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JOSEPH CHUANG1 , ANDREY LAZAREV2 & W.H. MANNAN3

Abstract. We construct a generalization of Koszul duality in the sense of

Keller–Lefèvre for not necessarily augmented algebras. This duality is closely
related to classical Morita duality and specializes to it in certain cases.

1. Introduction

Koszul duality is an anti-equivalence between certain subcategories of the de-
rived category of a quadratic Koszul algebra A and that of its Koszul dual A!

[1]. More recently Keller and Lefèvre [4] gave a general formulation which is valid
for a general augmented differential graded (dg) algebra and its dg Koszul dual
(which is in that case naturally a dg coalgebra). The derived category on the dual
side is that of dg comodules over this dg coalgebra; this is a derived category of
the second kind in the sense of [7], in particular acyclic comodules are not neces-
sarily regarded as trivial. In fact, in the coalgebra-comodule language the Koszul
equivalence becomes covariant, but taking linear duals restores contravariance. We
adopt the set-up in which the Koszul correspondence is contravariant; this allows
us to replace coalgebras and comodules with the dual notions of pseudo-compact
algebras and pseudo-compact modules, cf. [11] concerning these notions. This
language is of course equivalent to the language of coalgebras and comodules.

It is natural to ask whether the assumption that A be augmented is essential
for constructing Koszul duality. One answer which completely removes this as-
sumption is provided by the work of Positselski [7], but at a price: the Koszul dual
object op. cit. is no longer a pseudo-compact dg algebra but a more general one,
called a (pseudo-compact) curved dg algebra. The category of modules also needs
to be appropriately modified.

We provide a different answer, which ensures that (the analogue of) the Koszul
dual object is still an (ordinary, not curved) pseudo-compact dg algebra, even
though the original A is not necessarily augmented. It is however, required to
possess a non-zero finite-dimensional dg module M (in the case M = k, the ground
field, this reduces to the Keller-Lefèvre treatment). We prove further, that such a
dg module always exists, at least if we replace A by a quasi-isomorphic dg algebra.
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The unexpected conclusion is that the derived category of dg modules over a dg
algebra is always equivalent to some derived category of pseudo-compact modules.

Conversely, we give a necessary and sufficient condition for the derived cat-
egory of pseudo-compact dg modules over a pseudo-compact dg algebra to be
anti-equivalent to the derived category of dg modules over some dg algebra. In
contrast, this condition does not always hold, i.e. there are derived categories of
pseudo-compact modules which are not equivalent to any derived module category.

Furthermore, the functor associating to a dg A–module an appropriate pseudo-
compact module on the Koszul dual side is given as a kind of (derived) Hom into
M . It is, thus, reminiscent of the (derived version of) the classical Morita duality
[6, 5]. It turns out that our duality could indeed be viewed as an extension of
Morita duality in the case when A is an ordinary finite-dimensional algebra of
finite global dimension.

It seems likely that a large portion of our results could be extended to dg
modules over dg categories, however we refrained from working in this generality
to keep exposition simple. Related results, in the context of dg categories, are
contained in the recent preprint [8]. The main difference in our approach is that the
use of the reduced Hochschild complex allowed us to avoid additional assumptions
present in e.g. Proposition 3.9 of op. cit.

It also is worth noting that equivalences between categories of pseudo-compact
modules (phrased in the language of comodules) were studied in the work of
Takeuchi [10] and so our results could be viewed as linking (derived versions of)
Morita theory and Takeuchi theory.

1.1. Organization of the paper. In sections 2 through 7 we formulate and prove
our main result: a Quillen anti-equivalence between categories of dg modules over
a dg algebra A, possessing a finite-dimensional non-zero dg module M , and the
category of pseudo-compact dg modules over a pseudo-compact dg algebra E,
which is the reduced Hochschild complex of A with coefficients in EndM . We
note that E computes the derived endomorphisms of M as an A–module, just as
(for example) the corresponding unreduced complex. However we cannot replace E
with the corresponding unreduced complex or use some other resolution of M since
that will change the derived category of pseudo-compact modules. We do not have
a satisfactory explanation of this striking phenomenon; perhaps it is related to the
lack of an appropriate closed model category structure on all pseudo-compact dg
algebras (or, equivalently, all dg coalgebras).

Our main tool in proving the mentioned Quillen equivalence is Koszul duality
as developed by Positselski [7]. One minor modification that we introduce is the
systematic use of (pseudo-compact) dg modules and their Maurer-Cartan twisting
which might be of some independent interest. It is worth remarking that the end
result does not involve curved dg algebras and modules even though Positselski’s
results and our use of them do.

In Section 8 we consider the question of when the category of pseudo-compact dg
modules is Quillen equivalent to some (ordinary) derived category of dg modules;
a particularly simple criterion is formulated in the case of an ungraded pseudo-
compact algebra. Finally Section 9 explains how our results essentially reduce
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to (derived) Morita duality in the case when A is finite-dimensional and of finite
global dimension.

2. Formulation of the main result

Let A be a dg algebra over a field k and let M be a non-zero finite-dimensional
(dg) module over A (the adjective ‘dg’ will typically be omitted when applied to
a module over a dg algebra). All dg algebras and modules will be cohomologically
graded (so the differential will have degree 1). Recall (cf., for example [7, Theorem
8.1a]) that the category of A–modules has the structure of a closed model category
where weak equivalences are quasi-isomorphisms and fibrations are the surjective
maps. All A–modules are fibrant and cofibrant objects are retracts of cell A–
modules; the latter are the A–modules having a filtration whose associated factors
are free A–modules. We can form the reduced Hochschild complex of A with
coefficients in End(M):

Hoch
n
(A,EndM) ⊂ Hom(A⊗n,EndM)

consisting of the reduced cochains; that is multilinear maps (over k)A×n → EndM

which vanish if any of the arguments is 1 ∈ A. The complex Hoch
•
(A,EndM) is

a dg algebra which we will denote by E.
To see that it is a dg algebra first define multiplication of a degree n element α

with a degreem element β by setting application to elements a1, · · · , an, b1, · · · , bm ∈
A to be given by:

(αβ)(a1, · · · , an, b1, · · · , bm) = (−1)stα(a1, · · · , an)β(b1, · · · , bm),(2.1)

where s is the sum of the degrees of the ai and t is the degree of β. The multipli-
cation on the right hand side of his equation is just composition in End(M).

Note that E has a differential d which is the sum of:

1) The internal differentials on the copies of A in A⊗n,
2) The differential on End(M) coming from the internal differential on M ,
3) Contractions on the copies of A, including the two ‘end terms’ represented by
taking the commutator [δ, ] in E, where δ : A→ End(M) is just the A–action on
M .

Without these ‘end terms’, the differential of a reduced cochain would no longer
be reduced.

Moreover, E can be identified (disregarding the differential) with T̂Σ((A/k)∗)⊗
EndM where here and elsewhere in the paper the tensor product is understood
in the appropriate completed sense. Here Σ denotes the suspension operator,
which raises the degree of each homogeneous element in a graded algebra/module.
Recall from [11] that a dg algebra is pseudo-compact if it is an inverse limit of
finite-dimensional dg algebras (or. equivalently, is dual to a dg coalgebra). Since
M is finite-dimensional, the dg algebra E is pseudo-compact. In the case M = k,
the pseudo-compact dg algebra E is also local (which is the same as saying that
its dual dg coalgebra is conilpotent).

We also consider the category of left pseudo-compact (dg) modules E-mod;
these are just inverse limits of finite-dimensional E-modules (or comodules in the
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dual setting). It has the structure of a closed model category in which the weak
equivalences are strictly stronger than quasi-isomorphisms and fibrations are sur-
jections [7, Theorem 8.2a]. All E–modules are fibrant and the cofibrant E–modules
are the retracts of free E–modules (disregarding the differential).

Here is our main result; its proof is given is section 7, after laying the ground-
work in previous sections.

Theorem 2.1. The categories A-mod and (E-mod)op are Quillen equivalent. The
functor F : A-mod → (E-mod)op, effecting this equivalence, associates to an A–
module N the following E–module:

F (N) = Hoch(A,Hom(N,M)),

the reduced Hochschild complex of A with coefficients in Hom(N,M).

Remark 2.2. (1) We use (2.1) to define a left E–action on F (N), with mul-
tiplication on the right hand side of (2.1) now coming from the EndM–
action on Hom(N,M).

(2) The complex Hoch(A,End(M)) is quasi-isomorphic to the unreduced Hochschild
complex Hoch(A,End(M)). However these pseudo-compact dg algebras do
not have equivalent derived categories of pseudo-compact modules. For
example, taking A = k and M = k we have Hoch(A,k) ∼= Hoch(A×k,k);
thus the category of pseudo-compact Hoch(A,k)–modules is Quillen equiv-
alent to the category of (k×k)–modules. On the other hand, Hoch(A,k) ∼=
k. Thus, the derived categories of pseudo-compact Hoch(A,k)–modules
and of pseudo-compact Hoch(A,k)–modules cannot be equivalent and the
reduced Hochschild complex cannot be replaced with the unreduced one
in the definition of the pseudo-compact dg algebra E.

(3) It is possible to describe the adjoint functor G : (E-mod)op → A-mod
explicitly (and this will be done later). However for this we need to develop
the language of twistings and it will be in less traditional terms than the
functor F .

If the A-module M is the ground field k (so that A is augmented) then Theorem
2.1 is the ordinary dg Koszul duality. However we stress that M could be an
arbitrary non-zero finite-dimensional A-module; in particular it could be acyclic.
This leads to the following result.

Corollary 2.3. For any dg algebra A the category A-mod is Quillen equivalent to
the category (E-mod)op for some pseudo-compact dg algebra E.

Proof. Let C be any finite-dimensional acyclic dg algebra; the smallest example
is a two-dimensional one having basis {1, x} with x2 = 0 and d(x) = 1. Then
the projection A × C → A is clearly a quasi-isomorphism and leads to a Quillen
equivalence between the categories of A-modules and A × C-modules. But the
dg algebra A × C has a non-zero finite dimensional module, namely C via the
projection A×C → C. We conclude, by Theorem 2.1, that the category A×C-mod
and thus, the category A-mod, is Quillen equivalent to the category (E-mod)op

where E = Hoch(A× C,EndC). �
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3. Curved algebras and modules

Recall from [7] that a curved dg algebra is a graded algebra A together with a
‘differential’ d : A → A, a derivation of A of degree one such that d2(a) = [h, a]
where a ∈ A and h ∈ A is an element of degree two such that d(h) = 0, called the
curvature of A.

A morphism of curved dg algebras f : B → A is a pair (f, a) consisting of a
morphism of graded algebras f : B → A and an element a ∈ A1 satisfying the
equations:

f(dB(x)) = dA(f(x)) + [a, f(x)],

f(hB) = hA + dA(a) + a2,

for all x ∈ B, where B = (B, dB , hB) and A = (A, dA, hA).
The composition of morphisms is defined by the rule (f, a) ◦ (g, b) = (f ◦ g, a+

f(b)). Identity morphisms are the morphisms (id, 0).
A morphism (f, 0) as above is called strict; thus strict morphisms preserve

curvature elements.
Note that a morphism (f, a) of curved dg algebras is an isomorphism precisely

when f is invertible, since the inverse map is then given by the pair (f−1,−f−1(a)).
Any dg algebra can be viewed as a curved dg algebra with the zero curvature.
There are non-isomorphic dg algebras which are isomorphic as curved dg algebras.

A left module (M,dM ) over a curved dg algebra A is a graded left A–module M
endowed with a derivation dM : M → M compatible with the derivation dA and
such that d2

M (x) = hAx for any x ∈ M . Equivalently, a graded k–vector space
M with degree 1 derivation dM : M → M is a left A–module if it is equipped
with a strict map A → EndM . Here the ‘differential’ on EndM is taking the
commutator with dM and the curvature is d2

M .

Remark 3.1. A curved dg algebra A is not necessarily a left (or right) module
over itself. Indeed if it were, then d2

A = [h,−] = lh, where lh is the operator of
left multiplication by h; clearly this holds if and only if h = 0. On the other hand,
it is consistent to consider A as an A-bimodule, i.e. a module over the curved dg
algebra A⊗Aop with the curvature element h⊗ 1− 1⊗ h.

We will be interested in the pseudo-compact versions of the above notions, i.e.
pseudo-compact curved dg algebras and modules over them.

Example 3.2. Let A be a unital dg algebra. Choose a k-linear map ε : A→ k, to
be regarded as an ‘augmentation’, even though not required to be multiplicative
nor differential. Then the pseudo-compact graded algebra T̂Σ((A/k)∗) has the

structure of a curved pseudo-compact algebra. To define it, view T̂Σ((A/k)∗) as
a ‘Hochschild complex’ of A with coefficients in k. In other words, define the
‘differential’ on T̂Σ((A/k)∗) by the formula:

df(a1, . . . , an) = ε(a1)f(a2, . . . , an)(3.1)

+

n∑
k=1

(−1)kf(a1, . . . , akak+1, . . . , an)

+ (−1)n+1f(a1, . . . , an−1)ε(an).
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(here for simplicity it is assumed that all elements and f are of even degree).
Since ε is not necessarily an augmentation, d may not square to zero; however

this will define a curved dg algebra structure on T̂Σ((A/k)∗). If ε is chosen to

be a dg map, the curvature element is the ‘homutator’ of ε; h ∈ T̂ 2Σ((A/k)∗):
h(a, b) = ε(ab)− ε(a)ε(b). It vanishes iff ε is a genuine augmentation in which case

T̂Σ((A/k)∗) becomes uncurved and is isomorphic to Hoch(A,k).
If A is acyclic then one cannot choose ε to be a dg map. In this case the

curvature element has an additional term - the differentiator hd ∈ Σ(A/k)∗),
satisfying hd(a) = ε(da).

The last example is the main reason (for us) to consider curved dg algebras. For

any unital dg algebraA it determines a (local) pseudo-compact algebra T̂Σ((A/k)∗).

The correspondence A 7→ T̂Σ((A/k)∗) depends on choosing a fake augmentation
but any two choices are canonically isomorphic and thus, it could be viewed as
a functor from dg algebras into local curved pseudo-compact dg algebras. Posit-
selski shows that this gives a Quillen anti-equivalence between dg algebras and
local pseudo-compact curved dg algebras [7]. This is a unital analogue of Keller-
Lefevre’s correspondence. There is also a Quillen anti-equivalence between A–
modules and T̂Σ((A/k)∗)–modules which will be instrumental in establishing our
main result.

4. Twisting

The notion of Maurer-Cartan (MC) twisting of dg algebras or dg Lie algebras
is well-documented [2]. Here we will discuss twistings of curved algebras and
modules over them. Note that Positselski (and others) work with twisted cochains
rather than with MC elements; our point of view is essentially equivalent but more
convenient since it allows one to avoid coalgebras and comodules.

Definition 4.1. (1) Let A = (A, d, h) be a curved dg algebra and ξ ∈ A1.
The twisting of A by ξ, denoted by Aξ, is the curved dg algebra having
the same underlying space as A, the twisted differential dξ = d+ [ξ, ] and
the twisted curvature hξ = h+ dξ + 1

2 [ξ, ξ].
(2) Let M,dM be a module over a curved dg algebra A as above. The twisting

of M by ξ, denoted by M [ξ], is the module over Aξ having the same
underlying space as A and the twisted differential d[ξ] := dM + ξ.

Remark 4.2. An uncurved dg algebra A may be viewed as a module over itself,
so given ξ ∈ A1 we have that A[ξ] is a module over Aξ; here A[ξ] 6= Aξ as they
have different differentials.

Definition 4.3. Let (A, d, h) be a curved dg algebra; then ξ ∈ A1 is called MC if
h+ dξ + 1

2 [ξ, ξ] = 0.

Remark 4.4. The twisting of a curved dg algebra by an MC element is an un-
curved algebra.

Example 4.5. (1) Let A be a unital dg algebra, then BA := T̂Σ(A∗) is an
(uncurved) acyclic local pseudo-compact algebra. Tensoring it with A we
get another dg algebra (although not pseudo-compact unless A is finite
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dimensional): C = BA⊗ A. The algebra C has a canonical MC element;
choosing a basis {ei} in A and the dual basis {ei} in Σ(A∗) it is:

ξ :=
∑

ei ⊗ ei ∈ BA⊗A.

Then (BA⊗A)ξ is isomorphic to Hoch(A,A), the (unreduced) Hochschild
complex of A with coefficients in itself. If C is a (unital) dg algebra
supplied with a dg algebra map A→ C then Hoch(A,C) can similarly be
constructed as an algebra twisting of BA⊗ C.

Furthermore, let M be an A-bimodule. Then viewing BA ⊗M as a
bimodule over BA⊗A we can form the twisted module (BA⊗M)[ξ⊗1+1⊗ξ].
Here ξ⊗1+1⊗ξ ∈ (BA⊗A)⊗(BA⊗A)op. This results in what normally
is denoted by Hoch(A,M), the unreduced Hochschild complex of A with
coefficients in M ; it is thus naturally a bimodule over Hoch(A,A).

(2) Let A be as above and consider a fake augmentation ξ : A → k as an
element in BA. Twisting by ξ gives a local curved pseudo-compact algebra
BAξ with curvature denoted by w.

The reduced bar-construction BA := T̂Σ((A/k)∗) is a (curved) subal-
gebra in BAξ; in fact there is an isomorphism BAξ ∼= BA〈〈x〉〉 mapping
ξ 7→ x, where dx = x2 + w.

In the case when ξ is a genuine augmentation we have w = 0 and the
inclusion BA ↪→ BA is a quasi-isomorphism as BA is the coproduct (in
the category of associative k-algebras) of BA with an acyclic dg algebra.

(3) Let again A be a unital dg algebra and consider the curved pseudo-compact

algebra BA = T̂Σ((A/k)∗). Let A+ be the kernel of the (fake) augmen-
tation ε : A → k. Then (A/k)∗ can be identified with A∗+ and BA with

T̂Σ(A∗+). Thus, consider the curved dg algebra T̂Σ(A∗+) ⊗ A. It has a

canonical element ξ =
∑
ei ⊗ ei where ei is a basis in A+ and ei is the

dual basis in Σ(A∗+). It turns out to be an MC element so twisting by it

results in an uncurved dg algebra (T̂Σ(A∗+) ⊗ A)ξ. The latter dg algebra

is Hoch(A,A), the reduced Hochschild complex of A with coefficients in
itself. If C is a (unital) dg algebra supplied with a dg algebra map A→ C
then Hoch(A,C) can similarly be constructed as an algebra twisting of
BA⊗ C.

If M is an A-bimodule one can similarly form Hoch(A,M) as a bimodule
over Hoch(A,A).

(4) Let M be a left dg module over a dg algebra A and consider Hoch(A,A) =
(BA⊗A)ξ as above and its left module (BA⊗M)[ξ]. This module looks
similar to Hoch(A,M) but the differential is slightly different: one has to
omit the last term in (3.1). The complex (BA⊗M)[ξ] is acyclic and is the
dual of the standard bar-resolution of M∗ as a right A–module.

Similarly we can form the dg algebra Hoch(A,A) = (BA⊗A)ξ and its
left module (BA ⊗M)[ξ], which can be identified with the dual reduced
standard bar-resolution M∗ as a right A–module.

Proposition 4.6. Let A be a curved pseudo-compact algebra and ξ ∈ A1. Then
the category of A–modules and the category of Aξ–modules are Quillen equivalent.
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To an A–module N we associate an Aξ–module M [ξ] and to an Aξ–module N we
associate the module N [−ξ].

Proof. Clearly the categories are isomorphic: the A–module (M [ξ])[−ξ] is equal to
M and similarly with an Aξ–module N .

As both the categories are of pseudo-compact modules, cofibrations are charac-
terized as the injective morphisms with projective cokernels (disregarding differ-
entials). Clearly this property is preserved by both the functors described in the
proposition. �

5. Koszul duality

Let A be a unital dg algebra and B := BA be its reduced bar-construction, a
curved local pseudo-compact dg algebra.

Definition 5.1. We define a pair of (contravariant) functors between the cate-
gories of A–modules and of B–modules as follows. The functor F associates to an
A–module N , the twisted module:

F (N) = (B ⊗N∗)[ξ].

Here we view B⊗N∗ as a B⊗Bop⊗Aop–module and ξ is the canonical element in
Bop ⊗Aop. Thus, (B ⊗N∗)[ξ] becomes a B ⊗ (Bop ⊗Aop)ξ = B ⊗Hoch(A,A)op–
module and forgetting the Hoch(A,A)op–action we get a B–module.

The functor G in the opposite direction associates to a B–module L the twisted
module:

G(L) = (A⊗ L∗)[ξ].

Here we view A ⊗ L∗ as a Bop ⊗ Aop ⊗ A = BAop ⊗ Aop ⊗ A–module; ξ is the
canonical element in BAop ⊗ Aop. Thus, (A ⊗ L∗)[ξ] is a (BAop ⊗ Aop)ξ ⊗ A =
Hoch(A,A)op ⊗ A–module and forgetting the Hoch(A,A)op–action we get an A–
module.

Explicitly then, if α ∈ F (N) is a map A×k ×N → k, then dα maps:

(a1, · · · , ak+1, n) 7→ ε(a1)α(a2, · · · , ak+1, n)

− α(a1a2, · · · , ak+1, n)

+ · · ·
+ (−1)k+1α(a1, · · · , ak+1, n),

where as before ε denotes a fake augmentation and the elements ai, i = 1, . . . , k+1
are understood to be even, as before. It is clear that d2 induces application of the
curvature element in B rather than commutation with it, so F (N) is indeed a
B–module.

From [7, Theorem 6.3a] we know that F,G form a mutually inverse pair of
equivalences of categories. This equivalence is then a Quillen equivalence with
respect to the closed model category structures on A-modules and B-modules.
Thus we have:

Theorem 5.2. The functors F,G form a (contravariant) Quillen equivalence be-
tween the categories of A–modules and B–modules.
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Remark 5.3. (1) The action of Hoch(A,A) was not mentioned in [7] and
the functors F and G were described in a different, although equivalent,
language. The role of the additional right action of Hoch(A,A) is not com-
pletely clear. One can speculate that since Hoch(A,A) is quasi-isomorphic
to a strictly commutative dg algebra, its left and right actions coincide in
some strong homotopy sense and moreover, are formal consequences (again
in an appropriate strong homotopy sense) of the actions of A or B.

(2) The action of the curved dg algebra B on F (N) is obtained as a restriction
using the inclusion of curved dg algebras B ↪→ B⊗Hoch(A,A) : b 7→ b⊗1.
Note that this required the twist: the corresponding map B → B⊗Bop⊗
Aop is not a map of curved dg algebras and B ⊗ N∗ is not a B–module,
just as B is not a B–module.

6. Covariant Morita equivalence for modules over a
pseudo-compact algebra

Let B be a pseudo-compact curved dg algebra and M be a non-zero finite-
dimensional vector space over k. Then E′ := B ⊗ EndM is a curved dg pseudo-
compact algebra. We have:

Proposition 6.1. The categories of B–modules and of E′–modules are Quillen
equivalent. To a B–module N we associate the E′–module F ′(N) := N ⊗ M .
To an E′–module L we associate a B–module G′(L) := HomE(B ⊗ M,L) ∼=
HomEndM (M,L).

Proof. We have natural isomorphisms:

G′F ′(N) = HomEndM (M,N ⊗M)
∼= HomEndM (M,M)⊗N ∼= k⊗N = N,

F ′G′(L) = HomEndM (M,L)⊗M
∼= Hom(M∗,HomEndM (M,L))
∼= HomEndM (M∗ ⊗M,L)
∼= HomEndM (EndM,L) = L.

It remains to verify that F ′ preserves cofibrations and that G′ preserves fibra-
tions. As a module over itself EndM is a direct sum of copies of M . So M is a
projective EndM module.

Thus given a surjective map f : L1 → L2, the induced map G(f) is surjective,
as we may lift any element g ∈ HomEndM (M,L2):

M

g

��~~
L1

f // L2

Thus G′ preserves fibrations.
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A cofibration of B–modules f : N1 → N2 is characterized by being part of an
exact sequence:

0→ N1
f→ N2 → P → 0,

for someB-module that is projective as a gradedB-module, forgetting differentials.
Applying F ′ we obtain the exact sequence:

0→ N1 ⊗M
f⊗1M→ N2 ⊗M → P ⊗M → 0.

To deduce that F ′ preserves cofibrations we need only note that P ⊗ M is a
summand of the projective module E′–module P ⊗ EndM . �

7. Composing the equivalences

We now have all the ingredients to prove our main theorem. We have the
following chain of Quillen equivalences:

A-mod↔ (BA-mod)op ↔ (BA⊗ EndM -mod)op.

Note that both BA and BA ⊗ EndM are curved pseudo-compact algebras.
Using Example 4.5 (3) we recognize Hoch(A,EndM) as an appropriate twisting
(BA ⊗ EndM)ξ and using Proposition 4.6 conclude that E′ := BA ⊗ EndM–
modules are Quillen equivalent to E := Hoch(A,EndM)–modules.

Moreover, the composition of functors from left to right is clearly F as defined
in Theorem 2.1. This completes the proof of Theorem 2.1.

Tracing the functors going in the opposite direction we can give the following
explicit description of the inverse equivalence (E-mod)op → A-mod. Let L be in
E-mod. Considering the canonical element ξ in E we have E−ξ = BA ⊗ EndM
and so L[−ξ] is a module over the curved dg algebra BA⊗ EndM .

Applying G′ returns the BA module HomEndM (M,L[−ξ]). In order to dualize
this we employ the following lemma.

Lemma 7.1. Given an EndM–module K we have: HomEndM (M,K)∗ ∼= HomEndM (K,M).

Proof. Replacing B in Proposition 6.1 with k gives us the Morita duality between
k and EndM :

HomEndM (K,M) ∼= Homk(HomEndM (M,K),k) ∼= HomEndM (M,K)∗.

�

Thus applying G to HomEndM (M,L[−ξ]), we get a twist of the A⊗Aop⊗BAop–
module:

A⊗HomEndM (L[−ξ],M).

Applying this (un)twist, we obtain that (A⊗HomEndM (L[−ξ],M))[η] is a mod-
ule over A ⊗ (Aop ⊗ BAop)η = A ⊗ Hoch(A,A)op (where η is the correspond-
ing MC element). Finally, forgetting the action of Hoch(A,A), we obtain an A–
module (A ⊗ HomEndM (L[−ξ],M))[η]. This is the value of our composite functor
(E-mod)op → A-mod on L.
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8. Equivalences between categories of modules and pseudo-compact
modules

We saw that the category of modules over a dg algebra is always Quillen equiv-
alent to some category of pseudo-compact modules (Corollary 2.3). It is natural
to ask when, conversely, the category of pseudo-compact modules over a pseudo-
compact dg algebra is Quillen equivalent to the category of modules over some
dg algebra. The following result gives an answer to that question; here and later
on D(A) and D(B) stand for the derived categories of A-modules and of pseudo-
compact B-modules respectively, i.e. the homotopy categories of the corresponding
closed model structures. The category D(B) is the derived category of the second
kind ; even when B is finite dimensional, it does not coincide, in general, with its
usual derived category (more on that later).

Theorem 8.1. Let B be a pseudo-compact dg algebra. The following are equiva-
lent:

(1) There exists a dg algebra A and an equivalence F : D(A) ∼= D(B)op,
(2) D(B)op admits a compact generator,
(3) D(B)op admits a finite-dimensional (necessarily compact) generator.

If any of these conditions holds then in fact there exists a dg algebra A and a
Quillen equivalence between A-mod and (B-mod)op.

In case B = B0, i.e. B is an ordinary pseudo-compact algebra, any of the three
conditions above is equivalent to the following statement:

(4) There are finitely many isomorphism classes of simple (non-dg) B–modules.

Lemma 8.2. Let B be pseudo-compact dg algebra. Then D(B)op is compactly
generated, and an object of D(B)op is compact if and only if it is in the thick
subcategory of D(B)op generated by (totally) finite-dimensional modules.

Proof. By [7, §5.5], the finite-dimensionalB–modules form a set of compact objects
that generate D(B)op. It follows that the compact objects in D(B)op are generated
as a thick subcategory of D(B)op by the finite-dimensional modules [3, Theorem
2.1.3(c)]. �

Proof of Theorem 8.1. Given an equivalence F , we have that F (A) is a compact
generator of D(B)op. Hence, by Lemma 8.2, F (A) is obtained from a finite set
of totally finite-dimensional B–modules by a sequence of shifts, extensions and
retractions. Thus the direct sum of these finite-dimensional modules is a compact
generator of D(B)op. This proves that (1) implies (3), and (3) obviously implies
(2).

Now suppose (2) holds: let N be a compact generator of D(B)op. Without loss
of generality we may assume N is cofibrant. Define a dg algebra A := EndB(N).
Then the functor

F (−) = HomA(−, N) : A-mod→ (B-mod)op

is left adjoint to the functor

G(−) = HomB(−, N) : (B-mod)op → A-mod .



12 JOSEPH CHUANG1 , ANDREY LAZAREV2 & W.H. MANNAN3

Recall [7] that cofibrations in A-mod are the injective maps with cofibrant (in par-
ticular projective) cokernel, whereas fibrations are the surjective maps. Similarly
fibrations in (B-mod)op are the injective maps with projective cokernel, and fibra-
tions are the surjective maps. It is then easy to see that F preserves cofibrations
and G preserves fibrations. Moreover F (A) ∼= N and G(N) ∼= A. Since A and N
are compact generators in D(A) and D(B) respectively, it follows that F and G
induce inverse equivalences of D(A) and D(B)op.

Suppose now that B is an ordinary pseudo-compact algebra. Simple (non-dg)
B–modules may be regarded as simple dg B–modules concentrated in degree 0, and
any simple dg B–module arises in this way, up to grading shift. If B has finitely
many isomorphism classes of simple modules, their direct sum is then a compact
generator, as any finite-dimensional dg B–module has a finite composition series.

Conversely suppose B has a finite-dimensional (compact) generator N . It suf-
fices to show that any simple B–module S is a composition factor of the cohomol-
ogy H(N), regarded as a (finite-dimensional) ungraded B–module. To confirm the
latter, note that S, as a compact object in D(B)op, is contained in the thick subcat-
egory of D(B)op generated by N , and observe that shifts, retracts and extensions
of dg B–modules cannot create new composition factors in cohomology. �

Remark 8.3. The obvious generalisation of condition (4) in Proposition 8.1 to
arbitrary pseudo-compact dg algebras B would be the following:

(4’) There are finitely many isomorphism classes of simple dg B–modules, up
to grading shift.

We do not know whether Proposition 8.1 holds in this generality. As a case in

point, the pseudo-compact dg algebra E = Hoch
•
(A,EndM) of Theorem 2.1 has

a unique simple (dg) module up to isomorphism and grading shift – the module
M .

Remark 8.4. Let G be an affine group over a field k; denote its coordinate ring
by k[G]. The category of G–modules may be identified with the category of k[G]-
comodules, or equivalently, with the category of modules over the pseudo-compact
algebra k[G]∗. Thus it is natural to consider the derived category D(k[G]∗) and
to ask for which G it admits a compact generator. By Theorem 8.1 this holds if
and only if there are finitely many isomorphism classes of simple G–modules.

In case G is a smooth affine algebraic group over an algebraically closed field,
we can give the following answer: G has finitely many simple modules if and only
if G0, the connected component of the identity, is unipotent. Indeed, since G0 is
a normal subgroup of finite index in G, the standard arguments of Clifford theory
imply that G has finitely many simple modules precisely when G0 does. If G0 is
unipotent it has a unique simple module. On the other hand if G0 is not unipotent,
it has a nontrivial reductive quotient and thus infinitely many isomorphism classes
of simple modules.

9. Comparison with classical Morita duality

Our main result, Theorem 2.1, is a Quillen anti-equivalence, or duality between
two module categories; it is given as a kind of derived Hom functor. This suggests
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a close relationship with Morita duality [6, 5] which also studies contravariant
equivalences between various categories of modules. We will see that that our
result can indeed be viewed as an extension of Morita duality in the case when
the algebra in question is finite dimensional and of finite global dimension.

Let us first present a kind of derived Morita duality when A is an ordinary
(i.e. non-dg) finite-dimensional algebra; this will be our standing assumption in
this section. If M is a finite-dimensional injective cogenerator of the category of
A-modules and Γ := EndA(M) then the category of finite-dimensional A–modules
is anti-equivalent to the category of finite-dimensional Γ–modules via the functors
F : N 7→ HomA(N,M) and G : L 7→ HomΓ(L,M) (see e.g. [9, Theorem 7.11]).
Note that since Γ is a finite dimensional algebra, it makes sense to consider the
category of its (left) pseudo-compact modules which we will denote by Γps–mod;
note that its opposite category is naturally identified with the category of Γ∗-
comodules. The following result is an easy extension of this version of Morita
duality.

Theorem 9.1. The functors F and G determine an anti-equivalence between the
abelian categories A–mod and Γps–mod.

Proof. The functor G : Γps–mod→ A–mod can be factored as a composition,

Γps-mod −→ Γ-mod −→ A-mod,

as follows:

L 7→ L∗ 7→ HomΓ(M∗, L∗) ∼= HomΓ(L,M),

where L is a pseudo-compact Γ–module. The functor of linear duality L → L∗

is clearly an anti-equivalence between Γps–mod and Γ–mod whereas the functor
HomΓ(M∗,−) is the usual covariant Morita equivalence between Γ–mod and A–
mod (note that M∗ is a projective generator of A–mod since M is an injective
cogenerator). �

Remark 9.2. It follows that F and G determine an anti-equivalence between the
homotopy categories of complexes in A-mod and Γps-mod. Taking the Verdier
quotient by the acyclic complexes, we conclude that D(A), the derived category
of A, is anti-equivalent to DI(Γps), the derived category of pseudo-compact Γ–
modules of the first kind (cf. [7] concerning this terminology). Note that our
previous results were concerned with the derived categories of pseudo-compact
modules of the second kind.

Recall from [7] that a complex of A-modules is absolutely acyclic if it belongs
to the minimal thick subcategory of the category Hot(A-mod) of A-modules up
to homotopy, containing acyclic bounded complexes. The Verdier quotient of
Hot(A-mod) by the subcategory of absolutely acyclic complexes is called the ab-
solute derived category of A and denoted by Dabs(A). In the same way we can
define the absolute derived category Dabs(Γps) of pseudo-compact Γ-modules. It
follows similarly that the functors F and G determine an anti-equivalence between
Dabs(A) and Dabs(Γps).

We observe that there is a simple criterion for the two types of derived categories
to coincide.
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Lemma 9.3. If a finite-dimensional algebra Γ has finite global dimension then the
following categories coincide:

(1) Dabs(Γ) and D(Γ);
(2) Dabs(Γps), D(Γps) and DI(Γps).

Proof. Note first of all that (1) =⇒ (2) by Remark 9.2. Thus, it suffices to prove
(1). To this end let M be an acyclic complex of Γ–modules; we have to show that
Γ is absolutely acyclic. Let M〈n,m〉 be the complex of Γ–modules such that:

M〈n,m〉i =


M i if n < i < m

ker d : Mn →Mn+1 if i = n

Coker d : Mm−1 →Mm if i = m

0 if i < n or i > m

Then clearly M〈n,m〉 is absolutely acyclic and

M ' holimn hocolimmM〈n,m〉.
It follows by [7, Theorem 3.6] that the category of absolutely acyclic complexes
is closed with respect to arbitrary direct sums and direct products (this is where
the finite global dimension assumption is used), and therefore also with respect to
homotopy limits and colimits along directed systems . Therefore M is absolutely
acyclic. �

Remark 9.4. If Γ is a pseudo-compact dg algebra of finite global dimension
then Positselski [7, Theorem 3.6 and 4.5] showed that various derived categories
of second kind of Γ coincide. The result above shows that under the additional
assumption that Γ is concentrated in degree zero, these derived categories of second
kind also coincide with the ordinary derived categories.

We can now formulate the main result of this section.

Theorem 9.5.

(1) Let A be a finite-dimensional algebra of finite global dimension. Then
the categories of dg A–modules and of pseudo-compact dg A–modules are
Quillen anti-equivalent.

(2) Conversely, suppose that there exists a finite-dimensional algebra Γ such
that the categories D(A) and D(Γps)op are equivalent. Then A and Γ both
have finite global dimension, and D(A) and D(Γ) are equivalent.

Proof. Note that the k-linear duality functor L 7→ L∗ determines an anti-equivalence
between the abelian categories A-mod and Aps-mod; it is also a Quillen functor
between the corresponding closed model categories. Now the homotopy category
of A-mod (in the sense of closed model categories) is the derived category D(A).
By Lemma 9.3 the homotopy category of the closed model category Aps-mod is
the same as DI(Aps) which is then equivalent to D(A) under the functor of linear
duality. This proves (1).

Now suppose that D(A) and D(Γps) are equivalent. Then arbitrary prod-
ucts and coproducts exist in D(Γps). Since absolutely acyclic pseudo-compact
Γ–modules vanish in D(Γps), arguing as in the proof of Lemma 9.3 we see, that
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the same is true of all acyclic pseudo-compact Γ–modules. Thus D(Γps) coin-
cides with DI(Γps), and is thus anti-equivalent to D(Γ) via linear duality. Now
recall from Lemma 8.2 that finite-dimensional Γ-modules are compact objects in
D(Γps)op. We deduce from the equivalence D(Γ) ∼= D(Γps)op : M 7→M∗ that any
finite-dimensional dg A–module is compact in D(A), which implies that A has
finite global dimension, and therefore so does Γ. �

Remark 9.6. For a finite-dimensional algebra A there are two natural choices for
a finite-dimensional module M ; namely one can take M = A or M = A∗; the latter
choice having the advantage of being an injective cogenerator. Then Theorem 2.1
states that the category A–mod and E–mod where E := Hoch(A,End(M)) are
Quillen equivalent. Since E is quasi-isomorphic to RHomA(M,M), for M = A
or M = A∗ it is further quasi-isomorphic to A. One can ask whether the above
equivalence simplifies to a Quillen equivalence between A–modules and pseudo-
compact A–modules. Theorem 9.5 says, in particular, that this is the case only
when A has finite global dimension.
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