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ABSTRACT

Experiments show that the amplitude of turbulent pulsation in submerged jets rises with increasing distance
from the nozzle, at first slowly and then, after a certain distance, rapidly. This dependence on distance from the
nozzle closely resembles the dependence of an order parameter on temperature in the case of a second-order phase
transition. Following an idea introduced by Landa and Zaikin in 1996, it is suggested that the onset of turbulence
is a noise-induced phase transition similar to that in a pendulum with a randomly vibrated suspension axis. The
Krylov-Bogolyubov asymptotic method is used to provide an approximate description of the transition. Results
obtained in this way are shown to coincide closely with experimental data. Such an approach is appropriate
because the convective character of the instability means that turbulence in nonclosed flows cannot be a self-
oscillatory process, as is often assumed. Rather, it must originate in the external random disturbances that are
always present in real flows.
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1. INTRODUCTION

It is well known that fluid flow in channels is laminar for small flow velocities and turbulent for large flow
velocities.1 The problem of how turbulence originates has long attracted the considerable attention of researchers.
Different scientists responded to this question in different ways. For example, Landau considered the development
of turbulence as the excitation of self-oscillations, and he wrote a phenomenological equation similar to the
truncated van der Pol equation for the amplitude of self-oscillations in a vacuum tube generator, commenting:2

“With further increase of the Reynolds number new periods appear sequentially. As for the newly appeared
motions, they have increasingly small scales”. As a result, multi-frequency self-oscillations with incommensurate
frequencies, i.e. quasi-periodic motion, must set in. Associated with these self-oscillations, there would have
to be an attractor in the form of a multi-dimensional torus in the system phase space. Over a wide range
of frequencies such quasi-periodic self-oscillations differ little in appearance from chaotic ones, which is why
developed turbulence is perceived as a random process.

In the 1970s, after the discovery of deterministic chaos and the realization that a multi-dimensional torus
is unstable,3 the Landau theory became open to question, but the conception of self-oscillations was retained.
The difference lay only in that, instead of quasi-periodic self-oscillations, they became spoken of as chaotic ones.
Thus, according to these new ideas, the onset of turbulence is the sudden birth of a strange attractor in the
phase space of certain dynamical variables.4 We note that similar ideas were repeatedly expressed by Russian
scientist Neimark.5

We suggest, however, that turbulence arising in nonclosed fluid flows is not a self-oscillatory process. It is
known that the instability of such flows is of a convective character, rather than being absolute. This means that
a disturbance arising at some point of the flow will not increase indefinitely with time, but will drift downstream.
It follows from this property of convectively unstable systems that they are not self-oscillatory, although they
are amplifiers of disturbances. For such a system to become self-oscillatory, global feedback must be introduced,
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Figure 1. Results of a numerical experiment on pipe flow. Instantaneous distributions of the longitudinal velocity com-
ponent u in a steady regime for A/u0 = 0.04 are shown: a along the pipe axis (r/R = 0.02) and b near the pipe wall
(r/R = 0.93). After N.V. Nikotin.8

e.g. by closing the system in a ring. It should be noted that, in essence, this is exactly what occurs in the
process of numerical simulation with periodic boundary conditions. Disturbances are necessarily present in all
real systems, both from external sources (environmental fluctuations) and as a result of the molecular structure
of a substance (inherent fluctuations). The disturbances can be included as external forces in the equations
describing the system behavior. Klimontovich used the fluctuation-dissipation theorem to calculate6 the forces
caused by the natural fluctuations in hydrodynamic flows. In jet flows the presence of fluctuations, especially
at the input, is crucial because they are precisely what lead eventually to the turbulent disturbances observed.
It follows from this that an approach to turbulence within the framework of (deterministic) dynamical systems
theory is not always appropriate.

2. FLUID FLOW IN A CIRCULAR PIPE

One piece of evidence suggesting that turbulence is not a self-oscillatory process comes from the numerical
experiments of Nikitin.7, 8 He simulated fluid flow in a circular pipe of a finite length and radius R with a given
velocity at the input cross-section, and with so-called ‘soft’ boundary conditions at the output cross-section;
these latter are

∂2u

∂x2
=

∂2ξ

∂x2
=

∂2η

∂x2
= 0, (1)

where u is the longitudinal velocity component, ξ and η are the radial and angular components of vorticity
Ω = curlu, where u = {u, v, w} is the flow velocity vector in cylindrical coordinates x, r and θ. Under these
conditions a reflected wave apparently does not appear, or is very weak.

At the input cross-section of the pipe the longitudinal velocity component was assumed to take to the form
of a Poiseuille profile u0(1− r2/R2), weakly disturbed by a harmonic force at the frequency ω = 0.36u0/R, i.e.,
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r2

R2

)
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(
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)

cos θ,

(2)
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(
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)

cos θ, w = ARe
(

w′(r)e−iωt

)

sin θ,

where u′(r), v′(r) and w′(r) are the components of the Orr–Sommerfeld vector-eigenfunction at frequency ω, R
is the pipe radius, and A is the disturbance amplitude. The velocity u0 and the pipe radius R were set such that
the Reynolds number Re was equal to 4000. As the amplitude A exceeded a certain critical value (A ≥ Acr),



Figure 2. Results of numerical experiments on pipe flow. View of the turbulent velocity pulsations (a) with periodic
boundary conditions and (b) with the boundary conditions (1), (2). After N.V. Nikotin.7

random high-frequency pulsations appeared in the flow after a short time interval. They occupied all the lower
part of the pipe from x = x0, where x0 depended only weakly on the distance r from the pipe axis. It turned out
that the value of x0 decreased as A became larger. The appearance of turbulent pulsations was accompanied by
corresponding deformation of the profile of the longitudinal constituent of the mean velocity: at the pipe axis
the mean velocity decreased, whereas near the pipe wall it increased. The instantaneous distributions of the
longitudinal velocity component in a steady regime for A/u0 = 0.04 are shown in Fig. 1. We note that a similar
deformation of the mean velocity profile with increasing turbulent pulsations occurs in jet flows as well.

As the amplitude A gradually decreased, the turbulent region drifted progressively downstream and disap-
peared at a certain value of A. It is known9 that Poiseuille flow in a circular pipe, in contrast to that in a
plane channel, possesses the property that laminar flow is stable with respect to small perturbations for any
Reynolds number. However, in the case of sufficiently large Reynolds numbers, such a flow is unstable with
respect to finite perturbations. If an attractor existed corresponding to the turbulent mode, and if the role of
the harmonic disturbance was to lead phase trajectories into the attractor basin, then turbulence should not
disappear following cessation of the harmonic disturbance.

It may be inferred from Fig. 1 that the development of turbulence for A ≥ Acr is associated with a peculiar
phase transition at the point x = x0 induced by an amplification of the noise that is always present in any
numerical experiment owing to rounding errors. The harmonic disturbance plays a dual role. First, it causes
the appearance of instability and, secondly, it initiates the phase transition, much as occurs in a pendulum with
a randomly vibrated suspension axis,10 or in jets under low-frequency acoustic forcing.11 It is no accident that
the transition to turbulence was observed by Nikitin only for low-frequency disturbances (for Strouhal numbers
of order 0.1).

Possible counter-arguments against the above ideas lie in the fact that numerical simulation results obtained
with periodic boundary conditions are very close to those observed experimentally. But the data obtained
by Nikitin in the numerical experiment described above are also close to numerical data for periodic boundary
conditions.7 The visual similarity of turbulent pulsations calculated for periodic conditions, and for the boundary
conditions (1), (2), is illustrated in Fig. 2. This similarity may be explained by the fact that many nonlinear
oscillatory systems possess such pronounced intrinsic properties that they exhibit these properties independently
of the means of excitation. Some examples of such (non-hydrodynamic) systems are described by Landa and
Rabinovitch.12

Note that our discussion does not apply to so-called closed flows, e.g. to the Couette flow between two rotating
cylinders or spheres. In closed flows there is always feedback linking the output of the amplifier to its input, so
that they consequently become self-oscillatory.
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Figure 3. Experimental measurements on a submerged jet. The dependences of (a) the relative mean velocity U/U0 and (b)

of the relative root-mean-square pulsation of the longitudinal component of hydrodynamic velocity ǫu =
√

u2 − U(0)2/U0

along the jet axis on the relative distance x/D from the nozzle exit section, for three intensities of the disturbance at the
nozzle exit section: ǫu(0) = 0.015, 0.093 0.209 (curves marked by open circles, filled circles and stars, respectively). After
Ginevsky et al.11

3. A PHASE TRANSITION IN JET FLOWS

A peculiar phase transition at a certain distance xcr from the nozzle, induced by an amplification of the input
noise, is also observed experimentally in jet flows. It reveals itself both in the drastic decrease of the mean
velocity and in the drastic increase of the turbulent pulsation intensity. The value of xcr is the smaller the larger
is the noise intensity ǫu(0) at the nozzle exit section. This is illustrated in Fig. 3.

The phase transition can be controlled by harmonic acoustic forcing at an appropriate frequency. The value
of xcr increases in the case of high-frequency forcing (Sta > 1.5) and decreases in the case of low-frequency
forcing (0.2 < Sta < 1.5), where Sta = ωaD/U0 is the Strouhal number corresponding to the acoustic wave of
frequency ωa (see Fig. 4). Effects similar to those described above are also observed for other means of periodic
forcing of the jet: e.g. longitudinal or radial vibration of the nozzle, or a pulsating rate of fluid outflow from the
nozzle.11
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Figure 4. Experimental dependences: of (a) the relative mean flow velocity along the jet axis U/U (0) and (b) of the
relative root-mean-square pulsation of the longitudinal component of hydrodynamic velocity ǫu) (in %) on x/D under a
longitudinal acoustic forcing at Sta = 0.25 (open circles), Sta = 2.75 (filled circles). The crosses show what happens in
the absence of forcing. The amplitude of the oscillatory velocity in the acoustical wave on the jet axis near the nozzle
exit constitutes 0.07% of U0. After Ginevsky et al.11



Figure 5. The calculated dependences of σ on the amplitude a of low-frequency vibration for ω0 = 1, β = 0.1, α = 100
and: (a) κ(2ω0)/κcr = 1.89, ωa = 0.3; (b) κ(2ω0)/κcr = 2.23, ωa = 1.5.

4. ANALOGY TO PENDULUM WITH RANDOMLY VIBRATED SUSPENSION
AXIS

The hypothesis that the onset of turbulence can usefully be considered as a noise-induced phase transition was
first proposed by Landa,13 who studied the simplest physical system wherein such a transition is possible: the pen-
dulum with a randomly vibrated suspension axis.10, 14–17 It was found that profound parallels exist18–21between
turbulent processes in nonclosed fluid flows and noise-induced oscillations in such a pendulum.

In the simplest case, when additive noise is neglected, the equation describing the oscillations of a pendulum
with a randomly vibrated suspension axis is:

ϕ̈+ 2β
(

1 + αϕ̇2
)

ϕ̇+ ω2
0 (1 + ξ(t)) sinϕ = 0, (3)

where ϕ is the pendulum’s angular deviation from the equilibrium position, 2β
(

1 + αϕ̇2
)

ϕ̇ is proportional to the
moment of the friction force which is assumed to be nonlinear, ω0 is the natural frequency of small oscillations,
and ξ(t) is a comparatively wide-band random process with nonzero power spectral density at the frequency 2ω0.

When the intensity of the suspension axis vibration, characterized by the spectral density of ξ(t) at frequency
2ω0 (κ(2ω0)), exceeds a certain critical value proportional to the friction factor β, excitation of pendulum oscilla-
tions occurs, and the variance of the pendulum’s angular deviation becomes nonzero. It should be noted that close
to the excitation threshold, the pendulum oscillations possess the property of so called on–off–intermittency.22

As described23 by Frisch and Morf, high-pass filtering of turbulent velocity pulsations reveals their intermit-
tent behavior. This phenomenon was studied20 both for experimental velocity pulsations in a jet measured by
Zaikin and also for the pendulum oscillations considered above. In each case it was observed on-off intermit-
tency after high-pass filtering. This fact can be considered as an additional argument in support of the parallels
between noise-induced pendulum oscillations and turbulent processes in jets.

It is important to note that the response of the pendulum to a small additional harmonic force (additional
vibration of the suspension axis) is similar to the response of a jet to an acoustic force.

Thus, just as in the case of turbulent jets, the noise-induced pendulum oscillations under consideration can
be controlled by a small additional harmonic force. Its inclusion can be effected by substitution into Eq. (3)
of ξ + a cosωat in place of ξ, where a and ωa are respectively the amplitude and frequency of the additional
vibration of the suspension axis. If the frequency of the additional forcing is relatively low, then this forcing
intensifies the pendulum oscillations and lowers the excitation threshold; vice versa, a relatively high-frequency
forcing suppresses the pendulum oscillations and increases the excitation threshold. The intensification of the
pendulum oscillations by a low-frequency additional vibration is illustrated in Fig. 5 for two values of the vibration
frequency. We see that the lower the forcing frequency is, the larger the variance of the oscillation becomes. Just
as for jets, when the forcing amplitude becomes relatively large, the pendulum’s oscillation amplitude saturates.



Figure 6. Numerical simulation showing the effect of a high frequency harmonic force a cosωt on the variance of the
pendulum angle φ. Results are shown for ω0 = 1, β = 0.1, α = 100, κ(2ω0)/κcr = 5.6 and: (a) ωa = 3.5; (b) ωa = 6; (c)
ωa = 11; (d) ωa = 19.757.

Below we consider the possibility of suppressing noise-induced pendulum oscillations by the addition of a
high-frequency vibration. Numerical simulation of Eq. (3) with ξ + a cosωat in place of ξ, where ωa > 2, shows
that such suppression can occur. The results of the simulation are illustrated in Fig. 6, where the dependences of
the variance of the angle ϕ on a for a number of values of the vibration frequency are shown. It is evident from
this figure that, for small amplitudes of the high-frequency vibration, this vibration has little or no effect on the
noise-induced oscillations. As the amplitude increases, however, the intensity of the noise-induced oscillations
decreases rapidly. When the amplitude exceeds a certain critical value (for ωa = 19.757 it is equal to 42) the
oscillations are suppressed entirely. As the amplitude increases further the oscillations reappear, but now because
the conditions required for parametric resonance come into play. For smaller frequencies ωa, the behavior of the
pendulum oscillations is different. It is seen that the variance of ϕ at first decreases, passes through a certain
minimum value, and then increases again. It is important to note that this minimum value becomes smaller
with increasing forcing frequency, but that it is attained for larger forcing amplitudes at higher frequencies. The
dependence shown in Fig. 6 a closely resembles the corresponding dependences for a jet presented in Fig. 7.

The dependences of σ on ωa for a number of fixed amplitudes of the additional vibration are illustrated in
Fig. 8. Again, these dependences closely resemble the corresponding ones for a jet shown in Fig. 9.

The presence of a small additive noise, in addition to the multiplicative one in Eq. (3), does not change the
behavior of the pendulum qualitatively, but it gives rise to large quantitative differences. The principal one is the
impossibility of achieving full suppression of the pendulum oscillations. Nevertheless, a very marked attenuation
of the oscillation intensity occurs. It should be emphasized that, in the case of turbulence, full suppression is of
course impossible.



Figure 7. The experimental dependences of the relative root-mean-square pulsation of the suppression factors (a) ǫu/ǫ
(0)
u

and (b) ǫv/ǫ
(0)
v of the longitudinal and radial components of hydrodynamical velocity on the relative amplitude of acoustic

pressure p̃a measured in decibels, for Sta = 2.35, x/D = 8; ǫ
(0)
u and ǫ

(0)
v are relative pulsations of the longitudinal and

radial velocity components in the absence of acoustic excitation. After Ginevsky et al.11

5. APPLICATION OF KRYLOV–BOGOLYUBOV METHOD

We have studied the onset of turbulence in subsonic submerged jets analytically by using the asymptotic Krylov–
Bogolyubov method.25 This is possible when the intensity of the input noise is sufficiently small that the turbulent
processes near the nozzle can be described by linearized Navier–Stokes equations. Apparently, for real jets the
intensity of the input noise is much more than that is necessary for the validity of our theory. It is possible that
such small input noise is present in jet flows of superfluid helium.26 Nevertheless, explicit consideration of the
amplification of the input noise allows us to account for many known experimental results within the initial part
of a jet and find a clearly defined phase transition. Moreover, it follows from our theory that the commonly
accepted explanation for the well-known shift of velocity pulsation power spectra towards the low-frequency
region is in fact erroneous. According to this explanation, the shift of the power spectra occurs because of
feedback via an acoustic wave generated where vortex pairing occurs, as seen in experiments. We will show that
the reason for the spectral shift lies in the jet’s divergence; and that this shift causes the increase of spatial scale

Figure 8. Numerical simulation of the pendulum with randomly vibrated suspension axis, showing the dependence on
ωa of σ/σ0, where σ0 is the value of σ in the absence of additional vibration. Results are plotted for κ(2ω0)/κcr = 5.6,
a = 2.5 (filled circles), a = 5 (pluses), a = 10 (squares), and a = 20 (crosses).



Figure 9. The experimental dependences on the Strouhal number Stθ = (θ/D)St of the suppression factor ǫu/ǫ
(0)
u , where

ǫ
(0)
u is the relative intensity of the longitudinal velocity pulsations in the absence of acoustic forcing, for x/θ = 200. The
plots are constructed for four values of the amplitude of the oscillatory velocity in the acoustic wave, namely 0.5% of U0

(circles), 2.5% (pluses), 3.5% (crosses) and 4.5% (squares). After Nallasamy and Hussain.24

with increasing distance from the nozzle, and results in the observed vortex pairing. It is also shown that, as
turbulence develops, its longitudinal and transverse scales increase. Our results coincide qualitatively and also,
in specific cases, quantitatively, with known experimental data.

We consider a plane jet issuing from a nozzle of width 2d. Neglecting compressibility, we may describe the
processes in such a jet by the two-dimensional Navier–Stokes equations for the stream function Ψ(t, x, y) and
the vorticity Ω̃(t, x, y). In dimensionless coordinates these equations are

Ω̃(t, x, y) = ∆Ψ(t, x, y), (4)

∂Ω̃(t, x, y)

∂t
−

∂Ψ(t, x, y)

∂x

∂Ω̃(t, x, y)

∂y
+

∂Ψ(t, x, y)

∂y

∂Ω̃(t, x, y)

∂x
−

2

Re
∆Ω̃(t, x, y) = 0, (5)
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Figure 10. Results of a calculation based on the Krylov–Bogolyubov method. The dependences on the Strouhal number St
for different x of: (a) Γ and (b) the wave phase velocity vph are shown for the values of x indicated near the corresponding
curve in each case.



where ∆ =
∂2

∂x2
+

∂2

∂y2
is the Laplacian, Re = 2U0d/ν is the Reynolds number, ν is the kinematic viscosity, U0

is the mean flow velocity in the nozzle center, x is the coordinate along the jet axis, and y is the transverse
coordinate. It should be noted that in so deciding on a dimensionless time, the circular frequencies ω = 2πf are
measured in units of S = ωd/U0 ≡ πSt, where St = 2fd/U0 is the Strouhal number.

In accordance with the ideas presented above, the onset of turbulence is caused by random disturbances
(noise) in the nozzle exit section. The authors of works27, 28 devoted to the stability of jet flows mostly split the
solution into mean values and small random disturbances. In our opinion this procedure is inappropriate for two
reasons: first, exact equations for the mean values are unknown; and, secondly, the random disturbances make
a significant contribution to the mean values. That is why we split the solution of Eqs. (4), (5) into dynamical
and stochastic constituents. The dynamical constituents are described by stationary Navier-Stokes equations
and differ from the mean values of the corresponding variables because of the quadratic nonlinearity.

We consider first the dynamical constituents of the velocity and vorticity. It follows from Eqs. (4), (5) that
the dynamical constituents ud(x, y), vd(x, y)) and Ωd(x, y) are described by the equations

Ωd(x, y) =
∂ud(x, y)

∂y
−

∂vd(x, y)

∂x
, (6)

∂ud(x, y)

∂x
+

∂vd(x, y)

∂y
= 0, (7)

ud(x, y)
∂Ωd(x, y)

∂x
+ vd(x, y)

∂Ωd(x, y)

∂y
−

2

Re

(

∂2Ωd(x, y)

∂x2
+

∂2Ωd(x, y)

∂y2

)

= 0. (8)

It is very difficult, if not impossible, to solve these nonlinear equations exactly. Therefore we choose ud(x, y)
in the form of a given function of y with unknown parameters depending on x. The shape of this function
must depend on whether the outflow from the nozzle is laminar or turbulent. For simplicity, we restrict our
consideration to laminar nozzle flow. In this case we can set ud(x, y) so that, at the nozzle exit section, the
boundary layer is close in form to that described by the Blasius equation.29 Taking account of the entrainment
of the ambient fluid, we set the velocity profile close to the Blasius one for x = 0 in the form

ud(x, y) =
1

1 + tanh(q/δ00 + r0)

[

1− tanh

(

q
|y| − 1

δ0(x)
− r(x)

)]

, (9)

where q = 3, δ0(x) and r(x) are unknown functions of x, and δ0(x) is the boundary layer thickness which is
equal to δ00 for x = 0, r0 = r(0). To find the unknown functions in the expression (9), we use the conservation
laws for the fluxes of momentum and energy which we derive starting from Eqs. (6)–(8). As a result we find
r(x) ≈ r0 = 0.5 and δ0(x) =

√

δ200 + 2kx , where k = 16q2/(3Re).

We will refer to deviations from the dynamical constituents as stochastic components. To study the jet
stability we linearize Eqs. (4), (5) relative to these components. It should be noted that finding a solution of the
linearized equations for the stochastic components is similar to the well known problem of the linear instability of
a jet flow and reduced to a non-self-adjoint boundary-value problem with zero boundary conditions at y = ±∞.
The solution of this boundary-value problem allows us to find the gain factor Γ and wave phase velocity vph,
and their dependences on the Strouhal number St. The calculated values of Γ and vph as functions of St are
shown for different x in Fig. 10 a and b. The resonant character of the dependences of the gain factor on the
Strouhal number that we have found indicates that each jet cross-section can be considered as an oscillator whose
natural frequency decreases with increasing distance from the nozzle. This fact justifies consideration of a jet as
a chain of coupled resonant amplifiers, which in turn allows us to understand the analogy between noise-induced
pendulum oscillations and the turbulent processes in a jet.

By using the first and second approximations of the Krylov–Bogolyubovmethod we have calculated the change
of the mean velocity against the longitudinal and transversal coordinates and the variance of the longitudinal
velocity pulsations. These calculations allow us to follow the occurrence of the phase transition. The plots of ǫu
versus x are presented in Fig. 11 for two values of y (y = 0 and y = 0.7). It is seen that the found dependences
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Figure 11. Plots of calculated mean-root-square values of turbulent velocity pulsations versus x for (a) y = 0 and (b)
y = 0.7.

of ǫu on x closely resemble the dependence of the variance of noise-induced pendulum oscillations on the noise
intensity in the case of small additive noise. As would be expected, at the jet axis the phase transition occurs
for larger x than for y = 0.7.

The increase of ǫu with increasing x is correlated with the decrease of the mean velocity (see Fig. 12), but
these changes are not exactly equivalent.

6. CONCLUSIONS

The theoretical approach described above enables us to account for many experimental results, and to demon-
strate that some widely-accepted interpretations are in fact erroneous. It has led us to a somewhat different and,
we believe, more realistic perspective. In particular, we conclude that –

1. The shift in the velocity pulsation power spectra towards the low-frequency domain is caused mainly by the
jet divergence, and not by pairing of vortices. It can therefore be calculated within the linear approximation.
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Figure 12. Calculated dependences of the mean velocity 〈u(x, y)〉, taking account of the correction caused by the turbulent
pulsations on x for (1) y = 0 and (2) y = 0.7.



2. The transformation of the mean velocity profile, and the onset of the phase transition, can be found without
any need to use the concept of turbulent viscosity.

3. Our quasi-linear theory is valid only for small intensities of the random disturbance (noise); but the noise
intensity at the nozzle exit needed to maintain the turbulence may, correspondingly, also be very small. For
larger intensities, the development of turbulence is from the very outset an essentially nonlinear process.

4. The change in the variance of the velocity pulsation with distance from the nozzle, like the change in
the angular variance with increasing noise intensity in the pendulum with a randomly vibrated suspension
axis, closely resembles changes in the order parameter with increasing temperature for a second order phase
transition. This is the basis for our conjecture that these phenomena can appropriately be considered as
noise-induced non-equilibrium phase transitions.
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