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Quasimonochromatic Noise: New Features of Fluctuations in Noise-Driven Nonlinear Systems
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The effects of Gaussian quasimonochromatic (narrow band) noise have been investigated with an ana-
log electronic circuit model. The escape probability and the reciprocal mean time to reach the top of a
potential barrier were found to differ exponentially strongly. An extremely steep statistical distribution
was observed and is discussed. For systems fluctuating in a symmetric single-well potential the distribu-
tion was found to be independent of the shape of the potential.

PACS numbers: 05.40.+j, 02.50.+s

During the last few years substantial progress has been
achieved towards an understanding of fluctuation phe-
nomena in nonlinear systems driven by colored noise [1].
The problem is interesting not only because of its im-
mediate relevance to numerous particular systems, in-
cluding dye lasers and liquid crystals, but also from a
more general point of view, since the white-noise approxi-
mation that goes back to Einstein and Smoluchowski is
an idealization. It is important therefore to find out in
which cases the existence of structure in the power spec-
trum of the noise does change qualitatively the form of
the fluctuations induced in a system, and what are the
corresponding changes in such fundamental characteris-
tics as the shape of the statistical distribution and the
pattern of motion leading to noise-induced escape from a
stable state.

It is well known [2], in particular, that a system driven
by white noise (a Brownian particle) escapes from a
stable state via fluctuations bringing it slightly over (for
weak noise) the potential-barrier top (PBT). In other
words, to an accuracy of a prefactor, the mean first pas-
sage time (MFPT) from near the bottom of the potential
well to PBT, ¢, is equal to the reciprocal escape proba-
bility W ~'. The same notion has also been applied in
numerous papers (e.g., Refs. [1], [3], and [4], and refer-
ences therein) to colored noise having a power spectrum
in the form of a Lorentzian peak centered at zero fre-
quency, the model of colored noise investigated in most
detail so far.

We demonstrate in this Letter that a colored-
noise-driven bistable system can pass the PBT several

times, back and forth, but nonetheless still return to the
initially occupied stable state with an overwhelming prob-
ability, instead of making a transition to the other stable
state. The MFPT to the PBT may consequently be less
by several orders of magnitude than the reciprocal escape
(transition) probability, #,,<W ~'. The particular
noise, f(¢), investigated to find this general (for colored
noise [5]) effect was a zero-mean Gaussian quasimono-
chromatic noise [6] (QMN) with a power spectrum ®(w)
having a narrow Lorentzian peak centered, not at zero
frequency, but at a finite frequency wo,

o) = _drexplion(f()f0))
=4I'T/[(0*> — 03)*+4I%w?), T<aw,. (1)

QMN corresponds to the thermal noise of an under-
damped harmonic oscillator with the eigenfrequency wo
and damping coefficient ' <@y coupled to a bath with
temperature T (in Refs. [6(b)] and [6(c)], noise with the
spectrum (1) was called “harmonic”). It is QMN that
gives rise to the fluctuations in a variety of physical sys-
tems, for example, in those coupled to fluctuating (e.g.,
thermal) high-Q electromagnetic or acoustic intracavity
modes, or to impurities performing localized or resonant
vibrations in solids, or to eigenvibrations of large mole-
cules or engineering structures. As is demonstrated
below, not only is there a dramatic difference between .,
and W ~!, but there are also some very specific features
of the statistical distribution [5] that are innate to
QMN-driven systems.

We consider overdamped dynamics in a potential
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U(x),
x+U'Kx)=f@). (@)

The stable equilibrium points x; of the system correspond
to the minima of U(x), at U'(x) =0; and its relaxation
time 7 =max[U"(x;)]. To gain insight into the charac-
teristic features of the fluctuations of the dynamical vari-
able x we note that, according to (1), the QMN f(¢) can
be viewed as a superposition of nearly periodic random vi-
brations at frequency o, with the correlation time of
their amplitude and phase equal to I' ~', and a small non-
resonant addition 8f(z),

F@)=f+()expliogt)+ f - (t)exp(—iwot) +6f (1),
(3)
Uf e DA f 1D ~T2<kwd, (< f+]D.

Some remarkable physical effects arise when the recipro-
cal relaxation time of the system 7 ~! lies between I" and
wo:

r<r '<w. “)

It follows from (2)-(4) that to the lowest order in I't,
(a)()‘[) - l,

x(t)=x4+()explioot)
+x - (exp(—iwot) +x.(t), (5)
x+(0)=(Fiwo) 'f+ @), xe=x1V(x4,x-).

Here, x*?(x4,x-) is the equilibrium position of the
center of the forced vibrations of the coordinate x (¢) with
a given amplitude 2|x+|. It is given by

Vi x4, x ) =0, V!=9V/dx.,
V=V (xe,X+,x-) 6)

=Lf2”du/U(x +xieV+x_e V)
2z Jo Tt N ’

In obtaining (5) we have neglected §f(¢) in (3) and al-
lowed for x+(z) < f+ () being smoothly varying [cf.
(3)] over times ~ 7, so that x.(¢z) follows x + (¢) adiabat-
ically. V(x.,x+,x —) is the potential U(x) averaged over
time ~awg .

Equation (5) enables one to understand the origin of
the difference between the reciprocal MFPT to the PBT
from a stable state i, and the probability W;; of the i — j
transition. It is clear [see Fig. 1(a)] that the oscillating
x(z) will reach the position x,p (the PBT) for the first
time with increasing |f+(¢)| for x#¥(z) lying on the x;
side of x4, Where Xx; is the initially occupied position. To
bring xc("‘d% t0 Xop, still higher values of |f4+| are neces-
sary. But fluctuations giving rise to such |f4| are pre-
cisely those needed for an interwell transition: The tran-
sition can occur, without additional forcing, once x.
reaches xop, While in the opposite case the system will go
back to the initially occupied state as |f+|oc|x+| dies
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FIG. 1. (a) Sketch of QMN dynamics in a potential U(x),
illustrating the discussion of Eq. (5). The coordinate oscillates
(thick line with arrows) with amplitude |2x +| about a center of
motion x?, and can pass PBT on each cycle without making a
transition out of the initially occupied potential well. (b) Two
samples of x(z) measured with D =192 for the analog electron-
ic circuit model (1), (2), and (7), exhibiting an example of an
occasional large fluctuation from each of the attractors.

out, according to (5). Therefore, Wit p < 1.

These arguments have been tested with the aid of an
electronic analog model of (1) and (2) of conventional
design [7]. The bistable potential U(x) was chosen to be
of the widely used [1] form

Ulx)=—3x2+1x* (x;=—1,x2=1, x0p=0). (7)

QMN was obtained from the electronic analog of an un-
derdamped harmonic oscillator with wo=9.81, I’ =0.021
that was driven by the pseudo white noise from a feed-
back shift-register noise generator.

Two samples of the fluctuating voltage in the circuit
representing x(¢) in (2) are shown in Fig. 1(b). They
correspond to fluctuations about the stable states x; = —1
and x, =1 and each exhibits occasional large fluctuations.
It is apparent that in the course of such fluctuations x (¢)
crosses the boundary point x,, =0 several times forwards
and backwards, and then goes back to the initially occu-
pied state without making a transition. Paths resulting in
transitions to the other state are very much less frequent;
they have been observed to happen for larger amplitudes
of fluctuational vibrations and, correspondingly, larger
shifts of their centers, in full agreement with the above
qualitative picture.

Since x =0 is thus an “ordinary” value of x from the
viewpoint of intrawell fluctuations, the quasistationary
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statistical distribution p;(x) about the initially occupied
position x; [where p;(x) is formed over the times
I,z <t <W;;'l would not be expected to have an ex-
tremum at x =0, in striking contrast to the case of the
white-noise forcing. This has been confirmed by direct
measurements of p;(x); see Fig. 2.

For sufficiently small noise intensities D =T/T (wd
—TI'?) and large |x —x;|, the quantity

Ri(x) =D|Inlp; (x)/p;(x)]1]

plotted in Fig. 2 gives the activation energy of the re-
ciprocal MFPT to a given x from x;, and, in particular,
tip~T "'exp[—R;(0)/D]. [Note that a “small” noise
intensity implies D <R, where (see below) R~ wg/T.
Because I' is itself very small, “small” values of D may
correspond to quite large numbers.] In agreement with
the qualitative observations (cf. Fig. 1) the value R;(0)
=910 obtained for wp=9.81, ' =0.021 was substantially
less than the activation energy R;, = — D In(W;;/T') of the
interwell transitions for the same parameters, R; =1480
(R;, was obtained from the values of InW;; for several
D ~! that lay on a straight line to a good accuracy). Both
R;(0) and R;, are very close to the theoretical predictions
[5]1 wd/5T and wd/3T, respectively. For the lowest D in-
vestigated R;/D and R;(0)/D were equal to 11.2 and
6.89, respectively, thus demonstrating that W;; and tlgp'
indeed differed by a large factor ~102.

One more qualitative feature obvious from Fig. 1(b) is
that fluctuations about x; are strongly “asymmetric”:
The system moves from x; towards x., much more
“eagerly” than in the opposite direction. Corresponding-
ly, the quasistationary statistical distribution p;(x) would
be expected to decrease extremely sharply with increasing
|x —x;| for (x —x;)/x; >0. This is seen from Fig. 2 to
be the case in reality. This phenomenon can be readily
understood if one notices that in the case of the potential
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FIG. 2. The normalized quasistationary distribution (activa-
tion energy of the reciprocal MFPT from x; to x), R;(x)
=D|Inlp;(x)/pi(x;)1|, i=1. Data measured (jagged line) for
the analog circuit model of (1), (2), and (7) for D =189 are
compared with the zeroth-order theory (solid curve, singular at
x==—1.29) and the first-order theory (the other solid curve).

(7), the center x*¥ of the vibrations of x(z) shifts as

(—1)/(1 —6|x+]?)"? with the varying vibration ampli-
tude 2|x+|. Therefore, the limiting value of the coordi-
nate x Y +2|x,| does not overcome (—1)ix, (xo
=+/5/3) in the adiabatic approximation (5), so that
pi(x) would be discontinuous at this value of x.

To describe the statistical distribution as a whole, and
its steep decrease for |x|> x¢ in particular, it is con-
venient to use [5,8] the method of optimal fluctuation in
Gaussian-noise-driven dynamics [3(a),3(c),9,10] which
is based substantially on the path-integral approach [11]
to such dynamics. To logarithmic accuracy, the calcula-
tion of p;(x) amounts to the solution of the set of equa-
tions

Inlp;(x)/pi(x)1=—R;(x)/D, D=T/T(w—T32),

R=14 [ arfF(=iafans ),

F(w)=D/®(w) ,
(8)
F(=id/dt)f(t)=r(), A(t)=U"()r(),

x(—o)=x; f(Fo)=0, A(—o0)=0,
x(0)=x, A()=0 for t>0,

where x(¢) and f(¢) are interrelated via (2).

To lowest order in I't and (wgt) ~' the solution of (8)
is given by (5), and R;(x) is discontinuous [5] at
x=(—1)'xo. The discontinuity is smeared out primarily
because of the sharp increase in §f(z) as x approaches
(—Dixe: 8f~(@T/t)"? for |x—(—1)ixo|~(T7)"2
Allowing for this increase (the details will be given else-
where), one arrives at the expression

Ri(x)=2wdI 'Ix3+ & (6f2/TVI)I],

x=xV+2x + T8IV,

)
x4+ =x_-=(§f8D)1 — (V'L [V = (8f 64TV )

X AVils =SV = Ve = V),

where the subscripts, ¢, = mean differentiation of V(x,,
X +,x—) with respect to x.,x +, respectively; all deriva-
tives are evaluated at x. =x ¥, It is obvious from (9)
that R/(x)/Ri(x)~@Tz)™ "2 for [(—=1)ix —xo]
~(I't) ', i.e., within the latter extremely small range of
x the logarithm of the statistical distribution increases by
an order of magnitude. Equation (9) is seen from Fig. 2
to be in both qualitative and rather good quantitative
agreement with the experimental data (note that the data
refer to 't =0.042, and thus the nonanalytic in I't
corrections to R;(x) for [(—1)'x —xol ~(I't) /2 omitted
in (9) would be noticeable).

Peculiar features of the statistical distribution arise not
only for bistable, but also for monostable QMN-driven
systems. This happens [5] even in the simplest case of
fluctuations in a symmetric single-well potential: U(x)
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FIG. 3. The normalized statistical distribution R(x)

=D|Inlp(x)/p(0)}| measured (jagged line) for an analog cir-
cuit model of (1) and (2) for D =160 and the monostable po-
tential U(x) =1+ x?% measurements made for U(x)=7%x2
++x* and U(x)=1%x? were found to be coincident. The
smooth curve represents the exact theory (10) for the potential
Ux)=4%x2

=U(—x), U'(x)/x >0 in (2). It follows from Egs. (5)
and (6) that x*® =0, while x + are independent of the
particular shape of U(x). The distribution p(x) for
sufficiently large |x| is proportional to the probablity of
the process x (1) reaching x =2|x+|, i.e., to the probabili-
ty of |f+(t)| reaching the value  wo|x| [see (5)1; thus
the distribution should be independent of U(x) as well,
p(x) <exp(—wdx?/2I'D). This remarkable invariance
of p(x)—its independence both of the curvature at the
potential minimum and of the nonparabolicity of the
potential—is confirmed by the experimental data of Fig.
3 which are clearly in good agreement with the theory.
Data measured for the harmonic potential U(x) = ¥ ax?
were in perfect agreement, within the experimental un-
certainty of & 2%, with the exact expression

p(x)=(4/27)"?exp(— + Ax?) ,
(10)
awd (a’+wd)—4r?a?

A= .
rD(wé—T?) ala?+wd) —4arla+2rwd

Equation (10) goes over into the above expression,
p(x) exp(—wdx?/2TD), for I' K a < wo.

In conclusion, we emphasize the dramatic differences
in the pattern of escape from a stable state for systems
driven by QMN, on the one hand, and by white or ex-
ponentially correlated noise on the other. These dif-
ferences, together with the singular features of the statist-
ical distribution that have been observed, clearly demon-
strate the possibility of controlling not only the intensity,
but also the fundamental qualitative features of fluctua-
tions in a system by varying the power spectrum of a
driving noise.
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