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Abstract. This paper reflects on Lancaster University’s software design studio, 
an approach for teaching software engineering that favours practical experimen-
tation over traditional lectures. The studio has been running for two years at 
Lancaster. In the paper, we reflect on how students have used modeling as part 
of the studio experience. Our findings show that, given the freedom, students 
make heavy use of informal modeling but almost never formally model. The 
paper unpicks the reasons for this and discusses implications for the way mod-
eling is taught more generally. 
 

1 Introduction 

Studio-based education is an alternative to traditional lecture-based instruction. It 
emphasizes reflective practice [1] as a way to develop design skills. In a studio, stu-
dents are asked to reflect critically on their own and others’ designs as a way to ab-
sorb design expertise. A variety of methods are used for this, such as coaching, design 
critiques, peer mentoring, and juried assessment. A studio course usually, but not 
always, is taught in a room dedicated for the purpose, i.e., the studio. The physical 
studio is seen as a key element because it allows students to permanently display their 
work, which encourages reflective practice over time. The studio also encourages 
frequent and informal interactions among students, which leads to peer-learning. 

 Historically, studios can be traced back to Medieval times when guilds would take 
on apprentices and learning would be “on the job” [1]. The formalized concept of a 
studio, as commonly understood in building architecture, for example, is closely 
linked to two schools, the École des Beaux-Arts and Bauhaus [2]. More recently, 
there have been a number of attempts to transfer the principles of studio education to 
software engineering (e.g., [3, 4]). Proponents of this argue that it leads to greater 
student engagement and satisfaction, a deeper understanding of design skills, and a 
stronger understanding of real-world issues. In particular, it is argued that ‘design’ is a 
tacit skill “that can’t be learnt from a book” [5] but must be learnt ‘by doing’. 

In this paper, we reflect on our own experience of introducing a software studio at 
Lancaster University. The studio was instigated in 2012 and has been running contin-
uously since. A physical, dedicated lab is made available to 2nd and 3rd year under-



graduate students. Students follow three studio-based courses in which they work on 
group-based projects. A traditional lecture-based course is taught in parallel to the 
first of these and teaches classical software design. The project work covers all phases 
of the software lifecycle from ideation to evaluation with real stakeholders. We have 
experimented with different ways of teaching design in the studio – ranging from a 
phased iterative/incremental approach to a sprint-based agile approach. In all cases, 
studio work focused on project development and avoided teaching any specific skills. 
These were assumed to have been either taught in other courses, or the students were 
expected to learn these skills independently on-demand. Students were, however, 
expected to follow good software engineering principles of requirements engineering, 
architecture, design and testing. However, the studio was not prescriptive in terms of 
what documentation students had to produce: the basic guidance was that a system 
should work, be well designed, and any documentation should clearly and concisely 
explain what is going on. Students were not mandated, for example, to produce UML 
diagrams as part of the documentation. They were simply told to use whatever form 
of documentation was most effective for them. As a result, the studio offers an inter-
esting opportunity to explore what happens when students are not explicitly taught 
software modeling and design skills but instead pick up these skills through continu-
ous and informal coaching and critique.  

We have evaluated our studio style of teaching through a one and a half year ob-
servational study. A researcher (the second author) attended studio sessions and took 
field notes describing how students interacted with each other. This was supplement-
ed with a focus group with students discussing the style of education, and how the 
studio courses compare to the rest of the degree. The students also frequently offered 
opinions and perspectives before and during each studio session. These were recorded 
as part of the observations. In previous work, we have described how principles of 
reflective practice are instilled in the studio [6]. We have also previously presented an 
analysis of the observational data focusing on how Lancaster’s studio implements the 
key defining principles of studio education [7, 8]. To date, however, we have not 
analyzed our data to see the role that models play in studio education.  

This paper revisits the qualitative data collected in the observational study and uses 
it to reflect on the role that models play in the design processes of studio projects. 
This is an interesting question to ask because students were given free rein as how to 
document their designs: therefore, this paper sheds some light on how useful the stu-
dents found models in practice. 

Our findings indicate that formal models are used rarely by the studio students, 
whereas informal models are relied on heavily. Furthermore, the pervasiveness of the 
informal models appears to be important: that is, the physical studio allows students 
to display their informal models, which, although they are generally not updated as 
the design changes, act as a visible reminder as to how design decisions were arrived 
at and therefore continue to serve as a point of reference. Based on these observations, 
we reflect on how software modeling is taught and make some recommendations for 
better modeling tools and educational approaches to modeling. 



2. Software Studios 

Interpretations of studio education for computer science and software engineering 
have been explored for over 20 years, with the earliest known computer science stu-
dio implemented at Carnegie Mellon in 1990 [3]. Over this time there have only been 
a relatively small number of software studios, yet project-based learning (PBL) has 
seen wider use. Studios share several similarities with PBL, but PBL does not deter-
mine how students should interact: for example, the culture of critique or the colloca-
tion of students in a studio is not necessarily part of PBL. Studios are often project-
based but a studio is more than just a project-based course.  

Carter et al. have recently presented an overview of five studios in computer sci-
ence [9]. Software design studio implementations often report varying levels of suc-
cess, but it has been indicated that, in certain studios, the student’s content mastery is 
“as much or more than students in the same courses taught in the traditional way” and 
also that “students in studio courses have shown higher levels of motivation and en-
gagement than students in traditional courses” [10].  

Despite the apparent success of the limited number of documented studios, it is al-
so apparent that none of them follow a shared definition of studio education – making 
comparisons difficult. It is challenging to succinctly define studio practice due to the 
inherently complex nature of studio education. As such, previous work has provided a 
‘studio framework’ to help solidify a definition and understanding of studio practices 
[8]. Due to their complex nature, studios should not be considered a binary state (i.e., 
whether a course is a studio or not). Rather, there will be some courses which are 
more ‘studio-like’ than others.  

Our framework defines ten key elements of a studio approach. Each of these de-
fines a characteristic that is typical of a studio. However, it is recognized that some 
studios will focus on some characteristics at the expense of others; a studio can be a 
studio without having all of these traits. The first two columns of Table 1 describe a 
sample of these characteristics.  

2.1 Lancaster’s Studio 

 
The first year of Lancaster’s BSc Software Engineering degree is identical to Lan-

caster’s BSc in Computer Science and does not use the studio model. In the second 
and third years, students take three studio courses. In the first of these, students work 
in groups of 4 and come up with their own ideas of systems to design and build. In the 
other courses, students work in larger groups (6 students) on progressively larger and 
more challenging problems, with industrial involvement in the final course. The stu-
dio modules have no lectures, and are 100% coursework-based assessment.  

To give a flavour of Lancaster’s studio, Table 1 compares the studio with the pro-
ject-based course which was its predecessor. Based on our data analysis over a two 
year period and on student feedback, the studio approach appears to lead to greater 
student engagement as well as improved learning. For example, student feedback in 
official evaluations includes:  



Table 1. Comparison of Project-Based and Studio-Based Courses at Lancaster University. 

Aspect How the Aspect Manifests in a Studio 

Course 

Typical Project Course Lancaster’s Studio Course 

Physical envi-
ronment 

There is a physical room (i.e., the studio) 
which is open and reconfigurable providing a 
variety of group, individual and social spaces. 

Standard lab Dedicated lab with 24 hour access, maintained by 
students themselves 

Management 
of Studio 

Rules regarding use of the space should not be 
restrictive. 

Lab tightly controlled by 
University 

24 hour access; food/drink allowed; students have 
admin rights 

Modes of 
Education 

Teaching staff play a coaching/mentoring role 
rather than being didactic. 

Students given a prescrip-
tive list of documentation 
to produce 

Students were told to produce “as much documenta-
tion as needed”. There was no prescription on what 
kinds of diagrams or notations to use. 

Awareness Placing work on display (as works-in-
progress or final products). Visibility of work 
helps students see each other’s work. 

No special consideration Students used mobile whiteboards in the studio to 
display design work, which was left up for the dura-
tion of the project 

Critique Ongoing critique is used for providing feed-
back and developing ideas. It should take 
place in multiple ways (formal and informal, 
group and individual, peer and staff) 

Provided only as part of 
weekly meetings with 
project supervisor 

Provided on a continuous basis using a variety of 
methods: individual and group demos/presentations, 
informal coaching, peer critique, critique from exter-
nal assessors (e.g., companies) and formal judging. 

Culture A studio culture should be social and foster 
sharing, and yet should be sensitive to sup-
porting a good work ethic.  

Lack of a dedicated lab 
meant that students typi-
cally only met at prear-
ranged times  

Students used the studio as a home, leading to seren-
dipitous interactions and a feeling of ‘belonging’ to a 
cohort 

Inspiration When designing, students should be encour-
aged to be creative in their designs and solu-
tions.  

Project specification de-
cided a priori by academic 
staff 

Students come up with their own project ideas in a 
facilitated creativity brainstorming session 

 



 “The best part […] was that we got to learn first hand from our own mistakes” 

“Having a dedicated studio for our own use gave me a quiet place where I could 

focus on my studies” 

 “Help was available from staff when needed. Freedom to apply our own creative 

ideas into the project rather than follow strict guidelines of what we can do.” 

“The most valuable parts of the module were the open nature of the module giving 

you the freedom to stretch out and do what you want extending far from the basic 

requirements, the lecturers were always on hand to help” 
Module evaluations have been very strong: students rated the quality of teaching 

on the three studio modules as good or very good (overall 88% very good) and the 
last studio course was given a perfect 5/5 overall score from 100% of students. The 
studio approach won a Pilkington Teaching Award in 2014. 

3 Models in Studio Education 

Our studio enables us to explore an interesting question. Given that our students 
had been formally trained in software modeling (through the parallel lecture-based 
software design course), but they were not mandated to use formal modeling notations 
in the studio projects, would the students decide for themselves to use models? If they 
did, what benefits did they gain from modeling? And if not, why not? In essence, this 
is a kind of “vote with your feet” approach to modeling: students had already been 
given the skills to model, so the big question is whether they would choose to model 
on a project comparable in size and complexity to a real-world problem for a small 
project team. This section unpicks what we have learned about this question.  

3.1 Formal Modeling  

Our first finding is that students did very little, if any, formal modeling. By formal 
modeling, we mean the use of a formalized modeling notation, such as UML, where 
the notation was used in a precise manner using the correct syntax. This need not be 
in a modeling tool. In contrast, we will use the term informal modeling to describe the 
use of either an ad-hoc notation (e.g., drawing shapes on a whiteboard, pen and paper, 
or a digital sketching tool) or a loose interpretation of a recognized modeling lan-
guage (e.g., drawing a UML class diagram but without caring about correct syntax).  

In general, we saw many instances where students used formal modeling notations 
such as UML use cases and class diagrams, but used them informally without caring 
about syntax and without using a formal modeling tool. Perhaps surprisingly, we saw 
very few cases where these informal models were converted into formal models (e.g., 
using a UML tool) so that they could serve as formal documentation. There were 
some cases where students tried to do this, but they quickly gave up because the pro-
cess of transcribing the model into a formal notation began to impede discussion. 

In contrast, informal modeling was used widely and often. In Lancaster’s studio, 
this was facilitated by a number of mobile whiteboards. The students used these ex-
tensively in the studio for brainstorming designs, to collaboratively make design deci-



sions, and as a way of providing context in group discussions – students often had 
discussions around “their” whiteboard and, although they might not directly interact 
with the models on the whiteboard, the models appeared to serve the purpose of an 
implicit reminder or contextual cues for their ongoing deliberations.  

The students were reluctant to transfer the informal models from the whiteboards 
into a formal modeling tool. There appear to be a number of reasons for this: 

1. It was not required by the course. There were no explicit marks for producing 
UML diagrams. Rather, the students were graded according to whether their 
documentation was “appropriate and understandable.” In practice, this meant 
that students often chose other ways to document their designs than UML. 

2. Students interacted mainly through small group discussions. Computers 
seemed to inhibit fruitful discussions and so were often not used. Standard size 
screens are not easily visible to all members in a small group discussion. In 
some cases, one group member would act as the “scribe” and document UML 
models formally during the discussion. However, this practice subsided over 
time as it made it difficult for the scribe to fully participate.  

3. Interestingly, some groups used a computer screen to display information rele-
vant to the task at hand (e.g., slides from a lecture). This meant that the com-
puter was not available for creating models. In some cases, students compen-
sated for this by using laptops to create material, whereas the desktop comput-
er was used to consume material.  

4. Formal models served no purpose for the students. As this was not a course on 
model-driven engineering, there was no need to produce formal models for 
code generation. Students manually coded things and, as long as they had a 
shared understanding of the system, the informal models were sufficient. 

 
As an aside, our experiences in the Lancaster studio may provide some insights for 

those working on so-called ‘flexible modeling tools’ [11]. A recent trend in modeling 
tool research is for tools that allow the flexibility of informal sketching but then pro-
vide seamless transitions to more formal models within the same tool. FlexiSketch, 
for example, is a tool for creating domain-specific modeling languages on-the-fly 
[12]. Similarly, Calico [13], a collaborative sketching tool, has some capabilities for 
executing sketch models (e.g., a sketched state machine). Whilst these tools are inter-
esting, our experience in the studio seems to suggest that there is not always a need to 
translate informal models into formal ones. So the use cases for such tools may be 
limited. This observation agrees with work by Petre, which shows that professional 
software designers make heavy use of informal models, including ‘ephemeral’ models 
which developers dispose of quickly [14]. In a separate study, Petre found limited 
uptake of formal UML modeling [15].  

The lack of formal models in the Lancaster studio could mean a number of things. 
One interpretation is that formal models just are not useful to the students; they can 
accomplish what they need to accomplish without formal models.  

Another interpretation is that since formal models were not mandated (and as-
sessed) in the course, students simply ignored them. This might suggest that the studio 
courses should give credit for (e.g.) formal UML models and that, by doing so, the 



students would produce better software. However, it is debatable whether formal 
UML models lead to better software. Either way, forcing students to produce UML 
models goes against the ethos of the studio. In the studio, students learn largely 
through reflective practice. They are constantly encouraged to think about their design 
decisions and their designs are constantly critiqued both by peers and teaching staff. 
There is an open question whether formal modeling could or does encourage reflec-
tive practice. On the one hand, one could argue that formalization forces students to 
think about the ramifications of their design. On the other, formalization could act as 
a barrier because reflective practice relies on constant iterations of a design, which is 
not necessarily easy or well-supported with current model tools.  

A third possible interpretation is the small group size – perhaps a larger group 
would have had greater need to formalize the models. Whilst this may be true, we feel 
that introducing formal models explicitly in the studio would therefore be a bad idea: 
it would be introducing a method for large groups into a small group context. 

3.2 Informal Modeling 

Whilst students in the studio did little formal modeling, they regularly came up 
with informal models. These included both UML models (typically, use cases and 
class diagrams), sketches (e.g., a high-level architecture, UI design sketches), and 
process-based models (e.g., burn-down charts as used in agile development).  

There are two aspects of this informal modeling which are worth comment. Firstly, 
the students essentially modeled “on demand”. That is, they did as little modeling as 
they needed, and only when they needed it. This is very much an “agile” way of 
working (cf. Ambler’s agile modeling, for example [16]). The students did not at-
tempt to produce fully worked out models for a feature they were about to build. 
Models were mainly used for brainstorming and for thinking through a design. Once 
the design was thought through enough to allow the team to move on to the next stage 
of development, the models were left as they were, and no further detail was added. 
This is not to say, however, that the models were then discarded. Quite the contrary. 
As previously mentioned, students made heavy use of mobile whiteboards for infor-
mal modeling. The second aspect worth noting is that the whiteboards and the use of a 
dedicated space, which meant that the students could happily leave design work on 
the whiteboards permanently, meant that the informal models became a pervasive 
artefact. Rather than erasing the models once design decisions had been taken, the 
models were left on the whiteboards for weeks or months, even when the models had 
outlasted their purpose. It seems the models came to serve a contextual purpose – 
students tended to use the models either as quick reminders of what they were doing, 
or as background ‘noise’ which somehow helped them to work as a group. 

3.3 On the Value of Modeling 

Despite the lack of formal models in the studio courses, there is evidence that the 
students have learned a lot about modeling and, in particular, have come to appreciate 
the value of modeling through the studio course. Indeed, it appears that the students 



like (informal) modeling because in the studio it is a highly collaborative and creative 
activity. One of the problems that we have experienced in teaching modeling in more 
traditional lecture-based courses is that students often do not like or engage with 
modeling. They don’t easily see the point of modeling, since they want to build code 
that runs. And in a traditional top-down approach to teaching modeling – where re-
quirements are taught, then architecture, then low-level design, then coding – the 
models produced are often low quality because the students don’t yet understand 
enough about the system they are building to properly model it.  

In our studio courses, we have seen evidence that students gain a greater apprecia-
tion for modeling than in traditional lecture-based courses. Our students are given free 
rein as to what and when they should model. Hence, they tend to model when they get 
some value from it. As a result, they appreciate that models do have value. Students 
have told us, for example, that the studio course gave them a better understanding of 
the role for. This appeared to be particularly true for behavioural models.  

4 Discussion 

A year and a half long observation of Lancaster’s software studio has revealed that, 
in this style of education, students make little use of formal modeling notations but 
heavy use of informal model sketches. Since there is strong evidence that the studio 
model is an effective way of teaching software engineering, we argue that these ob-
servations have implications for the way modeling is currently taught as well as how 
it might be taught differently. We discuss these implications below. 

A typical approach is to teach UML as part of a software engineering course. In 
this approach, software engineering is taught in a top-down fashion. Students are first 
taught about the important of software requirements, and then how to refine those 
requirements into a software architecture, a low-level design, and finally an imple-
mentation. UML is often used as the lingua franca across these lifecycle phases and 
heavy emphasis is placed on the students producing high quality, syntactically and 
semantically correct UML diagrams. 

Our experience in the studio questions whether this is the best way to teach model-
ing, and software engineering more broadly. In our experience, we have noted that 
students do not engage well with this kind of approach. This is largely because they 
cannot immediately appreciate the benefits of this kind of more formal modeling. 
Formal modeling means that a working system is delayed and the benefits of formal 
modeling are not necessarily experienced in a typical software engineering course, 
which does not include the important activities of software maintenance and evolu-
tion. In the studio, in contrast, the educational emphasis is on reflective practice; stu-
dents learn by doing and by reflecting on what they have done. Reflective practice can 
of course be applied to teach formal modeling. However, the purpose of the studio 
was not to teach formal modeling; rather, it was to teach software engineering. In this 
context, reflective practice naturally focuses on those activities which are most critical 
to teach software engineering. Since these activities were not necessarily defined a-
priori, but were introduced on-demand as and when they were needed by the students, 



it is interesting to note that formal modeling was generally not needed. At best, this 
suggests that formal models are not necessarily appropriate in small group projects. 
At worst, it questions the value of formal models more generally.  

In either case, the studio approach suggests an alternative way of teaching model-
ing. Largely, there is a tendency within software engineering education to teach “the 
right way” to do things and then grading the students on whether they have done 
things the “right way”. This is fine if the learning objective is about teaching a specif-
ic skill-set. However, it is problematic when teaching in project-based courses, such 
as a studio, because there is considerable controversy over what is the “right way”. 
Some argue for formal modeling, for example, whereas others argue for agile meth-
ods. The danger of choosing a particular method and then teaching this method in “the 
right way” in a project course is that the students will not see the benefit of that par-
ticular method and so will come away disillusioned about the method. 

Therefore, we argue for a different approach. We believe that students should be 
given exposure to a range of methods, apply these methods in practice, and through 
reflective practice, be encouraged to learn about the positives and negatives of these 
approaches for themselves. Indeed, one could argue that the most important thing to 
teach is the culture of reflective practice itself. If students learn how to reflect, they 
will become reflective practitioners and can apply those skills to any new method or 
approach which they are faced with in their future careers.  

We maintain therefore that, as a community, we might consider de-emphasizing 
teaching the ins and outs of UML notation and be less dogmatic about teaching a step-
by-step approach to modeling. Rather, let the students discover modeling for them-
selves. Given them projects to work on and encourage the use of models where it 
makes sense; where it doesn’t, don’t force it. Use techniques of coaching and critique 
so that when modeling does appear, students can be coached in creating useful and 
usable models. And use coaching and similar methods to get students to think beyond 
simple model sketches and ask them if they would benefit from more formal models. 
If they would, encourage them. However, crucially, don’t force the students to pro-
duce formal models where there is no benefit in doing so. Also, let students make 
mistakes. If they don’t see a benefit in doing things in a particular way, don’t mandate 
it, but find ways of letting students fail gracefully and then discussing with them af-
terwards how “the right way” might have avoided those mistakes. This is clearly easi-
er to do in small project courses, like the studio, than in large classes.  

Our studio experience also has implications for modeling tools. A lot has been 
written recently about the effectiveness and/or issues of software modeling tools (e.g., 
[17,18]). Less has been written, however, about modeling tools that support software 
engineering education. Alfert et al. argue that industrial modeling tools are not well 
suited to teaching modeling [19]. There is surprisingly little work on modeling tools 
to support student project teams. Exceptions include the work on Calico [12] and 
there has, of course, been a wealth of research on the collaborative aspects of software 
designers more generally (see [20] for a recent example). However, there is not much 
that focuses on the requirements of modeling tools to support project courses.  
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