
Le

2πiLLx/βL is bounded in the βL → 0 limit, for all

x < 0, we again require A+
Le

2πiLLx/βL → 0. This, however, does not determine the

particular value of A+
L .

Thus, in the limit βL → 0, (3.46) becomes

Ê(ω, x)
∣∣∣
βL=0

= B+
L e

2πiωx/c
√

1−1/L2
L +B−L e

−2πiωx/c
√

1−1/L2
L

and so

P̂ (ω, x)
∣∣∣
βL=0

=
B+

L e
2πiωx/c

√
1−1/L2

L +B−L e
−2πiωx/c

√
1−1/L2

L

L2
L

.

Taking the derivative of this gives

∂P̂ (ω, x)

∂x

∣∣∣∣∣
βL=0

=
2πiω

cL2
L

√
1− 1

L2
L

(
B+

L e
2πiωx/c

√
1−1/L2

L −B−L e
−2πiωx/c

√
1−1/L2

L

)

hence

lim
βL→0

β2
L

∂P̂ (ω, x)

∂x
= 0. (3.47)

This gives the left hand side of (3.41), however the right hand side is still

lim
x→0+

β2
R

∂P̂ (ω, x)

∂x
=

2πiβ2
Rk

+
R(A+

R − A
−
R)

L2
R + (k+

R)2β2
R

+
2πiβ2

Rk
−
R(B+

R −B
−
R)

L2
R + (k−R)2β2

R

. (3.48)

Clearly, in general, (3.47) and (3.48) are not equal hence (3.41).
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To show (3.40), look at the limit as x→ 0−,

lim
x→0−

β2
L

∂P̂ (ω, x)

∂x

= lim
x→0−

2πiβ2
L

(
k+
LA

+
Le

2πik+Lx − k+
LA
−
Le
−2πik+Lx

L2
L + (k+

L )2β2
L

+
k−LB

+
L e

2πik−L x − k−LB
−
L e

2πik−L x

L2
L + (k−L )2β2

L

)

= 2πiβ2
L

(
k+
L (A+

L − A
−
L)

L2
L + (k+

L )2β2
L

+
k−L (B+

L −B
−
L )

L2
L + (k−L )2β2

L

)

and so, using the expansions (3.44) and (3.45), to order O(β0
L) we have

lim
x→0−

β2
L

∂P̂ (ω, x)

∂x
= 2πiβ2

L

(
L2

Lc
2(A−L − A

+
L)

ω2β3
L

+
ω
√

1− 1/L2
L(B+

L −B
−
L )

cL2
L

)
+O(β0

L)

= −2πiL2
Lc

2A+
L

ω2βL
+O(β0

L)

since A−L = 0. Hence (3.40) holds if we set

A+
L = −ω

2βL
L2

Lc
2
β2
R

(
k+
R(A+

R − A
−
R)

L2
R + (k+

R)2β2
R

+
k−R(B+

R −B
−
R)

L2
R + (k−R)2β2

R

)
.

The result of this lemma is that in the general case, as given by (3.41), there are

only three remaining boundary conditions, given by (3.39), which correspond to those

given by Pekar. In the particular limiting case which results in (3.40) the full set of

four boundary conditions remain.

3.5 Conclusion

In this chapter we have derived a complete set of boundary conditions for media com-

posed of two semi-infinite, spatially dispersive, homogeneous regions. Two methods

were presented for determining these conditions, from the response function and by

varying a Lagrangian. Both of these methods produced the same results which are
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consistent with those found previously [37], however the approaches employed here

are believed to be original.

Additionally it was shown that these boundary conditions reduce to the well known

Pekar conditions in the limiting case where one of the regions is no longer spatially

dispersive. However, we see that it is possible to take this limit in such a way that the

boundary conditions for two spatially dispersive regions are still applicable. Hence,

while our result is consistent with the Pekar boundary conditions, they also offer

additional constraints for the boundary between a region which is both spatially and

temporally dispersive and one which is purely temporally dispersive.
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Chapter 4

Spatially Dispersive Periodic

Media

4.1 Introduction

Spatial dispersion in periodically structured media is a topic of increasing interest

as many metamaterials are significantly affected by nonlocal effects [4, 11, 13, 19].

The wire medium is another key example of a periodic material which exhibits strong

spatially dispersive effects [2, 3, 9].

However, the electromagnetic behaviour of such systems are still not fully un-

derstood. Most numerical studies of these media consider the bulk permittivity and

permeability, εBulk and µBulk, to be spatially dispersive. However, the permittivity

and permeability of the materials used to construct the unit cell are considered to

be temporally dispersive only. This thesis investigates a system where the material

within the unit cell is both spatially and temporally dispersive, i.e. ε(ω, k) and µ(ω, k),

which has been the subject of very little theoretical research.
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First, we write the permittivity relation as the partial differential equation

L(ω, x)P̂ (ω, x) +
∂

∂x

(
β(ω, x)2

(2π)2

∂P̂ (ω, x)

∂x

)
= ε0Ê(ω, x) (4.1)

where L(ω, x) is the periodic function

L(ω, x) = L0(ω) + 2Λ(ω) cos

(
2πx

a

)
, (4.2)

with period a. The quantity Λ represents the magnitude of the inhomogeneity. This

function has the Fourier transform

L̃(ω, k) = L0(ω)δ(k) + Λ(ω)

(
δ

(
k − 1

a

)
+ δ

(
k +

1

a

))
. (4.3)

For the most part, in the following work, the explicit ω dependence won’t be

written for Ẽ, P̃ , L, and β. We will also only consider β to be constant with respect

to x here.

4.2 The Difference Equation for Spatial Mode Am-

plitudes Pq

We can establish a difference equation for the spatial mode amplitudes, Pq, from the

permittivity relation and Maxwell’s equations. Taking the Fourier transform of (4.1)

and (1.3) we have

(
ω2

c2
− k2

)
Ẽ(k) = −ω2µ0P̃ (k) and − k2β2P̃ (k) +

(
L̃ ∗ P̃

)
(k) = ε0Ẽ(k) (4.4)
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where (L̃ ∗ P̃ )(k), the Fourier transform of L(x)P (x), is the convolution defined by

(
L̃ ∗ P̃

)
(k) =

∫ ∞
−∞

L̃(k − k′)P̃ (k′)dk′. (4.5)

In fact, the two equations in (4.4) can be combined into a single equation

(
L̃ ∗ P̃

)
(k) =

(
β2k2 − ω2

ω2 − k2c2

)
P̃ (k). (4.6)

We can take the inverse Fourier transform of (4.6) with respect to k and see that, in

(ω, x) space, this becomes

β2

(2π)2

∂4P̂ (x)

∂x4
+

(
L(x) +

β2ω2

c2

)
∂2P̂ (x)

∂x2
+ 2

∂L(x)

∂x

∂P̂ (x)

∂x

+

(
∂2L(x)

∂x2
+

2πω2

c2
L(x) +

2πω2

c2

)
P̂ (x) = 0. (4.7)

Since L(x) is periodic we see that (4.7) fits the requirements of Floquet’s Theorem,

thus we know to look for solutions of the form

P̂ (x) = exp

(
2πiκx

a

)
P(x) (4.8)

where 0 ≤ κ < 1 ∈ R is the phase (which must be real for the solutions to be bounded)

and P(x) is a periodic function with period a, P(x) = P(x + a). The Fourier series

for P(x) is

P(x) =
∞∑

q=−∞

Pq exp

(
2πiqx

a

)
(4.9)

and so, with (4.8),

P̂ (x) =
∞∑

q=−∞

Pq exp

(
2πi(q + κ)x

a

)
(4.10)
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the Fourier transform of which gives a series of delta functions

P̃ (k) =
∞∑

q=−∞

Pq δ

(
k − q + κ

a

)
. (4.11)

Lemma 4.2.1. From (4.6) and (4.11), it can be shown that the coefficients Pq satisfy

the difference equation

ΛPq−1 + fq(ω)Pq + ΛPq+1 = 0 (4.12)

where

fq(ω) = L0(ω)− β(ω)2(q + κ)2

a2
+

a2ω2

a2ω2 − c2(q + κ)2
. (4.13)

Proof. Substituting (4.3) and (4.11) into (4.6),

(
L̃ ∗ P̃

)
(k) =

∫ ∞
−∞

L̃(k − k′)P̃ (k′)dk′

=

∫ ∞
−∞

(
L0δ(k − k′) + Λδ

(
k − k′ − 1

a

)
+ Λδ

(
k − k′ + 1

a

))
∞∑

q=−∞

Pqδ

(
k′ − q + κ

a

)
dk′

=
∞∑

q=−∞

Pq

(
L0δ

(
k − q + κ

a

)
+ Λδ

(
k − q + κ+ 1

a

)
+ Λδ

(
k − q + κ− 1

a

))
.

Now set q′ = q − 1 and q′′ = q + 1,

(
L̃ ∗ P̃

)
(k) =

∞∑
q=−∞

PqL0δ

(
k − q + κ

a

)
+

∞∑
q′′=−∞

Pq′′−1Λδ

(
k − q′′ + κ

a

)

+
∞∑

q′=−∞

Pq′+1Λδ

(
k − q′ + κ

a

)

and then relabelling q′ and q′′ with q gives

(
L̃ ∗ P̃

)
(k) =

∞∑
q=−∞

(ΛPq−1 + L0Pq + ΛPq+1) δ

(
k − q + κ

a

)
.
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Equating this to the right hand side of (4.6),

∞∑
q=−∞

(ΛPq−1 + L0Pq + ΛPq+1) δ

(
k − q + κ

a

)
=

(
β2k2 − ω2

ω2 − c2k2

)
P̃ (k)

=
∞∑

q=−∞

(
β2k2 − ω2

ω2 − c2k2

)
Pqδ

(
k − q + κ

a

)

hence

ΛPq−1 +

(
L0 − β2K2 +

ω2

ω2 −K2c2

)
Pq + ΛPq+1 = 0

where

K =
q + κ

a
.

It is worth noting that including higher order harmonics, for example cos (4πa−1x),

in (4.2) will result in (4.12) being replaced by a higher order difference equation.

Similarly, allowing β to have a periodic dependence on x will also increase the order

of the difference equation.

It would be trivial to solve (4.12) by choosing some arbitrary value for two con-

secutive Pq, say P0 and P1, and then using the difference equation to determine

all remaining values. However, in general these would give divergent solutions, i.e.

|Pq| → ∞ as q → ±∞. Such solutions would likely not give a continuous function for

the polarisation and so would be non-physical. Therefore, to ensure our solutions are

physical, we must impose the condition

|Pq| → 0 as q → ±∞. (4.14)

We will solve (4.12) to find supported frequencies and the corresponding spatial

modes Pq. In the following sections we show two approaches to finding these solu-

tions. In §4.3 we use a numerical approximation scheme which is valid generally. In
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§4.4 we find a set of analytic solutions which are valid for small magnitudes of the

inhomogeneity (Λ < L0) and consider a number of special cases for which different

solutions are required.

4.3 Numerical Method

In this section we present a method for solving (4.12) for Pq numerically and give a

number of solutions. Before we can find values for Pq it is necessary to determine the

corresponding value of ω.

To begin, using the limiting condition (4.14) allows us to truncate the infinite set

of Pq by setting Pr = 0 for |r| > R. Since we are now working with a finite set of

values it is possible to write (4.12) as a matrix equation. For example, for R = 2



f−2(ω) Λ 0 0 0

Λ f−1(ω) Λ 0 0

0 Λ f0(ω) Λ 0

0 0 Λ f1(ω) Λ

0 0 0 Λ f2(ω)





P−2

P−1

P0

P1

P2


=



0

0

0

0

0


. (4.15)

For general R we can write this as

M ~P = ~0 (4.16)

where M is a (2R + 1) × (2R + 1) matrix with fq(ω), q = −R . . . R, on the leading

diagonal and Λ on the adjacent diagonals. ~P is the vector of Pq where q = −R . . . R

and ~0 is the corresponding zero vector.

In order to find non-trivial solutions for Pq we require that the matrix M is non-

invertible. This requirement allows us to find values for ω for which solutions exist.
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This is done by calculating the determinant and then setting

|M | = 0. (4.17)

Taking a particular value of ω calculated through this method, this can be sub-

stituted back into (4.16) to calculate the corresponding values of Pq. We normalise

our solution by setting P1 = 1 and all other values are then found in relation to this

1. However, (4.16) now gives us an overdetermined system and so it is necessary to

reduce the order of this equation. This is done by removing the column from M which

contains f1(ω) as this corresponds to the already assigned P1. For example, for R = 2

M =



f−2(ω) Λ 0 0

Λ f−1(ω) Λ 0

0 Λ f0(ω) 0

0 0 Λ Λ

0 0 0 f2(ω)


. (4.18)

The column which was removed is now treated as a vector m, i.e.

m =



0

0

Λ

f1(ω)

Λ


. (4.19)

It is simple to see that this approach can be applied to a higher, general R. Given

this, the Pq are given by

V = −
(
MTM

)−1MTm (4.20)

1We choose to prescribe P1, as opposed to some other Pq, because, in the final solution, it is seen
that P±1 is the highest amplitude mode for the convergent case.
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Figure 4.1: The Pq modes for ω = ±0.7610i (blue) and ω = ±0.3951 (red) calculated
numerically when R = 2. In this case we have set a = 1, c = 1, β = 1, Λ = 0.75,
L0 = 1, and κ = 0.

where

V =



P−R

. . .

P0

P2

. . .

PR


.

4.3.1 Numerical Solutions

Exact solutions to (4.12) are given in the limit R→∞, however due to the nature of

the matrix equation (4.20) the time taken to compute Pq rapidly becomes impractical

as R increases. Here we present example solutions for R = 2 and R = 5, and use

these to demonstrate the limiting behaviour for larger R. All the numerical results

presented in this section are obtained by setting a = 1, c = 1, β = 1, Λ = 0.75,

L0 = 1, and κ = 0.

For R = 2 there are eight values of ω calculated using the above method. Note,

however, that fq(ω) contains only even powers of ω therefore we do not need to
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P−2 P−1 P0 P1 P2
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P−2 P−1 P0 P1 P2

−1.14× 107

0

Figure 4.2: The Pq modes for ω = ±2.3249 (blue) and ω = ±2.3716 (red) calculated
numerically when R = 2. In this case we have set a = 1, c = 1, β = 1, Λ = 0.75,
L0 = 1, and κ = 0.

consider separately ω solutions that vary only by sign. Hence this leaves us with four

solutions for the frequency, given here to 4 decimal places

ω ≈ ±0.7610i, ±0.3951, ±2.3249, ±2.3716.

The first two of these give modes which appear convergent, as shown in figure 4.1.

The two remaining solutions appear to be potentially divergent, as seen is figure 4.2.

Observe that, for these particular values, there are two values of ω which are purely

imaginary. For these frequencies the solution will be damped and so will be unable

to propagate through the medium.

For R = 5 we find, as would be expected, a larger number of values for the

frequency given (to 4 decimal places) by

ω ≈ ±0.7532i ± 0.3990, ±2.3311, ±2.3798, ±3.2151, ±3.2171, ±4.1416, ±5.1076.

We see that the first four of these are close to those calculated in the R = 2 case.

In fact, these values approximately appear in the calculations for higher R as well

and are convergent. Likewise, the additional solutions that appear also reoccur in
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Figure 4.3: The Pq modes for ω = ±0.7532i (blue) and ω = ±0.3990 (red) calculated
numerically when R = 5. In this case we have set a = 1, c = 1, β = 1, Λ = 0.75,
L0 = 1, and κ = 0.

the higher order calculations. This is a pattern that continues as R increases, where

additional values of ω appear, and then persist, for all higher R.

It becomes obvious at this order that many of the solutions are in fact divergent,

as suspected at R = 2 with the modes given in figure 4.2. The only solutions that

obey the condition (4.14) are those given by ω ≈ ±0.7532i, ±0.3990 which are shown

in figure 4.3, which shows clearly the required convergence.

Having calculated these modes we then can insert them into a truncated approxi-

mation of the series in (4.10) to find an expression for P̂ (ω, x). Figure 4.4 shows a plot

of this function using the values for ω and Pq calculated above which are displayed in

figure 4.3.

4.4 Analytic Solutions

In this section we work under the assumption that the magnitude of the inhomogeneity

is small, that is Λ < L0(ω), and obtain approximate analytic solutions to (4.12) which

are valid up to a given order in Λ. We use the notation O(Λr) to indicate that the

result will not be affected by the addition of correction terms of this, or higher, order
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x

P̂ (ω, x)

Figure 4.4: P̂ (ω, x) where ω = ±0.7532i (blue) and ω = ±0.3990 (red). Here we have
set a = 1, c = 1, β = 1, Λ = 0.75, L0 = 1, and κ = 0.

in Λ. All solutions given here solve (4.12) to at least order O(Λ3).

Let Ωn be a solution to

fn(Ωn) = 0. (4.21)

For each Ωn there is a set of Pq that solve (4.12) to a particular order of Λ. We will use

the notation P n
q to identify the Pq with the corresponding Ωn. Initially we consider

uncoupled modes in which there are no other integers m such that fm(Ωn) = 0. Cases

where there exist m 6= n ∈ Z such that fn(Ωn) = fm(Ωn) = 0 give us coupled modes.

The solutions for these coupled modes are dependent on the difference between the

integers n and m and, when solving to O(Λ3), we see that we have four sets of solutions

when n−m ≥ 4, n−m = 3, n−m = 2, and n−m = 1. Due to the symmetry of fq

there is also a special case when κ = 0. These solutions will all be given in detail in

section 4.5.

At this point we introduce notation that is useful in writing the solutions through-
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out this section,

Fq = fq(Ωn) F ′q =
dfq(ω)

dω

∣∣∣∣
ω=Ωn

F ′′q =
d2fq(ω)

dω2

∣∣∣∣
ω=Ωn

. (4.22)

4.4.1 Uncoupled Modes

Here we present an analytic solution to (4.12) in the case where there is a unique

integer n such that (4.21) is satisfied. Consider

ωn = Ωn +
Λ2

F ′n

(
1

Fn−1

+
1

Fn+1

)
+O(Λ4) (4.23)

and

P n
q = Rn

q (4.24)

where Rn
q is defined as2

Rn
q =



(−Λ)|q−n|∏|q−n|
k=1 Fn+k

+O(Λ|q−n|+2) q > n

1 q = n

(−Λ)|q−n|∏|q−n|
k=1 Fn−k

+O(Λ|q−n|+2) otherwise.

(4.25)

Theorem 4.4.1. The frequency ωn and modes P n
q given by (4.23) and (4.24) solve

the difference equation (4.12) to an order of Λ which depends on n and q as follows

ΛP n
q−1 + fq(ωn)P n

q + ΛP n
q+1 = O

(
Λ|q−n|+2

)
(4.26)

and

ΛP n
n−1 + fn(ωn)P n

n + ΛP n
n+2 = O

(
Λ4
)
. (4.27)

2Note we define Rn
q here as they are useful when writing the solutions to the special cases later

in this chapter.
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Proof. We will first show (4.27). Take the Taylor expansion of fn(ωn) around Ωn

fn(ωn) = Fn + (ωn − Ωn)F ′n +
1

2
(ωn − Ωn)2F ′′n + . . . (4.28)

using (4.23) and (4.21) gives

fn(ωn) = Λ2

(
1

Fn−1

+
1

Fn+1

)
+O(Λ4).

Taking this along with (4.24) then the left hand side of (4.27) becomes

ΛP n
n−1 + fn(ωn)P n

n + ΛP n
n+1

= Λ

(
−Λ

Fn−1

+O(Λ3)

)
+ Λ2

(
1

Fn−1

+
1

Fn+1

)
+O(Λ4)

+ Λ

(
−Λ

Fn+1

+O(Λ3)

)
= −Λ2

(
1

Fn−1

+
1

Fn+1

)
+ Λ2

(
1

Fn−1

+
1

Fn+1

)
+O(Λ4)

= O(Λ4)

as required.

To show (4.26) there are four cases that need to be considered: q = n+1, q = n−1,

q > n + 1, q < n − 1. Note that for q 6= n it is enough to use the expansion

fq(ωn) = Fq +O(Λ2). Firstly, for q = n+ 1

ΛP n
n + fn+1(ωn)P n

n+1 + ΛP n
n+2

= Λ−Fn+1
Λ

Fn+1

+O(Λ)3 + Λ

(
Λ2

Fn+1Fn+2

+O(Λ4)

)
= Λ− Λ +O(Λ3) = O(Λ3)

61



as required. Next look at q = n− 1,

ΛP n
n−2 + fn−1(ωn)P n

n−1 + ΛP n
n

= Λ

(
Λ2

Fn−1Fn−2

+O(Λ4)

)
−Fn−1

Λ

Fn−1

+O(Λ)3 + Λ

= −Λ + Λ +O(Λ3) = O(Λ3).

Thirdly, take q > n+ 1

ΛP n
q−1 + fq(ωn)P n

q + ΛP n
q+1

= Λ

(
(−Λ)q−1−n∏q−1−n
k=1 Fn+k

+O(Λq−n+1)

)
+ fq(ωn)

(
(−Λq−n)∏q−n
k=1 Fn+k

+O(Λq−n+2)

)

+ Λ

(
(−Λq+1−n)∏q+1−n
k=1 Fn+k

+O(Λq−n+3)

)

= Λ
(−Λ)q−1−n∏q−1−n
k=1 Fn+k

+ Fq
(−Λq−n)∏q−n
k=1 Fn+k

+O(Λq−n+2)

= Λ
(−Λ)q−1−n∏q−1−n
k=1 Fn+k

+ Fq
−Λ(−Λq−n−1)

Fq
∏q−n−1

k=1 Fn+k

+O(Λq−n+2)

= (Λ− Λ)
(−Λ)q−1−n∏q−1−n
k=1 Fn+k

+O(Λq−n+2)

= O(Λq−n+2)
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as desired. Lastly, look at q < n− 1

ΛP n
q−1 + fq(ωn)P n

q + ΛP n
q+1

= Λ

(
(−Λ)n−q+1∏n−q+1
k=1 Fn−k

+O(Λn−q+3)

)
+ fq(ωn)

(
(−Λn−q)∏n−q
k=1 Fn−k

+O(Λn−q+2)

)

+ Λ

(
(−Λn−q−1)∏n−q−1
k=1 Fn−k

+O(Λn−q+1)

)

= Fq
(−Λn−q)∏n−q
k=1 Fn−k

+ Λ
(−Λ)n−q−1∏n−q−1
k=1 Fn−k

+O(Λn−q+2)

= Fq
−Λ(−Λn−q−1)

Fq
∏n−q−1

k=1 Fn−k
+ Λ

(−Λ)n−q−1∏n−q−1
k=1 Fn−k

+O(Λn−q+2)

= (−Λ + Λ)
(−Λ)n−q−1∏n−q−1
k=1 Fn−k

+O(Λn−q+2)

= O(Λ|q−n|+2)

which completes the proof.

More accurate solutions could, as in standard perturbation theory, be obtained

by including higher order corrections in (4.23) and (4.24). However, since we are

considering only the approximation where Λ < L0 it is sufficient to work to order

O(Λ3).

Observe that the equations relating ωn and κ, (4.23) and (4.21), can be considered

as a dispersion relation. This dispersion relation is shown in figure 4.5 for a single

pole resonance,

L0(ω) =
(ω − iλ)2 + ω2

p

ω2
p

,

where ωp is the natural frequency. Notice that the dispersion relation appears to

“wrap around” when κ = 1. Looking at (4.13) we see that the only dependence of n

and κ in fn(ω) is in the terms (n+ κ)2. Hence the function takes the same value at,

for example, (n = 0, κ = 1) and (n = 1, κ = 0), thus the observed shape.
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n = 3

n = 2

n = 1

n = 0

ωn

κ

Figure 4.5: The real (blue) and imaginary (red) parts of the dispersion relation given

by (4.23) and (4.21) for a single pole resonance, L0(ω) =
(ω − iλ)2 + ω2

p

ω2
p

. Here we

have set a = 0.8, β = 0.4, ωp = 0.15, c = 1, λ = 0.1, and Λ = 0.2.

4.5 Coupled Modes

In this section consider that there are two distinct integers n 6= m ∈ Z and frequency

Ω such that

fn(Ω) = fm(Ω) = 0. (4.29)

Returning to the definition of fq, (4.13), we can write this as a quadratic for (q + κ)2

when fq(Ω) = 0,

(q + κ)4 −
(
a2Ω2

c2
+
L0a

2

β2

)
(q + κ)2 +

a4Ω2

β2c2
(L0 + 1) = 0. (4.30)

Clearly there are two solutions to (4.30),

(q + κ)2 = Q+(Ω)2 and (q + κ)2 = Q−(Ω)2 (4.31)
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where

Q±(Ω)2 =
a2

2

Ω2

c2
+
L0

β2
±

√(
Ω2

c2
+
L0

β2

)2

− 4Ω2(L0 + 1)

β2c2

 . (4.32)

Given this, there are two possibilities that may occur. Firstly, both n and m

correspond to the same root, i.e.

(n+ κ)2 = (m+ κ)2 = Q+(Ω)2 or (n+ κ)2 = (m+ κ)2 = Q−(Ω)2

so

(n+ κ)2 = (m+ κ)2

n2 + 2nκ+ κ2 = m2 + 2mκ+ κ2

−2κ(n−m) = n2 −m2

2κ = −n−m

thus, since n,m ∈ Z, we must have κ = 0 or κ = 1/2. We see that, for κ = 0, the

above gives m = −n. Because of this symmetry this case has special solutions, which

are given in section 4.5.1. For κ = 1/2 there is no significant improvement in the

solutions and so this case is not considered separately. The solutions when κ = 1/2

can be found as a special case of the solutions for general κ calculated in section 4.5.2

Alternatively, n and m correspond to different roots

(n+ κ)2 = Q+(Ω)2 and (m+ κ)2 = Q−(Ω)2

hence

κ = −n±Q+(Ω) and κ = −m±Q−(Ω).
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Eliminating κ we obtain the conditions

Q−(Ω) +Q+(Ω) ∈ Z or Q−(Ω)−Q+(Ω) ∈ Z. (4.33)

Typically Q+(Ω) and Q−(Ω) will be continuous functions and so, in general, we can

expect to see coupled modes for most ω.

4.5.1 Special Case: κ = 0

Now we will look at the particular situation in which κ = 0. Immediately we see from

(4.13) that fn(ω) = f−n(ω). Hence, given Ωn as before, we have

Fn = F−n = 0.

Because of this we must modify the solution given in §4.4.1. Note that if n = 0 then,

trivially, n = −n and there is no need to modify the previous solution as there is still

only a single n ∈ Z such that Fn = 0, thus the general solution given above is valid.

For n ≥ 2 the frequency ωn is given, as before, by (4.23). The polarisation modes,

however, are given by

P n
q =


Rn
q q > −n

O(Λ2n) q = −n

O(Λn−q−2) q < −n

(4.34)

where Rn
q is as defined in (4.25). It is simple to see that this solution satisfies the

requirement (4.14) as needed when Λ < 1. Note also that for q ≤ −n we can only give

P n
q to an order of Λ however this is sufficient to solve (4.12) to the required accuracy.

We can obtain the solution for n ≤ −2 by setting

P n
q = P−n−q . (4.35)
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The proof of this is a trivial modification to that for the n ≥ 2 solution. For n = ±1

it is necessary to specify a different solution in order to solve (4.12) to at least O(Λ3).

This solution is given later in this chapter.

In order to improve the clarity of the notation in the following, introduce Qnq as

the remainder of the difference equation (4.12),

Qnq = ΛP n
q−1 + fq(ωn)P n

q + ΛP n
q+1. (4.36)

Theorem 4.5.1. The frequency and polarisation given by (4.23) and (4.34) solve the

difference equation (4.12) to an order of Λ which depends on n and q according to the

following

Qnq = O
(
Λ|q−n|+2

)
q > −n, q 6= n (4.37)

Qnq = O
(
Λ4
)

q = n (4.38)

Qnq = O
(
Λ2n
)

q = −n (4.39)

Qnq = O
(
Λn−q−2

)
q < −n. (4.40)

Proof. For q > −n + 1 this is identical to the situation given in theorem 4.4.1, and

so the proof of (4.37) and (4.38) is mostly given there. However, the case where

q = −n+ 1 must be considered separately, as follows

Qn−n+1 = ΛP n
−n + f−n+1(ωn)P n

−n+1 + ΛP n
−n+2

= ΛO(Λ2n) + F−n+1R
n
−n+1 + ΛRn

−n+2

= O(Λ2n+1) + F−n+1

(
(−Λ)2n−1∏2n−1
k=1 Fn−k

+O(Λ2n+1)

)
+ Λ

(
(−Λ)2n−2∏2n−2
k=1 Fn−k

+O(Λ2n)

)

= −Λ
(−Λ)2n−2∏2n−2
k=1 Fn−k

+ Λ
(−Λ)2n−2∏2n−2
k=1 Fn−k

+O(Λ2n+1)

= O(Λ2n+1)
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as required. Thus it remains to show the result for q = −n and q < −n.

Taking q = −n in (4.36) then substitution of (4.34) gives

Qn−n = ΛP n
−n−1 + f−n(ωn)P n

−n + ΛP n
−n+1

= ΛO(Λ2n−1) + fn(ωn)O(Λ2n) + Λ

(
(−Λ)2n−1∏2n−1
k=1 Fn−k

+O(Λ2n+1)

)

= O(Λ2n) +O(Λ2)O(Λ2n) +O(Λ2n) +O(Λ2n+2)

= O(Λ2n)

hence (4.39).

Due to the definition of P n
q in (4.34) the proof of (4.40) requires the cases q =

−n− 1 and q < −n− 1 to be considered separately. First take q = −n− 1.

Qn−n−1 = ΛP n
−n−2 + f−n−1(ωn)P n

−n−1 + ΛP n
−n

= ΛO(Λ2n) + F−n−1O(Λ2n−1) + ΛO(Λ2n)

= O(Λ2n+1) +O(Λ2n−1) +O(Λ2n+1)

= O(Λ2n−1)

as required. Finally, consider q < −n− 1,

Qnq = ΛP n
q−1 + fq(ωn)P n

q + ΛP n
q+1

= ΛO(Λn−q−1) + FqO(Λn−q−2) + ΛO(Λn−q−3)

= O(Λn−q) +O(Λn−q−2) +O(Λn−q−2)

= O(Λn−q−2)

hence (4.40).

Now consider n = 1. In this case there is a pair of independent modes which can
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alternatively be written as odd and even modes. The superscript o is used to label

the odd mode and e for the even mode. The odd mode is given by (4.41) and (4.42)

below, and the even mode by (4.67) and (4.68).

Looking first at the odd solution, the frequency is given by

ωo
1 = Ω1 +

Λ2

F ′1F2

+O(Λ4) (4.41)

and the corresponding P n
q are given by

P 1,o
q =


R1
q q > 0

0 q = 0

−R1
−q q < 0.

(4.42)

Theorem 4.5.2. The frequency and polarisation given by (4.41) and (4.42) solve the

difference equation (4.12) to an order of Λ as follows

Q1
q = O(Λq+1) q > 1 (4.43)

Q1
q = O(Λ4) q = ±1 (4.44)

Q1
q = 0 q = 0 (4.45)

Q1
q = O(Λ−q+1) q < 1. (4.46)

Proof. There are five cases here that must be considered: q = 0, q = 1, q = −1, q > 1,

and q < −1. For this proof we will use the expansion of fq(ω
o
1 ) which is given by

fq(ω
o
1 ) =


Fq q 6= ±1

Λ2

F2

+O(Λ4) q = 1

−Λ2

F2

+O(Λ4) q = −1.
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First look at q = 0,

Q1
0 = ΛP 1,o

−1 + f0(ωo
1 )P 1,o

0 + ΛP 1,o
1

= −ΛR1
1 + ΛR1

1

= 0.

Next consider q = 1,

Q1
1 = ΛP 1,o

0 + f1(ωo
1 )P 1,o

1 + ΛP 1,o
2 (4.47)

= f1(ωo
1 )R1

1 + ΛR1
2 (4.48)

=
Λ2

F2

+O(Λ4) + Λ

(
−Λ

F2

+O(Λ3)

)
(4.49)

= O(Λ4) (4.50)

and similarly q = −1

Q1
−1 = ΛP 1,o

−2 + f−1(ωo
1 )P 1,o

−1 + ΛP 1,o
0 (4.51)

= −ΛR1
2 − f1(ωo

1 )R1
1 (4.52)

= −Λ

(
−Λ

F2

+O(Λ3)

)
− Λ2

F2

+O(Λ4) (4.53)

= O(Λ4). (4.54)
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Finally, we have for q > 1

Q1
q = ΛP 1,o

q−1 + fq(ω
o
1 )P 1,o

q + ΛP 1,o
q+1 (4.55)

= ΛR1
q−1 + FqR1

q + ΛR1
q+1 (4.56)

= Λ

(
(−Λ)q−2∏q−2
k=1F1+k

+O(Λq)

)
+ Fq

(
(−Λ)q−1∏q−1
k=1F1+k

+O(Λq+1)

)
(4.57)

+ Λ

(
(−Λ)q∏q
k=1F1+k

+O(Λq+2)

)
(4.58)

= Λ
(−Λ)q−2∏q−2
k=1F1+k

− Λ
(−Λ)q−2∏q−2
k=1F1+k

+O(Λq+1) (4.59)

= O(Λq+1) (4.60)

and q < −1

Q1
q = ΛP 1,o

q−1 + fq(ω
o
1 )P 1,o

q + ΛP 1,o
q+1 (4.61)

= −ΛR1
−q+1 −FqR1

−q − ΛR1
−q−1 (4.62)

= −Λ

(
(−Λ)−q∏−q
k=1F1+k

+O(Λ−q+2)

)
−Fq

(−Λ)−q−1∏−q−1
k=1 F1+k

+O(Λ−q+1) (4.63)

− Λ

(
(−Λ)−q−2∏−q−2
k=1 F1+k

+O(Λ−q)

)
(4.64)

= Λ
(−Λ)−q−2∏−q−2
k=1 F1+k

− Λ
(−Λ)−q−2∏−q−2
k=1 F1+k

+O(Λ−q+1) (4.65)

= O(Λ−q+1) (4.66)

completing the proof.

Now we present the even solution, with frequency given by

ωe
1 = Ω1 +

Λ2

F ′1

(
1

F2

+
2

F0

)
+O(Λ4) (4.67)
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and polarisation

P 1,e
q =


R1
q q > 0

−2Λ

F0

q = 0

R1
−q q < 0.

(4.68)

Theorem 4.5.3. The frequency and polarisation given by (4.67) and (4.68) solve the

difference equation (4.12) to an order of Λ as follows

Q1
q = O(Λq+1) q > 1 (4.69)

Q1
q = O(Λ4) q = ±1 (4.70)

Q1
q = O(Λ3) q = 0 (4.71)

Q1
q = O(Λ−q+1) q < 1. (4.72)

Proof. First consider q = 0

Q1
0 = ΛP 1,e

−1 + f0(ωe
1)P 1,e

0 + ΛP 1,e
1

= ΛR1
1 −

(
F0 +O(Λ2)

) 2Λ

F0

+ ΛR1
1

= 2Λ− 2Λ +O(Λ3)

= O(Λ3).

Next we have q = 1

Q1
1 = ΛP 1,e

0 + f1(ωe
1)P 1,e

1 + ΛP 1,e
2

= −2Λ2

F0

+

(
Λ2

(
1

F2

+
2

F0

)
+O(Λ4)

)
R1

1 + ΛR1
2

= −2Λ2

F0

+ Λ2

(
1

F2

+
2

F0

)
+O(Λ4) + Λ

(
−Λ

F2

+O(Λ3)

)
= O(Λ4)
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and q = −1

Q1
1 = ΛP 1,e

−2 + f−1(ωe
1)P 1,e

−1 + ΛP 1,e
0

= ΛR1
2 + f1(ωe

1)R1
1 −

2Λ2

F0

= Λ

(
−Λ

F2

+O(Λ3)

)
+ Λ2

(
1

F2

+
2

F0

)
+O(Λ4)− 2Λ2

F0

= O(Λ4).

The remaining two cases are q > 1

Q1
q = ΛP 1,e

q−1 + fq(ω
e
1)P 1,e

q + ΛP 1,e
q+1

= ΛR1
q−1 +

(
Fq +O(Λ2)

)
R1
q + ΛR1

q+1

= Λ

(
(−Λ)q−2∏q−2
k=1Fk+1

+O(Λq)

)
+
(
Fq +O(Λ2)

)( (−Λ)q−1∏q−1
k=1Fk+1

+O(Λq+1)

)

+ Λ

(
(−Λ)q∏q
k=1Fk+1

+O(Λq+2)

)
= Λ

(−Λ)q−2∏q−2
k=1Fk+1

− Λ
(−Λ)q−2∏q−2
k=1Fk+1

+O(Λq+1)

= O(Λq+1)
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and q < −1

Q1
q = ΛP 1,e

q−1 + fq(ω
e
1)P 1,e

q + ΛP 1,e
q+1

= ΛR1
−q+1 + fq(ω

e
1)R1

−q + ΛR1
−q−1

= Λ

(
(−Λ)−q∏−q
k=1Fk+1

+O(Λ−q+2)

)
+
(
Fq +O(Λ2)

)( (−Λ)−q−1∏−q−1
k=1 Fk+1

+O(Λ−q+1)

)

+ Λ

(
(−Λ)−q−2∏−q−2
k=1 Fk+1

+O(Λ−q)

)

= −Λ
(−Λ)−q−2∏−q−2
k=1 Fk+1

+ Λ
(−Λ)−q−2∏−q−2
k=1 Fk+1

+O(Λ−q+1)

= O(Λ−q+1)

which completes the proof.

4.5.2 Special Cases: General κ

In this section we present the solution to (4.12) for coupled modes but this time

without specifying a value for κ. We take two integers n > m where, as in (4.29),

Fn = Fm = 0. We observe that the solutions vary significantly depending on the

value of the spacing of n and m, thus we need to consider different values of n −m

as individual cases.

4.5.2.1 Case n−m ≥ 4

When n−m ≥ 4 we see that, to order O(Λ3), the coupled modes effectively become

decoupled. Because of this, this case is the simplest to solve. Take the frequency, as

in (4.23),

ωn = Ωn +
Λ2

F ′n

(
1

Fn+1

+
1

Fn−1

)
+O(Λ4)
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then the corresponding modes are given by

P n
q =


Rn
q q > m

O(Λn−m) q = m

O(Λn−q−2) q < m

(4.73)

and

Pm
q = P n

q′ where q′ = n+m− q (4.74)

and Rn
q is as defined in (4.25).

Theorem 4.5.4. The values of ωn and P n
q given by (4.23) and (4.73) solve the dif-

ference equation (4.12) to the following orders of Λ:

Qnq = O(Λ|q−n|+2) q > m, q 6= n (4.75)

Qnq = O(Λ4) q = n (4.76)

Qnq = O(Λn−m) q = m (4.77)

Qnq = O(Λn−m+1) q = m− 1 (4.78)

Qnq = O(Λn−q−2) q < m− 1. (4.79)

Proof. To show (4.75) for q > m+ 1 the proof is identical to that given for Theorem

4.4.1 and so will not be repeated here. There remain four other cases to consider:

q = m+ 1, q = m, q = m− 1, and q < m− 1. Firstly q = m+ 1, substituting (4.73)
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and (4.23) into (4.12)

ΛP n
m + fm+1(ωn)P n

m+1 + ΛP n
m+2 = ΛO(Λn−m) + fm+1(ωn)Rn

m+1 + ΛRn
m+2

= O(Λn−m+1) + Fm+1

(
(−Λ)n−m−1∏n−m−1
k=1 Fn−k

+O(Λn−m+1)

)

+ Λ

(
(−Λ)n−m−2∏n−m−2
k=1 Fn−k

+O(Λn−m)

)

= Fm+1

(
−Λ(−Λ)n−m−2

Fm+1

∏n−m−2
k=1 Fn−k

)
+ Λ

(
(−Λ)n−m−2∏n−m−2
k=1 Fn−k

)
+O(Λn−m+1)

= O(Λn−m+1) = O(Λ|(m+1)−n|+2)

hence (4.75) holds for all q > m. Next consider q = m

ΛP n
m−1 + fm(ωn)P n

m + ΛP n
m+1

= ΛO(Λn−m−1) + fm(ωn)O(Λn−m) + ΛRn
m+1

= O(Λn−m) + Λ

(
(−Λ)n−m−1∏n−m−1
k=1 Fn−k

+O(Λn−m+1)

)

= O(Λn−m)

as in (4.77). Now the case where q = m− 1

ΛP n
m−2 + fm−1(ωn)P n

m−1 + ΛP n
m = ΛO(Λn−m) + Fm−1O(Λn−m−1) + ΛO(Λn−m)

= O(Λn−m+1)

as desired. Finally, for q < m− 1

ΛP n
q−1 + fq(ωn)P n

q + ΛP n
q+1 = ΛO(Λn−q−1) + FqO(Λn−q−2) + ΛO(Λn−q−3)

= O(Λn−q) +O(Λn−q−2) +O(Λn−q−2)

= O(Λn−q−2)

76



hence (4.79).

The corresponding theorem and proof for Pm
q can be obtained trivially by using

the substitution given in (4.74).

4.5.2.2 Case n−m = 3

Take, as before, integers n,m ∈ Z but now set n−m = 3. In this scenario the modes

are not yet decoupled, as is true for n − m ≥ 4, and as such the solution is more

difficult to obtain. The solutions for this case must be obtained using a perturbative

method.

Firstly, we will write the frequency as

ωn = Ωn + Λω(1)
n + Λ2ω(2)

n +O(Λ3) (4.80)

where ω
(1)
n and ω

(2)
n are to be determined and, as before, Ωn is a solution to

fn(Ωn) = Fn = 0.

In this case we have that

Fn = Fn−3 = 0

and so the Taylor expansions of fn(ωn), fn−3(ωn) and fq(ωn) (where q 6= n, n− 3) are

fn(ωn) = Λω(1)
n F ′n + Λ2

(
ω(2)
n F ′n +

1

2
F ′′n
(
ω(1)
n

)2
)

+O(Λ3)

fn−3(ωn) = Λω(1)
n F ′n−3 + Λ2

(
ω(2)
n F ′n−3 +

1

2
F ′′n−3

(
ω(1)
n

)2
)

+O(Λ3) (4.81)

fq(ωn) = Fq + Λω(1)
n F ′q +O(Λ2).

We assume, based on the structure of previous solutions, the following orders for the
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modes

P n
n+2 = O(Λ2) P n

n+1 = O(Λ1) P n
n = 1

P n
n−1 = O(Λ0) P n

n−2 = O(Λ0) P n
n−3 = O(Λ0)

P n
n−4 = O(Λ1) P n

n−5 = O(Λ2).

Note that all modes other than those listed are assumed to be of at least order O(Λ3)

and so are not necessary for this calculation. We now write the expansions for these

modes up to order O(Λ3) as

P n
n+2 = Λ2P

(2)
n+2 +O(Λ3)

P n
n+1 = ΛP

(1)
n+1 + Λ2P

(2)
n+1 +O(Λ3)

P n
n = 1

P n
n−1 = P

(0)
n−1 + ΛP

(1)
n−1 + Λ2P

(2)
n−1 +O(Λ3)

P n
n−2 = P

(0)
n−2 + ΛP

(1)
n−2 + Λ2P

(2)
n−2 +O(Λ3)

P n
n−3 = P

(0)
n−3 + ΛP

(1)
n−3 + Λ2P

(2)
n−3 +O(Λ3)

P n
n−4 = ΛP

(1)
n−4 + Λ2P

(2)
n−4 +O(Λ3)

P n
n−5 = Λ2P

(2)
n−5 +O(Λ3),

(4.82)

where the coefficients P
(r)
q are to be determined.

In order to find the unknown factors in the above expansions, we will substitute

the expansions of fq(ωn) and P n
q into the difference equation (4.12). Initially we will

work to order O(Λ2) to find the coefficients of the lower order terms, and then repeat

the process to order O(Λ3) for the complete solution.

Working to order O(Λ2), we substitute (4.81) and (4.82) into the difference equa-
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tion (4.12) to give

Λ +
(
Fn+1 + ω(1)

n F ′n+1

)
ΛP

(1)
n+1 = O(Λ2)

ΛP
(0)
n−1 + Λω(1)

n F ′n = O(Λ2)

ΛP
(0)
n−2 +

(
Fn−1 + Λω(1)

n F ′n−1

)
P

(0)
n−1 + Fn−1ΛP

(1)
n−1 + Λ = O(Λ2)

ΛP
(0)
n−3 +

(
Fn−2 + Λω(1)

n F ′n−2

)
P

(0)
n−2 + Fn−2ΛP

(1)
n−2 + ΛP

(0)
n−1 = O(Λ2)

Λω(1)
n F ′n−3P

(0)
n−3 + ΛP

(0)
n−2 = O(Λ2)

ΛFn−4P
(1)
n−4 + ΛP

(0)
n−3 = O(Λ2).

Solving this set of equations gives

ω
(1)
n = 0 P

(0)
n−1 = 0 P

(0)
n−2 = 0 P

(1)
n−1 = − 1

Fn−1

P
(0)
n−3 = α0 P

(1)
n−2 = − α0

Fn−2

P
(1)
n−4 = − α0

Fn−4

P
(1)
n+1 = − 1

Fn+1

(4.83)

where the value of α0 cannot be determined at this order.

Next we repeat the process but this time working to order O(Λ3). Again substi-

tuting (4.81) and (4.82) into (4.12) and using the coefficients calculated in (4.83) we
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obtain

−Λ2 1

Fn+1

+ Λ2Fn+2P
(2)
n+2 = O(Λ3)

Λ2P
(2)
n+1 = O(Λ3)

−Λ2 1

Fn−1

+ Λ2ω(2)
n F ′n − Λ2 1

Fn+1

= O(Λ3)

−Λ2 α0

Fn−2

+ Λ2Fn−1P
(2)
n−1 = O(Λ3)

Λ2P
(1)
n−3 + Λ2Fn−2P

(2)
n−2 − Λ2 1

Fn−1

= O(Λ3)

−Λ2 α0

Fn−4

+ Λ2ω(2)
n F ′n−3α0 − Λ2 α0

Fn−2

= O(Λ3)

Λ2Fn−4P
(2)
n−4 + Λ2P

(1)
n−3 = O(Λ3)

Λ2Fn−5P
(2)
n−5 − Λ2 α0

Fn−4

= O(Λ3),

which are solved simply to give

α0 = 0 P
(2)
n+2 =

1

Fn+1Fn+2

P
(2)
n+1 = 0 ω

(2)
n =

1

F ′n

(
1

Fn−1

+
1

Fn+1

)
P

(2)
n−1 = 0 P

(2)
n−2 =

1

Fn−2

(
1

Fn−1

− α1

)
P

(1)
n−3 = α1 P

(2)
n−4 = − α1

Fn−4

P
(2)
n−5 = 0

(4.84)

where, as before, α1 cannot be determined at this order. Hence we can substitute the

coefficients found in (4.83) and (4.84) into (4.80) and (4.82) to give the solution

ωn = Ωn +
Λ2

F ′n

(
1

Fn−1

+
1

Fn+1

)
+O(Λ3) (4.85)
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and

P n
q =



Λ2 1

Fn+1Fn+2

+O(Λ3) q = n+ 2

− Λ

Fn+1

+O(Λ3) q = n+ 1

1 q = n

− Λ

Fn−1

+O(Λ3) q = n− 1

Λ2

(
1

Fn−1Fn−2

− α1

Fn−2

)
+O(Λ3) q = n− 2

Λα1 +O(Λ2) q = n− 3

−Λ2 α1

Fn−4

+O(Λ3) q = n− 4.

(4.86)

The remaining terms are given by P n
q = O(Λ3) for q > n+ 2 or q < n− 4.

Theorem 4.5.5. The difference equation (4.12) is solved by the frequency and polar-

isation given by (4.85) and (4.86) to order O(Λ3).

Proof. This is trivially shown by substitution of (4.85) and (4.86) into (4.12).

The other corresponding mode, i.e. m − n = 3, is found by exchanging n and m

in (4.85) and (4.86). This again solves (4.12) to order O(Λ3) and is shown by direct

substitution.

4.5.2.3 Case n−m = 2

We now take two integers n, m such that n −m = 2 and where Fn = Fm = 0. For

this case the solutions are given by3

ωn = Ωn +
Λ2

F ′n

(
ρ+ 1

Fn−1

+
1

Fn+1

)
+O(Λ3) (4.87)

3Note that the derivation of this solution is similar to that given in section 4.5.2.2 and so will not
be shown here, and can instead by found in appendix B.1.
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and

P n
q =



Λ2 1

Fn+1Fn+2

+O(Λ3) q = n+ 2

− Λ

Fn+1

+O(Λ3) q = n+ 1

1 q = n

−Λ
ρ+ 1

Fn−1

− Λ2 ρ2

Fn−1

+O(Λ3) q = n− 1

ρ+ Λρ2 +O(Λ2) q = n− 2

−Λ
ρ

Fn−3

− Λ2 ρ2

Fn−3

q = n− 3

Λ2 ρ

Fn−3Fn−4

+O(Λ3) q = n− 4

(4.88)

where ρ2 cannot be determined at this order of Λ and ρ is the solution to the quadratic

equation

F ′n−2ρ
2 +

(
Fn−1F ′n−2

Fn+1

+ F ′n−2 −
Fn−1F ′n
Fn−3

−F ′n
)
ρ−F ′n = 0. (4.89)

Solving this quadratic will give two values for ρ and hence we have a pair of solutions

for ωn and P n
q as expected.

Theorem 4.5.6. The difference equation (4.12) is solved, to order O(Λ3), by the

frequency and polarisation given by (4.87) and (4.88).

Proof. Substitution of (4.87) and (4.88) into (4.12) gives the result.

4.5.2.4 Case n−m = 1

In this case there are two solutions given by

ωn = Ωn + ΛW + Λ2 1

F ′nF ′n−1

(
F ′n

2Fn−2

−
F ′′n−1

4F ′n−1

+
F ′n−1

2Fn+1

− F
′′
n

4F ′n

)
+O(Λ3) (4.90)

where

W = ±
(
F ′nF ′n−1

)−1/2
(4.91)
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and

P n
q =



Λ2

Fn+2Fn+1

+O(Λ3) q = n+ 2

− Λ

Fn+1

+
Λ2F ′n+1W

(Fn+1)2
+O(Λ3) q = n+ 1

1 q = n

−F ′nW +
Λ

F ′n−1

G +O(Λ3) q = n− 1

ΛF ′nW
Fn−2

− Λ2

F ′n−1Fn−2

(
G +
F ′n−2

Fn−2

)
+O(Λ3) q = n− 2

− Λ2F ′nW
Fn−2Fn−3

+O(Λ3) q = n− 3

(4.92)

where

G =
F ′′n−1

4F ′n−1

− F
′′
n

4F ′n
+
F ′n−1

2Fn+1

− F ′n
2Fn−2

. (4.93)

Observe that the split into two solutions is caused by the choice of sign when taking

the square root in (4.91). The derivation of this result is again similar to those shown

previously and is given in full in appendix B.2.

Theorem 4.5.7. The difference equation (4.12) is solved by (4.90) and (4.92) to

order O(Λ3).

Proof. The result is given by substitution of (4.90) and (4.92) into (4.12).

4.6 Longitudinal Modes in Wire Media

So far in this chapter we have considered fields which are transverse, as described in

section 1.2. In this section we assume instead that the electric and polarisation fields

are longitudinal and that the magnetic field vanishes. This allows us to investigate a

wire medium in which the radius, r, of the wires varies periodically along their length,

as illustrated in figure 4.6.

Mathematically, we now have E = E(t, x)e1, P = P (t, x)e1, and B = 0. Maxwell’s
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Figure 4.6: Wire medium with periodic variation of the radius along the wire length.

equations are then automatically satisfied if

ε0E + P = 0. (4.94)

For a wire medium we use the longitudinal component of the permittivity given by

[9, eqn. 4b]

P̃ (ω, k) =
−k2

pε0Ẽ(ω, k)

ω2 − k2
(4.95)

where the grid spacing, b, is the same in both the y and z directions, and

k2
p =

2π

b2(log b− log 2πr + 0.5275)
. (4.96)

Since we are looking at wires with periodically varying radius, kp becomes periodic in

x. By substituting

r(x) =
b

2π
exp

(
−2π

b2(k2
0 + 2Λ cos(2πx/a))

+ 0.5275

)
, (4.97)
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where k2
0 = k2

p|r=r0 is constant, into (4.96) we get

k2
p = k2

0 + 2Λ cos

(
2πx

a

)
. (4.98)

We can then find a difference equation for the modes in the same way detailed in

section 4.2. Again we get the difference equation,

ΛPq−1 + fq(ω)Pq + ΛPq+1 = 0, (4.12)

however the function fq(ω) is now given by

fq(ω) = ω2 − k2
0 −

(q + κ)2

a2
. (4.99)

Looking at fq(ω) = 0, we see that

q + κ = ±a
√
k2

0 − ω2. (4.100)

This dispersion relation, for ω and κ, is plotted in figure 4.7. Observe that the

perturbed modes are dramatically different near n = 0 and κ = 0.5. This is due to

being near the point where the modes couple. Detailed analysis of such behaviour is

potentially a subject of future work.

Finding solutions to the difference equation is the same as for the transverse modes

given earlier in this chapter, differing only by the definition of fq(ω). As the analytic

solutions are all given in terms of fq then clearly the form of these solutions is the

same.

From (4.100) we see that, for two distinct integers n 6= m, we must have

(n+ κ)2 = (m+ κ)2
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ω

κ

n = 0

n = 1

n = 2

n = 3

Figure 4.7: Dispersion curve for unperturbed (black) and perturbed (red) longitudinal
modes in a wire medium. Here a = 0.1, b = 0.02, r0 = 0.001, and Λ = r0/100.
Only with the n = 0 modes can we see the difference between the perturbed and
unperturbed modes.

and so the only possibilities are for κ = 0 or κ = 1/2. As such, coupled modes are only

observed in these two cases and so only the coupled solutions previously calculated

(for transverse modes) for these two cases are applicable in the longitudinal case.

For uncoupled modes, the solution is again given by (4.25). For a = 0.1, b =

0.02, r0 = 0.001, and Λ = r0/5 we can calculate P̂ (x), as shown in figure 4.8. The

corresponding mode amplitudes in this example are P 0
−2 = 0.027, P 0

−1 = 0.174, P 0
0 = 1,

P 0
1 = 0.154 and P 0

2 = 0.019.

4.7 Conclusion

In this chapter we have presented solutions to Maxwell’s equations for a periodically

structured medium with spatial dispersion. A difference equation for the amplitudes

of the spatial modes was derived and solved numerically. We see that many of these

modes, Pq, are divergent as q → ±∞. However, from those modes that do converge

we are able to calculate P̂ (ω, x) and see that this is strongly distorted from what
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P̂ (x)

x

Figure 4.8: Real (black) and imaginary (red) longitudinal mode shape for n = 0 and
κ = 0.3. Here a = 0.1, b = 0.02, r0 = 0.001, and Λ = r0/5.

would be seen in the non-dispersive case.

Under the assumption that the magnitude of this periodic inhomogeneity is small

we were able to find analytic solutions to the spatial modes from our difference equa-

tion. Two types of solutions emerged, coupled and uncoupled modes. While the

uncoupled modes are unsurprising, the existence of the coupled modes is a new fea-

ture. This shows that the spatial dispersion present in the medium has a significant

effect on the physical behaviour. It can also be seen that some of the modes which

appear as uncoupled in this work, such as when n−m = 4, would actually be coupled

for higher orders of Λ. However, since these results required the assumption that

Λ < L0 this coupling would still be too weak to become significant.

It is also important to note that including higher order harmonics in the defini-

tion of L(ω, x), such as cos(4πx/a) etc, would give additional terms in the difference

equation. While this would increase the complexity of solving it would be possible to

obtain more accurate solutions. This would, potentially, make it possible to specify

particular electric field profiles. This would have applications such as in the design

of cavities in accelerators or the manipulation of light in cloaking metamaterials. For
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Cross wire structure creating
a periodic spatially dispersive
medium in cavity
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Proton beam
XXXXXX

Drift tube

PPPPPPPP

Optimised electric field profile

Figure 4.9: Drift tube accelerator with a periodic, spatially dispersive medium added
in the cavity. This allows the electric field experienced by the protons to be optimised.

example, adding a periodic, spatially dispersive medium, such as a wire medium, to

the cavity of a drift tube accelerator the electric field could be optimised to improve

acceleration effects, as shown in figure 4.9.
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Appendix A

Response in Homogeneous Media

A.1 Delta Function Transformation

Given the coordinate transformation u = t+ x/β and v = t− x/β, we seek to obtain

the transformation of δ(t)δ(x). Take α = ϕdt ∧ dx for some test function ϕ, then

α = ϕdt ∧ dx

= ϕ

(
du+ dv

2

)
∧
(
β(du− dv)

2

)
= ϕ

β

4
(du ∧ du+ dv ∧ du− du ∧ dv − dv ∧ dv)

= ϕ
β

2
dv ∧ du.

Now consider

δ(u)δ(v)α = δ(u)δ(v) [ϕdt ∧ dx]

=
β

2
δ(u)δ(v) [ϕdv ∧ du]

=
β

2
ϕ(0, 0).
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Since we know already that

δ(t)δ(x)[ϕdt ∧ dx] =

∫
ϕδ(t)δ(x)dt ∧ dx = ϕ(0, 0)

then we can write

δ(u)δ(v)α =
β

2
δ(t)δ(x)[ϕdt ∧ dx] =

β

2
δ(t)δ(x)α

for all α, therefore

δ(t)δ(x) =
2

β
δ(u)δ(v). (A.1)
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Appendix B

Coupled Mode Solutions

B.1 n−m = 2

Here we have n−m = 2, hence

Fn = Fn−2 = 0

and so, taking the expansion of fq for each q,

fn(ωn) = Λω(1)
n F ′n + Λ2

(
ω(2)
n F ′n +

1

2
(ω(1)

n )2F ′′n
)

+O(Λ3)

fn−2(ωn) = Λω(1)
n F ′n−2 + Λ2

(
ω(2)
n F ′n−2 +

1

2
(ω(1)

n )2F ′′n−2

)
+O(Λ3) (B.1)

fq(ωn) = Fq + Λω(1)
n F ′q +O(Λ2)

where ωn is as given in (4.80). We make the following assumptions about the orders

of P n
q

P n
n+2 = O(Λ2) P n

n+1 = O(Λ) P n
n = 1 P n

n−1 = O(Λ0)

P n
n−2 = O(Λ0) P n

n−3 = O(Λ) P n
n−4 = O(Λ2)
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where all modes other than these are considered to be of at least order O(Λ3). Ex-

panding these modes up to order O(Λ3) gives

P n
n+2 = Λ2P

(2)
n+2 +O(Λ3)

P n
n+1 = ΛP

(1)
n+1 + Λ2P

(2)
n+1 +O(Λ3)

P n
n = 1

P n
n−1 = P

(0)
n−1 + ΛP

(1)
n−1 + Λ2P

(2)
n−1 +O(Λ3)

P n
n−2 = P

(0)
n−2 + ΛP

(1)
n−2 + Λ2P

(2)
n−2 +O(Λ3)

P n
n−3 = ΛP

(1)
n−3 + Λ2P

(2)
n−3 +O(Λ3)

P n
n−4 = Λ2P

(2)
n−4 +O(Λ3).

(B.2)

Now substituting (B.2) and (B.1) into (4.12), and working to order O(Λ2), gives

Λ + ΛFn+1P
(1)
n+1 = O(Λ2)

ΛP
(0)
n−1 + Λω(1)

n F ′n = O(Λ2)

ΛP
(0)
n−2 +

(
Fn−1 + Λω(1)

n F ′n−1

)
P

(0)
n−1 + ΛFn−1P

(1)
n−1 + Λ = O(Λ2)

Λω(1)
n F ′n−2P

(0)
n−2 + ΛP

(0)
n−1 = O(Λ2)

ΛFn−3P
(1)
n−3 + ΛP

(0)
n−2 = O(Λ2).

Solving this set of equations gives

ω
(1)
n = 0 P

(1)
n+1 = − 1

Fn+1

P
(0)
n−1 = 0

P
(1)
n−1 = −1 + ρ

Fn−1

P
(0)
n−2 = ρ P

(1)
n−3 = − ρ

Fn−3

where the quantity ρ cannot be determined to this order of Λ. To get the remaining

coefficients we repeat the calculation at O(Λ3). Substituting (B.2) and (B.1) into
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(4.12) again

− Λ2

Fn+1

+ Λ2Fn+2P
(2)
n+2 = O(Λ3) (B.3)

Λ2Fn+1P
(2)
n+1 = O(Λ3) (B.4)

−Λ2 1 + ρ

Fn−1

+ Λ2ω(2)
n F ′n −

Λ2

Fn+1

= O(Λ3) (B.5)

Λ2P
(1)
n−2 + Λ2Fn−1P

(2)
n−1 = O(Λ3) (B.6)

−Λ2 ρ

Fn−3

+ Λ2ω(2)
n F ′n−2ρ− Λ2 1 + ρ

Fn−1

= O(Λ3) (B.7)

Λ2Fn−3P
(2)
n−3 + Λ2P

(1)
n−2 = O(Λ3) (B.8)

Λ2Fn−4P
(2)
n−4 − Λ2 ρ

Fn−3

= O(Λ3). (B.9)

Setting P
(1)
n−2 = ρ2 we can immediately solve (B.3), (B.4), (B.6), (B.8) and (B.9) to

obtain

P
(2)
n+2 =

1

Fn+1Fn+2

P
(2)
n+1 = 0 P

(2)
n−1 = − ρ2

Fn−1

P
(2)
n−3 = − ρ2

Fn−3

P
(2)
n−4 =

ρ

Fn−3Fn−4

.

Note that we cannot determine ρ2 without looking at O(Λ4). However, to find ρ

and ω
(2)
n we need to solve (B.5) and (B.7) together. Eliminating ω

(2)
n from these two

equations gives

1 + ρ

F ′nFn−1

+
1

F ′nFn+1

− 1

F ′n−2Fn−3

− 1

ρ

1 + ρ

F ′n−2Fn−1

= 0

which, when rearranged, becomes

ρ2 +

(
1 +
Fn−1

Fn+1

− F ′nFn−1

F ′n−2Fn−3

− F ′n
F ′n−2

)
ρ− F ′n
F ′n−2

= 0.
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We can then simply rearrange (B.5) to obtain an expression for ω
(2)
n

ω(2)
n =

1

F ′n

(
1 + ρ

Fn−1

+
1

Fn+1

)
.

This completes the set of required coefficients, which can then be substituted into

(B.2) to give the solution.

B.2 n−m = 1

Here we have n−m = 1, hence

Fn = Fn−1 = 0

and so, taking the expansion of fq for each q,

fn(ωn) = Λω(1)
n F ′n + Λ2

(
ω(2)
n F ′n +

1

2
(ω(1)

n )2F ′′n
)

+O(Λ3)

fn−1(ωn) = Λω(1)
n F ′n−1 + Λ2

(
ω(2)
n F ′n−1 +

1

2
(ω(1)

n )2F ′′n−1

)
+O(Λ3) (B.10)

fq(ωn) = Fq + Λω(1)
n F ′q +O(Λ2)

where the expansion of ωn is the same as in (4.80). We assume the following orders

of P n
q

P n
n+2 = O(Λ2) P n

n+1 = O(Λ) P n
n = 1

P n
n−1 = O(Λ0) P n

n−2 = O(Λ) P n
n−3 = O(Λ2)
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and all modes other than these are taken to be of at least order O(Λ3). Expanding

these modes up to order O(Λ3) gives

P n
n+2 = Λ2P

(2)
n+2 +O(Λ3)

P n
n+1 = ΛP

(1)
n+1 + Λ2P

(2)
n+1 +O(Λ3)

P n
n = 1

P n
n−1 = P

(0)
n−1 + ΛP

(1)
n−1 + Λ2P

(2)
n−1 +O(Λ3)

P n
n−2 = ΛP

(1)
n−2 + Λ2P

(2)
n−2 +O(Λ3)

P n
n−3 = Λ2P

(2)
n−3 +O(Λ3).

(B.11)

Now substitute (B.11) and (B.10) into (4.12) gives, to order O(Λ2)

Λ + ΛFn+1P
(1)
n+1 = O(Λ2)

ΛP
(0)
n−1 + Λω(1)

n F ′n = O(Λ2)

Λω(1)
n F ′n−1P

(0)
n−1 + Λ = O(Λ2)

ΛFn−2P
(1)
n−2 + ΛP

(0)
n−1 = O(Λ2).

This system of equations can be solved completely to give

P
(1)
n+1 = − 1

Fn+1

ω
(1)
n = ±

(
F ′nF ′n−1

)−1/2

P
(0)
n−1 = −WF ′n P

(1)
n−2 =

WF ′n
Fn−2

(B.12)

where W = ω
(1)
n .

Next we look at (4.12) again but this time work to order O(Λ3), substituting
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(B.12)

− Λ2

Fn+1

+ Λ2Fn+2P
(2)
n+2 = O(Λ3) (B.13)

−
Λ2WF ′n+1

Fn+1

+ Λ2Fn+1P
(2)
n+1 = O(Λ3) (B.14)

Λ2P
(1)
n−1 + Λ2

(
ω(2)
n F ′n +

1

2

F ′′n
F ′nF ′n−1

)
− Λ2

Fn+1

= O(Λ3) (B.15)

Λ2WF ′n
Fn−2

− Λ2

(
ω(2)
n F ′n−1 +

1

2

F ′′n−1

F ′nF ′n−1

)
WF ′n + Λ2WF ′n−1P

(1)
n−1 = O(Λ3) (B.16)

Λ2Fn−2P
(2)
n−2 + Λ2 F ′n−2

Fn−2F ′n−1

+ Λ2P
(1)
n−1 = O(Λ3) (B.17)

Λ2Fn−3P
(2)
n−3 + Λ

WF ′n
Fn−2

= O(Λ3). (B.18)

Equations (B.13),(B.14), and (B.18) can be solved immediately to give

P
(2)
n+2 =

1

Fn+1Fn+2

P
(2)
n+1 =

WF ′n+1

(Fn+1)2
P

(2)
n−3 = − WF ′n

Fn−2Fn−3

.

(B.19)

The remaining equations, however, are less straight forward. We first need to look at

the pair (B.15) and (B.16) in order to find P
(1)
n−1 and ω

(2)
n . Firstly, eliminating P

(1)
n−1

gives

ω(2)
n =

1

F ′nF ′n−1

(
F ′n

2Fn−2

−
F ′′n−1

4F ′n−1

+
F ′n−1

2Fn+1

− F
′′
n

4F ′n

)
(B.20)

then substituting this into (B.15) gives us

P
(1)
n−1 =

1

F ′n−1

(
F ′n−1

2Fn+1

− F ′n
2Fn−2

+
F ′′n−1

4F ′n−1

− F
′′
n

4F ′n

)
=

1

F ′n−1

G (B.21)

where we have introduced the symbol G for the sake of clarity. Now that we have
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P
(1)
n−1 we can substitute this into (B.17) to complete the solution

P
(2)
n−2 = −

P
(1)
n−1

Fn−2

−
F ′n−2

(Fn−2)2F ′n−1

= − 1

F ′n−1Fn−2

(
F ′n−2

Fn−2

+ G
)
. (B.22)

Substituting the coefficients (B.12), (B.19), (B.20), (B.21) and (B.22) into (B.11) and

(4.80) completes the solution.
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