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Abstract. Let X and Y be Banach spaces such that the ideal of operators which factor
through Y has codimension one in the Banach algebra B(X) of all bounded operators
onX, and suppose that Y contains a complemented subspace which is isomorphic to Y ⊕Y
and that X is isomorphic to X ⊕ Z for every complemented subspace Z of Y . Then the
K0-group of B(X) is isomorphic to the additive group Z of integers.

A number of Banach spaces which satisfy the above conditions are identi�ed. Nota-
bly, it follows that K0(B(C([0, ω1]))) ∼= Z, where C([0, ω1]) denotes the Banach space of
scalar-valued, continuous functions de�ned on the compact Hausdor� space of ordinals
not exceeding the �rst uncountable ordinal ω1, endowed with the order topology.
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1. Introduction

The purpose of this note is to prove that, for certain Banach spaces X, the K0-group of the
Banach algebra B(X) of (bounded, linear) operators on X is isomorphic to the additive
group Z of integers. More precisely, our main result, which will be proved in Section 3, is
as follows.

Theorem 1.1. Let X and Y be Banach spaces such that:

(i) Y contains a complemented subspace which is isomorphic to Y ⊕ Y ;
(ii) X is isomorphic to X ⊕ Z for every complemented subspace Z of Y ; and
(iii) the ideal {TS : S ∈ B(X, Y ), T ∈ B(Y,X)} of operators on X that factor through Y

has codimension one in B(X).

Then the mapping

n 7→ n · [IX ]0, Z→ K0(B(X)), (1.1)

is an isomorphism of abelian groups, where [IX ]0 denotes the K0-class of the identity opera-
tor on X.

As a consequence, we shall deduce in Section 4 that the K0-group of B(X) is isomorphic
to Z for a number of Banach spaces X, including the following:
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(i) X = C([0, ω1]), the Banach space of scalar-valued, continuous functions de�ned on the
compact Hausdor� space of ordinals not exceeding the �rst uncountable ordinal ω1,
endowed with the order topology;

(ii) X = C(K) orX = C(K)⊕Y , whereK is the compact Hausdor� space constructed by
the second-named author [13], assuming either the Continuum Hypothesis, or Mar-
tin's Axiom together with the negation of the Continuum Hypothesis, and where Y
is a Banach space which is isomorphic to the `p- or c0-direct sum of countably many
copies of itself for some p ∈ [1,∞), Y contains a complemented subspace that is
isomorphic to c0, and no complemented subspace of Y is isomorphic to C(K);

(iii) X = XAH ⊕ Cp, where XAH is Argyros and Haydon's Banach space which solves the
scalar-plus-compact problem (see [2]), p ∈ [1,∞], and Cp is Johnson's pth universal
space through which all approximable operators factor (see [9]);

(iv) X = W ⊕Y , where W is the non-separable Banach space constructed by Shelah and
Stepr	ans [19] such that every operator on W is a scalar multiple of the identity plus
an operator with separable range, and Y is the `p-direct sum of a certain family of
separable subspaces of W for some p ∈ (1,∞); see Example 4.7 for details.

We also obtain a couple of known results as consequences of Theorem 1.1, namely that
K0(B(X)) ∼= Z for X = Jp or X = Jp(ω1), where p ∈ (1,∞) and Jp denotes the pth

quasi-re�exive James space, while Jp(ω1) denotes Edgar's long version of it (see [8] and [5],
respectively).
It is known that the K0-group of B(X) vanishes for most �classical� Banach spaces X,

including every Banach space X which is primary and isomorphic to its square X⊕X (see
[14, Proposition 2.3]). By contrast, the existence of an ideal of �nite codimension in B(X)
implies that the K0-class [IX ]0 of the identity operator on X is an element of in�nite order
in K0(B(X)), as we shall show in Remark 2.3, below. Theorem 1.1 can therefore be viewed
as a minimality result for K0(B(X)): condition (iii) implies that [IX ]0 has in�nite order
in K0(B(X)), and (1.1) states that this element generates the whole group.

2. Preliminaries

We shall begin by outlining the de�nition of theK0-group of a unital ring A ; further details
can be found in standard texts such as [3] and [18]. For m,n ∈ N, we denote by Mm,n(A )
the additive group of (m×n)-matrices over A . We write Mn(A ) instead of Mn,n(A ); this
is a unital ring. De�ne

IPn(A ) = {P ∈Mn(A ) : P 2 = P}, the set of idempotent (n× n)-matrices over A .

Given P ∈ IPm(A ) and Q ∈ IPn(A ), where m,n ∈ N, we say that P and Q are alge-
braically equivalent, written P ∼0 Q, if P = AB and Q = BA for some A ∈Mm,n(A ) and
B ∈Mn,m(A ). This de�nes an equivalence relation∼0 on the set IP∞(A ) =

⋃
n∈N IPn(A ),

and the quotient V (A ) = IP∞(A )/∼0 is an abelian semigroup with respect to the opera-
tion (

[P ]V , [Q]V
)
7→
[(
P 0
0 Q

)]
V

, V (A )× V (A )→ V (A ), (2.1)
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where [P ]V denotes the equivalence class of P ∈ IP∞(A ) in V (A ). The K0-group of A ,
denoted by K0(A ), is now de�ned as the Grothendieck group of V (A ). The fundamental
property of the Grothendieck group implies that we have the following standard picture of
K0(A ):

K0(A ) =
{

[P ]0 − [Q]0 : P,Q ∈ IP∞(A )
}
, (2.2)

where [P ]0 is the canonical image of [P ]V in K0(A ). This image can be described more
explicitly as follows: for P,Q ∈ IP∞(A ),

[P ]0 = [Q]0 ⇐⇒
(
P 0
0 1Mn(A )

)
∼0

(
Q 0
0 1Mn(A )

)
for some n ∈ N0, (2.3)

where 1Mn(A ) denotes the (n× n)-identity matrix over A .
Let n ∈ N, and suppose that P,Q ∈ IPn(A ) are orthogonal, in the sense that PQ = 0 =

QP . Then P + Q is idempotent, and the formula for addition in K0(A ) takes the simple
form

[P ]0 + [Q]0 = [P +Q]0. (2.4)

We shall require one more basic property of K0: given a ring homomorphism ϕ : A → C
(where C , like A , is a unital ring, but ϕ need not be unital) and n ∈ N, we can de�ne a
ring homomorphism ϕn : Mn(A )→Mn(C ) by entrywise application:

ϕn
(
(Aj,k)

n
j,k=1

)
=
(
ϕ(Aj,k)

)n
j,k=1

. (2.5)

This induces a group homomorphism K0(ϕ) : K0(A )→ K0(C ) which satis�es

K0(ϕ)([P ]0) = [ϕn(P )]0 (n ∈ N, P ∈ IPn(A )). (2.6)

Throughout Sections 1�4, except in Remark 3.2, all Banach spaces and algebras will
be considered over a �xed scalar �eld K = R or K = C, whereas in Remark 3.2 and
Appendix A, we shall work with complex scalars only.
It is well known and elementary that the standard (unnormalized) trace

Trn : (λj,k)
n
j,k=1 7→

n∑
j=1

λj,j, Mn(K)→ K,

induces a group isomorphism τ : K0(K)→ Z which satis�es

τ([P ]0) = Trn(P ) (n ∈ N, P ∈ IPn(K)) (2.7)

(see for instance [18, Example 3.3.2] for a proof for K = C; the proof for K = R is similar).
The symbol C(K) denotes the Banach space of scalar-valued, continuous functions de-

�ned on a compact Hausdor� space K. By an operator, we understand a bounded, linear
mapping between Banach spaces. For Banach spaces X and Y , we write B(X, Y ) for the
Banach space of all operators from X into Y , and we identify Mm,n(B(X, Y )) with the
Banach space B(Xn, Y m) of operators from Xn into Y m, where Xn denotes the direct
sum of n copies of X, equipped with the norm ‖(x1, . . . , xn)‖ = max{‖x1‖, . . . , ‖xn‖} for
x1, . . . , xn ∈ X. We write B(X) instead of B(X,X); this is a unital Banach algebra. We
denote by IX the identity operator on X.
The following easy observation clari�es the meaning of the relation ∼0 in this case.
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Lemma 2.1. Let X be a Banach space, and let P,Q ∈ IP∞(B(X)). Then P ∼0 Q if and
only if the ranges of P and Q are isomorphic.

We shall also require the following related result.

Lemma 2.2 ([16, Lemma 3.9(ii)]). Let X and Y be Banach spaces, and let S ∈ B(X, Y )
and T ∈ B(Y,X) be operators such that ST is idempotent. Then TSTS is idempotent,
and the ranges of ST and TSTS are isomorphic.

Given Banach spaces X, Y and Z, we de�ne

GY (X,Z) = span{TS : S ∈ B(X, Y ), T ∈ B(Y, Z)}.
This is an operator ideal in the sense of Pietsch provided that Y is non-zero. The `span' is
not necessary when Y contains a complemented subspace which is isomorphic to Y ⊕ Y ;
in this case the set

{TS : S ∈ B(X, Y ), T ∈ B(Y, Z)}
is automatically a linear subspace of B(X,Z). In line with standard practice, we write
GY (X) instead of GY (X,X).

Remark 2.3. Let X be a Banach space for which B(X) contains a proper ideal I
of �nite codimension. Then, as mentioned in the Introduction, the element [IX ]0 has
in�nite order in K0(B(X)). We shall now outline a simple proof of this fact. As-
sume towards a contradiction that n · [IX ]0 = 0 for some n ∈ N. Then (2.1), (2.3)
and Lemma 2.1 imply that the Banach spaces Xm+n and Xm are isomorphic for some
m ∈ N. Let U ∈ B(Xm, Xm+n) = Mm+n,m(B(X)) be an isomorphism. We can then
de�ne an algebra isomorphism ϕ : Mm+n(B(X)) → Mm(B(X)) by ϕ(T ) = U−1TU for
each T ∈Mm+n(B(X)), and ϕ maps the ideal Mm+n(I ) of Mm+n(B(X)) onto Mm(I )
because I is an ideal of B(X).
By elementary linear algebra, a linear bijection between two vector spaces maps a sub-

space of �nite codimension k ∈ N in the domain onto a subspace of codimension k in
the codomain. Consequently the codimension of Mm(I ) in Mm(B(X)) is equal to the
codimension of Mm+n(I ) in Mm+n(B(X)). This, however, contradicts that a simple di-
mension count shows that the former codimension is jm2, while the latter is j(m + n)2,
where j ∈ N denotes the codimension of I in B(X). Hence we conclude that n · [IX ]0 6= 0
for each n ∈ N, as required.

Note: the above result has another, perhaps more widely known, proof for complex
scalars. It combines the isomorphism (2.7) with the classical theorems of Wedderburn
and Frobenius that state that a simple, �nite-dimensional, complex algebra is isomorphic
to Mn(C) for some n ∈ N. The latter conclusion does not carry over to the real case, so
this argument does not generalize easily.

3. The proof of Theorem 1.1

Throughout this section (except in Remark 3.2), we shall suppose thatX and Y are Banach
spaces which satisfy conditions (i)�(iii) of Theorem 1.1. The third of these conditions
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implies that we can de�ne a bounded, unital algebra homomorphism ϕ : B(X)→ K by

ϕ(λIX + T ) = λ (λ ∈ K, T ∈ GY (X)). (3.1)

Recall that we identify Mn(B(X)) with B(Xn) for each n ∈ N. Under this identi�cation,
we have Mn(GY (X)) = GY (Xn) because GY is an operator ideal, and hence

kerϕn = Mn(kerϕ) = GY (Xn) = {TS : S ∈ B(Xn, Y ), T ∈ B(Y,Xn)}, (3.2)

where the �nal equality follows from the fact that Y satis�es condition (i).
The following lemma is the key step in the proof of the surjectivity of the mapping (1.1).

Lemma 3.1. Let P ∈ IPn(B(X)) for some n ∈ N, and set k = Trn ◦ϕn(P ). Then

[P ]0 = k · [IX ]0 in K0(B(X)).

Proof. We shall �rst establish the result for k = 0. In this case we have ϕn(P ) = 0
because the zero matrix is the only idempotent, scalar-valued matrix with trace zero, so
that P = TS for some operators S : Xn → Y and T : Y → Xn by (3.2). Lemma 2.2
then implies that the operator Q = SPT ∈ B(Y ) is idempotent with Q[Y ] ∼= P [Xn].
Combining this with condition (ii), we obtain X ⊕ P [Xn] ∼= X ⊕ Q[Y ] ∼= X; that is, the
operators

(
IX 0
0 P

)
and IX have isomorphic ranges. Hence [IX ]0 + [P ]0 = [IX ]0 in K0(B(X))

by (2.1) and Lemma 2.1, so that [P ]0 = 0, as required.
We shall next consider the case where k = n. Then Trn ◦ϕn(IXn − P ) = 0, so that

[IXn−P ]0 = 0 by the result established in the �rst paragraph of the proof. Hence, by (2.4)
and (2.1), we conclude that

[P ]0 = [P ]0 + [IXn − P ]0 = [IXn ]0 = n · [IX ]0 in K0(B(X)).

Finally, suppose that k ∈ {1, 2, . . . , n− 1}. Since ϕn(P ) is an idempotent, scalar-valued
matrix, it is diagonalizable, so that there exists R ∈ kerϕn such that ∆k +R is idempotent
and P ∼0 ∆k +R, where

∆k =

(
IXk 0
0 0

)
∈ IPn(B(X)).

By (3.2), we can �nd operators S : Xn → Y and T : Y → Xn such that R = TS. Moreover,
∆k has an obvious factorization as ∆k = V U , where U : Xn → Xk and V : Xk → Xn denote
the projection onto the �rst k coordinates and the embedding into the �rst k coordinates,
respectively. Condition (ii) implies that there exists an isomorphism W : Xk → Xk ⊕ Y ,
and we then have a commutative diagram

Xn
∆k +R //

U
S


��

Xn

Xk ⊕ Y W−1
// Xk

W // Xk ⊕ Y ,

(
V T

)
OO
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where the operators
(
U
S

)
and (V T ) are given by x 7→ (Ux, Sx) and (x, y) 7→ V x + Ty,

respectively. Hence Lemma 2.2 shows that the operator

Q = W−1

(
U
S

)
(∆k +R)

(
V T

)
W ∈ B(Xk)

is idempotent and the ranges of Q and ∆k + R are isomorphic, so that Q ∼0 P by
Lemma 2.1. The trace property implies that Trk ◦ϕk(Q) = Trn ◦ϕn(∆k + R) = k, and
therefore, as shown in the second paragraph of the proof, we have k · [IX ]0 = [Q]0 = [P ]0,
as required. �

Proof of Theorem 1.1. We shall show below that the group homomorphism

τ ◦K0(ϕ) : K0(B(X))→ Z, (3.3)

where τ is the isomorphism given by (2.7), is an isomorphism. Since τ ◦K0(ϕ)([IX ]0) = 1,
which generates the group Z, the mapping given by (1.1) is the inverse of this isomorphism,
and hence the conclusion follows.
The surjectivity of the homomorphism (3.3) is immediate because, as observed above,

its range contains the generator 1 of the group Z.
To see that the homomorphism (3.3) is injective, suppose that g ∈ ker τ◦K0(ϕ). By (2.2),

we have g = [P ]0 − [Q]0 for some P ∈ IPm(B(X)) and Q ∈ IPn(B(X)), where m,n ∈ N.
Using (2.6) and (2.7), we obtain

0 = τ ◦K0(ϕ)(g) = Trm ◦ϕm(P )− Trn ◦ϕn(Q).

This implies that [P ]0 = [Q]0 by Lemma 3.1, so that g = 0. �

Remark 3.2. LetX be a Banach space for which B(X) contains a closed ideal of codimen-
sion one. In the light of Theorem 1.1, one may ask whether such an ideal is necessarily
of the form GY (X) for some complemented subspace Y of X. To see that this need not
be the case, suppose that X is hereditarily indecomposable, in the sense that X is in�nite-
dimensional and whenever a closed subspace W of X is decomposed into a direct sum of
two closed subspaces A and B, either A or B is �nite-dimensional. Gowers and Maurey [7]
proved that such Banach spaces exist and that, in the case where K = C, the ideal S (X)
of strictly singular operators has codimension one in B(X).
We shall now show that no complemented subspace Y of a hereditarily indecomposable

Banach space X satis�es S (X) = GY (X). Indeed, since X is indecomposable, a comple-
mented subspace Y of X is either �nite-dimensional or �nite-codimensional. In the �rst
case, each operator which factors through Y has �nite rank, and so GY (X) $ S (X), while
in the second case, any idempotent operator P on X with range Y factors through Y ,
but P is not strictly singular (since Y is in�nite-dimensional and the restriction of P
to Y is the identity), so that GY (X) 6⊆ S (X) (and consequently GY (X) = B(X) by [16,
Proposition 7.2]).
In fact, the conclusion of Theorem 1.1 fails for each complex, hereditarily indecomposable

Banach space X: applying [14, Corollary 4.7] for m = 1, we see that K0(B(X)) ∼= Z⊕ Z.
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4. Applications

Example 4.1. Assuming either the Continuum Hypothesis, or Martin's Axiom together
with the negation of the Continuum Hypothesis, the second-named author [13] has con-
structed a scattered compact Hausdor� space K such that:

(1) the ideal X (C(K)) of operators with separable range has codimension one in
B(C(K));

(2) every separable subspace of C(K) is contained in a subspace which is isomorphic
to c0;

(3) whenever C(K) is decomposed into a direct sum of two closed, in�nite-dimensional
subspaces A and B, either A ∼= c0 and B ∼= C(K), or vice versa.

We claim that X = C(K) and Y = c0 satisfy conditions (i)�(iii) of Theorem 1.1. Indeed,
(i) is clear, while condition (2), above, implies that X (C(K)) = Gc0(C(K)) (as already
observed in [10, Theorem 5.5]), and hence (iii) is satis�ed by (1). Finally, to verify (ii), we
observe that:

• C(K) contains a complemented subspace which is isomorphic to c0 because K is
scattered (see, e.g., [6, Theorem 12.30(iv)]), and consequently C(K) ∼= C(K)⊕ c0

by (3), above; and
• every complemented subspace Z of c0 is either �nite-dimensional or isomorphic
to c0, and therefore c0 ⊕ Z ∼= c0.

Hence C(K)⊕Z ∼= C(K)⊕c0⊕Z ∼= C(K)⊕c0
∼= C(K), as required. Thus we conclude that

K0(B(C(K))) ∼= Z. It is not known whether a compact space with the same properties
as K can be constructed within ZFC.

In order to facilitate further applications of Theorem 1.1, we shall show that certain
standard properties of Banach spaces ensure that the �rst two conditions of Theorem 1.1
are satis�ed.

Lemma 4.2. Let X and Y be Banach spaces such that X is isomorphic to X ⊕ Y , and
suppose that Y satis�es (at least) one of the following two conditions:

(1) Y is isomorphic to the `p- or the c0-direct sum of countably many copies of itself
for some p ∈ [1,∞); or

(2) Y is primary and contains a complemented subspace which is isomorphic to Y ⊕Y .

Then conditions (i)�(ii) of Theorem 1.1 are satis�ed.

Proof. Condition (i) of Theorem 1.1 is clearly satis�ed in both cases.
To verify condition (ii), suppose that Z is a complemented subspace of Y .
In case (1), we observe that Y ∼= Y ⊕ Y , so that Y contains a complemented subspace

which is isomorphic to Y ⊕Z. On the other hand, Y ⊕Z evidently contains a complemented
subspace which is isomorphic to Y . Hence the Peªczy«ski decomposition method (as stated
in [1, Theorem 2.23(b)], for instance) implies that Y ∼= Y ⊕ Z. Combining this with the
assumption that X ∼= X ⊕ Y , we obtain

X ⊕ Z ∼= X ⊕ Y ⊕ Z ∼= X ⊕ Y ∼= X, (4.1)

as required.
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In case (2), either Y ∼= Z or Y ∼= Y ⊕ Z because Y is primary. In the �rst case,
X ⊕ Z ∼= X is immediate from the fact that X ∼= X ⊕ Y , and in the second case the
calculation (4.1), above, applies to give this conclusion. �

Example 4.3. For an ordinal α, denote by [0, α] the compact Hausdor� space consisting
of all ordinals not exceeding α, endowed with the order topology, and set X = C([0, ω1])
and Y =

(⊕
α<ω1

C([0, α])
)
c0
, where ω1 denotes the �rst uncountable ordinal. Then:

• X ∼= X ⊕ Y by [11, Lemma 2.14(iv) and Corollary 2.16];
• Y is isomorphic to the c0-direct sum of countably many copies of itself by [11,
Lemma 2.12], so that condition (1) of Lemma 4.2 is satis�ed (in fact, condition (2)
is also satis�ed by [12, Corollary 1.3]);
• the ideal GY (X) has codimension one in B(X) by [11, Theorem 1.6].

Hence Lemma 4.2 and Theorem 1.1 apply, so that K0(B(X)) ∼= Z.

This example provided the original motivation behind Theorem 1.1. We have since
learnt that a di�erent approach may be possible for complex scalars, based on a result of
Edelstein and Mityagin, which will also show that the K1-group of B(C([0, ω1])) vanishes;
we refer to Appendix A for details.

Example 4.4. Let p ∈ (1,∞), and let X = Jp be the pth quasi-re�exive James space,
which is de�ned by Jp = {x ∈ c0 : ‖x‖Jp <∞}, where

‖x‖Jp = sup

{( m∑
j=1

|xkj − xkj+1
|p
) 1

p
: m, k1, . . . , km+1 ∈ N, k1 < k2 < · · · < km+1

}
∈ [0,∞]

for each scalar sequence x = (xk)k∈N. (This space was �rst considered for p = 2 by
James [8] and later generalized to arbitrary p by Edelstein and Mityagin [4, p. 229].)

Moreover, let Y =
(⊕

n∈N J
(n)
p

)
`p
, where J

(n)
p denotes the n-dimensional subspace of Jp

consisting of those elements which vanish from the (n + 1)st coordinate onwards. Then
X ∼= X ⊕ Y and Y is isomorphic to the `p-direct sum of countably many copies of itself
by [4, Lemmas 5�6]. (Note, however, that a key condition appears to be missing in the
statement of [4, Lemma 5], namely that the sequence denoted by ν is unbounded.) Further,
the ideal GY (X) has codimension one in B(X) by [17, Theorem 4.3], so that Lemma 4.2
and Theorem 1.1 show that K0(B(Jp)) ∼= Z. This reproves [15, Theorem 4.6], whose proof
inspired our proof of Theorem 1.1, above.
Kochanek and the �rst-named author have observed that the results obtained in [10,

Section 3] ensure that the proof of [15, Theorem 4.6] carries over to Edgar's long James
space Jp(ω1), originally introduced in [5], so that K0(B(Jp(ω1))) ∼= Z (see [10, Proposi-
tion 3.13]). Our results provide an explicit proof of this conclusion, using [10]. Indeed,
let X = Jp(ω1), and de�ne Y =

(⊕
α∈L Jp(α)

)
`p
, where L denotes the set of countably

in�nite limit ordinals and Jp(α) is the closed subspace of Jp(ω1) spanned by the indicator
functions of the ordinal intervals [0, β] for β < α. Then [10, Proposition 3.3, Lemma 3.4
and Theorem 3.7] show that X ∼= X ⊕ Y , that Y is isomorphic to the `p-direct sum of
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countably many copies of itself, and that the ideal GY (X) has codimension one in B(X),
so that Lemma 4.2 and Theorem 1.1 apply.

Our �nal applications of Theorem 1.1 rely on the following general observation.

Lemma 4.5. Suppose that X = W ⊕ Y , where W and Y are Banach spaces such that:

(1) Y is isomorphic to the `p- or c0-direct sum of countably many copies of itself for
some p ∈ [1,∞); and

(2) the ideal GY (W ) has codimension one in B(W ).

Then X and Y satisfy conditions (i)�(iii) of Theorem 1.1, and hence K0(B(X)) ∼= Z.

Proof. Condition (1) ensures that Y ∼= Y ⊕ Y , so that X ∼= X ⊕ Y , and Lemma 4.2
therefore shows that conditions (i)�(ii) of Theorem 1.1 are satis�ed.
To verify condition (iii), we use the fact that each operator T ∈ B(X) can be represented

as a (2× 2)-matrix

T =

(
T1,1 : W → W T1,2 : Y → W
T2,1 : W → Y T2,2 : Y → Y

)
,

and T factors through Y if and only if Tj,k does for each pair j, k ∈ {1, 2}. Since Tj,k trivially
factors through Y for (j, k) 6= (1, 1), condition (2) shows that GY (X) has codimension one
in B(X). �

Example 4.6. Let W = XAH be Argyros and Haydon's Banach space which solves the
scalar-plus-compact problem (see [2]), and, for some p ∈ [1,∞], let Y = Cp be Johnson's
pth universal space with the property that all approximable operators factor through Cp
(see [9]). Then, as noted in [9, p. 341], Y is (isometrically) isomorphic to either the `p-direct
sum (for p <∞) or the c0-direct sum (for p =∞) of countably many copies of itself.
Moreover, every compact operator T on W is approximable because W has a Schauder

basis, and therefore T factors through Y by the fundamental property of Y (see [9, The-
orem 1]). Hence we have K (W ) ⊆ GY (W ). To show that these two ideals are equal,
we assume the contrary. Then, as K (W ) has codimension one in B(W ), necessarily
IW ∈ GY (W ), so that Lemma 2.2 implies that Y contains a complemented subspace which
is isomorphic to W . However, as observed in [9, p. 341], every closed, in�nite-dimensional
subspace of Y contains a subspace which is isomorphic to `p (for p <∞) or c0 (for p =∞),
but no subspace ofW is isomorphic to `p or c0 becauseW is hereditarily indecomposable by
[2, Theorem 8.11]. This contradiction proves that GY (W ) = K (W ). In particular GY (W )
has codimension one in B(W ), so that Lemma 4.5 implies that K0(B(XAH ⊕ Cp)) ∼= Z.

Example 4.7. Let W be the non-separable Banach space constructed by Shelah and Ste-
pr	ans [19] such that the ideal X (W ) of operators with separable range has codimension
one in B(W ), and choose a family (Yγ)γ∈Γ of closed, separable subspaces of W such that:

(1) every closed, separable subspace of W is isomorphic to Yγ for some γ ∈ Γ; and
(2) every subspace Yβ is repeated countably many times in the family (Yγ)γ∈Γ, in the

sense that the set {γ ∈ Γ : Yγ = Yβ} is countably in�nite for each β ∈ Γ.
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Set Y =
(⊕

γ∈Γ Yγ
)
`p

for some p ∈ (1,∞). Condition (2) ensures that Y is isomorphic to

the `p-direct sum of countably many copies of itself.
We shall now proceed to show that X (W ) = GY (W ). Indeed, for each T ∈ X (W ), we

can choose γ ∈ Γ such that there is an isomorphism U of T [W ] onto Yγ. Let ιγ : Yγ → Y and
πγ : Y → Yγ denote the canonical γth coordinate embedding and projection, respectively.
Then we have T = SR, where the operators R and S given by R : w 7→ ιγUTw, W → Y,
and S : y 7→ U−1πγy, Y → W . This shows that T ∈ GY (W ), and therefore the inclusion
X (W ) ⊆ GY (W ) holds.
On the other hand, the Banach space Y is weakly compactly generated, so that the same

is true for each of its complemented subspaces. Wark [20, Proposition 2] has shown thatW
is not weakly compactly generated. Hence no complemented subspace of Y is isomorphic
to W , so that IW /∈ GY (W ) by Lemma 2.2. Thus we conclude that GY (W ) = X (W ), and
therefore Lemma 4.5 shows that K0(B(W ⊕ Y )) ∼= Z.

Example 4.8. Assume either the Continuum Hypothesis, or Martin's Axiom together with
the negation of the Continuum Hypothesis, and let W = C(K), where K is the scattered
compact Hausdo� space described in Example 4.1. Suppose that Y is a Banach space such
that:

(1) Y is isomorphic to the `p- or c0-direct sum of countably many copies of itself for
some p ∈ [1,∞);

(2) Y contains a complemented subspace which is isomorphic to c0; and
(3) no complemented subspace of Y is isomorphic to W .

Condition (3) ensures that the ideal GY (W ) is proper, while condition (2) implies that it
contains the ideal Gc0(W ), which has codimension one in B(W ). Hence GY (W ) = Gc0(W ),
so that GY (W ) has codimension one in B(W ). The conditions of Lemma 4.5 are therefore
satis�ed, and thus K0(B(W ⊕ Y )) ∼= Z.
For instance, conditions (1)�(3), above, are satis�ed for Y = C(M), where M is any

in�nite, compact metric space.

Appendix A. An alternative approach based on homotopy

Edelstein and Mityagin stated in [4, Proposition 4] that the invertible group of the Banach
algebra B(C([0, ω1])n) is homotopy equivalent to the invertible group of scalar-valued
(n × n)-matrices for each n ∈ N. The aim of this appendix is to apply this result in the
complex case to show that the K1-group of B(C([0, ω1])) vanishes, and to explain how a
slightly stronger version of it can be used to reprove the conclusion of Example 4.3 that
K0(B(C([0, ω1]))) ∼= Z. Our approach works for complex scalars only, so throughout this
appendix we shall suppose that K = C.
TheK1-group will be the main object of interest, so we shall begin by de�ning it formally.

In contrast to the purely ring-theoretic de�nition of K0, topology plays a key role here.
Let A be a complex, unital Banach algebra. For each n ∈ N, we turn Mn(A ) into a
Banach algebra by identifying it with its natural image in the Banach algebra B(A n) of
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operators acting on the direct sum of n copies of A , where A n is equipped with the norm
‖(A1, . . . , An)‖ = max{‖A1‖, . . . , ‖An‖} for A1, . . . , An ∈ A , as in Section 2.

Note. For a Banach space X, we have now equipped Mn(B(X)) with two potentially
di�erent norms, one coming from its identi�cation with B(Xn), the other arising from its
embedding into B(B(X)n). Fortunately, these two norms are equal, as is easily checked.

Let invn(A ) be the group of invertible elements of Mn(A ), and denote by 1Mn(A ) the
(n×n)-identity matrix over A . Given U ∈ invm(A ) and V ∈ invn(A ), wherem,n ∈ N, we
say that U and V are K1-equivalent, written U ∼1 V , if, for some integer k > max{m,n},
there exists a continuous path t 7→ Wt, [0, 1]→ invk(A ), such that

W0 =

(
U 0
0 1Mk−m(A )

)
and W1 =

(
V 0
0 1Mk−n(A )

)
. (A.1)

This de�nes an equivalence relation ∼1 on the set inv∞(A ) =
⋃
n∈N invn(A ), and the

quotient

K1(A ) = inv∞(A )/∼1

is an abelian group with respect to the operation(
[U ]1, [V ]1

)
7→
[(
U 0
0 V

)]
1

, K1(A )×K1(A )→ K1(A ),

where [U ]1 denotes the equivalence class of U ∈ inv∞(A ) in K1(A ).
We see immediately from these de�nitions that K1(A ) = {0} whenever A is a complex,

unital Banach algebra for which invn(A ) is path-connected for each n ∈ N. This conclusion
applies in particular to A = B(C([0, ω1])) by the above-mentioned result [4, Proposition 4]
of Edelstein and Mityagin because invn(C) is path-connected for each n ∈ N.
Our next aim is to show that a much more general conclusion can be drawn whenever we

have a homotopy equivalence between the groups of invertible matrices over two complex,
unital Banach algebras, provided that these homotopies are induced by bounded, unital
algebra homomorphisms; see Corollary A.2, below, for details. This result will rely on Bott
periodicity, which is the statement that

K0(A ) ∼= K1(S̃A ) (A.2)

for each complex, unital Banach algebra A , where S̃A denotes the unitization of the
suspension of A , that is,

S̃A = {f ∈ C([0, 1],A ) : f(0) = f(1) ∈ C1A };
here C([0, 1],A ) denotes the Banach algebra of continuous, A -valued functions de�ned
on the unit interval [0, 1], and 1A is the multiplicative identity of A . We may identify
Mn(C([0, 1],A )) with C([0, 1],Mn(A )) for each n ∈ N; under this identi�cation, we have

invn S̃A = {f ∈ C([0, 1], invn A ) : f(0) = f(1) ∈Mn(C1A )}. (A.3)

We shall require the following two homomorphisms associated with a bounded, unital
algebra homomorphism ϕ : A → C , where A and C are complex, unital Banach algebras.
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First, in analogy with (2.6), we can de�ne a group homomorphismK1(ϕ) : K1(A )→ K1(C )
by

K1(ϕ)([U ]1) = [ϕn(U)]1 (n ∈ N, U ∈ invn A ), (A.4)

where ϕn is given by (2.5), and secondly, we obtain a bounded, unital algebra homomor-

phism S̃ϕ : S̃A → S̃C by the de�nition S̃ϕ(f) = ϕ ◦ f for each f ∈ S̃A .
We can now state our key lemma; it is probably well known to experts, but since we

have been unable to locate a precise reference to it, we include a proof.

Lemma A.1. Let A and C be complex, unital Banach algebras, let n ∈ N, and let
ϕ : A → C and ψ : C → A be bounded, unital algebra homomorphisms such that the re-
striction to invn A of the mapping ψn ◦ϕn is homotopy equivalent to the identity mapping,
in the sense that there exists a continuous mapping F : [0, 1]× invn A → invn A such that
F (0, U) = U and F (1, U) = ψn ◦ ϕn(U) for each U ∈ invn A . Then

K1(S̃ψ) ◦K1(S̃ϕ)([f ]1) = [f ]1 (f ∈ invn S̃A ).

Proof. Given f ∈ invn S̃A , we de�ne gt(r) = F (t, f(0))−1F (t, f(r)) ∈ invn A for each pair

r, t ∈ [0, 1], where F is chosen as above. An easy check using (A.3) shows that gt ∈ invn S̃A
for each t ∈ [0, 1]. Moreover, the mapping (r, t) 7→ gt(r), [0, 1]2 → invn A , is continuous,
and it is therefore uniformly continuous, so that, for each ε > 0, there exists δ > 0 such
that ‖gt(r)− gt′(r′)‖Mn(A ) 6 ε whenever r, r′, t, t′ ∈ [0, 1] satisfy max{|r − r′|, |t− t′|} 6 δ.
This implies that

‖gt − gt′‖C([0,1],Mn(A )) = sup
r∈[0,1]

‖gt(r)− gt′(r)‖Mn(A ) 6 ε (t, t′ ∈ [0, 1], |t− t′| 6 δ),

which shows that the mapping t 7→ gt, [0, 1]→ invn S̃A , is continuous. Hence we have

[f(0)−1 · f ]1 = [f(0)−1 · (ψn ◦ ϕn ◦ f)]1 in K1(S̃A ) (A.5)

because g0(r) = f(0)−1f(r) and

g1(r) = (ψn ◦ ϕn)(f(0))−1(ψn ◦ ϕn)(f(r)) = f(0)−1(ψn ◦ ϕn ◦ f)(r) (r ∈ [0, 1]),

where we have used the fact that ψn ◦ ϕn(U) = U for each U ∈Mn(C1A ).
Since invn(C1A ) is homeomorphic to invnC, it is path-connected. We can therefore

choose a continuous mapping t 7→ Vt, [0, 1] → invn(C1A ), such that V0 = 1Mn(A ) and
V1 = f(0)−1. This implies that the mappings t 7→ Vt · f and t 7→ Vt · (ψn ◦ ϕn ◦ f)

of [0, 1] into invn S̃A are continuous. They connect f with f(0)−1 · f and ψn ◦ϕn ◦ f with
f(0)−1 · (ψn ◦ ϕn ◦ f), respectively. When combined with (A.5), this shows that

[f ]1 = [f(0)−1 · f ]1 = [f(0)−1 · (ψn ◦ ϕn ◦ f)]1 = [ψn ◦ ϕn ◦ f ]1 = K1(S̃ψ) ◦K1(S̃ϕ)([f ]1),

as required. �

Corollary A.2. Let A and C be complex, unital Banach algebras, and suppose that there
exist bounded, unital algebra homomorphisms ϕ : A → C and ψ : C → A such that the re-
strictions ϕn : invn A → invn C and ψn : invn C → invn A induce a homotopy equivalence
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for each n ∈ N, in the sense that ψn ◦ ϕn is homotopy equivalent to the identity mapping
on invn A and ϕn ◦ ψn is homotopy equivalent to the identity mapping on invn C . Then

K0(A ) ∼= K0(C ) and K1(A ) ∼= K1(C ). (A.6)

Proof. Using the assumptions in tandem with Lemma A.1, we see that K1(S̃ϕ) is an

isomorphism of K1(S̃A ) onto K1(S̃C ) with inverse K1(S̃ψ). Hence we have

K0(A ) ∼= K1(S̃A ) ∼= K1(S̃C ) ∼= K0(C )

by two applications of Bott periodicity (A.2). This establishes the �rst part of (A.6).
The second part is much simpler. Indeed, working straight from the de�nitions (A.1)

and (A.4), we obtain

K1(ψ) ◦K1(ϕ)([U ]1) = [ψn ◦ ϕn(U)]1 = [U ]1 (n ∈ N, U ∈ invn A )

because ψn ◦ ϕn is homotopy equivalent to the identity mapping on invn A . A similar
argument shows that K1(ϕ) ◦ K1(ψ) is equal to the identity on K1(C ), and K1(ϕ) is
therefore an isomorphism of K1(A ) onto K1(C ) with inverse K1(ψ). �

We shall now combine this result with the work of Edelstein and Mityagin [4] to obtain
alternative proofs of some previous conclusions.

Example A.3. Let p ∈ (1,∞). Edelstein and Mityagin [4, p. 225 and 229] identi�ed a
non-zero, multiplicative functional β : B(Jp) → C and proved that the mapping σn ◦ βn
is homotopy equivalent to the identity mapping on invn(B(Jp)) for each n ∈ N, where
σ : C→ B(Jp) denotes the isometric, unital algebra homomorphism given by σ(λ) = λIJp
for each λ ∈ C. Clearly β ◦ σ = IC, so that Corollary A.2 applies to show that

K0(B(Jp)) ∼= K0(C) ∼= Z and K1(B(Jp)) ∼= K1(C) = {0}.
This reproves [15, Theorem 4.6]; see also Example 4.4.

Example A.4. At the end of their paper, Edelstein and Mityagin [4, p. 230] stated that
their constructions for the James spaces, on which Example A.3, above, was based, �can
be carried out (with some modi�cations) also in the case of the Banach space C([0, ω1])�.
They then went on to identify a non-zero, multiplicative functional β : B(C([0, ω1]))→ C
before stating as their main conclusion that invn(B(C([0, ω1]))) is homotopy equivalent
to invn(C) for each n ∈ N. No explicit proof of this result is given, but a comparison with
the authors' approach for the James spaces suggests that their intended strategy was to
show that σn ◦ βn is homotopy equivalent to the identity mapping on invn B(C([0, ω1]))
for each n ∈ N, where σ : C→ B(C([0, ω1])) is given by σ(λ) = λIC([0, ω1]) for each λ ∈ C.
If this is indeed the case, then Corollary A.2 would apply once again, showing that

K0(B(C([0, ω1]))) ∼= K0(C) ∼= Z and K1(B(C([0, ω1]))) ∼= K1(C) = {0},
and thus providing an alternative proof of the conclusion of Example 4.3.

Comparing the calculations of the K0-groups of B(Jp) for p ∈ (1,∞) and B(C([0, ω1]))
given in Examples 4.3�4.4 with those given in Examples A.3�A.4, above, we see some
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obvious advantages of the latter, namely that they are shorter and simultaneously lead to
the determination of the K1-groups; however, they also have some signi�cant drawbacks:

• they do not apply to real scalars;
• they rely on some very heavy machinery, notably Bott periodicity, but also Edelstein
and Mityagin's highly non-trivial results (which have not even been fully veri�ed
in the case of C([0, ω1]));
• they are entirely topological, despite the purely ring-theoretic nature of K0.
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