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In many of the experimental systems that may host Majorana zero-modes, a socalled chiral
symmetry exists that protects overlapping zero-modes from splitting up. This symmetry is operative
in a superconducting nanowire, when it is narrower than the spin-orbit scattering length, and at
the Dirac point of a superconductor/topological insulator heterostructure. Here we show that chiral
symmetry strongly modifies the dynamical and spectral properties of a chaotic scatterer, even if
it binds only a single zero-mode. These properties are quantified by the Wigner-Smith time-delay
matrix Q = −i~S†dS/dE, the Hermitian energy derivative of the scattering matrix, related to
the density of states by ρ = (2π~)−1 TrQ. We compute the probability distribution of Q and ρ,
dependent on the number ν of Majorana zero-modes, in the chiral ensembles of random-matrix
theory. Chiral symmetry is essential for a significant ν-dependence.

PACS numbers: 73.23.-b, 74.78.Na, 73.63.-b

In classical mechanics the duration τ of a scattering
process can be defined without ambiguity, for example
as the energy derivative of the action. The absence of
a quantum mechanical operator of time complicates the
simple question “by how much is an electron delayed?”
[1, 2]. Since the action, in units of ~, corresponds to the
quantum mechanical phase shift φ, the quantum ana-
logue of the classical definition is τ = ~dφ/dE. In a
multi-channel scattering process, described by an N ×N
unitary scattering matrix S(E), one then has a set of de-
lay times τ1, τ2, . . . τN , defined as the eigenvalues of the
socalled Wigner-Smith matrix

Q = −i~S†(dS/dE). (1)

(For a scalar S = eiφ the single-channel definition is re-
covered.)

This dynamical characterization of quantum scattering
processes goes back to work by Wigner and others [3–5]
in the 1950’s. Developments in the random-matrix the-
ory of chaotic scattering from the 1990’s [6, 7] allowed
for a universal description of the statistics of the de-
lay times τn in an ensemble of chaotic scatterers. The
inverse delay matrix Q−1 turns out to be statistically
equivalent to a socalled Wishart matrix [8]: the Hermi-
tian positive-definite matrix product WW †, with W a
rectangular matrix having independent Gaussian matrix
elements. The corresponding probability distribution of
the inverse delay times γn ≡ 1/τn > 0 (measured in
units of the Heisenberg time τH = 2π~/δ0, with mean
level spacing δ0), takes the form [9, 10]

P ({γn}) ∝
N∏

j>i=1

|γi − γj |β
N∏
k=1

γ
βN/2
k e−βτHγk/2. (2)

The symmetry index β ∈ {1, 2, 4} distinguishes real,
complex, and quaternion Hamiltonians. This connec-
tion between delay-time statistics and the Wishart en-
semble is the dynamical counterpart of the connection

between spectral statistics and the Wigner-Dyson ensem-
ble [11, 12] — discovered several decades later although
the Wishart ensemble [13] is several decades older than
the Wigner-Dyson ensemble.

The delay-time distribution (2) assumes ballistic cou-
pling of the N scattering channels to the outside world.
It has been generalized to coupling via a tunnel barrier
[14, 15], and has been applied to a variety of transport
properties (such as thermopower, low-frequency admit-
tance, charge relaxation resistance) of disordered elec-
tronic quantum dots and chaotic microwave cavities [16–
29]. Because the density of states ρ(E) is directly related
to the Wigner-Smith matrix,

ρ(E) = (2π~)−1 TrQ(E) =
∑
n(2π~γn)−1, (3)

the delay-time distribution also provides information on
the degree to which levels are broadened by coupling to
a continuum.

The discovery of topological insulators and supercon-
ductors [30, 31] has opened up a new arena of applica-
tions of random-matrix theory [32, 33]. Topologically
nontrivial chaotic scatterers are distinguished by a topo-
logical invariant ν that is either a parity index, ν ∈ Z2,
or a winding number ν ∈ Z. In the spectral statistics,
topologically distinct systems are immediately identified
through the number of zero-modes, a total of |ν| levels
pinned to the middle of the excitation gap [34, 35]. If the
gap is induced by a superconductor, the zero-modes are
Majorana, of equal electron and hole character [36–38].

These developments raise the question how topolog-
ical invariants connect to the Wishart ensemble: How
do Majorana zero-modes affect the dynamics of chaotic
scattering? That is the problem adressed and solved in
this paper, building on two earlier works [39, 40]. In Ref.
39 it was found that a Z2 invariant (only particle-hole
symmetry, symmetry class D in the Altland-Zirnbauer
classification [41]) has no effect on the delay-time distri-
bution for ideal (ballistic) coupling to the scatterer: The
distribution is the same with or without an unpaired Ma-
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jorana zero-mode in the spectrum. Here we show that the
Z invariant of |ν|-fold degenerate Majorana zero-modes
does significantly affect the delay-time distribution. This
is symmetry class BDI, with particle-hole symmetry as
well as chiral symmetry [42, 43]. Chiral symmetry with-
out particle-hole symmetry, symmetry class AIII, was
considered in Ref. 40 for a scalar S = eiφ, with a sin-
gle delay time τ = ~dφ/dE. While our interest here is
in Majorana modes, for which particle-hole symmetry is
essential, our general results include a multi-channel gen-
eralization of Ref. 40.

Majorana zero-modes are being pursued in either two-
dimensional (2D) or one-dimensional (1D) systems [36,
37, 44, 45]. In the former geometry the zero-modes are
bound to a magnetic vortex core, in the latter geometry
they appear at the end point of a nanowire. Particle-hole
symmetry by itself can only protect a single zero-mode,
so even though the Majoranas always come in pairs, they
have to be widely separated. The significance of chiral
symmetry is that it provides additional protection for
multiple overlapping Majorana zero-modes [46–49]. The
origin of the chiral symmetry is different in the 1D and
2D geometries.

By definition, chiral symmetry means that the Hamil-
tonian H anticommutes with a unitary operator. The 1D
realization of chiral symmetry relies on the fact that the
Rashba Hamiltonian of a nanowire in a parallel magnetic
field is real — if its width W is well below the spin-orbit
scattering length. Particle-hole symmetry H = −τxH∗τx
then implies that H anticommutes with the Pauli matrix
τx that switches electrons and holes. It follows that a
nanowire with W . lso (the typical regime of operation)
is in the BDI symmetry class and supports multiple de-
generate Majorana zero-modes at its end [50–52].

The Andreev billiard of Fig. 1 illustrates a 2D realiza-
tion on the surface of a topological insulator. The mass-
less Dirac fermions on the surface have a chiral symmetry
at the charge-neutrality point (the Dirac point), because
the 2D Dirac Hamiltonian

H0 = v(px − eAx)σx + v(py − eAy)σy (4)

anticommutes with the Pauli spin-matrix σz. The cou-
pling to a superconducting pair potential ∆ introduces
particle-hole symmetry without breaking the chiral sym-
metry, since the Bogoliubov-De Gennes Hamiltonian

H =

(
H0 − µ −iσy∆
iσy∆∗ µ−H∗0

)
(5)

still anticommutes with σz for µ = 0.
Therefore, overlapping Majorana zero-modes in a su-

perconductor/topological insulator heterostructure (the
Fu-Kane model [53]) will not split when the chemical po-
tential is tuned to within a Thouless energy Nδ0 from the
Dirac point [54–56]. In this 2D geometry one needs ran-
dom scattering by disorder to produce a finite density
of states at E = 0, but in order to preserve the chiral
symmetry the disorder cannot be electrostatic (V must

FIG. 1: Andreev billiard on the conducting surface of a
three-dimensional topological insulator in a magnetic field.
The winding number ν of the superconducting order param-
eter around the billiard is associated with |ν| Majorana zero-
modes, that affect the quantum delay time when the Fermi
level lines up with the Dirac point (red dot) of the conical
band structure.

remain zero). Scattering by a random vector potential
is one possibility [57, 58], or alternatively scattering by
random surface deformations [59–61]. To be definite, we
will refer to the 2D Andreev billiard geometry in the fol-
lowing, but our results apply as well to 1D nanowires
[62].

The unitary scattering matrix S(E) of the Andreev
billiard is obtained from the Green’s function G(E) =
K(E −H)−1K† via

S(E) = [1− iπG(E)][1 + iπG(E)]−1. (6)

The matrix K describes the coupling of the quasibound
states inside the billiard to the continuum outside via 2N
scattering channels [63]. We assume that K commutes
with σz so as not to spoil the chiral symmetry of the
Green’s function and scattering matrix,

σzG(E) = −G(−E)σz ⇒ σzS(E) = S†(−E)σz. (7)

It follows that the matrix product S0 = σzS(0) is both
Hermitian and unitary, so its eigenvalues can only be +1
or −1. There are N ± ν0 eigenvalues equal to ±1, where
the socalled matrix signature ν0 is determined by the
number of Majorana zero-modes [64]:

ν0 = 1
2 TrS0 =

{
ν if |ν| ≤ N,
N (sign ν) if |ν| ≥ N.

. (8)

At the Fermi level, the time-delay matrix (1) depends
on S0 and on the first-order energy variation, σzS(E) =
S0 · [1 + iES1 + O(E2)]. Unitarity requires that S1 is
Hermitian and the chiral symmetry (7) then implies that
S1 commutes with S0. Since Q(0) ≡ Q0 = ~S1, the
same applies to the time-delay matrix at the Fermi level:
S0Q0 = Q0S0. This implies the block structure

S0 = U0

(
11N+ 0

0 −11N−

)
U†0 , Q0 = U0

(
Q+ 0
0 Q−

)
U†0 ,

(9)
with 11n the n × n unit matrix, U0 a 2N × 2N unitary
matrix, and Q± a pair of N± × N± Hermitian matri-
ces. There are therefore two sets of delay times τ±n ,
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n = 1, 2, . . . N±, corresponding to an eigenvalue ±1 of
S0.

After these preparations we can now state our central
result: For ballistic coupling the two matrices Q−1+ and

Q−1− are statistically independent, each described by its
own Wishart ensemble [65] and eigenvalue distribution
P± of γ±n = 1/τ±n given by

P±({γ±n }) ∝
N±∏

j>i=1

|γ±i − γ
±
j |
β

N±∏
k=1

(γ±k )β/2−1e−βτHγ
±
k /4

× (γ±k )(β/2)|±ν−N |, (10)

with symmetry index β = 1 for the class BDI Hamilto-
nian (5). The distribution (10) holds also for |ν| ≥ N ,
when the scattering matrix signature (8) is saturated. In
that case a single Wishart ensemble remains for all 2N
delay times, with distribution

P ({γn}) ∝
2N∏

j>i=1

|γi − γj |β
2N∏
k=1

γ
β/2−1
k e−βτHγk/4

× γ(β/2)(|ν|−N)
k , |ν| ≥ N. (11)

The derivation of Eq. (10) starts from the Gaussian
ensemble for Hamiltonians with chiral symmetry [8, 43],

H =

(
0 A
A† 0

)
, P (A) ∝ exp

(
− βπ2

8δ20N
TrAA†

)
. (12)

The rectangular matrix A has dimensions N × (N + ν),
so H has |ν| eigenvalues pinned to zero. The matrix
elements of A are real (β = 1, symmetry class BDI, chiral
orthogonal ensemble), complex (β = 2, class AIII, chiral
unitary ensemble) or quaternion (β = 4, class CII, chiral
symplectic ensemble).

The coupling matrix K = K1⊕K2 is composed of two
rectangular blocks of dimensions N×N and N×(N+ν),
having nonzero matrix elements

(K1)nn = (K2)nn = κn, n = 1, 2, . . . N, (13)

with κn =
√

2N δ0/π2 ≡ κ0 for ballistic coupling. These
matrices determine the time-delay matrix (1) via Eq. (6).
At the Fermi level one has

Q0 = 2π~ΩΩ†, Ω = K(H + iπK†K)−1. (14)

We seek the distribution of Q0 given the Gaussian distri-
bution of H, in the limit N →∞ at fixed ν.

The corresponding problem in the absence of chiral
symmetry was solved [9, 39] by using the unitary in-
variance of the distribution to perform the calculation
in the limit S → −1, when a major simplification occurs.
Here this would only work in the topologically trivial
case ν0 = 0 [66], so a different approach is needed. We
would like to exploit the block decomposition (12) of the
Hamiltonian, but this decomposition is lost in Eq. (14).

Unitary invariance does allow us to directly
obtain the distribution of the eigenvectors of

Q± = U± diag (τ±1 , τ
±
2 , . . .)U

†
±. From the invariance

P (S0, Q0) = P (V S0V
†, V Q0V

†) under joint unitary
transformations of S0 and Q0 we conclude that the
matrices of eigenvectors U0, U+, U− are all independent
and uniformly distributed in the unitary group (for
β = 2, and in the orthogonal or symplectic subgroups
for β = 1 or β = 4).

The “trick” that allows us to obtain the eigenvalue
distribution is to note that Q̃0 = 2π~Ω†Ω has the same
nonzero eigenvalues as Q0 — but unlike Q0 it is block-
diagonal:

Q̃0 = 2π~
(

Λ−1− 0
0 Λ−1+

)
, (15a)

Λ− = π2K†1K1 +A(K†2K2 + ε)−1A†, (15b)

Λ+ = π2K†2K2 +A†(K†1K1 + ε)−1A. (15c)

The infinitesimal ε is introduced to regularize the in-
version of the singular matrices K†nKn = κ20Pn, where
(Pn)ij = 1 if 1 ≤ i = j ≤ N and zero otherwise. In the
limit ε → 0 some eigenvalues of Λ± diverge, while the
others converge to the inverse delay times γ±n .

The calculation of the eigenvalues of Λ± in the ε → 0
limit is now a matter of perturbation theory [67]. This is
a degenerate perturbation expansion in the null space
of A(11N+ν − P2)A† for Λ+ and in the null space of
A†(11N − P1)A for Λ−. The small perturbation (an or-
der ε smaller than the leading order term) is π2κ20P1 +
κ−20 AP2A† and π2κ20P2 + κ−20 A†P1A, for Λ+ and Λ−
respectively. The Gaussian distribution (12) of the ma-
trix elements of A results in the eigenvalue distributions
P ({γn}) = P+({γ+n })P−({γ−n }) given by Eq. (10).

To test our analysis, we have numerically generated
random matrices from the chiral Gaussian ensemble, on
the one hand, and from the Wishart ensemble, on the
other hand, and compared the resulting time delay ma-
trices. We find excellent agreement of the delay-time
statistics for all three values of the symmetry index
β ∈ {1, 2, 4}, representative plots for β = 1 are shown
in Fig. 2.

In view of Eq. (3) we can directly apply the delay-
time distribution to determine the density ρ(E) of quasi-
bound states in the Andreev billiard. This is the density
of states in the continuous spectrum. For |ν| > N the
full density of states contains additionally a contribution
(|ν| −N)δ(E) from the discrete spectrum of zero-modes
that are not coupled to the continuum [68].

The probability distribution of the Fermi-level density
of states ρ0 = ρ(0) follows upon integration of Eq. (10).
The ensemble average 〈ρ0〉 has a closed-form expression
[67],

δ0〈ρ0〉 =

{
N(N+1−2/β)+ν2

(N+1−2/β)2−ν2 , if |ν| < N + 1− 2/β,
N

|ν|−N+1−2/β , if |ν| > N − 1 + 2/β.

(16)
For β = 1, |ν| ∈ {N,N ± 1} and for β = 2, |ν| = N
the average of ρ0 diverges. (There is no divergency for



4

FIG. 2: Probability distributions in symmetry class BDI
(β = 1) of the n-th inverse delay time γn, ordered from
small to large: 0 < γ1 < γ2 · · · < γ2N , with N = 4. The
various plots are for different numbers ν = 0, 1, 2, . . . 6 of
Majorana zero-modes. The black histograms of the chiral
Gaussian ensemble (12) (calculated for N = 80) are almost
indistinguishable from the the red histograms of the Wishart
ensemble, validating our theory. The divergent peak of P (γ1)
for ν = 3, 4, 5 is responsible for the divergence of the average
density of states (3) when the number of zero-modes differs
by less than two units from the number of channels.

FIG. 3: Probability distribution of the Fermi-level density of
states, calculated from Eqs. (17) and (18) in symmetry class
D (only particle-hole symmetry) and class BDI (particle-hole
with chiral symmetry). In class D there is no dependence on
the presence or absence of Majorana zero-modes [39], while
in class BDI there is.

β = 4.) Notice that the |ν| − N uncoupled zero-modes
still affect the density of states coupled to the continuum,
because they repel the quasi-bound states away from the
Fermi level.

As a concrete example we return to the Andreev bil-
liard at the surface of a topological insulator of Fig. 1, and
contrast the delay-time distribution at the Dirac point
[chemical potential µ = 0 in the Hamiltonian (5)] and
away from the Dirac point (µ � Nδ0). Away from the
Dirac point the symmetry class is D (only particle-hole
symmetry), while at the Dirac point the additional chiral
symmetry promotes the system to class BDI. To simplify
the comparison between these two cases we take a point
contact with one electron and one hole mode (N = 1).
The scattering matrix has dimension 2× 2 and there are
two delay times τ1, τ2.

The class-D distribution is independent of the presence
or absence of Majorana zero-modes [39],

PD(τ1, τ2) ∝ (τ1τ2)−3|τ1 − τ2|e−(τH/2)(1/τ1+1/τ2). (17)

In contrast, the class-BDI distribution (10) is sensitive to
the number |ν| of Majorana zero-modes,

PBDI(τ1, τ2) ∝ e−(τH/4)(1/τ1+1/τ2)

×

{
(τ1τ2)−2 for ν = 0,

(τ1τ2)−2−|ν|/2|τ1 − τ2| for |ν| ≥ 1.
(18)

The corresponding probability distributions of the Fermi-
level density of states ρ0 = τ1/δ0 + τ2/δ0 are plotted in
Fig. 3. Chiral symmetry has a strong effect even for
unpaired Majorana zero-modes: While away from the
Dirac point (class D) the distribution P (ρ0) is the same
for ν = 0, 1, at the Dirac point (class BDI) these two
distributions are significantly different.

In conclusion, this paper presents the solution to a
long-standing problem in the theory of chaotic scatter-
ing: the effect of chiral symmetry on the statistics of
the Wigner-Smith time-delay matrix Q. The solution
completes a line of investigation in random-matrix the-
ory started six decades ago [11, 12], by establishing the
connection between Q and Wishart matrices for the chi-
ral counterparts of the Wigner-Dyson ensembles [42, 43].
The solution predicts an effect of Majorana zero-modes
on the quantum delay-times for chaotic scattering, with
significant consequences for the density of states (Fig.
3). Because the experimental search for Majorana zero-
modes operates on 1D and 2D systems with chiral sym-
metry, the general and exact results obtained here are
likely to provide a reliable starting point for more de-
tailed investigations.
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dation for Fundamental Research on Matter (FOM),
the Netherlands Organization for Scientific Research
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[23] S. E. Nigg and M. Büttiker, Phys. Rev. B 77, 085312
(2008)

[24] C. Texier and S. N. Majumdar, Phys. Rev. Lett. 110,
250602 (2013).

[25] A. Abbout, G. Fleury, J.-L. Pichard, and K. Muttalib,
Phys. Rev. B 87, 115147 (2013).

[26] F. Mezzadri and N. J. Simm, Comm. Math. Phys 324,
465 (2013).

[27] J. Kuipers, D. V. Savin, and M. Sieber, New J. Phys. 16,
123018 (2014).

[28] A. Grabsch and C. Texier, arXiv:1407:3302.
[29] F. D. Cunden, arXiv:1412:2172.
[30] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[31] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057

(2011).
[32] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Lud-

wig, New J. Phys. 12, 065010 (2010).
[33] C. W. J. Beenakker, submitted to Rev. Mod. Phys.

[arXiv:1407.2131].
[34] M. Bocquet, D. Serban, and M. R. Zirnbauer, Nucl. Phys.

B 578, 628 (2000).

[35] D. A. Ivanov, J. Math. Phys. 43, 126 (2002); arXiv:cond-
mat/0103089.

[36] J. Alicea, Rep. Progr. Phys. 75, 076501 (2012).
[37] C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113

(2013).
[38] S. R. Elliott and M. Franz, to be published in Rev. Mod.

Phys. [arXiv:1403.4976].
[39] M. Marciani, P. W. Brouwer, C. W. J. Beenakker, Phys.

Rev. B 90, 045403 (2014).
[40] Y. V. Fyodorov and A. Ossipov, Phys. Rev. Lett. 92,

084103 (2004).
[41] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
[42] J. J. M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 70,

3852 (1993).
[43] J. J. M. Verbaarschot and T. Wettig, Ann. Rev. Nucl.

Part. Sci. 50, 343 (2000).
[44] M. Leijnse and K. Flensberg, Semicond. Science Techn.

27, 124003 (2012).
[45] T. D. Stanescu and S. Tewari, J. Phys. Cond. Matt. 25,

233201 (2013).
[46] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509

(2010); 83, 075103 (2011).
[47] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B

83, 075102 (2011).
[48] S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gu-

rarie, Phys. Rev. B 86, 205119 (2012).
[49] D. Meidan, A. Romito, and P. W. Brouwer, Phys. Rev.

Lett. 113, 057003 (2014).
[50] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408

(2012).
[51] M. Diez, J. P. Dahlhaus, M. Wimmer, and C. W. J.

Beenakker, Phys. Rev. B 86, 094501 (2012).
[52] H.-Y. Hui, P. M. R. Brydon, J. D. Sau, S. Tewari, and

S. Das Sarma, arXiv:1407.7519.
[53] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407

(2008).
[54] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma,

Phys. Rev. B 82, 094504 (2010).
[55] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120

(2010).
[56] C.-K. Chiu, D. I. Pikulin, and M. Franz, arXiv:1411.5802.
[57] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G.

Grinstein, Phys. Rev. B 50, 7526 (1994).
[58] O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B

65, 064206 (2002).
[59] D.-H. Lee, Phys. Rev. Lett. 103, 196804 (2009).
[60] J. P. Dahlhaus, C.-Y. Hou, A. R. Akhmerov, and C. W.

J. Beenakker, Phys. Rev. B 82, 085312 (2010).
[61] V. Parente, P. Lucignano, P. Vitale, A. Tagliacozzo, and

F. Guinea, Phys. Rev. B 83, 075424 (2011).
[62] According to the “ten-fold way” classification of topolog-

ical states of matter [30–32, 41], class BDI is nontrivial
in 1D but not in 2D. To reconcile this with the 2D re-
alization of Fig. 1, we refer to the analysis of Teo and
Kane [55], who showed that the effective dimensionality
for a topological defect is d− d′, where d = 2, d′ = 1 for
a vortex on the surface of a topological insulator. More
generally, d is the dimensionality of the Brillouin zone
and d′ is the dimensionality of a contour that encloses
the defect.

[63] The number 2N of scattering channels includes a factor
of 2 from the electron-hole degree of freedom. For β = 4
each scattering channel (and hence each delay time τn)



6

has a twofold Kramers degeneracy from the spin degree
of freedom, while for β = 1, 2 the spin degree of freedom
is counted separately in N . The mean level spacing δ0
refers to distinct levels in the bulk of the spectrum (away
from E = 0), including electron-hole and spin degrees of
freedom but not counting degeneracies.

[64] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J.
Beenakker, Phys. Rev. B 83, 155429 (2011).

[65] The Laguerre distributions (10) and (11) are the eigen-
value distributions of a Wishart matrix WW † when W
has dimension (N ± ν)× 2N for |ν| < N and dimension
2N × (N + |ν|) for |ν| ≥ N .

[66] This complication was explained to us by P. W. Brouwer.
[67] For details of the calculation, see the Supplemental Ma-

terial.
[68] The |ν| − N uncoupled zero-modes in the Andreev bil-

liard, not broadened by the 2N scattering channels into
the continuum, span the null-space of H + iπK†K. For
|ν| ≤ N all zero-modes are broadened by coupling to the
continuum.



1

Supplemental material for Effect of Chiral Symmetry on Chaotic Scattering from Majorana Zero
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APPENDIX A: DETAILS OF THE CALCULATION OF THE WIGNER-SMITH TIME-DELAY
DISTRIBUTION IN THE CHIRAL ENSEMBLES

1. Wishart matrix preliminaries

Wishart matrices originate from multivariate statistics
[13]. We collect some formulas we need [8].

The Hermitian positive definite matrix WW † is called
a Wishart matrix if the n×m (m ≥ n) rectangular matrix
W has real (β = 1), complex (β = 2), or quaternion (β =
4) matrix elements with a Gaussian distribution. For unit
covariance matrix, 〈WijW

∗
i′j′〉 = δii′δjj′ , the distribution

reads

P (W ) ∝ exp
(
− 1

2β TrWW †
)
. (A1)

The eigenvalues of WW † have the probability distribu-
tion

P (λ1, λ2, . . . λn) ∝
n∏

j>i=1

|λi − λj |β

×
n∏
k=1

λ
β/2−1
k λ

β(m−n)/2
k e−βλk/2, λk > 0. (A2)

The distribution (A2) is called Wishart distribution, or
Laguerre distribution because of its connection with La-
guerre polynomials.

2. Degenerate perturbation theory

We seek the eigenvalue distribution of the 2N × 2N -
dimensional Wigner-Smith time-delay matrix

Q0 = −i~S† dS
dE

= 2π~ΩΩ†, Ω = K(H + iπK†K)−1.

(A3)
As explained in the main text, the key step that allows
us to make progress is to invert the order of Ω and Ω†,
and to consider a larger matrix that is block-diagonal:

Q̃0 = 2π~Ω†Ω = 2π~(Λ−1− ⊕ Λ−1+ ), (A4a)

Λ− =π2K†1K1 +A(K†2K2 + ε)−1A†, (A4b)

Λ+ =π2K†2K2 +A†(K†1K1 + ε)−1A. (A4c)

In this way we can separate the chirality sectors from the
very beginning, which is a major simplification.

The two matrices Q0 and Q̃0 have the same set of
nonzero eigenvalues, and Q̃0 has an additional set of
eigenvalues that are identically zero. The corresponding
diverging eigenvalues of Λ± need to be separated from the

finite eigenvalues that determine the inverse delay times
γ±n . We assume |ν| ≤ N and handle the case |ν| > N at
the end.

To simplify the notation we scale the chiral blocks in
the Hamiltonian (12) as A = (2N δ0/π)a, where a has
the Gaussian distribution

P (a) ∝ exp
(
− 1

2βN Tr aa†
)
. (A5)

We scale the coupling matrix as Ki = (2N δ0/π2)1/2Pi.
The rank-N projector onto the open channels in chirality
sector i = 1, 2 is PT

i Pi, with PiP
T
i = 11N .

To access the finite eigenvalues of Λ±, we need to per-
form degenerate perturbation theory in the null spaces
of

Λ
(0)
− = a(11N+ν − PT

2 P2)a†, Λ
(0)
+ = a†(11N − PT

1 P1)a,
(A6)

with perturbation

δΛ− = 2N δ0(PT
1 P1 + aPT

2 P2a
†),

δΛ+ = 2N δ0(PT
2 P2 + a†PT

1 P1a).
(A7)

The null space of Λ
(0)
± has rank N± = N ± ν ≥ 0.

To project onto this null space we make an eigenvalue
decomposition,

Λ
(0)
− = u−s−u

†
−, Λ

(0)
+ = u+s+u

†
+. (A8)

The matrix u± is unitary and s± is a diagonal matrix
with nonnegative entries in descending order. The last
N± = N ± ν entries on the diagonal of s± vanish, so the
projector p± onto the null space consists of the last N±
columns of u±. The dimensionalities of p+ and p− are
(N +ν)×N+ and N ×N−, respectively. For later use we

note that the null space condition p†±Λ
(0)
± = 0 = Λ

(0)
± p±

requires that

PT
2 P2a

†p− = a†p−, PT
1 P1ap+ = ap+. (A9)

The N± finite eigenvalues of Λ± are the eigenvalues of

the projected perturbation p†±δΛ±p±, which we decom-
pose as

p†±δΛ±p± = 2N δ0(X±X
†
± + Y±Y

†
±), (A10)

X− = p†−P
T
1 , X+ = p†+P

T
2 ,

Y− = p†−aP
T
2 , Y+ = p†+a

†PT
1 .

(A11)

The dimensionality of X± and Y± is N± ×N . The null
space condition (A9) implies the constraint

X−Y
†
+ = Y−X

†
+. (A12)
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It is helpful to rescale and combineX±, Y± into a single
matrix W± of dimension N± × 2N ,

W+ =

√
N δ0
π~

(
X+, Y+

)
, W− =

√
N δ0
π~

(
−Y−, X−

)
.

(A13)

The eigenvalues of W±W
†
± equal the inverse delay times

γ±n and the constraint (A12) now reads

W−W
†
+ = 0. (A14)

Considering first the marginal distributions P±(W±)
of W+ and W− separately, we see that these matrices are
constructed from rank-N sub-blocks taken from rank-N
random unitary matrices u± and Gaussian matrices a. In
the limit N → ∞ at fixed N the marginal distributions
of W± tend to a Gaussian,

P±(W±) ∝ exp

(
−βπ~

2δ0
TrW±W

†
±

)
. (A15)

In view of Eq. (A2), the eigenvalues of W±W
†
± then have

marginal distributions P±({γ±n }) of the Wishart form
(10).

It remains to show that the two sets of eigenvalues γ+n
and γ−n have independent distributions, so that

P ({γ±n }) = P+({γ+n })P−({γ−n }). (A16)

The two matrices W+ and W− are not independent, be-
cause of the constraint (A14). To see that this constraint
has no effect on the eigenvalue distributions, we make the
singular value decomposition

W± = ω±

(
diag

(√
γ±n

)
, ∅N±,(2N−N±)

)
Ω†±. (A17)

The unitary matrices ω± and Ω± have dimension N± ×
N± and 2N × 2N , respectively, and ∅n,m is the n × m
null matrix. The constraint (A14) is now expressed ex-
clusively in terms of the matrices Ω± — the first N−
columns of Ω− have to be orthogonal to the first N+

columns of Ω+. The matrix products

W±W
†
± = ω± diag (γ±n )ω†± (A18)

thus have independent Wishart distributions.
All of this is for |ν| ≤ N . The extension to |ν| > N goes

as follows. For ν > N one has N− = 0, so we deal only
with a single set of delay times, obtained as the N+ = 2N

eigenvalues of the Wishart matrix W †+W+. (We have

inverted the order, because W+W
†
+ has a spurious set

of ν vanishing eigenvalues, representing zero-modes that
are uncoupled to the continuum.) Similarly, for ν < −N
one has N+ = 0 and the delay times are the N− = 2N

eigenvalues of the Wishart matrix W †−W−. The resulting
eigenvalue distribution is Eq. (11).

FIG. 4: Probability distributions in symmetry class BDI (β =
1), class AIII (β = 2), and class CII (β = 4) of the n-th inverse
delay time γn, ordered from small to large: 0 < γ1 < γ2 · · · <
γ2N , with N = 4. All plots are for ν = 2 Majorana zero-
modes. The black histograms of the chiral Gaussian ensemble
(12) (calculated with N = 80 for β = 1, 2 and N = 120 for
β = 4) are almost indistinguishable from the red histograms
of the Wishart ensemble. In each panel the inset shows the
corresponding probability distribution of the density of states
ρ0 =

∑
n(2π~γn)−1.

3. Numerical test

We have performed extensive numerical simulations to
test our analytical result of two independent Wishart dis-
tributions for the inverse delay times, comparing with a
direct calculation using the Gaussian ensemble of ran-
dom Hamiltonians. Some results for β = 1, symmetry
class BDI are show in the main text (Fig. 2), some more
results for all three chiral symmetry classes are shown
in Fig. 4. The quality of the agreement (the two sets of
histograms are almost indistinguishable) convinces us of
the validity of our analysis.
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4. Generalization to unbalanced coupling

The results in Appendix A 2 pertain to the case of an
equal number N1 = N2 = N of channels coupling to
each chiral sector. This is the appropriate case in the
context of superconductivity, where the chirality refers
to the electron and hole degrees of freedom — which are
balanced under most circumstances. In other contexts,
in particular when the chirality refers to a sublattice de-
gree of freedom, the coupling may be unbalanced. We
generalize our results to that case.

When N1 = N2 + δN Eq. (8) for the topological in-
variant should be replaced by

ν0 = 1
2 TrS0 = max

[
− 1

2Ntot,min
(
ν + 1

2δN,
1
2Ntot

)]
.

(A19)
The unitary and Hermitian matrix S0 has dimension
2Ntot × 2Ntot, with Ntot = N1 + N2. When Ntot is odd
the number ν0 is half-integer. The winding number ν is
always an integer.

Because S0 stills commutes with the time-delay matrix
Q0 we still have two sets of inverse delay times γ±n , asso-
ciated to the N± = Ntot/2 ± ν0 eigenvalues of S0 equal
to ±1. The two sets again have independent Wishart
distributions,

P±({γ±n }) ∝
N±∏

j>i=1

|γ±i − γ
±
j |
β

N±∏
k=1

(γ±k )β/2−1e−βτHγ
±
k /4

× (γ±k )(β/4)|Ntot∓δN∓2ν|. (A20)

This formula also applies to the saturation regime |2ν +
δN | > Ntot, where either N+ or N− vanishes and only
one set of delay times remains. In this regime the system
has an additional |ν + δN/2| − Ntot/2 zero-modes that
are not coupled to the continuum.

We can use Eq. (A20) to make contact with the “single-
site limit” N1 = 1, N2 = 0 studied by Fyodorov and Os-
sipov [40]. We distinguish positive and negative winding
number ν. For ν ≥ 0 one has ν0 = 1/2, N+ = 1, N− = 0.
The single delay time τ ≡ 1/γ+1 has distribution

P (τ) ∝ τ−(β/2)(1+ν)−1e−βτH/4τ , ν ≥ 0, (A21)

in agreement with Ref. [40] for β = 2. There are then ν
zero-modes not coupled to the continuum.

For negative ν (or equivalently, positive ν with N1 = 0,
N2 = 1) Ref. [40] argues that all delay times diverge, but
instead we do find one finite τ ≡ 1/γ−1 with distribution

P (τ) ∝ τ (β/2)ν−1e−βτH/4τ , ν ≤ −1, (A22)

accompanied by |ν| − 1 zero-modes not coupled to the
continuum.

5. Calculation of the average density of states

The formula (16) for the ensemble averaged density of
states results upon integration of

2π~δ0〈ρ0〉 =

∫ ∞
0

dγ+1 · · ·
∫ ∞
0

dγ+N+
P+({γ+n })

N+∑
n=1

1

γ+n

+

∫ ∞
0

dγ−1 · · ·
∫ ∞
0

dγ−N−P−({γ−n })
N−∑
n=1

1

γ−n
, (A23)

with probability distributions P± given by Eq. (10).
These integrals can be carried out in closed form, as fol-
lows.

We need to evaluate an expression of the form

I =
1

C

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

N∏
j>i=1

|γi−γj |β
(

N∑
n=1

1

γn

)
,

(A24)
with normalization integral

C =

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

N∏
j>i=1

|γi − γj |β . (A25)

For a finite answer we need an exponent p > 0.

We substitute γp−1k = p−1dγpk/dγk and perform a par-
tial integration,

I =
1

pC

N∏
k=1

∫ ∞
0

dγk e
−βτHγk/4

N∏
j>i=1

|γi − γj |β

×

(
N∑
n=1

d

dγn

)
N∏
k′=1

γpk′ (A26)

=
βNτH

4p
− 1

pC

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

×

(
N∑
n=1

d

dγn

)
N∏

j>i=1

|γi − γj |β

=
βNτH

4p
, (A27)

because (
N∑
n=1

d

dγn

)
N∏

j>i=1

|γi − γj |β = 0. (A28)


