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ABSTRACT

The vehicle routing problem (VRP) has received particular attention, in the field of

transportation and logistics. Producing good solutions for the problem is of inter-

est both commercially and theoretically. Reliable solutions to real life applications

require an approach based on realistic assumptions that resemble real-world con-

ditions. In that respects, this thesis studies vehicle routing problems on real road

networks addressing aspects of the problem that need to be modelled on the origi-

nal road network graph and aims to provide appropriate modelling techniques for

solving them.

As a preliminary step, chapter 2 studies the travelling salesman problem (TSP)

on real road networks, referred to as the Steiner TSP (STSP) and proposes alter-

native integer programming formulations for the problem and some other related

routing problems. The performances of formulations is examined both theoret-

ically and computationally. Chapter 3 highlights the fact that travel speeds on

road networks are correlated and uses a real traffic dataset to explore the struc-

ture of this correlation. In conclusion, it is shown that there is still significant

spatial correlations between speeds on roads that are up to twenty links apart, in

our congested road network.

Chapter 4 extends chapter 2 and incorporates the findings of chapter 3 into

a modelling framework for VRP. The STSP with correlated costs is defined as

a potentially useful variant of VRP that considers the costs in the STSP to be

stochastic random variables with correlation. The problem is then formulated as

a single-objective problem with eight different integer programming formulations

presented. It is then shown how to account for three different correlation structures

in each of the formulations.



Chapter 5 considers the VRPs with time windows and shows how most of the

exact algorithms proposed for them, might not be applicable if the problem is

defined on the original road network graph due to the underlying assumption of

these algorithms that the cheapest path between a pair of customers is the same

as the quickest path. This assumption is not always true on a real road network.

Instead some alternative pricing routines are proposed that can solve the problem

directly on the original graph.
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1. INTRODUCTION & BACKGROUND

1.1 Motivation

The vehicle routing problem (VRP) has drawn a lot of interest from many re-

searchers, since its first proposal in 1959. In recent years, the development of E-

commerce and popularisation of internet trading has led to the creation of many

on-line businesses like Amazon, eBay, Bidz, Buy.com, among others. A similar

sales approach is now offered by many high street retailers and major supermar-

kets. One of the common promises advertised by most internet businesses to

compete for customers in the marketplace, is delivery time guarantees. Although

several modes of transport may be used for transferring goods from the source

depot, delivery to the end users almost always involves road transport and vehicle

movements to a number of destinations in a local area. This increasing demand

for satisfying or improving service levels for just-in-time deliveries, has signified

the applicability of the problem in every-day life even more.

Moreover, issues and concerns about environmental impacts and the need to

reduce carbon footprint are continually discussed by the media and periodically

new government targets are issued such as the 80% reduction in greenhouse gas

emissions from 1990 to 2050 in the UK government’s 2011 ”‘carbon plan”’. Carbon

dioxide accounts for 20% of the green house effect and road transport on its own

currently accounts for about 22% of total UK emissions of CO2 [47]. These cultural

changes and the concerns about climate change, also appeals for vehicle usage

reduction and cost savings by optimal vehicle routing strategies.

In practice, the reliability of a routing schedule depends highly on the extent
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to which its underlying assumptions resemble real-life conditions. In a real-life

environment, travel times on road networks are stochastic in nature. Temporal

and spatial fluctuations of traffic flow may occur due to congestion, road works,

accidents, weather conditions, etc. For the same reasons, travel times are often

positively correlated across road segments. That is, if at a certain time travel times

are unexpectedly high on a link then the travel times on nearby links are likely

to be unexpectedly high as well. Through a focus on correlation between travel

times, this thesis will mainly look at the VRP on a real road network, correlation

structures and how to address correlation in vehicle routing models.

1.2 Vehicle Routing Problems

The VRP seeks to find the optimal set of routes for a fleet of vehicles which are

to operate from a single depot to serve a set of customers given the cost of travel

between every pair of customers and every customer and depot [30]. The problem

was first introduced by Dantzig and Ramser [30] more than 50 years ago as the

truck dispatching problem. They considered a real-life application concerned with

designing routes with minimum total mileage for a fleet of trucks that deliver

gasoline to service stations.

Since then, the problem has attracted a lot of attention in the academic litera-

ture, due to its many applications in practice, but also because it is theoretically a

challenging problem to solve. Several variants of VRP have been introduced that

apply to real-life situations and many models and algorithms have been proposed

for computing their solutions.

The simplest and probably most famous variant of VRP is the travelling sales-

man problem (TSP) that is concerned with finding the cheapest way for a salesman

who wishes to travel around a given set of cities and return to the starting point

[3]. Although it appears to be a simple problem, the TSP has many applications
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in real life. For example, in computer science, in order to increase the production

rate in manufacturing of printed circuit boards, one wishes to minimise the hole

drilling time which is a function of the number of holes and the order in which they

are drilled. A similar problem arises in computational Genomics when one wishes

to find the optimal gene order by minimising the total distance in a sequence of

vectors each associated with a gene. One could enumerate many other underlying

or explicit applications of the TSP in areas such as of transportation, logistics,

manufacturing, telecommunications and neuroscience. For more details and other

applications of the TSP, the interested reader is referred to [33]. In this thesis, the

focus is on transportation on road networks.

While the general VRP and TSP do directly capture some real-life applications,

in others extra practical limitations may apply. In reality, the service provider with

a limited operation budget may have a fixed number of vehicles and be faced with

an increasing customer demand base. So, the concern is not only to find the

cheapest route but also select the customers that will be served. Some customers

may be more profitable than others. Equally, the company’s top priorities may be

their service reliability, rather than expanding their customer base, and so they

must trade their resources off between performance quality and overall profit, or

they may not be able to operate at the desired level. By adding some constraints

and restrictions to the VRP and TSP we can capture some of these complications.

Capacity constraints Often vehicles will have spatial capacity limits for a

given commodity. The Capacitated Vehicle Routing Problem (CVRP) is a variant

of VRP with the additional restriction that every vehicle has a fixed capacity of

a single commodity and customers have known demands [124]. The fleet may be

heterogeneous where vehicles have different characteristics, or homogeneous where

they are all identical. The CVRP is a combination of the TSP and the classical bin

packing problem. In a bin packing problem a set of items with fixed dimensions
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need to be packed into a number of bins with a certain capacity, such that the

number of used bins is minimised and no bin’s items exceed its capacity. Good

surveys on bin packing problems and CVRP are given in [25] and [124].

Time windows Another common complication arises when individual cus-

tomers may only be serviced at a particular time of day. Attended home delivery

services are a good example, when customer must be present for the delivery. In

the vehicle routing problem with time windows (VRPTW) every customer is asso-

ciated with a service time and a time window within which they are available to be

serviced [118]. In case of early arrival at the customer location, the vehicle must

wait. In some applications only soft time window restrictions may be imposed in

which case a penalty charge is incurred for every customer that is serviced outside

their time window.

Also of note is the multiple travelling salesman problem with time windows

(mTSPTW), a relaxation of the VRPTW in which the vehicle capacity is suffi-

ciently large so that no capacity restrictions are imposed. A special case of the

mTSPTW, is the travelling salesman problem with time windows (TSPTW) where

the number of vehicles is restricted to one. Desrochers et al. [36] give an introduc-

tion to variants of routing problems with time windows and survey the literature

prior to 1988. A more recent but short survey is presented by Kumar and Pan-

neerselvam [81], who also provide a comparison of heuristics and meta-heuristic

approaches for the problem.

Multiple depots The multi-depot vehicle routing problem (MDVRP) is an-

other extension of the VRP where vehicles operate from one of several depots in-

stead of only one [124]. The MDVRP may be encountered for large transportation

companies that serve a huge number of customers at sparse geographical locations.

In this case, each depot may be assigned with its own fleet of vehicles and set of

customers to serve, or vehicles may use intermediate depots to replenish, along



1. Introduction & Background 5

their route. A survey of recent literature on the MDVRP is presented in [110].

Pick-up and delivery In some applications of the VRP, customers in a route

require deliveries and pick-ups simultaneously, or some customers may only ex-

pect deliveries while others only require collection services [124]. For example, a

milkman delivering milk door-to-door or postal/courier services are applications

of this problem that one may encounter on a daily basis. The VRP with pick-up

and delivery (VRPPD) is becoming very popular because of the trend towards re-

cycling and re-use of products. Often fluctuations in the load of the vehicle makes

it challenging to satisfy the capacity restrictions on a route. Therefore, it is some-

times desirable to perform the pick-ups after all the deliveries have been made.

This variant is referred to as VRP with backhauls. A good survey of VRPPD is

given by Berbeglia et al. [15].

Real road networks Road network features and traffic restrictions, such as

construction works, roundabouts and one way systems, may sometimes impose

limitations on the vehicle routes. For example, if customer a is located at a dead-

end-street and is only accessible though customer b, then in order to service cus-

tomer a and return to the depot, inevitably the vehicle must visit customer b at

least twice. The Steiner VRP (SVRP) and TSP (STSP) are variants that solve

the problem directly on the original road network, unlike the standard VRP and

TSP, that assign a cost for direct routes from every customer to every other cus-

tomer and depot by calculating the cost of the cheapest route between every pair

of locations [28]. In principle, any instance of the SVRP or STSP instance can be

converted into an instance of the standard VRP or TSP, by computing shortest

paths between every pair of customers. However, as will be discussed in chapters

4 and 5, in practice solving the original Steiner problem is sometimes necessary

and can be much quicker. Moreover, we will show in chapter 5 that for problems

with time window restrictions, converting the problem to standard form may even
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result in the wrong solution. A review of the literature on the SVRP, STSP and

some other routing problems on real road networks is given in chapters 2 and 5.

In the definition of the classical VRP and its variants that have been introduced

so far, all input parameters are deterministic and it is assumed that everything

goes according to a priori determined static schedule. However, routing problems

in real-life may contain a fairly high degree of uncertainty. For examples, the

customer’s presence at the time of service, customer’s demand, road conditions

and traffic on the road are often unpredictable before the start of the journey. The

following two scenarios are examples of the most studied and applicable variants

of the VRP with stochastic parameters.

Stochastic demands In the VRP with stochastic demands (VRPSD), the

capacitated delivery vehicle will not have knowledge of the demands that it will

encounter on a route. Therefore, there is a positive probability associated with the

vehicle running out of the product along the route, before serving all the customers

on that route. In a situation where the vehicle fails to meet the demand of one

or more customers on a route, that route becomes a failure. These failures are

discouraged with a penalty that can be unique to each customer for not satisfying

their demand. Vehicle routing with stochastic customers, where even the presence

of each customer at its location is uncertain, can also be seen as a special case of

the VRPSD in which all the demand is binary, either 0 or 1. A common application

for this scenario is the distribution of packages by the post office.

The VRPSD was first introduced by Tillman in 1969 [122], for designing routes

in a multiple terminal delivery problem. He proposed penalties whenever vehicles

were almost empty or filled over capacity. A huge amount of research has been

attributed to VRPSD, since then. Most modelling techniques for VRPSD take

a static approach where routes are designed before knowing the actual demand,

and the original planned sequence of visits is not changed during the journey.
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The alternative is dynamic planning, where information is updated at each step

of process and decisions on the next course of action are made after the present

customer’s demand is observed. Excellent surveys on the VRPSD are given in

[44, 61].

Stochastic travel times Vehicle speeds and travel times depend on the level

of congestion on the roads, which may be influenced by different factors such as the

number of vehicles, road capacity, road conditions and weather conditions, among

others. In recent years, both the VRP with stochastic travel times (VRPSTT) and

TSP with stochastic travel times (TSPSTT) have received more attention in the

academic literature since novel advances in technology now ease the access to real-

time traffic information. This makes it possible to plan vehicle journeys taking

account of congestion that is predictable from the traffic patterns of the past.

In VRPSTT the objective is to find the set of routes with minimum expected

cost, while both travel times and customer service times can be random variables.

Stochastic travel times were first considered in a study by Leipälä [86] where

he calculates the expected length of the optimal tour for a TSP with stochastic

distances. Similar to the VRPSD, a static modelling approach is to let vehicles

follow their a priori planned routes and charge penalties for the routes that exceed

a pre-set deadline.

Another approach is to model the travel times as random variables with known

distributions, and either minimise the variation in travel times or minimise the

total expected travel time while imposing an upper bound on its variation. In

the dynamic approach, one integrates traffic information obtained in real time and

updates the route plan during service execution. A survey and review of literature

on the VRPSTT and TSPSTT will be given in chapter 4.



1. Introduction & Background 8

1.3 Combinatorial Optimisation

The vehicle routing problem is classified as a combinatorial optimisation problem

(COP) in the field of optimisation and mathematical modelling. COPs are opti-

misation problems that involve concepts from combinatorics, such as sets, subsets,

permutations and combinations. One way to define them formally is as follows.

We are given a ground set E, a function f(S) that maps any subset S ⊂ E to a

real number, and a rule which, given any S ⊂ E, tells us whether S is feasible. The

task is to find a feasible subset where the desired extermum of f(S) is attained.

Well known examples of COPs include the assignment problem, knapsack problem

and the shortest path problem which may also appear as a subproblem in other

more complicated problems.

The general form of a mathematical model for an optimisation problem is,

min

max

(

f(x) : gi(x)















≤
=

≥















bi, i ∈ M,x ∈ Rn
+

)

(1.1)

where the objective is to minimise or maximise f that might represent cost or

profit and is a function of the decision variables x. N is the set of variables that

may take positive real values and M represents the set of constraints that impose

the limitations or requirements that need to be fulfilled for the feasible solutions

in the set of interest.

COPs and integer programs The general optimisation problem (1.1) is

called a linear program (LP) when the objective function and constraints are linear

and variables are continuous. If integrality is imposed on the variables by replacing

the condition x ∈ Rn
+ by the condition x ∈ Zn

+, it is denoted an integer program

(IP) and a mixed integer program (MIP) is obtained when both types of real and

integer variables may exist. When variables in a LP are constrained to take integer

values the problem is called an integer linear program (ILP) and when they are

restricted to take only binary values, i.e. x ∈ {0, 1}n, we derive a 0-1 linear
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program (0-1 LP). A LP that has both types of real and integer variables is called

a mixed-integer linear program (MILP).

Most COPs of interest can be formulated as MILPs. When attempting to

formulate a COP as a MILP, the most natural starting point is to define a 0-1

variable xe for each e ∈ E, taking the value 1 if e ∈ S, and 0 otherwise. The set

function f(S) then needs to be mapped to a function of the x variables, and the

condition that S must be feasible needs to be mapped to constraints involving the

x variables. The resulting MILP is then a 0-1 LP. In some cases, however, either

finding such a 0-1 LP formulation is not at all easy, or one obtains a formulation

with a huge (exponentially large) number of constraints. In such cases, it often

helps to introduce additional variables and constraints, to obtain a simpler MILP

formulation. In fact, for some COPs, it is possible to formulate them as MILPs in

several different ways. This is the case for the TSP and the variants of it that we

consider.

In principle one could find the optimum solution of a COP by enumeration

of the set of feasible solutions. However, for practical applications this set mostly

contains too many elements that computing times for enumeration process become

unacceptably long. Therefore, an efficient algorithm is needed to solve the problem

in a reasonable time.

Analysis of algorithms The efficiency of an algorithm is defined in terms of

its running time. For a general function t : N → R, an algorithm is said to run in

time O(t(n)), if for some constants α and n0 and for any n ≥ n0, the algorithm

takes at most αt(n) time to compute a solution. An efficient algorithm is one that

runs in polynomial time in the size of input, i.e. t : n → nc, for some constant c, as

opposed to exponential time algorithms where t : n → cn for some constant c > 1.

All of the routing problems described in the previous subsection appear to be

hard in the sense that no obvious efficient algorithm comes to mind for solving
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Fig. 1.1: Relationship of some complexity classes if P 6= NP.

them. However, it is not apparent precisely how difficult they are either. Com-

putational complexity theory provides the foundation for systematically classifying

the hardness of a problem.

Computational complexity Considering only the decision problems, where

given an instance, the algorithm will either accept or reject it on the basis of

whether or not it lies within the set of interest, the simplest class of problems are

complexity class P (Polynomial). P is the set of all decision problems for which

there exists an efficient algorithm that its running time is polynomial in its input

size. On the other hand, NP (Non-deterministic Polynomial) class is the set of

decision problems that are verifiable in polynomial time, meaning that given an

instance of the decision, there is a polynomial algorithm in size of the instance

that certifies the instance lies within the set of interest. Clearly, P ⊆ NP since all

decision problems in P can be solved in polynomial time without any certificate

but whether the reverse is true or not is still an important open question amongst

theoretical computer scientists.

Another set of interest are NPC (NP Complete) problems. A decision problem

A ∈ NP becomes NPC if it is polynomial reducible, that is if it can be shown

that for every problem B ∈ NP there exists a function g : B → A which maps

acceptable instances of B to acceptable instances of A in polynomial time in its

input size. The existence of a polynomial time reduction from B to A proves that,
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B is no harder to solve than A. Finally, if we assume that P 6= NP , there is

a class of NP Hard problems which consists of optimisation problems that are

not polynomially solvable and are at least as hard as some NPC decision problem

to solve. An optimisation problem A is NP Hard if there exists some decision

problem B ∈ NPC that can be reduced to it.

The decision problem of the TSP (where, given a tour with cost f , the task is

to find whether there exists any tour cheaper than f) belongs to the class of NPC

problems [109] and TSP itself is a NP − Hard problem. The general VRP and

all its other variations that have been mentioned in the previous subsection are at

least as hard as the TSP, implying that they also belong to the complexity class

NP Hard.

Although the simplified questions underlying practical instances of routing

problems are amongst the hardest problems in computer science themselves, still

additional complexities are often brought about by real world issues and untidi-

ness - road traffic, weather conditions, employee rights and working hours - as well.

To design an efficient algorithm that can inspect the structure of an instance and

search the solution space to find a feasible solution with the best objective value,

we need to characterize the input parameters and features of the problem. Discrete

mathematics and graph theory is the language used for the characterization and

formal description of these problems. In this representation, feasible solutions of

the problem are expressed as subgraphs on an abstract graph that embodies the

road network on which the vehicle is travelling.

1.4 Graph Theory

As mentioned, the mathematical theory of graphs is one of the main tools for

describing routing problems and effective design of related algorithms, so I present

some key ideas and terminology here. Graph G(V,E) is a mathematical structure
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consisting of a set V of nodes or vertices and a set E of edges that connect the

vertices. Set V has |V | distinct vertices and edge set E contains |E| distinct edges.

An edge is identified by the pair of vertices at its end points and existence of an

edge e = {i, j} ∈ E indicates that vertices i and j are adjacent to each other.

In an undirected graph, there is no distinction between the two vertices associ-

ated with an edge and so edges {i, j} and {j, i} are identical, whereas in a directed

graph, edges have direction. A directed edge is also called an arc. Arc a = (i, j)

has a direction that points from its initial vertex i, also referred to as the arc tail,

to its end vertex j, also referred to as the arc head. The degree of a vertex is

the number of edges that connect to that vertex; in a directed graph a vertex has

in-degrees and out-degrees that are the number of arcs pointing to that vertex and

away from it, respectively.

A path in a graph G is a consecutive sequence of edges
〈

{v1, v2}, . . . , {vn−1, vn}
〉

from the edge set E that connect the distinct set of vertices {v1, . . . , vn} ∈ V , at

their end points. Vertex b is reachable from a if there exists a path in the graph

that starts from a and ends at b and two vertices a and b are connected if they are

both reachable from one another - clearly, connectivity is implied by reachability in

an undirected graph. G is described as a connected graph if every pair of vertices in

V are connected and it becomes a complete graph if every vertex in V is adjacent

to every other vertex in the graph. Graph G is a multi-graph if it contains parallel

edges or arcs, i.e. edges or arcs that have the same end nodes.

A cycle is a path that starts and ends at the same vertex. A path or cycle

is said to be Eulerian if they traverse every edge exactly once and is described

as Hamiltonian if it visits each vertex exactly once. Graph G is Eulerian if it

contains an Eulerian cycle and is Hamiltonian if it possesses a Hamiltonian cycle

- for example see figure 1.2. It was shown by Hierholzer in 1873 [70] that an

undirected graph has an Eulerian cycle if and only if the graph is connected and
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Fig. 1.2: On the left a graph which is Hamiltonian and not Eulerian and on the right a
graph which is Eulerian and not Hamiltonian .

every vertex has even degree. We will refer to this result in the next chapter, for

modelling the STSP.

A graph G is a tree if it is connected and does not have any cycles. A forest is a

union of trees that are pairwise disjoint. A spanning tree of a connected undirected

graph G, is a tree that contains every vertex of G and all of whose edges are in

E. A Spanning forest of graph G is a set of spanning trees, such that any two

reachable vertices in G are in the same tree.

Graph G is said to be weighted when a label (weight), which is usually a real

number, is associated with every edge in E. The weight of a path or cycle in

a weighted graph, often referred to as cost in this thesis, is the sum of all edge

weights in that path or cycle.

The terminology and notation described in this section will be used in the next

chapters for formal descriptions of the TSP, the VRP and some other routing prob-

lems. For these routing problems various solution methods have been proposed

during the years that can mainly be divided into three categories:

• Exact algorithms guarantee to find an optimal solution, i.e. a solution with

the best objective function value.

• Heuristics find solutions in reasonable computing times with no guarantee

on the quality of the solution. They can be useful for large scale practical

problems where computing times for exact methods are excessive or finding
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the optimal solution is not imperative.

• Approximation algorithms find an approximate solution with proven ’per-

formance guarantees’, usually in the form of an upper bound on the ratio

between the solution and the optimum.

As discussed in the previous section, the routing problems in this thesis are

NP−Hard and exact solution methods for them mostly have exponential running

times. However, study of the exact methods can provide insight into the problem

behaviour and improvements of exact methods in recent decades have extended the

boundaries for expected computing times. Our focus is solely on exact methods

in this thesis.

1.5 Exact Methods for Vehicle Routing

VRPs are typically formulated as MIPs. Many exact algorithms have been pro-

posed for solving the VRP and its variants. The performance of algorithms for

solving the problem depends strongly on the way that the problem is formulated

and on the features of its formulation. In this section we describe five exact algo-

rithms used to solve different classes of formulations.

Branch-and-bound was first proposed by Land and Doig [82] in 1960. It is

an enumeration scheme that is based on the idea of successively partitioning the

solution space and generating a sequence of subproblems until a (better) feasible

solution is found or it is determined that the partition does not contain a (better)

solution. Compact formulations, in which the number of variables is bounded by

a polynomial in the number of nodes (e.g., the CVRP formulation of Gavish &

Graves [60]) can be solved by this method.

The enumeration scheme is displayed by a branching tree where the root node

of the tree corresponds to the original problem and has a solution space that
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contains all the feasible solutions of the problem. In order to construct a branch-

and-bound algorithm, one needs a lower bound (LB) for the problem. Considering

a MIP with minimising objective function, an efficient way of calculating a LB x̄0

for the problem is by solving its LP relaxation, i.e., the enlarged solution space

that allows for integer variables to take on continuous values. If x̄0
i is integer for

all i ∈ N , then x̄0 is an optimal solution and the algorithm terminates. If for

some i ∈ N , x̄0
i is non-integral, the algorithm defines two new subproblems of

the original problem with the additional constraints xi ≥ dx̄0
i e and xi ≤ bx̄0

i c by

branching on the root node. Variable xi is called the branching variable and the

two new subproblems are called the active nodes of the tree.

In the next stage, the algorithm attempts to solve the LP relaxation of one of

the active nodes. In case the LP relaxation is infeasible, that node is pruned from

the tree. If the solution of the subproblem is integer feasible, then its objective

value becomes an upper bound (UB) for the objective value of the original problem

and if the solution is not integer feasible, then two new subproblems are defined

and the branching procedure is repeated. Also, at each stage active nodes with

LBs higher than an existing UB can be discarded from the tree since the objective

value of an optimal solution cannot be greater than an UB. A typical example is

a branching strategy based on choosing either a value 0 or 1 for a single binary

variable (see, e.g., Figure 1.3). The algorithm terminates when there are no more

active nodes in the tree and the optimal solution of the original problem is the

best integer solution found in the tree.

Branch-and-cut algorithm embeds strong valid inequalities (cutting planes)

into a branch-and-bound paradigm to cut off some of the current fractional solu-

tion, i.e. the non-integer solution obtained by the LP relaxation. This method

performs particularly well on formulations that have an exponentially large number

of constraints, but a polynomial number of variables (e.g., the CVRP formulation
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Fig. 1.3: Partial branch-and-bound tree example .

of Laporte & Nobert, [84]). Such MIP formulations have too many valid inequali-

ties to be included in the LP from the start.

Formally, cutting planes are defined as follows. Let PMIP denote the convex

hull containing all the feasible solutions of the original MIP. If the optimal solution

of its LP relaxation x̄0, is not integer and it does not satisfy all the constraints in

MIP, then there exists a hyperplane {x ∈ Rn : aTx = α} such that aT x̄0 > α and

PMIP ⊆ {x ∈ Rn : aTx ≤ α}. Such a hyperplane is called a cutting plane. A basic

cutting plane algorithm consists of the following steps:

1. Relaxation: Solve the LP relaxation. If the solution of LP relaxation x̄0, is

integer output the optimal integer solution and stop, else continue to step 2.

2. Add cutting planes: Search for cutting planes that are violated by x̄0 and

remain valid for PMIP ; if any are found add them to LP formulation and

return to step 1. If no inequalities have been found output the current

bound and stop.

The problem of finding the violated cutting planes is called the separation

problem. Adding cutting planes to the LP relaxation (generating rows) strengthens

the LP relaxation and decreases the gap between UB and LB by raising the LB in

the branch-and-bound tree. Lysgaard et al. [92] have implemented this method

for solving a CVRP.
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Branch-and-price incorporates column generation into the branch-and-bound

paradigm to divide the problem into smaller subproblems that have their solutions

combined in a master problem. Dantzig and Wolfe [31] proposed the column gen-

eration technique as a scheme for solving formulations with an exponentially large

number of variables, but a polynomial number of constraints (e.g., the Set Par-

titioning formulation of Balinski & Quandt [11]). These problems typically have

too many columns to handle efficiently.

Column generation is very similar to the cutting plane method but instead of

adding rows to the LP relaxation of the problem, column generation adds columns

to a restricted version of the LP relaxation. Initially, sets of columns are left out of

the LP relaxation of the large MIP because there are too many columns to handle

efficiently and since the basis has limited dimension, many of these columns will

have their associated variables equal to zero in an optimal solution anyway. First

the LP relaxation of restricted master problem (where many columns are left out)

is solved to optimality. Then a pricing algorithm is used to verify the optimality

of the solution of the restricted LP relaxation (RLP) for the LP relaxation of the

problem. The solution will be optimal if all variables of the LP relaxation have

non-negative reduced cost. If the solution is not optimal then at least one column

is found with negative reduced cost. This column is added to the RLP and the LP

is re-optimised. The procedure terminates when there are no more columns with

negative reduced cost. Similar to branch-and-cut, the solution to the LP relaxation

is often non-integer and branching is performed to find a feasible solution to the

MIP. Desrochers et al. [37] have applied this algorithm for solving the VRPTW.

Branch-cut-and-price is a combination of branch-and-bound, column gen-

eration and the cutting plane method. This is a method of choice for solving

formulations with an exponentially large number of both variables and constraints

(e.g., the CVRP formulation of Fukasawa et al. [57]).
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Analogous to branch-and-price, the algorithm initially considers the LP relax-

ation of a restricted master problem with many columns left out. In order to

strengthen the LP relaxation, cutting planes are added to the master problem to

cut off fractional solutions of the master problem. The master problem is then

re-optimised but due to addition of new constraint, the variables already con-

tained in the restricted master problem are not necessarily sufficient to construct

an optimal solution for the new master problem. Therefore, column generation

is used to search for columns with negative reduced cost again. The procedure is

repeated until no more columns with negative reduced cost are found and no more

violated cuts can be generated. As with the branch-and-cut and branch-and-price

procedures, at this stage branching needs to be performed if the solution to the

LP relaxation is non-integer.

Dynamic programming (DP) is an implicit enumeration scheme that first

decomposes the problem into a nested family of subproblems. The solution to

the original problem is then found by recursively solving the (generally easier)

subproblems and working either backward from the end of the problem to the

beginning (backward DP) or forward from the beginning to the end (forward DP).

Optimisation problems for which a feasible solution can be viewed as a sequence

of decisions can be tackled by DP [14]. The basic characteristics that are common

to DP applications are as follows:

1. The problem can be divided into a series of stages i with a decision xi required

at each stage.

2. Each stage i has a set of states {si} associated with it which can describe

the current condition of the system.

3. The decision xi made at any stage determines the next state si+1 of the sys-

tem at next stage, as well as the immediately earned award or cost fi(xi, si).
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4. At any stage, the optimal decision for each of the remaining stages must not

depend on previous states and decisions made at previous stages. This is

according to Bellman’s principle of optimality for DP [14].

5. On each stage a recursion is available that relates the cost or reward achieved

during each stage i to the cost or reward achieved in stage i+1. Considering a

minimisation problem in a forward DP algorithm, the recursive relationship

can be written as:

Fi(si) = min
xi∈Di

{ci(si, xi) + Fi−1(si−1(si, xi))}, (1.2)

where ci(si, xi) is the cost of moving from state si−1(si, xi) to state si accord-

ing to decision xi and Fi(si) is the minimum accumulative cost incurred up

to stage i.

Dynamic programming algorithms are computationally efficient, as long as the

state space does not become too large (e.g., Mingozzi et al. [101] have used DP to

solve the TSPTW). In this thesis we use DP to solve pricing problems for routing

problems with time windows in chapter 5.

1.6 Contribution

The main contributions of the thesis, summarized in the points below, is to show

• how to adapt compact formulations of the TSP to the Steiner TSP and some

other variants of VRP that are defined on the original road network graph

and solve them by the use of the branch-and-bound algorithm.

• how correlation between travel times on roads depends on the amount of

congestion and the type of road network.

• how to model and solve the Steiner TSP in the presence of correlated travel

times. Furthermore, to show how to capture different correlation structures
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that may be representative of different types of road network in practice,

into the model and solve the problem using branch-and-bound algorithm.

• how exact methods proposed for solving VRPs with time windows can fail to

give the correct optimal solution when the instance is defined on a real road

network. Moreover, to describe natural ways to remedy the situation and

present pricing routines that can be incorporated within a branch-and-price

algorithm to solve the problems on the original network graph.

A more detailed description of the contributions of each chapter can be found in

the following section.

1.7 Structure of Thesis

The next four chapters of this thesis consist of four journal articles that have been

submitted for publication, two of which are published. Each chapter contains

theory, methodology or application which is motivated by aspects of modelling

routing problems on real road networks. The following is a brief description of

each chapter.

Chapter 2: Compact Formulations of the Steiner TSP and Related Problems.

This paper considers the STSP as a variant of the TSP and adapts some of the

compact formulations of the TSP (i.e. formulations of polynomial size) to the

STSP. The proposed formulations are compared both theoretically and computa-

tionally. It is shown that the best of the formulations can solve instances with over

200 nodes to proven optimality, on a standard branch-and-bound solver. It is also

shown how to adapt the best of the formulations to some related problems. This

work is co-authored with Adam Letchford and Dirk Oliver Theis and has been

published in the European Journal of Operational Research, see Letchford et al.

[88].
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Chapter 3: Correlation Between Speeds on a Congested Road Network in the

City of London. This paper explores the temporal and spatial correlations between

travel speeds in a congested road network. Statistical analysis is carried out on

real traffic data that has been collected over a period of two months, in the City

of London. It is shown that the assumption of a first-order Markovian property

for spatial correlations on a congested road network is rather naive. In fact, for

our London data set the spatial correlations are still significant for roads up to

twenty links apart. However, performing a principal component analysis proves

that the correlation structure is not complex and only three components are needed

to explain 89% of the temporal variation in speed, and only six components are

needed to explain over 80% of the spatial variation. This paper has been submitted

for publication.

Chapter 4: The Steiner Travelling Salesman Problem with Correlated Costs.

This paper is an extension of our work in Letchford et al. [88] that introduces STSP

with correlated costs as a potentially useful variant of the TSP, that considers

the cost of traversing roads to be stochastic random variables with correlation.

The problem is modelled as a bi-objective mean-variance problem and eight IP

formulations are presented for the problem. It is also shown how to exploit special

structures in the correlation matrix. Computational results are presented for the

eight formulations and three different correlation structures, for instances with

up to 100 nodes. This is joint work with Adam Letchford. The paper has been

submitted for publication.

Chapter 5: Pricing Routines for Vehicle Routing with Time Windows on Road

Networks. This paper studies the VRP with time windows and brings to attention

an implicit assumption that is made in most of the exact algorithms developed for

standard VRPs, which is that the cheapest path between each pair of customers is

the same as the quickest path. This assumption is not valid on road networks and
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therefore, most of the existing exact algorithms cannot be applied to an instance

that is defined on the original road network. Instead, some alternative pricing

routines are proposed for these problems and their performance is tested on some

experimental instances. We also propose two sets of formulations that can be

used to solve the VRPTW directly on the original road network but due to their

practical limitations they are not included in this article and I present them in the

appendix. This work is co-authored with Adam Letchford and Amar Oukil and has

been published in the journal Computers & Operations Research, see Letchford et

al. [87].

Finally, chapter 6 gives concluding remarks and discusses some potential areas

for future research.



2. COMPACT FORMULATIONS OF THE STEINER

TRAVELLING SALESMAN PROBLEM AND RELATED

PROBLEMS

2.1 abstract

The Steiner Traveling Salesman Problem (STSP) is a variant of the TSP that is

particularly suitable when routing on real-life road networks. The standard integer

programming formulations of both the TSP and STSP have an exponential number

of constraints. On the other hand, several compact formulations of the TSP, i.e.,

formulations of polynomial size, are known. In this paper, we adapt some of them

to the STSP, and compare them both theoretically and computationally. It turns

out that, just by putting the best of the formulations into the CPLEX branch-

and-bound solver, one can solve instances with over 200 nodes. We also briefly

discuss the adaptation of our formulations to some related problems.

Keywords: traveling salesman problem, integer programming.

2.2 Introduction

The Traveling Salesman Problem (TSP), in its undirected version, can be defined

as follows. We are given a complete undirected graph G = (V,E) and a positive

integer cost ce for each edge e ∈ E. The task is to find a Hamiltonian circuit, or

tour, of minimum total cost. The best algorithms for solving the TSP to proven

optimality, such as the ones described in [3, 103, 107], are based on a formulation

of the TSP as a 0-1 linear program due to Dantzig et al. [29], which we present in

Subsection 2.3.1 of this paper.
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The Dantzig et al. formulation has only one variable per edge, but has an

exponentially-large number of constraints, which makes cutting-plane methods

necessary (see again [3, 103, 107]). If one wishes to avoid this complication, one

can instead use a so-called compact formulation of the TSP, i.e., a formulation

with a polynomial number of both variables and constraints. A variety of compact

formulations are available (see the surveys [66, 105, 108] and also Subsection 2.3.2

of this paper).

When dealing with routing problems on real-life road networks, however, one

is much more likely to encounter the following variant of the TSP. We are given a

connected undirected graph G = (V,E), a positive integer cost ce for each e ∈ E,

and a set VR ⊆ V of required nodes. The task is to find a minimum-cost closed walk,

not necessarily Hamiltonian, that visits each required node at least once. Nodes

may be visited more than once if desired, and edges may be traversed more than

once if desired. This variant of the TSP was proposed, apparently independently,

by three sets of authors [28, 53, 106]. (The special case in which all nodes must

be visited was considered earlier in [69, 98].) We will follow Cornuéjols et al. [28]

in calling this variant the Steiner TSP, or STSP for short.

As noted in [28, 53], it is possible to convert any instance of the STSP into an

instance of the standard TSP, by computing shortest paths between every pair of

required nodes. So, in principle, one could use any of the above-mentioned TSP

formulations to solve the STSP. If, however, the original STSP instance is defined

on a sparse graph, the conversion to a standard TSP instance increases the number

of variables substantially, which is undesirable. So, in this paper, we provide

and analyse some compact formulations for the STSP. Specifically, we introduce

single-commodity flow, multi-commodity flow and time-staged formulations, and

compare them both theoretically and computationally.

It turns out that, just by putting the best of our formulations into the CPLEX
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branch-and-bound solver, one can routinely solve instances with over 200 nodes

to proven optimality. This is in sharp contrast to the situation with the standard

TSP, where sophisticated cutting-plane techniques are needed to solve instances

with more than about 50 nodes (see, e.g., [3, 103]).

The paper is structured as follows. The relevant literature is reviewed in Section

2.3. In Section 2.4, the so-called commodity-flow formulations of the TSP are

adapted to the Steiner case. In Section 2.5, the same is done for the so-called

time-staged formulation. In Section 2.6, some computational results are given.

Then, in Section 2.7, we briefly discuss the possibility of adapting our approach

to other variants of the TSP. Finally, some concluding remarks appear in Section

2.8.

2.3 Literature Review

We now review the relevant literature. We cover the classical formulation of the

standard TSP in Subsection 2.3.1, compact formulations of the standard TSP in

Subsection 2.3.2, and the classical formulation of the STSP in Subsection 2.3.3.

2.3.1 The classical formulation of the standard TSP

The classical and most commonly-used formulation of the standard TSP is the

following one, due to Dantzig, Fulkerson and Johnson [29]:

min
∑

e∈E cexe

s.t.
∑

e∈δ({i}) xe = 2 (∀i ∈ V ) (2.1)

∑

e∈δ(S) xe ≥ 2 (∀S ⊆ V : 2 ≤ |S| ≤ |V |/2) (2.2)

xe ∈ {0, 1} (∀e ∈ E).

Here, xe is a binary variable, taking the value 1 if and only if the edge e belongs

to the tour, and, for any S ⊂ V , δ(S) denotes the set of edges having exactly

one end-node inside S. The constraints (2.1), called degree constraints, enforce
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that the tour uses exactly two of the edges incident on each node. The constraints

(2.2), called subtour elimination constraints, ensure that the tour is connected.

We will call this formulation the DFJ formulation. A key feature of this formu-

lation is that the subtour elimination constraints (2.2) are exponential in number.

2.3.2 Compact formulations of the standard TSP

As mentioned above, a wide variety of compact formulations exist for the standard

TSP, and there are several surveys available (e.g., [66, 105, 108]). For the sake

of brevity, we mention here only four of them. All of them start by setting V =

{1, 2, . . . n} and viewing node 1 as a ‘depot’, which the salesman must leave at the

start of the tour and return to at the end of the tour. Moreover, all of them can

be used for the asymmetric TSP as well as for the standard (symmetric) TSP.

We begin with the formulation of Miller, Tucker & Zemlin [99], which we call

the MTZ formulation. For all node pairs (i, j), let x̃ij be a binary variable, taking

the value 1 if and only if the salesman travels from node i to node j. Also, for

i = 2, . . . , n, let ui be a continuous variable representing the position of node i in

the tour. The MTZ formulation is then:

min
∑n

i,j=1 cijx̃ij (2.3)

s.t.
∑n

j=1 x̃ji = 1 (1 ≤ i ≤ n) (2.4)

∑n

j=1 x̃ij = 1 (1 ≤ i ≤ n) (2.5)

x̃ij ∈ {0, 1} (1 ≤ i, j ≤ n; i 6= j) (2.6)

ui − uj + (n− 1)x̃ij ≤ n− 2 (2 ≤ i, j ≤ n; i 6= j) (2.7)

1 ≤ ui ≤ n− 1 (2 ≤ i ≤ n). (2.8)

The constraints (2.4) and (2.5) ensure that the salesman arrives at and departs

from each node exactly once. The constraints (2.7) ensure that, if the salesman

travels from i to j, then the position of node j is at least one more than that of
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node i. Together with the bounds (2.8), this ensures that each non-depot node is

in a unique position.

The MTZ formulation is compact, having only O(n2) variables and O(n2) con-

straints. Unfortunately, Padberg & Sung [108] show that its LP relaxation yields

an extremely weak lower bound, much weaker than that of the DFJ formulation.

The next compact formulation, historically, was the ‘time-staged’ (TS) formu-

lation proposed by both Vajda [126] and Houck et al. [72] independently. For all

1 ≤ i, j, k ≤ n with i 6= j, let rkij be a binary variable taking the value 1 if and

only if the edge {i, j} is the kth edge to be traversed in the tour, and is traversed

in the direction going from i to j. We then have:

min
∑n

i=2 c1ir
1
1i +

∑n−1
k=2

∑n

i,j=2 cijr
k
ij +

∑n

i=2 ci1r
n
i1

s.t.
∑n

j=2 r
1
1j = 1 (2.9)

∑n

j=2 r
n
j1 = 1 (2.10)

∑n−1
k=1

∑

j 6=i r
k
ji = 1 (2 ≤ i ≤ n) (2.11)

∑

j 6=i r
k
ji =

∑

j 6=i r
k+1
ij (2 ≤ i ≤ n; 1 ≤ k ≤ n− 1) (2.12)

rkij ∈ {0, 1} (1 ≤ i, j, k ≤ n; i 6= j).

The constraints (2.9) and (2.10) state that the salesman must leave the depot at

the start of the tour and return to it at the end. The constraints (2.11) ensure

that the salesman arrives at each non-depot node exactly once, and the constraints

(2.12) ensure that the salesman departs from each node that he visits.

The TS formulation has O(n3) variables and O(n2) constraints. It follows from

results in [66, 108] that the associated lower bound is intermediate in strength

between the MTZ and DFJ bounds.

Next, we mention the single-commodity flow (SCF) formulation of Gavish &

Graves [60]. Imagine that the salesman carries n − 1 units of a commodity when

he leaves node 1, and delivers 1 unit of this commodity to each other node. Let
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the x̃ij variables be defined as above, and define additional continuous variables

gij, representing the amount of the commodity (if any) passing directly from node

i to node j. The formulation then consists of the objective function (2.3), the

constraints (2.4)–(2.6), and the following constraints:

∑n

j=1 gji −
∑n

j=2 gij = 1 (2 ≤ i ≤ n) (2.13)

0 ≤ gij ≤ (n− 1)x̃ij (1 ≤ i, j ≤ n; j 6= i). (2.14)

The constraints (2.13) ensure that one unit of the commodity is delivered to each

non-depot node. The bounds (2.14) ensure that the commodity can flow only

along edges that are in the tour.

The SCF formulation hasO(n2) variables andO(n2) constraints. It is proved in

[108] that the associated lower bound is intermediate in strength between the MTZ

and DFJ bounds. Later on, in [66], it was shown that it is in fact intermediate in

strength between the MTZ and TS bounds.

Finally, we mention the multi-commodity flow (MCF) formulation of Claus

[24]. Here, we imagine that the salesman carries n − 1 commodities, one unit of

each for each customer. Let the x̃ij variables be defined as above. Also define, for

all 1 ≤ i, j ≤ n with i 6= j and all 2 ≤ k ≤ n, the additional continuous variable

fk
ij, representing the amount of the kth commodity (if any) passing directly from

node i to node j. The formulation then consists of the objective function (2.3),

the constraints (2.4)–(2.6), and the following constraints:

0 ≤ fk
ij ≤ x̃ij (k = 2, . . . , n; {i, j} ⊂ {1, . . . , n}) (2.15)

∑n

i=2 f
k
1i = 1 (k = 2, . . . , n) (2.16)

∑n

i=1 f
k
ik = 1 (k = 2, . . . , n) (2.17)

∑n

i=1 f
k
ij −

∑n

i=2 f
k
ji = 0 (k = 2, . . . , n; j ∈ {2, . . . , n} \ {k}). (2.18)

The constraints (2.15) state that a commodity cannot flow along an edge unless

that edge belongs to the tour. The constraints (2.16) and (2.17) impose that each
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commodity leaves the depot and arrives at its destination. The constraints (2.18)

ensure that, when a commodity arrives at a node that is not its final destination,

then it also leaves that node.

The MCF formulation has O(n3) variables and O(n3) constraints. It is proved

in [108] that the associated lower bound is equal to the DFJ bound. Therefore,

this is the strongest of the four compact formulations mentioned.

2.3.3 The classical formulation of the STSP

The integer programming formulation given in [53] for the STSP is as follows:

min
∑

e∈E cexe (2.19)

s.t.
∑

e∈δ(i) xe even (i ∈ V ) (2.20)

∑

e∈δ(S) xe ≥ 2 (S ⊂ V : S ∩ VR 6= ∅, VR \ S 6= ∅) (2.21)

xe ∈ Z+ (e ∈ E). (2.22)

Note that, since edges may be traversed more than once if desired, the x variables

are now general integers. Also, since nodes may be visited more than once if

desired, the degree constraints (2.20) specify only that the degrees must be even.

(Although these constraints are non-linear, they can be easily linearised, using one

additional variable for each node.) The crucial point, however, is that the so-called

connectivity constraints (2.21) are exponential in number.

2.4 Flow-Based Formulations of the STSP

In this section, we adapt the formulations SCF and MCF, mentioned in Subsection

2.3.2, to the Steiner case. We also give some results concerned with the strength

of the LP relaxations of our formulations.

2.4.1 Some preliminaries

At this point, we present some additional notation. Let G̃ = (V,A) be a directed

graph, where the set of directed arcs A is obtained from the edge set E by replacing
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each edge {i, j} with two directed arcs (i, j) and (j, i). For each arc a ∈ A, the

cost ca is viewed as being equal to the cost of the corresponding edge. For any

node set S ⊂ V , let δ+(S) denote the set of arcs in A whose tail is in S and whose

head is in V \ S, and let δ−(S) denote the set of arcs in A for which the reverse

holds. For readability, we write δ+(i) and δ−(i) in place of δ+({i}) and δ−({i}),

respectively. Finally, let nR = |VR| denote the number of required nodes.

We will find the following lemma useful:

Lemma 1. In an optimal solution to the STSP, no edge will be traversed more
than once in either direction.

This lemma is part of the folklore, but an explicit proof can be found in the

appendix of [89]. An immediate consequence is that one can define a binary

variable x̃a for each arc a ∈ A, taking the value 1 if and only if the salesman

travels along a.

We will also need the following classical result from network flow theory, due

to Gale [58] and Hoffman [71]:

Theorem 1 (Gale–Hoffman). Let G̃ = (V,A) be a directed graph, s ∈ V be a

source node, d ∈ Q
|V |
+ be a demand vector with ds = 0, and `, u ∈ Q

|A|
+ be lower and

upper bound vectors with ` ≤ u. There exists a feasible flow f ∈ Q
|A|
+ satisfying (i)

` ≤ f ≤ u and (ii)
∑

a∈δ−(i) fa = di +
∑

a∈δ+(i) fa for all i ∈ V if and only if:

∑

a∈δ−(S)

ua ≥
∑

i∈S

di +
∑

a∈δ+(S)

`a

holds for all S ⊂ V \ {s}.

2.4.2 An initial single-commodity flow formulation

Without loss of generality, assume that node 1 is required. By analogy with

the case of the standard TSP, we imagine that the salesman departs the depot

with nR − 1 units of the commodity, and delivers one unit of that commodity to

each required node. So, for each arc a ∈ A, let the new variable fa represent

the amount of the commodity passing through a. The single-commodity flow
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formulation (SCF) may then be adapted to the sparse graph setting as follows:

min
∑

a∈A cax̃a (2.23)

s.t.
∑

a∈δ+(i) x̃a ≥ 1 (∀i ∈ VR) (2.24)

∑

a∈δ+(i) x̃a =
∑

a∈δ−(i) x̃a (∀i ∈ V ) (2.25)

∑

a∈δ−(i) fa −
∑

a∈δ+(i) fa = 1 (∀i ∈ VR \ {1}) (2.26)

∑

a∈δ−(i) fa −
∑

a∈δ+(i) fa = 0 (∀i ∈ V \ VR) (2.27)

0 ≤ fa ≤ (nR − 1)x̃a (∀a ∈ A) (2.28)

x̃a ∈ {0, 1} (∀a ∈ A). (2.29)

The constraints (2.24) ensure that the salesman departs from each required node

at least once, and the constraints (2.25) ensure that the salesman departs from

each node as many times as he arrives. The constraints (2.26) impose that one unit

of the commodity is delivered to each required node, and the constraints (2.27)

ensure that the amount of commodity on board when leaving a non-required node

is equal to the amount when arriving. The bounds (2.28) ensure that, if any of

the commodity passes along an arc, then that arc appears in the tour.

In what follows, we refer to this SCF formulation as ‘SCF1’. Note that it

contains O(|E|) variables and O(|E|) constraints.

The following theorem characterises the projection of the LP relaxation of

SCF1 into the space of the x variables:

Theorem 2. Let P 1 be the polytope in (x̃, f)-space defined by the constraints
(2.24)–(2.28) and the trivial bounds x̃ ∈ [0, 1]|A|, let P 2 be the projection of P 1

into x̃-space, and let P 3 be the projection of P 2 into x-space, under the linear
mapping xij = x̃ij + x̃ji for all {i, j} ∈ E. Then P 3 is completely described by the
following linear inequalities:

∑

e∈δ(i) xe ≥ 2 (i ∈ VR) (2.30)
∑

e∈δ(S) xe ≥ 2 |S∩VR|
nR−1

(∀S ⊂ V \ {1} : S ∩ VR 6= ∅) (2.31)

x ∈ [0, 2]|E|. (2.32)

Proof. Setting `a = 0 and ua = (nR − 1)x̃a for all a ∈ A, s = 1, di = 0 for
all i ∈ V \ VR and di = 1 for all i ∈ VR \ {1} in Theorem 1, we see that P 2 is
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described by the constraints (2.24), (2.25), the trivial bounds x̃ ∈ [0, 1]|A|, and the
inequalities

(nR − 1)
∑

a∈δ+(S)

x̃a ≥ |S ∩ VR| (2.33)

for all S ⊂ V \ {1} with S ∩ VR 6= ∅. Then, using (2.25), we can re-write (2.24) as
∑

a∈δ+(i)∪δ−(i)

x̃a ≥ 2 (∀i ∈ VR)

and re-write the inequalities (2.33) in the form:

(nR − 1)
∑

a∈δ+(S)∪δ−(S)

x̃a ≥ 2|S ∩ VR|.

The result then follows from the stated mapping of x̃ onto x.

A consequence of Theorem 2 is the following:

Corollary 1. The lower bound from the LP relaxation of SCF1 is never stronger
than the lower bound from Fleischmann’s formulation (2.19)–(2.22).

Proof. The inequalities (2.30) are a special case of the inequalities (2.21), and the
inequalities (2.31) are weaker than the inequalities (2.21). Moreover, an optimal
solution to the LP relaxation of Fleischmann’s formulation will always satisfy
xe ≤ 2 for all e ∈ E.

2.4.3 Strengthened single-commodity flow formulation

It is possible to strengthen SCF1 using the following argument. One can assume

that, if any required node is visited more than once by the salesman, then the

commodity is delivered on the first visit. Accordingly, for each node i ∈ V \ {1},

let ri be the minimum number of required nodes (not including the depot) that the

salesman must have visited when he leaves i for the first time. Also, by convention,

let r1 = 0. (Note that one can compute ri for all i ∈ V \ {1} efficiently, using

Dijkstra’s single-source shortest-path algorithm [40]). Now, the constraints (2.28)

can be replaced with the following stronger constraints:

0 ≤ fij ≤ (nR − ri − 1)x̃ij (∀(i, j) ∈ A). (2.34)

We call this strengthened SCF formulation ‘SCF2’. We do not have a complete

characterisation of the projection of the LP relaxation of SCF2 into the space of

the x variables, but the following theorem gives a partial description:
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Theorem 3. Let P 1 be the polytope in (x̃, f)-space defined by the constraints
(2.24)–(2.27), the strengthened constraints (2.34), and the trivial bounds x̃ ∈
[0, 1]|A|. Let P 2 be the projection of P 1 into x̃-space, and let P 3 be the projec-
tion of P 2 into x-space. Also, for any set S ⊆ V \ {1} such that S ∩ VR 6= ∅,
let T (S) be the set of all nodes that are not in S but are adjacent to at least one
node in S. Finally, define L(S) = mini∈T (S) ri and U(S) = maxi∈T (S) ri. Then P 3

satisfies the inequalities (2.30) and (2.32), together with the following inequality
for all such sets S and for k = L(S), . . . , U(S):

(nR − k − 1)
∑

e∈δ(S)

xe + 2
∑

{i,j}∈δ(S):j∈S

max {0, k − ri} xij ≥ 2|S ∩ VR|. (2.35)

Proof. The fact that P 3 satisfies (2.30) and (2.32) follows from Theorem 2 and the
fact that SCF2 dominates SCF1. Now, setting `ij = 0 and uij = (nR − ri − 1)x̃ij

for all (i, j) ∈ A, s = 1, di = 0 for all i ∈ V \ VR and di = 1 for all i ∈ VR \ {1}
in Theorem 1, we see that P 2 is described by the constraints (2.24), (2.25), the
trivial bounds x̃ ∈ [0, 1]|A|, and the inequalities

∑

(i,j)∈δ−(S)

(nR − ri − 1)x̃ij ≥ |S ∩ VR|

for all S ⊂ V \ {1} with S ∩ VR 6= ∅. Together with non-negativity on x̃ and the
equations (2.25), this implies that P 2 satisfies

(nR − k − 1)
∑

(i,j)∈δ+(S)∪δ−(S)

x̃ij + 2
∑

(i,j)∈δ−(S)

max{0, k − ri}(x̃ij + x̃ji) ≥ 2|S ∩ VR|

for all such S. The result then follows from the mapping of x̃ onto x.

Note that, as one would expect, the inequalities (2.35) generalise and dominate the

inequalities (2.31). (To see this, just set k = L(S) and note that L(S) will never

exceed nR − 1 − |S ∩ VR|.) We conjecture that the constraints (2.30), (2.32) and

(2.35) give a complete description of the projection. We also conjecture that the

lower bound from formulation SCF2 always lies between the one from formulation

SCF1 and the one from Fleischmann’s formulation. (In practice, it is usually only

slightly better than that of SCF1. See Table 2.3 in Section 2.6.)

2.4.4 Multi-commodity flow formulation

Now we move on to a multi-commodity flow (MCF) formulation. Similar to the

MCF formulation for the standard TSP, we assume that the salesman leaves the
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depot (node 1) with one unit of commodity for each required node. Accordingly,

let the binary variable gka be 1 if and only if commodity k passes through arc a,

for every k ∈ VR \ {1} and a ∈ A. The resulting formulation then consists of

minimising (2.23) subject to the following constraints:

∑

a∈δ+(i) x̃a ≥ 1 (∀i ∈ VR) (2.36)

∑

a∈δ+(i) x̃a =
∑

a∈δ−(i) x̃a (∀i ∈ V ) (2.37)

∑

a∈δ−(i) g
k
a −

∑

a∈δ+(i) g
k
a = 0 (∀i ∈ V \ {1}; k ∈ VR \ {1, i}) (2.38)

∑

a∈δ−(k) g
k
a −

∑

a∈δ+(k) g
k
a = 1 (∀k ∈ VR \ {1}) (2.39)

∑

a∈δ−(1) g
k
a −

∑

a∈δ+(1) g
k
a = −1 (∀k ∈ VR \ {1}) (2.40)

x̃a ≥ gka (∀a ∈ A; k ∈ VR \ {1}) (2.41)

x̃a ∈ {0, 1} (∀a ∈ A) (2.42)

gka ∈ {0, 1} (∀a ∈ A&k ∈ VR \ {1}). (2.43)

The constraints are interpreted along similar lines to those of the formulations

already seen.

This MCF formulation has O(nR|E|) variables and O(nR|E|) constraints. As

for the projection into the space of x variables, we have the following result:

Theorem 4. Let P 1 be the polytope in (x̃, g)-space defined by the constraints
(2.37)–(2.41) and the trivial bounds x̃ ∈ [0, 1]|A|, let P 2 be the projection of P 1

into x̃-space, and let P 3 be the projection of P 2 into x-space. Then P 3 is com-
pletely described by the inequalities (2.21), (2.30) and (2.32).

Proof. Let k be an arbitrary node in VR \ {1}. The classical max-flow min-cut
theorem [55] implies that imposing the constraints (2.38)–(2.41) for the given k is
equivalent to imposing the following inequalities:

∑

a∈δ+(S)

x̃∗
a ≥ 1 (∀S ⊂ VR \ {1} : k ∈ S).

Therefore, P 2 is completely described by (2.37), the trivial bounds x̃ ∈ [0, 1]|A|

and the constraints
∑

a∈δ+(S)

xa ≥ 1 (∀S ⊂ VR \ {1} : S ∩ VR 6= ∅).
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Using (2.37), these last inequalities can be re-written in the form:

∑

a∈δ+(S)∪δ−(S)

xa ≥ 2.

The result then follows from the mapping of x̃ onto x.

An immediate consequence of Theorem 4 is the following:

Corollary 2. The lower bound from the LP relaxation of MCF is equal to the
lower bound from Fleischmann’s formulation (2.19)–(2.22).

2.5 Time-Staged Formulations of the STSP

In this section, we adapt the TS formulation for the standard TSP, mentioned in

Subsection 2.3.2, to the Steiner case. A simple formulation is presented in the

following subsection. A method to reduce the number of variables is presented

in Subsection 2.5.2. Then, in Subsection 2.5.3, we evaluate the total number of

variables and constraints in each of the formulations that we have considered.

2.5.1 An initial time-staged formulation

In this context, it is natural to have one time stage for each time that an edge of G

is traversed (in either direction). In terms of the classical STSP formulation given

in Subsection 2.3.3, the total number of time stages will then be equal to
∑

e∈E xe.

The problem here is that we do not know this value in advance. Observe, however,

that Lemma 1 implies that it cannot exceed 2|E|.

Now, let A be defined as in Subsection 2.4.1, and recall that |A| = 2|E|. For

all a ∈ A and all 1 ≤ k ≤ |A|, let the binary variable rka take the value 1 if and

only if arc a is the kth arc to be traversed in the tour. Our TS formulation for the
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STSP is as follows:

min
∑|A|

k=1

∑

a∈A car
k
a (2.44)

s.t.
∑

a∈δ+(1) r
1
a = 1 (2.45)

r1a = 0 (a ∈ A \ δ+(1)) (2.46)

∑|A|
k=1

∑

a∈δ+(1) r
k
a =

∑|A|
k=1

∑

a∈δ−(1) r
k
a (2.47)

∑|A|
k=1

∑

a∈δ+(i) r
k
a ≥ 1 (∀i ∈ VR) (2.48)

∑

a∈δ−(i) r
k
a =

∑

a∈δ+(i) r
k+1
a (∀i ∈ V \ {1}; 1 ≤ k ≤ |A| − 1) (2.49)

rka ∈ {0, 1} (∀a ∈ A, 1 ≤ k ≤ |A|). (2.50)

Constraints (2.45) and (2.46) ensure that the salesman departs from the depot in

the first time stage, and constraint (2.47) ensures that he arrives at the depot as

many times as he leaves it. Constraints (2.48) ensure that each required node is

visited at least once. Constraints (2.49) ensure that, if the salesman arrives at

a non-depot node in any given time stage, then he must depart from it in the

subsequent time stage. Finally, constraints (2.50) are the usual binary conditions.

We call this TS formulation ‘TS1’. Note that TS1 has O(|E|2) variables and

O(n|E|) constraints. We will see in Section 2.6 that the lower bound from this

formulation is very weak in practice.

2.5.2 Bounding the number of edge traversals

Clearly, one could reduce the number of variables and constraints in the TS for-

mulation if one had a better upper bound on the total number of times that the

salesman traverses an edge of G. The following theorem provides such a bound:

Theorem 5. There exists an optimal STSP solution in which the total number of
edge traversals (in either direction) does not exceed 2(n− 1).

For the proof of this theorem, we will use the following lemma.

Lemma 2. Let H be a connected graph with k nodes and ` edges. If ` > 2(k− 1),
then there exists a cycle C in H such that the graph arising when the edges of C
are deleted from H is still connected.
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Proof. Let T be a spanning tree in H, and let H ′ be the graph resulting if the edges
of T are deleted from H. For the number `′ of edges of H ′ we have `′ = `− (k−1),
which, by the hypothesis in the lemma, is greater than k− 1. Clearly, the number
of nodes of H ′ is equal to k.

Now, let T ′ be a spanning forest in H ′. Note that H ′ may fail to be connected.
Firstly, if one of the connected components of H ′ contains an edge e other than
those in T ′, then let C be the cycle defined by taking e and the path in T ′ connect-
ing the end-nodes of e. Clearly, deleting the edges of C from H leaves a connected
graph because connectivity is assured by the tree T .

But, secondly, it is impossible that all connected components of H ′ contain
no other edges except those in T ′: In that case, H ′ would be a forest, and hence
have at most k − 1 edges. But the number of edges of H ′ is greater than k − 1, a
contradiction.

We can now complete the proof of the theorem.

Proof. (of Theorem 5) Let x be an optimal solution to the STSP, which has, among
all optimal solutions, the smallest number of edge traversals.

Construct a graph H by starting with the node set V , and precisely xe copies
of the edge e, for all e ∈ E. Then delete every isolated node from H. The number
of nodes k of H is at most n, and the number of edges is ` :=

∑

e∈E xe.
For the sake of contradiction, we assume that ` > 2(n− 1). If that is the case,

then Lemma 2, is applicable. Let C be a cycle with the property given in the
lemma, and let F be its edge set. For every e ∈ E, denote by ye the number of
times the edge e occurs in C. The fact that after deleting the edges of C from H,
a connected graph remains, implies that x − y is a solution to the STSP, whose
total cost is at most that of x. Thus, x − y is an optimal solution in which the
total number of edge traversals is smaller than in x, contradicting the choice of x.

Thus, we conclude that
∑

e xe = ` ≤ 2(n− 1).

An immediate consequence of this theorem is that one does not need to define

the variables rka in the TS formulation when k > 2(n − 1). The constraints in

which k > 2(n − 1) can be dropped as well. As a result, the number of variables

and constraints in the TS formulation can be reduced to O(n|E|) and O(n2),

respectively. We call this smaller TS formulation ‘TS2’. Since TS2 is obtained

from TS1 by eliminating variables, the lower bound from the LP relaxation of TS2

is no worse than the one from TS1. We will see in Section 2.6 that it is usually

slightly better (though still poor).
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Formulation Classical SCF MCF TS1 TS2
Variables |E| O(|E|) O(nR|E|) O(|E|2) O(n|E|)

Constraints O(2nR) O(|E|) O(nR|E|) O(n|E|) O(n2)

Tab. 2.1: Alternative STSP formulations and their size

2.5.3 Summary

Table 3.2 displays, for each of the STSP formulations that we have considered,

bounds on the total number of variables and constraints. Here, ‘classical’ refers

to the formulation of Fleischmann [53] mentioned in Subsection 2.3.3, ‘SCF’ refers

to either of the single-commodity flow formulations SCF1 and SCF2, given in

Subsections 2.4.2 and 2.4.3, ‘MCF’ refers to the multi-commodity flow formulation

given in Subsection 2.4.4, ‘TS1’ refers to the time-staged formulation given in

Subsection 2.5.1, and ‘TS2’ refers to the reduced time-staged formulation given in

Subsection 2.5.2.

Observe that, in the case of real road networks, the graph G is typically very

sparse, and we have |E| = O(n). Moreover, in many cases, nR is small relative to

n. So none of the formulations are particularly large. Therefore, the main thing

determining whether or not the formulations are useful in practice is likely to be

the amount of computing time and memory taken to solve them by branch-and-

bound. This in turn is influenced by the quality of the LP relaxations and the

time taken to solve those. The next section explores these computational issues.

We close this section with a remark on the MTZ formulation of the TSP. The

MTZ formulation is based on the idea of determining the order in which the nodes

are visited. Since nodes can be visited multiple times in the Steiner case, a unique

order cannot be determined. As a result, it does not appear possible to adapt the

MTZ formulation to the STSP. This is not a problem, though, given the extreme

weakness of the MTZ formulation.
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2.6 Computational Results

Some experiments were conducted, in order to compare empirically our compact

formulations of the STSP. The starting point was the creation of ten sparse graphs,

with n ∈ {25, 50, 75, . . . , 250}. The following procedure was used, which is designed

to lead to graphs that resemble real-life road networks:

1. Set V = {1, . . . , n} and E = ∅.

2. Place the n nodes at random in a circle of radius 100.

3. Define the set of potential edges P = {{i, j} : 1 ≤ i < j ≤ n}.

4. For each {i, j} ∈ P , let the cost cij be the Euclidean distance between the

end-nodes, rounded to the nearest integer.

5. Sort the potential edges in non-decreasing order of cost.

6. Examine each edge in P in turn. Insert it into E if both of the following

conditions are satisfied:

(a) It does not cross one of the edges already inserted into E.

(b) It does not form an angle of less than 60◦ with an edge that has already

been inserted into E and with which it shares an end-node.

7. If there are no isolated nodes in the resulting graph, output the graph. Oth-

erwise, repeat the procedure.

For each of the ten graphs created, three STSP instances were created, by

varying the proportion of required nodes. In the first such instance, each node

has a probability of 1/3 of being required. In the second instance, the probability

is 2/3, and in the third instance, all nodes are required. In each case, one of the

required nodes was selected at random to be the depot. Figure 2.1 shows the
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Fig. 2.1: STSP instance with n = 200 and nR = 133.

instance that was obtained for n = 200 and a probability of 2/3. The required and

non-required nodes are represented by small red and green circles, respectively,

and the depot is represented by the small black square. The optimal solution for

this instance can be deduced from Figure 2.2, in which nodes that are not visited

and edges that are not traversed have been omitted.

A program was written in Microsoft Visual C that reads an instance from a

file, and then outputs five integer programs, corresponding to the formulations

SCF1, SCF2, MCF, TS1 and TS2. Each of the resulting 150 (10× 3× 5) integer

programs was fed into the branch-and-bound solver of IBM CPLEX version 12.3.

The computer used was a PC with a 1.6 GHz Intel Core i7 processor, with 8 GB

of RAM, operating under Windows 7. Default CPLEX settings were used.

For each integer program, a time limit of 5000 seconds was imposed. We were

able to find the optimal solutions to 28 out of the 30 instances within the time

limit. The two that were not solved were the ones with n ∈ {225, 250} and 2/3 of
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Fig. 2.2: Optimal tour for the STSP instance with n = 200 and nR = 133.

the nodes being required.

Table 2.2 shows, for each of the thirty instances and each of the five formula-

tions, the time taken to solve the LP relaxation. We see that the LPs associated

with the SCF formulations are very easy to solve, whereas the LPs associated with

the other formulations consume more time. This is probably due to the fact that

the SCF formulations have the fewest variables (see again Table 3.2). For a similar

reason, the LP relaxation of TS2 can be solved more quickly than that of TS1.

Table 2.3 shows, for the 28 instances that were solved to optimality, and for the

same five formulations, the percentage integrality gap, i.e., the difference between

the lower bound given by the LP solution and the cost of the true integer optimum,

expressed as a percentage of the latter. We see that the gaps are far smaller for

the MCF formulation than for the SCF and TS formulations. The superiority of

the MCF formulation over the formulation SCF1 can be explained by comparing

Corollaries 1 and 2. We also see that the gaps for TS2 are a little better than
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Instance SCF1 SCF2 MCF TS1 TS2

25-1/3 0.01 0.02 0.01 0.19 0.12
50-1/3 0.02 0.01 0.11 1.00 0.73
75-1/3 0.02 0.03 0.45 3.63 1.90
100-1/3 0.03 0.03 1.19 9.25 5.15
125-1/3 0.03 0.03 2.93 21.86 11.48
150-1/3 0.03 0.05 9.38 33.66 18.80
175-1/3 0.05 0.05 30.33 66.27 38.80
200-1/3 0.05 0.06 20.09 184.16 93.90
225-1/3 0.06 0.06 65.81 240.76 136.52
250-1/3 0.08 0.08 52.80 326.57 195.77

25-2/3 0.02 0.01 0.01 0.23 0.16
50-2/3 0.02 0.02 0.44 1.44 0.94
75-2/3 0.02 0.02 2.09 5.58 2.54
100-2/3 0.02 0.03 7.33 10.30 6.33
125-2/3 0.03 0.03 12.74 39.78 17.71
150-2/3 0.03 0.05 17.30 51.92 28.58
175-2/3 0.06 0.06 190.31 106.21 58.6
200-2/3 0.06 0.06 379.52 181.63 94.72
225-2/3 0.06 0.06 707.65 286.29 149.31
250-2/3 0.09 0.08 5521.67 516.30 327.87

25-3/3 0.02 0.02 0.06 0.34 0.30
50-3/3 0.01 0.02 1.34 1.48 1.15
75-3/3 0.02 0.03 3.96 5.43 3.51
100-3/3 0.03 0.03 8.80 14.10 8.19
125-3/3 0.05 0.03 18.49 35.51 22.53
150-3/3 0.05 0.05 33.20 76.24 40.89
175-3/3 0.06 0.05 634.25 151.26 78.83
200-3/3 0.06 0.06 2238.60 219.71 114.58
225-3/3 0.06 0.08 2839.66 454.76 237.78
250-3/3 0.08 0.09 5566.54 727.42 436.74

Tab. 2.2: Time taken to solve LP relaxation, in seconds.
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Instance SCF1 SCF2 MCF TS1 TS2

25-1/3 24.42 22.51 0.00 43.91 42.01
50-1/3 22.81 22.01 0.38 41.70 40.20
75-1/3 24.50 23.82 0.41 43.64 41.76
100-1/3 30.33 30.12 0.00 51.61 49.72
125-1/3 34.51 34.20 0.09 44.80 43.71
150-1/3 33.42 33.21 1.70 45.60 44.43
175-1/3 35.44 35.32 0.04 44.84 43.83
200-1/3 32.20 31.90 0.00 40.05 39.22
225-1/3 35.51 35.40 1.20 45.01 44.12
250-1/3 33.40 33.22 0.54 41.82 40.98

25-2/3 18.91 17.21 0.00 33.33 31.31
50-2/3 19.60 19.01 0.66 30.36 28.76
75-2/3 20.81 20.50 1.91 25.59 24.57
100-2/3 24.13 23.82 0.23 31.29 30.19
125-2/3 26.42 26.21 1.59 33.18 32.10
150-2/3 27.44 27.20 1.48 33.48 32.39
175-2/3 24.62 24.53 2.01 28.19 27.68
200-2/3 28.61 28.41 0.87 32.08 31.40

25-3/3 14.21 13.71 1.87 19.40 18.44
50-3/3 18.52 18.19 0.95 24.16 22.64
75-3/3 14.03 13.82 0.00 17.99 16.83
100-3/3 15.42 15.20 1.00 19.31 18.17
125-3/3 18.24 17.87 1.26 22.09 21.23
150-3/3 17.41 17.30 0.75 20.18 19.46
175-3/3 16.63 16.54 0.99 17.93 17.61
200-3/3 17.10 16.91 0.35 17.68 17.46
225-3/3 14.32 14.19 0.50 15.28 14.98
250-3/3 17.92 17.88 0.82 19.27 18.87

Tab. 2.3: Percentage integrality gaps.

those for TS1. This is due to the fact that TS2 can be obtained from TS1 by

fixing some variables to zero. Finally, observe that, as the proportion of required

nodes increases, the gaps decrease for the SCF and TS formulations. The reason for

this phenomenon is not clear. Table 2.4 shows, for each of the 28 instances solved,

the number of branch-and-bound nodes needed to solve the integer programs to

proven optimality. A dash (−) indicates that the given formulation could not

be solved within the given time limit. We see that, for smaller values of n, the

MCF formulation gives the true integer optimal solution without any branch-and-

bound. For the SCF formulations, quite a few branch-and-bound nodes are needed

in general. For the TS formulations, an excessive number of nodes is needed even
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Instance SCF1 SCF2 MCF TS1 TS2

25-1/3 32 0 0 12370 8733
50-1/3 650 529 0 – –
75-1/3 2416 2530 0 – –
100-1/3 4331 1414 0 – –
125-1/3 4133 5588 0 – –
150-1/3 20931 139198 73 – –
175-1/3 64354 21491 0 – –
200-1/3 12040 37628 0 – –
225-1/3 786162 442307 210 – –
250-1/3 96728 – 34 – –

25-2/3 0 0 0 6576 9908
50-2/3 655 606 0 – –
75-2/3 955 3354 37 – –
100-2/3 861 2383 0 – –
125-2/3 19505 63716 753 – –
150-2/3 143990 72724 – – –
175-2/3 76311 153114 – – –
200-2/3 237057 2296863 – – –

25-3/3 53 199 0 78302 38508
50-3/3 1812 623 0 – –
75-3/3 613 637 0 – –
100-3/3 5590 6884 234 – –
125-3/3 19675 21128 – – –
150-3/3 220850 134777 – – –
175-3/3 238167 603673 – – –
200-3/3 78741 44442 – – –
225-3/3 75065 420801 – – –
250-3/3 942746 – – – –

Tab. 2.4: Number of branch-and-bound nodes.

for small values of n.

It should be noted that, in a few cases, the number of branch-and-bound nodes

is zero even though the integrality gap is positive. The explanation for this anoma-

lous behaviour is that, in some cases, CPLEX automatically appended some of its

own internal cutting planes to the LP relaxation. If one were to switch off all inter-

nal cutting plane generation in CPLEX, then branching would become necessary

whenever there is a positive integrality gap.

Finally, Table 2.5 shows the total time, in seconds, taken by the branch-and-

bound procedure. We see that the SCF formulations perform remarkably well,

enabling one to find a provably optimal solution even for quite large values of n.
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Instance SCF1 SCF2 MCF TS1 TS2

25-1/3 0.25 0.00 0.00 79.68 58.02
50-1/3 2.12 0.20 0.00 – –
75-1/3 4.01 4.98 0.00 – –
100-1/3 10.03 7.07 0.00 – –
125-1/3 11.53 13.74 0.00 – –
150-1/3 38.03 162.40 102.10 – –
175-1/3 147.12 64.52 0.00 – –
200-1/3 33.80 76.46 0.00 – –
225-1/3 2221.34 1032.31 1420.6 – –
250-1/3 438.72 – 290.8 – –

25-2/3 0.00 0.00 0.00 104.96 71.84
50-2/3 1.48 1.86 0.00 – –
75-2/3 3.46 4.81 12.15 – –
100-2/3 6.74 6.65 0.00 – –
125-2/3 26.76 79.94 3676.48 – –
150-2/3 202.33 97.02 – – –
175-2/3 162.58 223.85 – – –
200-2/3 457.07 4235.12 – – –

25-3/3 0.22 0.08 0.00 623.69 271.42
50-3/3 1.47 0.23 0.00 – –
75-3/3 0.42 2.96 0.00 – –
100-3/3 9.19 9.14 608.90 – –
125-3/3 45.41 39.67 – – –
150-3/3 211.23 149.15 – – –
175-3/3 393.43 1066.05 – – –
200-3/3 144.32 125.46 – – –
225-3/3 282.00 1064.5 – – –
250-3/3 4147.20 – – – –

Tab. 2.5: Branch-and-bound time, in seconds.

This is presumably due to the fact that, although the number of nodes is high, the

time taken to process each node is small, due to the small number of variables.

For the MCF formulation, the time is small or even zero in many cases. Nev-

ertheless, as the instances grow in size, MCF starts to struggle. This is probably

due to the comparatively large number of variables. The TS formulations, on the

other hand, perform consistently very poorly.

All things considered, we would recommend using the MCF formulation for n

up to 100 or so, and SCF2 for n between 100 and 250.
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2.7 Some Related Problems

Many variants and extensions of the TSP have appeared in the literature, such

as the Orienteering Problem (e.g., [50, 52, 64]), the Prize-Collecting TSP (e.g.,

[7, 8, 50]), the Capacitated Profitable Tour Problem (e.g., [50, 75]), the TSP with

Time Windows (e.g., [4, 45]) and the Sequential Ordering Problem [48]. For each

of these problems, it is easy to define a ‘Steiner’ version. It suffices to define the

problem on a general graph G = (V,E), designate node 1 as the ‘depot’, define

a set VR ⊂ V \ {1} of ‘customer’ nodes, permit edges to be traversed more than

once if desired, and permit nodes to be visited more than once if desired.

In this section, we explore possible ways to formulate these other problems

of ‘Steiner’ type. For the sake of brevity, however, we restrict attention to three

specific problems, which we call the Steiner Orienteering Problem, the Steiner

Capacitated Profitable Tour Problem, and the Steiner TSP with Time Windows.

These are considered in the following three subsections.

2.7.1 The Steiner Orienteering Problem

We define the Steiner Orienteering Problem (SOP) as follows. For each e ∈ E, we

are given a non-negative cost ce. For each i ∈ VR, we are given a positive revenue

(or ‘prize’) pi. The nodes in VR do not all have to be visited, but the revenue can

only be collected from such a node if that node is visited at least once. We are

also given an upper bound U on the total route cost. The task is to maximise the

sum of the prizes collected, subject to the upper bound.

Observe that Lemma 1 applies to the SOP. To see this, let V ∗ ⊂ VR be the set

of nodes whose prizes are collected in the optimal solution. The optimal solution

is then also optimal for a STSP instance defined on the same graph, but with VR

set to V ∗.

Knowing that Lemma 1 applies, it is easy to adapt the classical (non-compact)



2. Compact Formulations of the Steiner TSP & Related Problems 47

formulation of the STSP, presented in Subsection 2.3.3, to the SOP. For each

i ∈ VR, we define a new binary variable yi, taking the value 1 if and only if the

salesman collects a prize from node i. We then change the objective function from

(2.19) to:

max
∑

i∈VR

piyi, (2.51)

replace the connectivity constraints (2.21) with:

∑

e∈δ(S)

xe ≥ 2yi (i ∈ VR, S ⊆ V \ {1} : i ∈ S), (2.52)

and add the route-cost constraint

∑

e∈E

cexe ≤ U. (2.53)

It is also easy to adapt the TS formulation of the STSP (Subsection 2.5.1) to

the SOP. It suffices to add the yi variables mentioned above, change the objective

function from (2.45) to (2.51), add the ‘expanded’ route-cost constraint

|A|
∑

k=1

∑

a∈A

car
k
a ≤ U,

and replace the constraints (2.48) with the constraints

|A|
∑

k=1

∑

a∈δ+(i)

rka ≥ yi (∀i ∈ VR). (2.54)

Moreover, Theorem 5, given in Subsection 2.5.1, applies to the SOP as well (for

the same reason that Lemma 1 applies). So one can reduce the number of stages

to 2(|V | − 1), without losing any optimal solutions.

It is also easy to adapt the MCF formulation of the STSP (Subsection 2.4.4)

to the SOP. It suffices to add the same yi variables, change the objective function

from (2.23) to (2.51), change the right-hand sides of constraints (2.36) and (2.39)

from 1 to yi, change the right-hand sides of constraints (2.40) from −1 to −yi, and

add the ‘directed’ route-cost constraint:

∑

a∈A

cax̃a ≤ U. (2.55)
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As for the SCF formulation of the STSP (Subsection 2.4.2), there is an ele-

gant way to adapt it to the SOP, which leads to an LP relaxation with desirable

properties. The key is to redefine the variables fa, so that:

• if arc a is traversed (i.e., x̃a = 1), then fa represents the total cost accumu-

lated so far when the salesman begins to traverse the arc;

• if arc a is not traversed (i.e., x̃a = 0), then fa = 0.

Once this is done, one can introduce the same additional yi variables, and use the

objective function (2.51), along with the following constraints:

∑

a∈δ+(1) x̃a ≥ 1 (2.56)

∑

a∈δ+(i) x̃a ≥ yi (∀i ∈ VR) (2.57)

∑

a∈δ+(i) x̃a =
∑

a∈δ−(i) x̃a (∀i ∈ V ) (2.58)

∑

a∈δ−(1)(fa + cax̃a)−
∑

a∈δ+(1) fa ≤ U (2.59)

∑

a∈δ+(i) fa =
∑

a∈δ−(i)(fa + cax̃a) (∀i ∈ V \ {1}) (2.60)

0 ≤ fa ≤ (U − ca)x̃a (∀a ∈ A) (2.61)

x̃a ∈ {0, 1} (∀a ∈ A) (2.62)

yi ∈ {0, 1} (∀i ∈ VR). (2.63)

We then have the following analogue of Theorem 2:

Proposition 1. Let P 1 be the polytope in (x̃, y, f)-space defined by the constraints
(2.56)–(2.61) and the trivial bounds x̃ ∈ [0, 1]|A| and y ∈ [0, 1]|A|. Let P 2 be
the projection of P 1 into (x̃, y)-space, and let P 3 be the projection of P 2 into
(x, y)-space. Then P 3 is described by the inequality (2.53) and the following linear
inequalities:

∑

e∈δ(1) xe ≥ 2
∑

e∈δ(i) xe ≥ 2yi (i ∈ VR)
∑

e∈δ(S) xe ≥ 2
U

∑

{i,j}∈E:{i,j}∩S 6=∅ cexe (∀S ⊂ V \ {1})
(x, y) ∈ [0, 2]|E| × [0, 1]|E|.
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Proof. Similar to the proof of Theorem 2. One small addition is that one must sum
together the constraint (2.59) and all of the constraints (2.60), and then replace
pairs of x̃ variables with their corresponding x variables, to obtain the inequality
(2.53).

As in the case of the STSP (Subsection 2.4.3), it is possible to strengthen this

SCF formulation of the SOP. Indeed, if a given arc (i, j) is traversed, then the

smallest value that fij can take is equal to the cost of the shortest path from the

depot to node i. Similarly, the largest value that fij can take is equal to U − cij

minus the cost of the shortest path from node j to the depot. One can adjust

the constraints (2.61) accordingly, and then derive a stronger projection result,

analogous to Theorem 3. We omit details, for the sake of brevity.

2.7.2 The Steiner Capacitated Profitable Tour Problem

The Steiner Capacitated Profitable Tour Problem (SCPTP) is similar to the SOP,

but with the following differences:

• We are given a positive demand qi for each i ∈ VR, in addition to the revenue

pi.

• If we wish to gain the revenue for a given i ∈ VR, then we have to deliver

the demand qi.

• Instead of an upper bound U on the route cost, we are given a vehicle capacity

Q, which does not exceed the sum of the demands. The total demand of the

serviced customers must not exceed Q.

• The task is to find a tour of maximum total profit, where the profit is defined

as the sum of the revenues gained, minus the cost of the edges traversed.

Observe that Lemma 1 applies to the SCPTP, for the same reason that it

applies to the SOP. Then, one can easily adapt the classical formulation of the
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STSP to the SCPTP. We use the same binary variables yi as used in the previous

subsection, change the objective function from (2.19) to

max
∑

i∈VR

piyi −
∑

e∈E

cexe,

replace the connectivity constraints (2.21) with the constraints (2.52), and add the

capacity constraint
∑

i∈VR

qiyi ≤ Q. (2.64)

One can adapt the TS formulation in a similar way. It suffices to add the same yi

variables, add the capacity constraint (2.64), change the objective function (2.45)

to

max
∑

i∈VR

piyi −
|A|
∑

k=1

∑

a∈A

car
k
a,

and replace the constraints (2.48) with the constraints (2.54). Moreover, Theorem

5 is again applicable.

As for the SCF formulation, we propose again to redefine the variables fa.

Now, fa represents the total load (if any) that is carried along the arc a. Then,

again using the additional yi variables, it suffices to:

max
∑

i∈VR

piyi −
∑

a∈A

cax̃a (2.65)

subject to the following constraints:

∑

a∈δ+(1) x̃a ≥ 1 (2.66)

∑

a∈δ+(i) x̃a ≥ yi (∀i ∈ VR) (2.67)

∑

a∈δ+(i) x̃a =
∑

a∈δ−(i) x̃a (∀i ∈ V ) (2.68)

∑

a∈δ+(1) fa −
∑

a∈δ−(1) fa ≤ Q (2.69)

∑

a∈δ−(i) fa −
∑

a∈δ+(i) fa = qiyi (∀i ∈ VR) (2.70)

∑

a∈δ−(i) fa −
∑

a∈δ+(i) fa = 0 (∀i ∈ V \ (VR ∪ {1})) (2.71)
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0 ≤ fa ≤ Qx̃a (∀a ∈ A) (2.72)

x̃a ∈ {0, 1} (∀a ∈ A) (2.73)

yi ∈ {0, 1} (∀i ∈ VR). (2.74)

The analogue of Theorem 2 is now as follows:

Proposition 2. Let P 1 be the polytope in (x̃, y, f)-space defined by the constraints
(2.64) and (2.66)–(2.71), and the trivial bounds x̃ ∈ [0, 1]|A| and y ∈ [0, 1]|A|. Let
P 2 be the projection of P 1 into (x̃, y)-space, and let P 3 be the projection of P 2

into (x, y)-space. Then P 3 is described by the inequality (2.64), together with the
following inequalities:

∑

e∈δ(1) xe ≥ 2
∑

e∈δ(i) xe ≥ 2yi (i ∈ VR)
∑

e∈δ(S) xe ≥ 2
Q

∑

i∈S∩VR
qiyi (∀S ⊆ V \ {1} : S ∩ VR 6= ∅)

(x, y) ∈ [0, 2]|E| × [0, 1]|E|.

Proof. Similar to that of Theorem 2. One small addition is that one must sum
together the constraints (2.69)–(2.71), and then replace pairs of x̃ variables with
their corresponding x variables, to obtain the inequality (2.64).

As for the MCF formulation described in Subsection 2.4.4, one can adapt it to

the SCPTP by redefining the binary variables gka , so that they take the value 1 if

and only if qk units of commodity k pass through arc a. We omit the details for

brevity.

2.7.3 The Steiner TSP with Time Windows

Finally, we define the Steiner Traveling Salesman Problem with Time Windows

(STSPTW) as follows. For each e ∈ E, we are given, not only a non-negative cost

ce, but also a non-negative traversal time te. Moreover, for each i ∈ VR, we are

given a non-negative servicing time si, along with a time window [ai, bi]. Finally,

we are given a positive time T by which the vehicle must return to the depot. All

nodes in VR must be visited at least once. On one such visit, the customer must

receive service. The time at which service begins must lie between ai and bi. The

task is to minimise the cost of the tour. We assume without loss of generality that
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the vehicle departs from the depot at time zero. We also assume that the vehicle

is permitted to wait at any time.

Perhaps surprisingly, the situation here is completely different from those of

the previous two subsections. To be specific:

• Lemma 1 does not apply. To see this, set V = {1, . . . , 4}, VR = {2, 3, 4}

and E = {{1, 2}, {1, 3}, {2, 4}}, set ce = te = 1 for all e ∈ E, set si = 1 for

i ∈ {2, 3, 4}, and set a2 = b2 = 1, a3 = b3 = 3, and a4 = b4 = 6. The unique

optimal solution is for the salesman to service nodes 2, 3 and 4 in that order,

and then return to the depot. In this solution, the edge {1, 2} is traversed 4

times.

• Theorem 5 does not apply either. In the same example, the total number of

edge traversals is 8, whereas 2(|V | − 1) is only 6.

• In fact it is not even true that the total number of edge traversals is bounded

by 2|E|, as the same example shows.

• The only thing that one can say in general seems to be that the total number

of edge traversals is bounded by (nR + 1)(|V | − 1). (This is so since the

maximum number of edge traversals between two successive occasions of

service, or between a service and the vehicle leaving or returning to the

depot, will never exceed |V | − 1 in an optimal solution.)

For these reasons, it does not seem possible to adapt the classical, SCF or MCF

formulations to the STSPTW. It may be possible to adapt the TS formulation, but

this would not be desirable, since (a) one would appear to need (nR + 1)(|V | − 1)

time stages and (b) we already saw in the last section that time-staged formulations

perform very poorly.

With some work, it is possible to formulate the STSPTW using only O(nR|E|)

variables and constraints. The key idea is to keep track of the number of required
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nodes that have been serviced so far each time one visits a node or traverses an

edge. For the sake of brevity, we present the details in the appendix.

2.8 Discussion

Since many real-life vehicle routing problems are defined on sparse networks, such

as road networks, continued research on the Steiner TSP and its variants is of

practical importance. We have seen that, if the Steiner TSP is formulated intel-

ligently, then one can solve instances with over 200 nodes to proven optimality,

without invoking sophisticated machinery such as branch-and-cut. (As mentioned

in Section 2.6, however, CPLEX did sometimes add cutting planes of its own at

the root node.) We have also shown how to adapt our best formulations to some

related problems.

Possible topics for future research would be the derivation of smaller and/or

stronger compact formulations for the problems mentioned, the derivation of useful

compact formulations for the Steiner version of other routing problems, or testing

whether the addition of cutting planes could enable even larger instances to be

solved using our formulations.

Acknowledgement: The authors thank Juan-José Salazar-González for bringing

Theorem 1 to our attention. Thanks are also due to an anonymous referee for

helpful comments that led to significant improvements in the paper.



3. CORRELATION BETWEEN SPEEDS ON A

CONGESTED ROAD NETWORK IN THE CITY OF

LONDON

3.1 abstract

This article uses real traffic data, from the City of London, to explore temporal and

spatial correlations between travel speeds in a congested road network. It is shown

that, in contrast with results found in other studies on non-congested networks,

the first-order Markovian property does not hold for spatial correlations. Indeed,

for our data set the spatial correlations are still significant for roads up to twenty

links apart. On the other hand, if one analyses the correlations using principal

component analysis, it turns out that only three components are needed to explain

89% of the temporal variation in speed, and only six components are needed to

explain over 80% of the spatial variation.

Keywords: traffic congestion; spatial correlation; temporal correlation.

3.2 Introduction

Traffic congestion on road networks is inevitable, particularly in larger cities. In the

field of Operational Research and Transportation, the two major areas of research

that involve modelling of road networks and traffic are traffic forecasting and route

optimization. Over the last few decades, a lot of research has been done towards

improvement of traffic flow [117, 120, 130] or enhancing service efficiency [20, 21, 54]

on road networks. When it comes to modelling the road networks, correlation in

speeds or travel times is an important factor that needs to be considered.
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In recent years, an increasing number of studies [41, 49, 100] consider the corre-

lation in travel times on road networks. Most of the studies in the relevant current

literature either use relatively simplistic models to represent the dependence struc-

ture in speeds or travel times, or use traffic flow simulators to generate data. This

is mainly due to inaccessibility of real traffic data. However, unrealistic represen-

tations of the correlations could affect the legitimacy of any proposed planning on

these networks.

This paper studies correlations between speeds on road networks explicitly,

based on real road traffic data taken from an urban network with heavy conges-

tion. We compute correlations in speeds across different times of day (temporal

correlation) and across different locations (spatial correlation). Perhaps surpris-

ingly, it turns out that there are significant spatial correlations even for pairs of

roads that are geographically quite distant. On the other hand, a Principal Com-

ponents Analysis (PCA) shows that only three components are needed to explain

89% of the temporal variation in speed, and only six components are needed to

explain over 80% of the spatial variation. Thus, although both the temporal and

spatial correlation matrices are of extremely large dimension, one can capture most

of their information in matrices of much smaller dimension. This fact could be

useful in road network models.

The rest of this paper is organized as follows. We review the relevant literature

in section 3.3. In Section 3.4, we present some descriptive statistics for the data.

In Section 3.5, we derive the temporal correlation structure for speeds and carry

out a PCA to reduce the dimensionality of the correlation matrix. We also look at

the partial temporal correlations to find the conditionally independent elements.

In Section 3.6, we derive the spatial correlations and partial spatial correlations in

speeds for a range of impact areas 0− 20 and carry out a PCA on the correlation

matrix. Finally, some concluding remarks appear in Section 3.7.
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3.3 Literature review

We now review the relevant literature. Amongst the research studies on travel

time reliability and reliable shortest path, spatial dependences in travel times have

been considered in stochastic routing problems by a number of researchers.

Chen et al. [22] derive the spatial correlation in link travel time using real-

time travel data in an urban area in Hong Kong. The data for that study, are

collected at a weekday morning peak hour, for the period of one hour. Travel

time estimates are generated by traffic flow simulators such that data are available

for every 5 minute interval. The authors introduce a topological distance measure

called impact area, that is defined to be the number of links between any two links.

Chen et al.’s analysis on these data reveals that the spatial correlation decreases

from 0.29 to 0.04 when the size of impact area increases from 1 to 4. Therefore, the

authors conclude that the correlation in travel times is only considerable for roads

that are spatially very close. Considering the flow of traffic in this data set (one

vehicle movement every 5 minutes), this conclusion seems reasonable. However,

this flow might not be a good representation for a typical busy urban area.

Dong et al. [41], Fan et al. [49] and Samaranayake et al. [113] incorporate

limited spatial correlation by considering a Markovian property for the link states

and using the conditional probability distribution of link travel times to account

for the correlation between travel times on neighbouring links. Xing and Zhou

[129] construct a sampling-based solution algorithm, and use a set of individual

historical measurements to capture the inherent spatial correlation, in their study

of path travel time reliability. The result of our analysis in Section 3.6 shows

that the first order Markovian property does not hold on real road networks and

fourth-order dependencies are statistically significant between travel times.

Min and Wynter [100], in their study of road traffic prediction, introduce a

transient VARMA model in which both temporal and spatial interactions in speed
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on a network can be represented by an adjacency matrix. They test their pre-

diction model on a set of traffic data for a medium-sized road network with 502

links. Links are assigned to five different classes, ranging from express-ways to

small local roads. Their prediction model of speed for each link at any given time

interval captures spatial dependencies of up to the link’s 15th nearest neighbours,

and temporal dependencies of up to the previous six 5-minute time periods. The

resulting predictions for speed have accuracies of up to 93% on major roads and

83% for small local roads, for a forecasting horizon of 15 minutes. It is shown

clearly that the present average speed on a link may be influenced by the average

speeds on its neighbouring links, in the previous time periods. Therefore, a uni-

variate time series model that ignores spatial dependencies would be inadequate

and could not capture all of the dependencies. Asif et al. [5] also incorporate spa-

tial temporal patterns in their study of large-scale traffic speed prediction. They

use unsupervised learning methods to exploit spatial and temporal trends in their

prediction model.

Finally, Cheng et al. [23] consider the dynamics of autocorrelation in time and

space and examine the spatio-temporal autocorrelation structure of road network

in order to determine likely requirements for a suitable space-time forecasting

model. They use travel time data collected for 22 individual links in City of

London on Tuesdays over a period of 6 months. Considering three time intervals

of AM peak (7 : 00 − −10 : 00), inter-peak (10 : 00 − −16 : 00) and PM peak

(16 : 00−−19 : 00) they calculate the global space-time autocorrelations between

all links in impact areas of zero to three and up to 150 temporal lags. As reported

by Min and Wynter [100], the result of this analysis also indicates that there is

significant space-time autocorrelation in the network. Moreover, autocorrelations

are dynamic in time and heterogeneous in space which is a reflection of dynamics

and heterogeneity of network complexity.
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In this paper the focus is on exploring both the temporal and spatial correlation

structures on a static road network using real traffic data.

3.4 Data Preparation & Descriptive Statistics

The data was collected in the City of London over a period of two months in

Spring 2009, by a traffic information company called ITIS Holdings. The speed

measurements were collected by attaching tracking devices to the operating ve-

hicles in service of the company. The operation was carried out on a daily basis

Monday-Friday. The vehicles used were all 3.5 tonne GVW box vans, so there

were no restrictions on the roads on which they may travel. The accuracy of mea-

surements were expected to be the same across the whole dataset since the same

type of device was used for all vehicles.

In this section, we first describe the format of the data sets available for the

network map and traffic data in London, and then provide the descriptive statistics

for the traffic data.

The road network map data consists of link identifiers (ids) which are catego-

rized into 5 different network levels, where network level 1 represents the motor-

ways with highest speed limit and network level 5 represents city links with lowest

speed limit.

Table 3.1 shows the speed limits on these 5 different network levels. Note that

the speed limits on network levels 2 and 3 and 4 may sometimes fluctuate between

65, 81 and 97 kph and the values in Table 3.1 correspond to the majority of cases.

The traffic data consists of speed measurements on 51, 368 unique links. In

terms of link categories, 1.2% of the links are motorways (network level 1), 54.5%

are single carriageways (network levels 2, 3 and 4) and 44.3% are in built-up areas

(network level 5).

Average speed measurements on each link are recorded for 15 different time
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Network Level Speed Limit (kph)

1 113
2 97
3 81
4 65
5 49

Tab. 3.1: Speed limits on the 5 network levels.

Interval Time S(kph) σ(kph)

1 6:00-7:30 34.9 22.1
2 7:30-8:00 32.1 21.6
3 8:00-8:30 30.4 21.3
4 8:30-9:00 29.9 21.4
5 9:00-9:30 31.4 21.7
6 9:30-10:00 32.7 22.0
7 10:00-10:30 33.2 22.3
8 10:30-15:00 30.9 19.6
9 15:00-16:00 31.9 21.5
10 16:00-18:00 31.2 20.2
11 18:00-18:30 31.0 21.7
12 18:30-19:30 31.5 21.4
13 19:30-20:00 32.4 22.6
14 20:00-22:00 32.4 21.7
15 22:00-6:00 32.3 21.9

Tab. 3.2: Average speed and standard deviations in the 15 time intervals.

intervals during the day. Time intervals vary in length and are selected so as to

ensure approximate homogeneity in each interval. For example, in the morning

rush hour from 7.30 to 8.30, we have the two smallest time intervals of 30 minutes,

and at midnight, when there is not much traffic, we have the longest time interval

of 8 hours from 10 pm to 6 am.

Table 3.2 shows the average speeds Si and the standard deviations σi of speed

in time intervals i ∈ {1, 2, . . . 15}, in kilometres per hour. Observe that speeds

have low averages of around 30 kph and high standard deviations of around 20

kph. This is typical for an urban area, due to high congestion, traffic lights,

roundabouts, and so on.
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Fig. 3.1: Histogram of speed over all time intervals, for (a) network level 1 and (b)
network level 5.

Figures 3.1(a) and 3.1(b) show the frequency distributions for speed ratios

with respect to each level’s speed limit, in network levels 1 and 5 respectively. It

is interesting to see that the distribution for network level 1 is heavily skewed to

the left while the distribution for network level 5 is heavily skewed to the right.

In fact, congestion on network level 5 is so heavy that more than 70% of vehicles

drive below half the speed limit.

Figures 3.2(a) and 3.2(b) show the frequency distributions of speed ratios in

network level 5, for the quiet time interval 1 and the most congested time interval

4, respectively. Both distributions have positive skewness, which is expected due

to heavy congestion on this network level, with the distribution in Figure 3.2(a)

having a slightly longer tail. Note that network level 5 represents small local roads

where typically there are a lot of traffic lights present. Hence, we still see quite

low speed ratios in Figure 3.2(a) for quiet time periods.

The low means and large variances in Table 3.2 and the low medians for the

frequency distributions in both Figures 3.1 and 3.2 suggest that the London traffic

data are likely to be reasonably typical for a congested urban area.

Please note that the descriptive statistics provided in this section are repre-

sentative for parts of the City of London in the season for which the data has

been collected. Considering the impact of seasonality in traffic on road networks,
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Fig. 3.2: Histogram of speed for network level 5, for (a) quiet time interval 1 and (b)
busy time interval 4.

different patterns might emerge for other times of year. However, the results of

our correlation analysis in the following sections are valid for any network that has

the same speed characteristics as described in this section.

The speed measurements in our traffic data have been recorded for all vehicles

from ITIS Holdings that had a detecting device attached to them. Note that if

no observable vehicle travelled along a link at a certain time interval, the corre-

sponding speed measurements will be missing for that link. Since our objective is

to evaluate the correlations in speeds, using real traffic data, we do not substitute

simulated values for the missing intervals. However, it is important to ensure, as

well as possible, that the missing data will not have an undue influence on the

correlation analyses in Sections 3.5 and 3.6.

The proportions of missing data on each network level are quite similar and vary

in the range of 8−10%. The proportion of data missing for the 15 time intervals is

between 30% and 70%, with time intervals 3, 6 and 7 having the minimum missing

data and time intervals 9, 10 and 15 having the maximum missing data. After an

inspection of the proportions of missing data over different network levels and time

intervals, we conjecture that the missing data are unlikely to affect the correlation

analysis. This conjecture will be supported in Section 3.5, when we compare the

temporal pairwise correlations calculated using all of the available data in each

pair of time intervals with the temporal correlations calculated using the complete
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data set.

In order to prepare the data for the correlation analysis, firstly all the links

with complete traffic data were identified. Then the observed average speeds on

these links were divided by the speed limits on each link, so that roads in different

network levels have the same scale for comparison. In the following two sections,

we explore the temporal and spatial correlations in speeds using this complete

traffic data set.

3.5 Temporal Correlation

In this section, we look at correlations over time. We begin by defining the sample

temporal covariance uij between the speeds in two time intervals i and j as:

uij =
1

N

N
∑

r=1

srisrj − s̄is̄j i, j ∈ T, (3.1)

where sri is the average speed on link r at time interval i, s̄i is the average speed

over all links at time interval i, T = {1, 2, . . . , 15} is the set containing all time

intervals, and N = 10, 255 is the total number of links for which data are available

on all T time intervals. The sample temporal correlation coefficient λij between

the speeds in two time intervals i and j is then defined as:

λij =
uij√
uiiujj

. (3.2)

Once the temporal correlations were computed, we tested the significance of

each correlation at a 95% significance level. All of the correlation values reported

in the rest of the paper were significant at this level.

Figure 3.3 shows a colour-coded representation of the temporal correlation

matrix. As expected, the correlation decays as the time intervals become farther

apart. The pairwise temporal correlations between the speeds in time intervals i

and j were also evaluated for all i, j ∈ T , using all the links with available data

for time intervals i and j. Further significance tests then showed that there is
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Fig. 3.3: Colour coded presentation of the temporal correlation for time intervals 1−15.

no significant difference between the original correlations and these modified ones.

The largest difference was only 0.07, which was between the original and modified

correlations between time intervals 14 and 15. This result supports our conjecture,

made in Section 3.4, that the missing data are non-informative. For brevity, we

do not present the modified correlations here.

In order to find a more efficient representation of the temporal correlation

matrix, we carried out a PCA. As is well known, any correlation matrix Cp×p

has p linearly independent eigenvectors qi, i = (1, . . . , p) corresponding to p (not

necessarily distinct) non-negative eigenvalues. One can express C, in terms of its

eigendecomposition components Ap×p, Qp×p and Q−1
p×p, in the following way:

C = QAQ−1, (3.3)

where component A is a diagonal matrix containing all the eigenvalues of C, in

descending order, component Q is the square matrix whose ith column is the

eigenvector qi of C and component Q−1 is the inverse matrix of Q. Now, in

order to reduce the dimensionality of Q, A and Q−1, we can set the c smallest

eigenvalues in A to zero and eliminate the corresponding c columns in Q and c
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Fig. 3.4: (a) Eigenvalues of temporal correlation Λ, (b) First three principal components
of Λ that overall can explain 89% of total variation.

rows in Q−1. This will reduce the dimensions of Q, A and Q−1 to (p × (p − c)),

((p − c) × (p − c)) and ((p − c) × p), respectively. For more details we refer the

reader to [93].

The rule of thumb is to retain enough eigenvalues to make up around 80−90%

of variation in A. If most of the variation is due to the first few eigenvectors

(principal components), this technique is expected to reduce the dimensionality of

the eigendecomposition components significantly.

Now, for our temporal correlation matrix Λ, an eigendecomposition shows that

the three highest variances are 12.51, 0.60 and 0.31, as shown in Figure 3.4(a). The

corresponding principal components are in the three directions shown in Figure

3.4(b). The first principal component gives a positive weight to all variables and

thus represents an ‘average’ speed, the second component represents a contrast

between speeds in the busier time intervals of 3 and 4 and other times of the day,

and the third component indicates a contrast in speeds between the uncongested

time intervals of 3, 4, 11 and other times of day.

Figure 3.5 shows the relative contribution of various principal components to

the variation, where the first three principal components explain 83%, 4% and

2% of the total variation in the data, respectively. The same correlation analysis

was carried out on each network level separately. The result for every network

level is quite similar where the first three principal components explain 91% of the
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Fig. 3.5: Percentage of variance explained by each eigenvalue of Λ.

variation for network level 1 and 93% of the variation for network level 5.

An approximate correlation matrix can be constructed by using only the three

largest eigenvalues of Λ and their corresponding principal components, using (3.3).

Figure 3.6 shows a colour coded representation of the difference between this ap-

proximate correlation matrix and the actual temporal correlation matrix Λ. Note

that storing more dimensions for the principal components and the corresponding

eigenvalues results in even smaller differences and more accurate representations

of the correlation matrix.

Finally, we carry out a partial correlation analysis on the sample temporal

correlation matrix. Partial correlation measures the degree of dependence between

two variables, after removing the effect of other variables. This analysis helps in

detecting any conditional dependencies or any correlations that can be explained

by the effect of other variables. There are different methods for computing partial

correlations. The interested reader is referred to [127] for further details.

We calculate the sample temporal partial correlations by inverting the sample

temporal correlation matrix Λ. This analysis will reveal if the speeds between any

of the two time intervals may become conditionally uncorrelated. Element ij in
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Fig. 3.6: Colour coded presentation of the difference between the simplified temporal
correlation, obtained from 3 principal components,and the true temporal cor-
relation matrix.

the temporal partial correlation matrix is calculated as

λij.T\{ij} =
[Λ−1]ij

√

[Λ−1]ii[Λ
−1]jj

, (3.4)

where λij.T\{ij} gives the value of temporal correlation in speeds between time

intervals i and j, with the effect of speeds in all other time intervals, removed.

Matrix Λ−1 is the inverse of Λ and [Λ−1]ij is element ij in Λ−1.

Figure 3.7 shows a colour-coded representation of the temporal partial corre-

lation matrix. The corresponding values for every pair of adjacent time intervals

are statistically significant, while the partial correlations between pairs of time

intervals that are more than two intervals apart are insignificant. The significant

temporal partial correlations between adjacent time intervals are in range of 0.14

to 0.41. Lower partial correlations of around 0.1 are between time interval pairs of

(5, 6), (6, 7) and (12, 13) and higher partial correlations of around 0.4 correspond



3. Speed Correlations on a Congested Road Network 67

5 10 15

5

10

15  

Time interval

 

T
im

e 
in

te
rv

al

0

0.5

1

Fig. 3.7: Colour coded presentation of the temporal partial correlation for time intervals
1− 15.

to time interval pairs of (10, 11) and (8, 9). Also, the correlations between time in-

terval pairs (1, 3), (1, 14), (5, 7), (9, 7), (9, 11), (11, 13), that are two intervals apart,

are not significant. As expected, generally, the corresponding partial correlations

are larger between adjacent time intervals with more congestion.

3.6 Spatial Correlation

A topological measure for adjacency of links on a road network was introduced

by Chen et al. [22], called the impact area. This measure represents the minimum

number of links between any two links. Following this terminology, in this section,

we study the spatial correlations for impact areas 0− 20.

In the traffic data for the City of London, there are 737 unique links that have

data available for up to their 20th connected neighbouring links (i.e. impact area

20). We call this set of unique links the basis set, and build a new data set with

21 columns, such that the first column contains the average speeds for the basis

set, over all time intervals. Then the next columns are filled such that column

i ∈ {2, 3, . . . , 21} contains the average speeds for links that are in impact area
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i− 1 with respect to the links in the corresponding row of the basis set.

The sample spatial covariance vij between the speeds in columns i and j is

calculated as

vij =
1

B

B
∑

r=1

srisrj − s̄is̄j i, j ∈ {1, 2, . . . ,m}, (3.5)

where sri is the average speed on link r in column i, s̄i is the average speed over

all links in column i, m− 1 is the maximum impact area under consideration and

B = 737 is the total number of links in the basis set. Hence, element v1j in the

matrix represents the covariance in speeds between links that are in impact area

j − 1 with respect to the basis set. The sample spatial correlation coefficient ρij

between the speeds in two columns i and j is then calculated as

ρij =
vij√
viivjj

. (3.6)

Figure 3.8 shows a colour-coded representation of the spatial correlation matrix

P , for impact areas 0−20, with the diagonal elements representing self-correlations

(i.e. impact area 0). The correlations decay slowly from 0.72 to 0.3 as the size of

the impact area increases from 1 to 20.

This result is in contrast with Chen et al.’s findings in [22], where they conclude

that spatial correlations are only significant within impact area 4. Chen et al.’s

analysis is based on a traffic data set in Hong Kong with flow of one vehicle

movement in every five minute. This traffic flow represents a remote road network

area without much congestion. However, as we have shown here, the same result

does not apply for a typical congested urban road network.

An eigendecomposition of the spatial correlation matrix P shows that the first

six principal components explain 82.2% of total variation. The six highest vari-

ances are 10.8, 2.2, 1.5, 1.2, 0.9 and 0.7, as shown in Figure 3.9(a). The corre-

sponding principal components are in the six directions shown in Figure 3.9(b).

The first principal component gives a positive weight to all variables and thus
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Fig. 3.8: Colour coded presentation of the spatial correlation for impact areas 0− 20.

0

2

4

6

8

10

V
ar

ia
nc

es

(a)

5 10 15 20
−0.4

−0.2

0

0.2

0.4

Impact area

E
ig

en
ve

ct
or

s

 

 

PC1
PC2
PC3
PC4
PC5
PC6

(b)

Fig. 3.9: (a) Eigenvalues of spatial correlation P , (b) First six principal components of
P that overall can explain 82% of total variation.
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Fig. 3.10: Percentage of variance explained by each eigen value of P .

represents an ‘average’ speed, while the second component gives a positive weight

for impact areas 1 − 10 and negative weight for farther links with impact areas

11 − 21. The next four components show an alternating pattern. For example

component three gives more weight for impact areas 2 − 4, 9 − 13 and 18 − 20,

where component four gives more weight for impact areas 1−3, 6−9 and 13−16.

Figure 3.10 shows the relative contribution of various principal components in

variation where the first six principal components explain 51.2%, 10.6%, 7.1%,

5.8%, 4.2% and 3.3% of total variation in the data respectively. Now, using these

six principal components and their corresponding eigenvalues, we an construct an

approximate representation of the spatial correlation matrix P , using (3.3).

Figure 3.11 shows a colour-coded representation of the difference between this

approximate spatial correlation matrix and the actual spatial correlation matrix P .

As can be seen, the differences between corresponding values are very small. How-

ever, depending on the requirements, one can choose a more accurate presentation

by choosing eigendecomposition components of higher dimensionality.

Finally, we calculate the sample spatial partial correlations by inverting the

sample spatial correlation matrix P , following the same procedure as explained in



3. Speed Correlations on a Congested Road Network 71

5 10 15 20

5

10

15

20
 

Impact area

 

Im
pa

ct
 a

re
a

−0.05

0

0.05

0.1

0.15

Fig. 3.11: Colour coded presentation of the difference between the simplified spatial cor-
relation, obtained from 6 principal components and the true spatial correlation
matrix.

Section 3.5. Figure 3.12 shows a colour-coded representation of the spatial partial

correlation matrix.

The spatial partial correlations are significant at 95% level, only for links within

impact area 4. The corresponding values for impact areas 1−4 are 0.39, 0.21, 0.15

and −0.10. Note that the sample spatial partial correlations derived for City of

London are nearly the same as the values that Chen et al. [22] report for the actual

spatial correlations. On the other hand, the actual spatial correlation values for

our data are significant at long range, which was not the case in [22]. As explained

before, this is because the traffic flow in the data that Chen et al. use was low and

not at all comparable to the traffic flow for the congested road network of London.

3.7 Discussion

We have studied the temporal and spatial correlations in speeds on road networks,

using real traffic data for the congested city of London. It was shown that, despite

what is normally assumed in the literature (e.g. [22, 41, 49]), speeds in a congested

urban area can have significant spatial correlations even between roads that are
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Fig. 3.12: Colour coded presentation of the spatial partial correlation for impact areas
0− 20.

up to 20 links apart.

Both temporal and spatial correlations in speeds were calculated and analysed

in detail. A principal component analysis of the temporal correlation revealed that

up to 89% of the variation can be explained in 3 dimensions, whereas for spatial

correlation 82% of the variation can be explained in 6 dimensions. This could be

useful for data compression. It also shows that, although speeds on congested road

networks have long-range correlations, the correlation structure itself is not very

complex.

Evaluation of partial correlations shows that in most cases temporal partial

correlations are significant only for adjacent time intervals, whereas spatial partial

correlations become insignificant for impact areas greater than 4. This indicates

that the significance of correlations over a long range is due to the conditional

dependencies between speeds in neighbouring roads.
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4. THE STEINER TRAVELLING SALESMAN

PROBLEM WITH CORRELATED COSTS

4.1 abstract

The Steiner Travelling Salesman Problem (STSP) is a variant of the Travelling

Salesman Problem that is suitable for instances defined on road networks. We

consider an extension of the STSP in which the costs of traversing roads are both

stochastic and correlated. This model is suitable, for example, when vehicles

are prone to unexpected delays due to road works or accidents. Following the

work of Markowitz on portfolio selection, we model the problem as a bi-objective

mean-variance problem. Then, we show how to find efficient solutions via integer

programming. We also show how to exploit certain special structures in the corre-

lation matrices. Computational results are presented for instances with up to 100

nodes.

Keywords: travelling salesman problem, mean-variance optimisation, mixed-

integer nonlinear programming.

4.2 Introduction

In the Travelling Salesman Problem (TSP), one is given a complete graph, and a

cost for each edge of the graph, and one seeks a Hamiltonian circuit of minimum

total cost. The TSP is a classical and much-studied problem in combinatorial op-

timisation, and several books have been written on it (e.g., [3, 67, 85]). Somewhat

less well known is the Steiner TSP (STSP), which is a variant of the TSP that is

suitable for instances defined on road networks (see, e.g., [28, 53, 88, 106]). In the
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STSP, one is given a sparse graph, representing a road network, a cost for each

edge of the graph, and a subset of nodes that represent customers. The task is to

find a minimum-cost tour that passes through each customer node. Edges may be

traversed more than once, and nodes visited more than once, if desired.

In real-life STSP applications, the edge-costs are likely to be stochastic rather

than deterministic. (They are also likely to be time-varying rather than static,

but we ignore that possibility in this paper.) For example, if the costs represent

fuel consumption or travel times, then events such as road works or accidents can

cause them to be larger than expected. In addition, the random costs are likely to

be correlated, rather than statistically independent. Indeed, if an accident takes

place, it is likely to disrupt travel on several roads simultaneously.

These considerations lead us to consider an extension of the STSP, which we call

the Steiner TSP with Correlated Costs (STSPCC). This is like the STSP, except

that the costs follow a multi-variate distribution whose first and second moments

are known. Following the classical Markowitz mean-variance approach to portfolio

selection [94], one can view the STSPCC as a bi-objective optimisation problem,

in which there is a trade-off between minimising the expected cost of a tour and

minimising the variance of the cost. We consider however two single-objective

versions of the problem, obtained via the well-known weighting and ε-constraint

methods for multi-objective problems [97].

Our approach to these problems is based on integer programming. We begin

by presenting four mixed 0-1 convex quadratic programming formulations of poly-

nomial size, based on results in our earlier paper [88]. After that, we present four

strong mixed 0-1 linear programming formulations of polynomial size. Next, we

show how the various formulations can be improved if the cost correlations have

either of two special structures that may arise in practice. The first is when the
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correlation matrix has low rank, and the second is when the correlations are sig-

nificant only for pairs of roads that are close to each other in the network. Finally,

we present extensive computational results, which show the relative performance

of the formulations under certain conditions.

The paper is structured as follows. The relevant literature is reviewed in Section

4.3. In Section 4.4, we present the formulations for the case in which the correlation

matrix has no special structure. In Section 4.5, we show how to deal with the two

special correlation structures mentioned. The computational results are presented

in Section 4.6, and some concluding remarks appear in Section 4.7.

We use the following notation in the remainder of the paper. The road network

is denoted by G = (V,E), where V is the vertex set and E is the edge set. The

cost of traversing the edge (i.e., road) e ∈ E is denoted by ce. The set of customer

nodes, which is a subset of V , is denoted by C. It is assumed that G is undirected,

i.e., that all edges e ∈ E represent two-way streets. We do however make some

remarks about the possibility of adapting our approach to the ‘asymmetric’ case,

in which some or all of the roads are one-way (see Subsections 4.3.1 and 4.4.2).

4.3 Literature Review

We now review the relevant literature. We cover formulations of the STSP in

Subsection 4.3.1, mean-variance and multi-objective optimisation in Subsection

4.3.2, and vehicle routing with correlated costs in Subsection 4.3.3.

4.3.1 Formulations of the STSP

In [28, 53], it is shown how to formulate the STSP as an integer program with

|E| variables and an exponential number of constraints. In our own paper [88],

we presented some alternative formulations of polynomial size. Of those, the two

which performed best computationally were the single-commodity flow (SCF) and

multi-commodity flow (MCF) formulations, obtained by adapting formulations of
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the standard TSP due to Gavish & Graves [60] and Claus [24], respectively.

Before presenting the SCF and MCF formulations in detail, we need some

additional notation. Let G̃ = (V,A) be a directed graph, where the set of directed

arcs A is obtained from the edge set E by replacing each edge {i, j} with two

directed arcs (i, j) and (j, i). For each arc a ∈ A, the cost ca is set to the cost

of the corresponding edge. For any S ⊂ V , let δ+(S) denote the set of arcs in A

whose tail is in S and whose head is in V \S, and let δ−(S) denote the set of arcs

in A for which the reverse holds. We also assume, without loss of generality, that

vertex 1 is a customer.

In the SCF formulation, we imagine that the salesman departs from vertex 1

with |C| − 1 units of a commodity, and delivers one unit of that commodity to

each vertex in C \ {1}. There are two variables for each arc a ∈ A. The binary

variable xa takes the value 1 if and only if arc a is traversed, and the continuous

variable fa represents the amount of the commodity passing through arc a. The

formulation is then:

min
∑

a∈A caxa (4.1)

s.t.
∑

a∈δ+(i) xa ≥ 1 (∀i ∈ C) (4.2)

∑

a∈δ+(i) xa =
∑

a∈δ−(i) xa (∀i ∈ V \ {1}) (4.3)

∑

a∈δ−(i) fa −
∑

a∈δ+(i) fa = 1 (∀i ∈ C \ {1}) (4.4)

∑

a∈δ−(i) fa −
∑

a∈δ+(i) fa = 0 (∀i ∈ V \ C) (4.5)

0 ≤ fa ≤ (|C| − 1)xa (∀a ∈ A) (4.6)

xa ∈ {0, 1} (∀a ∈ A). (4.7)

Note that the SCF formulation is a mixed 0-1 linear program (mixed 0-1 LP) with

O(|E|) variables and constraints.

In the MCF formulation, we imagine that the salesman departs from vertex 1

with a distinct commodity for each vertex in C\{1}. Accordingly, for all a ∈ A and
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all k ∈ C\{1}, we define the continuous variable fk
a , representing the proportion of

commodity k passing through arc a. (One could declare fk
a to be binary, but there

is no need to.) We then minimise (4.1) subject to (4.3), (4.7) and the following

constraints:

∑

a∈δ−(i) f
k
a −∑a∈δ+(i) f

k
a = 0 (∀i ∈ V \ {1}; k ∈ C \ {1, i}) (4.8)

∑

a∈δ−(k) f
k
a −∑a∈δ+(k) f

k
a = 1 (∀k ∈ C \ {1}) (4.9)

0 ≤ fk
a ≤ xa (∀a ∈ A, k ∈ C \ {1}). (4.10)

Note that the MCF formulation is a mixed 0-1 LP with O(|C||E|) variables and

constraints.

We remark that the x variables are binary in both formulations, because there

always exists an optimal STSP solution such that no arc is traversed more than

once. This is not true in the case of asymmetric costs, so if one wished to adapt the

formulations to the asymmetric STSP, one would have to change the x variables

from binary to general-integer.

4.3.2 Mean-variance and multi-objective optimisation

Mean-variance optimisation was first presented by Markowitz [94], in the context

of portfolio selection. In his model, there are n stocks, and we are given a vector

r ∈ Rn of expected returns and a covariance matrix Q ∈ Rn×n. For i = 1, . . . , n,

the continuous variable xi represents the proportion of money invested in stock i.

Then, for a given solution x, the mean (expected) return is rTx, and the variance

of return is xTQx.

It is desirable to have a high mean, but a low variance. Hence, the mean-

variance problem is a bi-objective problem. Markowitz calls a solution x efficient

if all solutions with higher mean than x have higher variance, and all solutions

with smaller variance have smaller mean. He then defines the efficient frontier as

the curve in R2
+ described by all mean-variance pairs that are achieved by at least
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one efficient solution.

Computing the efficient frontier is rather demanding. On the other hand,

computing a single efficient solution is relatively easy. One simple way to do it is

to solve the convex quadratic program (CQP)

max

{

α(rTx)− (1− α)(xTQx) :
n
∑

i=1

xi = 1, x ≥ 0

}

for some 0 < α < 1. This CQP can be solved, e.g., with simplex methods [13, 128].

Another way is to solve the CQP

min

{

xTQx :
n
∑

i=1

xi = 1, rTx ≥ ε, x ≥ 0

}

for some ε > 0. These two approaches can be viewed as applications of the well-

known weighting and ε-constraint methods for multi-objective optimisation [97].

These methods also have the nice property that when applied to portfolio selection

problems, they lead to convex quadratic programmes which are amenable to being

solved by our available software package (CPLEX). A more complicated method

for multi-objective optimisation might lead to sub-problems that were not of that

type, and therefore not solvable using CPLEX (or indeed any existing software

package).

In this paper, we wish to apply the mean-variance approach to a combinatorial

optimisation problem. Although there does not seem to be a literature on this

specific topic, there is a considerable literature on multi-objective combinatorial

optimisation problems with linear objectives (e.g., [46, 96, 119, 125]). Even for

that apparently simpler case, computing the entire efficient set is extremely chal-

lenging. Moreover, a subtle complication arises that is not present in the case

of continuous multi-objective problems: it can happen that there exist efficient

solutions that cannot be obtained using the weighting method. This is because

an efficient solution could be dominated by a convex combination of other efficient

solutions, but not by any single efficient solution (see, e.g., [46, 125]).
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4.3.3 Vehicle routing with correlated costs

For an overview of stochastic vehicle routing, we refer the reader to Gendreau et

al. [61]. Here, we concentrate on the case in which the travel times and/or costs

are stochastic.

Three papers are concerned with TSPs with stochastic travel times. Kao [78]

proposed a dynamic programming heuristic for the variant in which the objective

is to maximise the probability of finishing the route by a deadline. Jula et al.

[76] applied dynamic programming to a different variant, in which the goal is to

minimise expected cost, subject to a lower bound on the service level. Teng et

al. [121] used 2-stage stochastic integer programming to solve a third variant, in

which a recourse action is available.

Three other papers are concerned with problems with more than one vehicle.

Laporte et al. [83] presented a branch-and-cut algorithm for a variant in which

vehicles incur a penalty for tardiness. Kenyon and Morton [79] described another

branch-and-cut algorithm for a second variant, in which the objective is to minimise

the expected total completion time of service. Li et al. [90] considered an extension

with time windows, and used tabu search to solve both chance-constrained and

recourse variants heuristically.

Another variant is the dynamic TSP with stochastic costs / times, in which

the vehicle can be re-routed in real-time, as information on congestion becomes

available. Secomandi [115] and Toriello et al. [123] propose a “rollout” heuristic

and an approximate dynamic programming heuristic, respectively, for this variant.

A different though related stream of literature is concerned with modelling spa-

tial and/or temporal correlations between travel times on real-life road networks.

Fan et al. [49], Samaranayake et al. [113] and Dong et al. [41] argue that, in rural

areas, spatial correlations satisfies a certain Markovian property, so that only the

conditional probability distributions of travel times on adjacent pairs of links need
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to be modelled. Chen et al. [22] examine real travel time data from an urban area

in Hong Kong with low traffic flow, and find that spatial correlations decrease

from 0.29 to 0.04 as one moves from adjacent links to links that are up to 4 links

apart. They conclude that it is enough to model correlations only for pairs of

roads that are spatially very close. On the other hand, Nasiri [104] analysed both

temporal and spatial correlations in real travel time data from a highly congested

road network in the City of London, and found that spatial correlations between

roads that are up to 20 links apart are still significant. The ways in which we

handle these different correlation structures are explained in the following three

sections.

4.4 Formulations for the General Case

In this section and the next, we present several different integer programming

formulations of the STSPCC. This section is concerned with the general case, in

which the cost correlations have no special structure. In the next section, two

special correlation structures are considered.

From now on, we use the following notation. For all e ∈ E, we let c̄e denote the

expected cost of edge e. For all pairs e, f ∈ E, we let Qef denote the covariances

between the costs on edges e and f . When considering G̃, the directed graph

derived from G (see Subsection 4.3.1), we let c̄a denote the expected cost of the

edge in E that corresponds to the arc a, and let Qab denote the covariance between

the costs of the edges in E that corresponds to the arcs a, b ∈ A.

4.4.1 Mixed 0-1 CQP formulations

In Subsection 4.3.1, we presented two known formulations for the STSP: the SCF

formulation, (4.1)-(4.7), and the MCF formulation (4.1), (4.3), (4.7), (4.8)-(4.10).

In order to obtain efficient solutions of the STSPCC, it suffices to modify those for-

mulations. To do this, we apply the weighting and ε-constraint methods mentioned
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in Subsection 4.3.2.

Observe that, in the case of the STSPCC, it is desirable to have a low mean

and a low variance. Then, to apply the weighting method, one should take either

the SCF or MCF formulation, and change the objective function (4.1) to

∑

a∈A

c̄axa + w
∑

a∈A

∑

b∈A

Qabxaxb,

for some positive weight w. To apply the ε-constraint method, one should change

the objective function to
∑

a∈A

∑

b∈A

Qabxaxb,

and add the constraint
∑

a∈A

c̄axa ≤ ε. (4.11)

This leads to four mixed 0-1 CQP formulations in total, which we call SCF-w,

SCF-ε, MCF-w and MCF-ε.

4.4.2 Mixed 0-1 LP formulations

It is possible nowadays to solve mixed 0-1 CQPs directly, with commercial software

packages. Nevertheless, software for mixed 0-1 LPs is much more sophisticated.

For this reason, it is desirable also to derive and test mixed 0-1 LP formulations.

Fortunately, using a standard trick [56], one can linearise any of the four formula-

tions mentioned in the previous subsection, as follows:

• For all pairs a, b ∈ A, create a new continuous variable, say yab, representing

the product xaxb. (One could declare yab to be binary, but there is no need

to.)

• Replace each quadratic term of the form Qabxaxb with the linear term Qabyab.

• For all pairs a, b ∈ A, add the constraints yab ≥ 0, yab ≤ xa, yab ≤ xb and

yab ≥ xa + xb − 1 to the formulation.
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The resulting four mixed 0-1 LP formulations are valid, but tend to have a weak

continuous relaxation. In order to strengthen them, we propose to add the follow-

ing valid linear equations:

∑

b∈δ+(i)

yab =
∑

b∈δ−(i)

yab (i ∈ V \ {1}, a ∈ A). (4.12)

These can be derived by multiplying the equations (4.3) by individual x variables,

and then linearising them by replacing products of x variables with the corre-

sponding y variables.

We also propose to further strengthen the two mixed 0-1 LP formulations

arising from the ε-constraint method, by adding the following valid inequalities:

∑

b∈A c̄byab ≤ εxa (a ∈ A)

∑

b∈A c̄b(xb − yab) ≤ ε(1− xa) (a ∈ A).

These inequalities are obtained by multiplying the inequality (4.11) by each x

variable and its complement in turn, and then linearising as above.

The idea of multiplying constraints by binary variables to derive new con-

straints was first proposed in [1], and forms the basis of the well-known Reformulation-

Linearization Technique (RLT) for global optimisation problems [116]. Accord-

ingly, we call our four mixed 0-1 LP formulations RLT-SCF-w, RLT-SCF-ε, RLT-

MCF-w and RLT-MCF-ε. We remark, however, that a full application of the

RLT to the mixed 0-1 CQP formulations would lead to mixed 0-1 LP formulations

with even more variables and constraints. Specifically, there would be additional

variables representing products of x and f variables, and additional constraints

obtained by multiplying the flow conservation constraints by x variables. We do

not bother to do that here, since none of the formulations presented in the previous

subsection have quadratic terms involving f variables.

Observe that each of the four formulations presented in this subsection has

O(|E|) binary variables, O(|E|2) continuous variables and O(|E|2) constraints.
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Provided the graph G is sparse, as is usually the case in practice, this is likely to

be manageable.

We remark that the version of the RLT used in this subsection cannot be

applied to the asymmetric version of the STSPCC, since it relies on the assumption

that the x variables are binary.

4.5 Exploiting Special Correlation Structures

An instance of the STSPCC is given by a graphG = (V,E), an expected cost vector

c ∈ R|E| and a covariance matrix Q ∈ R|E|×|E|. Up to now, we have assumed that

Q is simply given. In real-life applications, however, Q will be unknown initially,

and will have to be estimated, based on empirical measurements of road costs.

Realistically speaking, it is unlikely that enough measurements will have been

made to estimate all of the entries of Q with any accuracy. In such a situation, it

may be acceptable (or even essential) to work with a rough approximation of Q.

In our opinion, there are two possible approximations of Q that are likely to be

acceptable in practice. The first is a low-rank approximation, based on principal

components analysis. The other is a sparse approximation, in which it is assumed

that the covariance will be zero whenever two roads are far from each other. In the

following two subsections, we explain these two approximation strategies in detail,

and show how they can be used to derive improved formulations of the STSPCC.

4.5.1 Covariance matrices with low rank

We now recall some well-known facts from linear algebra (see, e.g., [63], ch. 6).

Given a covariance matrix Q ∈ Rn×n, let λ1, . . . , λn ∈ R+ be its eigenvalues, sorted

in non-increasing order of value, and let v1, . . . , vn ∈ Rn be the corresponding

(normalised) eigenvectors. Then Q can be decomposed as:

n
∑

i=1

λi v
i(vi)T . (4.13)
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The rank of Q is the least integer k such that λi > 0 for i ≤ k, but λi = 0 for i > k.

If we let M ∈ Rk×n be the matrix whose ith row is
√
λiv

i, we have Q = MTM .

In our context, Q is a matrix of order |E|, where E is the set of roads in a

road network. Given raw data on the road costs, there are basically two ways to

compute a low-rank approximation of Q. One simple way is to perform a principal

components analysis (see, e.g., [2]). This means computing the sample covariance

matrix, computing the decomposition (4.13), and then selecting a value k such that

the sum of the first k eigenvalues is large compared to the sum of the remaining

|E| − k eigenvalues. Then, the desired low-rank approximation can be obtained

by summing only the first k terms in (4.13). Another way, popular in the finance

literature (e.g., [18]), is to assume a priori that Q has rank k, for some small

integer k, and then estimate the matrix M directly.

In any case, suppose that we are given an instance of the STSPCC such that Q

has rank k, where k is a small integer. We can improve the mixed 0-1 CQP formu-

lations presented in Subsection 4.4.1 in the following way. Let M ∈ Rk×|E| be such

that Q = MTM . Add k new continuous variables z1, . . . , zk to the formulation,

along with the following k linear equations:

zr =
∑

e={i,j}∈E

Mre(xij + xji) (r = 1, . . . , k).

Then, in the objective function, replace the expression

∑

a∈A

∑

b∈A

Qabxaxb

with the simpler expression
∑k

r=1 z
2
r .

The above modification of the mixed 0-1 CQP formulations does not affect the

lower bound obtained by solving the continuous relaxation, but it dramatically

decreases the number of non-zero terms in the objective function, at the cost of

introducing only k continuous variables and k linear constraints. If k is small
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compared to n, this may reduce the amount of work done at each node of the

branch-and-bound tree.

We remark that it is not possible to modify the mixed 0-1 LP formulations

presented in Subsection 4.4.1 in an analogous way. This is because the y variables

are continuous, rather than binary.

4.5.2 Covariances only between nearby links

Another way to simplify the covariance matrix Q is to assume that the covariances

are significant only for pairs of roads that are ‘close’ in the road network. To be

more precise, let us define the distance between edges e and f to be the least integer

p such that there exists a path in G, from one of the end-vertices of e to one of

the end-vertices of f , that uses p intermediate edges. Then, the assumption under

consideration in this subsection is that there exists a small non-negative integer k

such that, for all pairs e, f ∈ E, the covariance Qef is close to zero whenever the

distance between e and f exceeds k.

As mentioned in Subsection 4.3.3, there is empirical evidence that the above-

mentioned property holds for small values of k in road networks that have only

mild congestion. Moreover, there now exist efficient computational methods for

estimating sparse covariance matrices with specified sparsity patterns (see, e.g.,

[19]). Such methods can be used to compute good approximations of Q for any

specified value of k.

So, suppose that we are given an instance of the STSPCC such that Q has a

zero entry whenever the distance between the corresponding pair of edges is larger

than k, for some small non-negative integer k. If we consider the mixed 0-1 CQP

formulations presented in Subsection 4.4.1, we see that the only benefit is that

the objective function is sparse. On the other hand, if we consider the mixed 0-1

LP formulations presented in Subsection 4.4.2, a much more significant benefit

arises: for all pairs a, b ∈ A such that the distance between the corresponding
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edges e, f ∈ E exceeds k, we can delete the variable yab from the formulation,

along with all constraints in which it appears. If k is small, this will result in a

dramatic decrease in the number of variables and constraints.

4.6 Computational Experiments

In this section, we report on some computational experiments that we conducted

with the formulations presented in the previous two sections. Section 4.6.1 ex-

plains how we created our test instances. The computational results are given in

Subsection 4.6.3.

4.6.1 Construction of test instances

We began by taking eight STSP instances that were described in our earlier paper

[88]. These were constructed as follows. For V ∈ {25, 50, 75, 100}, a random planar

graph was created that was designed to resemble a real road network. For each

of these four graphs, a random node was selected to be the depot, and the cost

ce of traversing an edge was then set to be proportional to the Euclidean distance

between the end-nodes. Then, for each of the four graphs, two STSP instances

were created. In one, each non-depot node was selected to be a customer with

probability 1/3. In the other, the probability was 2/3. Table 4.1 shows the number

of edges and customers in each of the eight sparse graphs.

Next, we converted each of the eight STSP instances into STSPCC instances

with no special covariance structure. The expected cost vector c̄ for every edge e

was just set to ce. The covariance matrix Q was created as follows:

• Generate |E|× |E| non-negative random numbers from the standard normal

distribution.

• Scale each of the |E| vector coordinates to have length one. This results in

having |E| uniform random vectors in the non-negative orthant of the unit
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Instance |V | |E| |C|
25-1/3 25 31 8
25-2/3 16

50-1/3 50 69 16
50-2/3 32

75-1/3 75 105 25
75-2/3 50

100-1/3 100 139 33
100-2/3 66

Tab. 4.1: Number of nodes, edges and customers for the 8 instances.

sphere in |E| dimensions [95, 102].

• Multiply each of the |E| vectors by a uniform random number in range [0, 10]

representing the standard deviation of the cost of that edge and round the

components of every vector to the nearest integer.

• Let M ∈ Z
|E|×|E|
+ be the matrix whose columns are the |E| dimensional

vectors, in any order.

• Set Q to MTM .

By construction, the entries in Q are in the range [0, 100] for all eight instances.

We chose to create covariance matrices with non-negative entries since negative

covariances seem unlikely in real life (see, e.g. [104]).

Next, in order to explore the potential of the formulations that we gave in

Subsection 4.5.1, we created another eight STSPCC instances, with a low-rank

covariance structure. In fact, we considered the situation that ought to be most

favourable to those formulations: the case in which the rank of Q is only one. To

create Q in this case, we just set Q to vvT , where v ∈ Z is a vector in which

each entry is a random integer between 0 and 10. The entries in Q are then again

between 0 and 100.
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Finally, in order to explore the potential of the formulations that we gave in

Subsection 4.5.2, we created another eight STSPCC instances in which covariances

are non-zero only for links that are close in the road network. Again, we considered

the situation that ought to be most favourable to those formulations: the case in

which the covariance between two edges is non-zero only if those edges are adjacent

in G. To create Q in this case, we set Q to MMT , where M ∈ Z
|E|×|V |
+ is created

as follows. For a given e ∈ E and a given i ∈ |V |, we set Mei to:

• A random integer between 1 and 10 if edge e has node i as an end-node;

• zero otherwise.

For this case, Q will be a sparse matrix with entries between 0 and 200.

4.6.2 Selection of the weights and epsilon

As mentioned above, the weighting and ε-constraint methods are two standard

methods for computing efficient solutions to multi-objective problems. In the

case of continuous problems, one can call them repeatedly to construct the entire

efficient frontier to any desired degree of accuracy. In the case of discrete problems,

the situation is a little more complicated, as mentioned in Section 4.3.2. In this

paper, for simplicity, we experiment with only one value of weight and ε for each

instance and each formulation, in such a way that the solutions obtained are

guaranteed to be efficient.

For our experiments, in order to ensure that the comparison between the

weighting and ε-constraint methods were as fair as possible, we used the following

procedure for any given instance:

1. Solve the weighted problem via 0− 1 linear or quadratic programming using

a weight of 10.

2. Let ε be the expected cost of the solution found in point 1.
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3. Solve the ε-constrained version, for this value of ε, via 0−1 linear or quadratic

programming.

This way, both the weighting and ε methods will find tours of around the same

length. The weighting method is well known to always give efficient solutions,

even for problems with binary variables. Due to the way we have selected ε, the

ε-constrained method is guaranteed to give the same solution as the weighting

method. Therefore, we conclude that the solution obtained by the ε-constrained

method will also be efficient.

4.6.3 Experimental results

A program was written in Microsoft Visual C that reads an instance from a file, and

then outputs eight integer programs, corresponding to the formulations SCF-w,

SCF-ε, MCF-w, MCF-ε, RLT-SCF-w, RLT-SCF-ε, RLT-MCF-w and RLT-MCF-

ε. Each of the resulting 192 (4 × 3 × 2 × 8) integer programs was fed into the

branch-and-bound solver of IBM CPLEX version 12.3. The computer used was a

PC with a 1.6 GHz Intel Core i7 processor, with 8 GB of RAM, operating under

Windows 7. Default CPLEX settings were used.

For each integer program, a time limit of 5000 seconds was imposed. We were

able to find the optimal solutions to 23 out of the 24 instances within the time

limit. The one that was not solved was the instance with 100 nodes where 2/3 of

the nodes are required and the covariance matrix has non-zero elements only for

adjacent links.

Table 4.2 shows, for each of the twenty three instances and each of the eight

formulations, the time taken to solve the continuous relaxation. Indices ‘G’, ‘L’ and

‘N ’ refer to the general, low rank and nearby covariance structures, respectively.

For brevity we use these indices to refer to the corresponding instances, throughout

the rest of this paper. We see that the continuous relaxations of the mixed 0-1

CQP formulations are very easy to solve for the G and L instances, whereas for the
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Instance SCF-w SCF-ε MCF-w MCF-ε RLT- RLT- RLT- RLT-
SCF-w SCF-ε MCF-w MCF-ε

25-1/3-G 0.08 0.06 0.13 0.13 0.20 0.41 0.37 0.86
50-1/3-G 0.16 0.08 0.27 0.30 3.15 6.33 3.45 6.91
75-1/3-G 0.13 0.16 0.94 1.12 11.08 24.77 12.37 30.72
100-1/3-G 0.14 0.16 2.48 2.59 28.59 96.03 25.46 86.24

25-2/3-G 0.11 0.08 0.23 0.30 0.31 0.67 0.50 0.78
50-2/3-G 0.09 0.11 0.90 0.83 2.89 5.23 4.02 7.69
75-2/3-G 0.14 0.22 2.57 3.12 14.56 32.18 12.53 27.85
100-2/3-G 0.14 0.16 10.08 8.74 27.07 106.78 26.05 111.15

25-1/3-L 0.09 0.05 0.08 0.08 0.28 0.36 0.38 0.83
50-1/3-L 0.05 0.06 0.23 0.25 2.15 5.74 2.84 8.47
75-1/3-L 0.06 0.09 0.73 0.75 10.90 19.00 13.03 43.46
100-1/3-L 0.13 0.13 1.92 1.78 30.97 62.96 29.00 88.39

25-2/3-L 0.09 0.09 0.19 0.19 0.33 0.73 0.59 0.89
50-2/3-L 0.08 0.06 0.92 0.80 3.23 5.88 5.02 7.88
75-2/3-L 0.09 0.13 2.75 2.43 11.45 21.34 13.24 35.41
100-2/3-L 0.14 0.11 7.43 5.46 25.80 54.24 21.00 72.70

25-1/3-N 0.11 0.05 0.11 0.13 0.01 0.03 0.03 0.09
50-1/3-N 0.08 0.09 0.31 0.27 0.06 0.05 0.20 0.58
75-1/3-N 0.08 0.14 0.83 1.00 0.08 0.08 0.80 2.82
100-1/3-N 0.08 0.13 1.68 2.00 0.09 0.06 2.06 6.10

25-2/3-N 0.06 0.08 0.19 0.22 0.03 0.03 0.05 0.11
50-2/3-N 0.06 0.08 0.86 0.87 0.05 0.05 0.41 1.06
75-2/3-N 0.09 0.09 2.61 3.46 0.09 0.06 1.95 2.95

Tab. 4.2: Time taken to solve continuous relaxation, in seconds.
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Instance SCF-w SCF-ε MCF-w MCF-ε RLT- RLT- RLT- RLT-
SCF-w SCF-ε MCF-w MCF-ε

25-1/3-G 51.9 53.0 0.0 0.0 71.8 72.5 58.7 57.6
50-1/3-G 51.5 51.9 0.0 0.0 88.7 88.4 85.8 78.8
75-1/3-G 63.5 63.8 0.4 0.4 95.2 95.5 93.5 92.4
100-1/3-G 67.4 68.0 0.0 0.0 99.6 100.0 99.5 98.4

25-2/3-G 41.7 40.4 0.0 0.0 70.5 62.6 65.3 54.5
50-2/3-G 41.8 42.1 2.2 2.2 84.8 79.5 81.8 68.4
75-2/3-G 55.2 55.6 0.0 0.0 94.9 95.2 93.7 93.6
100-2/3-G 64.6 65.1 2.1 2.0 99.6 100.0 99.6 100.0

25-1/3-L 56.3 56.6 0.0 0.0 74.2 72.2 57.7 23.1
50-1/3-L 49.6 49.8 0.0 0.0 86.1 77.2 81.9 44.9
75-1/3-L 43.9 44.0 0.0 0.0 91.0 83.2 89.3 59.8
100-1/3-L 55.3 55.4 1.2 1.2 99.9 98.7 99.9 85.5

25-2/3-L 34.0 34.1 0.0 0.0 74.5 53.2 70.1 28.8
50-2/3-L 29.0 29.1 1.0 0.7 75.7 61.1 73.3 51.1
75-2/3-L 32.4 32.5 0.3 0.3 92.1 81.2 91.4 68.7
100-2/3-L 35.1 35.2 0.0 0.0 99.9 91.5 99.9 84.6

25-1/3-N 33.1 33.7 1.1 0.9 67.7 68.5 66.6 67.9
50-1/3-N 36.9 37.4 10.9 11.3 81.4 82.2 80.2 81.4
75-1/3-N 42.7 43.4 6.1 4.7 93.9 94.8 92.0 92.9
100-1/3-N 46.0 46.9 11.5 11.6 99.2 100.0 98.9 100.0

25-2/3-N 21.2 21.7 1.0 0.9 68.6 69.8 68.0 69.5
50-2/3-N 27.1 27.6 7.2 7.3 82.2 83.2 77.1 78.1
75-2/3-N 31.6 32.2 6.1 6.2 94.7 95.8 93.4 94.6

Tab. 4.3: Percentage integrality gaps.

N instances, they solve about as quick as the relaxations of the RLT formulations.

This is because for the N instances the RLT formulations have fewer variables and

constraints than the corresponding mixed 0-1 CQP formulations. For a similar

reason, the continuous relaxations of SCF formulations can be solved more quickly

than those of the MCF formulations. Interestingly, the continuous relaxations of

the mixed 0-1 CQP formulations for the L instances solve faster than those of

the G instances. This may be due to the fact that they have less variables in the

objective function.

Table 4.3 shows, for the 23 instances that were solved to optimality, and for the

same eight formulations, the percentage integrality gap, i.e., the difference between

the lower bound given by the LP solution and the cost of the true integer optimum,
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Instance SCF-w SCF-ε MCF-w MCF-ε RLT- RLT- RLT- RLT-
SCF-w SCF-ε MCF-w MCF-ε

25-1/3-G 195 156 3 0 579 842 56 44
50-1/3-G 47050 50913 9 8 – – – –
75-1/3-G 3652603 – 184 264 – – – –
100-1/3-G – – 7 4 – – – –

25-2/3-G 183 52 0 0 110 170 0 0
50-2/3-G 49521 43005 28 32 – – – –
75-2/3-G 1140106 – 25 19 – – – –
100-2/3-G – – 142 78 – – – –

25-1/3-L 36 50 0 0 323 201 48 10
50-1/3-L 2264 3545 0 0 – – – –
75-1/3-L 159903 39417 0 0 – – – –
100-1/3-L – – 0 57 – – – –

25-2/3-L 54 72 0 0 446 240 105 11
50-2/3-L 66496 82813 0 0 – – – –
75-2/3-L 324141 – 0 0 – – – –
100-2/3-L – – 0 9 – – – –

25-1/3-N 263 160 63 40 90 56 8 3
50-1/3-N 349158 143175 12220 – 4151 3295 407 277
75-1/3-N – – 24085 – 61206 137587 1002 682
100-1/3-N – – – – – – 10225 16180

25-2/3-N 148 151 61 18 145 44 9 9
50-2/3-N 2859911 1333279 39289 4590 37227 45444 1379 1120
75-2/3-N – – – – 669891 – 12873 7171

Tab. 4.4: Number of branch-and-bound nodes.

expressed as a percentage of the latter. We see that the gaps are far smaller for

MCF-w and MCF-ε formulations than for any of the other formulations. The

superiority of the MCF formulation over the SCF formulation is explained in [88].

For the 0-1 mixed CQP formulations, the N instances have the smallest gaps

and G instances have the biggest. This is probably due to the sparsity of the

objective function for the L and N instances. Also, observe that as the proportion

of required nodes increases, the gaps decrease for the SCF formulations and for the

RLT formulations the LP relaxation gaps increase with n. The reason for these

two phenomena is not clear. Finally, we note that gaps may increase if one wanted

to consider negative elements in any of the covariance matrices.
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Table 4.4 shows, for each of the 23 instances solved, the number of branch-

and-bound nodes needed to solve the integer programs to proven optimality. A

dash (−) indicates that the given formulation could not be solved within the

given time limit. We see that, the MCF formulations give the true integer optimal

solution using very few branch-and-bound nodes. Particularly for L instances with

smaller values of n, they do not use any branch-and-bound. The mixed 0-1 CQP

formulations need significantly less branch-and-bound nodes for the L instances

than they do for G and N instances. For the RLT formulations, an excessive

number of nodes is needed for the G and L instances, even for small values of n

but for N instances they need less branch-and-bound nodes than the mixed 0-1

CQP formulations.

It should be noted that, in a few cases, the number of branch-and-bound nodes

is zero even though the integrality gap is positive. The explanation for this anoma-

lous behaviour is that, in some cases, CPLEX automatically appended some of its

own internal cutting planes to the continuous relaxation. If one were to switch

off all internal cutting plane generation in CPLEX, then branching would become

necessary whenever there is a positive integrality gap.

Finally, Table 4.5 shows the total time, in seconds, taken by the branch-and-

bound procedure. We see that despite having more variables, the MCF formula-

tions perform quite well, enabling one to find a provably optimal solution even for

quite large values of n. The mixed 0-1 CQP formulations consume far less time

for L instances than they do for G and N instances. This is because less time is

spent at each branch-and-bound node due to having less number of variables in

the objective function. The RLT formulations, struggle even for small values of n,

in the case of G and L instances but they are quicker for N instances. This is due

to the fact that they have smaller number of variables for N instances.

All things considered, the MCF formulations outperform for instances with
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Instance SCF-w SCF-ε MCF-w MCF-ε RLT- RLT- RLT- RLT-
SCF-w SCF-ε MCF-w MCF-ε

25-1/3-G 0.31 0.30 0.33 0.20 13.67 39.51 12.17 21.50
50-1/3-G 62.20 34.94 1.53 1.64 – – – –
75-1/3-G 3863.30 – 20.58 29.48 – – – –
100-1/3-G – – 22.59 10.59 – – – –

25-2/3-G 0.44 0.42 0.34 0.37 87.81 151.66 37.97 54.41
50-2/3-G 24.98 26.39 6.80 7.07 – – – –
75-2/3-G 1161.82 – 12.37 16.08 – – – –
100-2/3-G – – 223.41 1713.62 – – – –

25-1/3-L 0.27 0.26 0.13 0.09 7.94 41.28 10.05 13.07
50-1/3-L 1.15 2.48 0.34 0.50 – – – –
75-1/3-L 87.19 29.19 1.17 1.22 – – – –
100-1/3-L – – 9.84 738.35 – – – –

25-2/3-L 0.27 0.28 0.25 0.20 32.45 66.72 25.80 7.33
50-2/3-L 20.84 47.99 6.41 10.92 – – – –
75-2/3-L 169.85 – 302.56 26.18 – – – –
100-2/3-L – – 4896.34 90.81 – – – –

25-1/3-N 0.28 0.22 0.38 0.36 0.30 0.34 0.36 0.42
50-1/3-N 109.90 70.11 65.61 – 5.15 5.35 5.54 5.97
75-1/3-N – – 1020.78 – 104.79 573.38 75.57 66.71
100-1/3-N – – – – – – 1764.29 4633.06

25-2/3-N 0.23 0.31 0.61 0.53 0.33 0.28 0.62 0.56
50-2/3-N 918.86 2078.12 1501.24 163.32 49.97 63.85 46.22 46.66
75-2/3-N – – – – 1634.69 – 1415.72 749.10

Tab. 4.5: Branch-and-bound time, in seconds.
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low rank and general covariance structures. For nearby covariance structures, we

recommend using the RLT-MCF formulations. It is not clear why the mixed 0-

1 CQP formulations on N instances, do not perform as well as they do on G

instances.

4.7 Discussion

In real-life road networks, the costs or travel times for individual roads are stochas-

tic, since they may be affected by unexpected events such as road works or acci-

dents. Moreover, as mentioned in Subsection 4.3.3, there is empirical evidence that

the costs or times for pairs of roads can be correlated. Accordingly, we have pro-

posed the Steiner TSP with correlated costs as a new and potentially useful VRP.

We considered two ways to reduce this bi-objective problem into a single-objective

problem, and then presented eight different integer programming formulations.

We also showed how to exploit special structures in the covariance matrix. Our

experimental results have shown that instances with up to 100 nodes can be solved

to proven optimality with a standard branch-and-bound solver.

A possible extension of this work could be to devise methods for computing

the entire efficient frontier for the STSPCC, or at least approximations of it. It

would also be interesting to see if larger instances could be tackled by incorporat-

ing strong cutting planes into the formulation and solution algorithm. Another

possible topic for future research would be to incorporate correlations in costs or

travel times into other vehicle routing problems, or indeed into models of traffic

and/or transportation in general.



5. PRICING ROUTINES FOR VEHICLE ROUTING

WITH TIME WINDOWS ON ROAD NETWORKS

5.1 abstract

Several very effective exact algorithms have been developed for vehicle routing

problems with time windows. Unfortunately, most of these algorithms cannot be

applied to instances that are defined on road networks, because they implicitly

assume that the cheapest path between two customers is equal to the quickest

path. Garaix and co-authors proposed to tackle this issue by first storing alter-

native paths in an auxiliary multi-graph, and then using that multi-graph within

a branch-and-price algorithm. We show that, if one works with the original road

network rather than the multi-graph, then one can solve the pricing subproblem

more quickly, in both theory and practice.

Keywords: Vehicle routing, combinatorial optimization, bi-criteria shortest paths.

5.2 Introduction

Vehicle Routing Problems (VRPs) are a much-studied class of combinatorial op-

timization problems, and several books have been written about them (e.g., [12,

62, 65, 124]). Many VRPs arising in practical applications involve restrictions on

the time at which service begins at the customers. Well-known examples include

the Traveling Salesman Problem with Time Windows or TSPTW [6], the Multiple

Traveling Salesman Problem with Time Windows or m-TSPTW [39, 114], and the

Vehicle Routing Problem with Time Windows or VRPTW [36, 118]. Good surveys

on such problems include [27, 38].
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As mentioned in the above-mentioned books and surveys, there are several

effective exact algorithms available to solve such time-constrained VRPs, some of

which are capable of routinely solving instances with up to around 100 customers

to proven optimality. There are also several effective heuristics that are able to

provide good solutions for even larger instances.

Unfortunately, and surprisingly, most of these algorithms are based on a key

assumption that is not guaranteed to hold in the real world. This assumption is

that, for all ordered pairs (i, j) of nodes (that represent either depots or customers),

one is provided with two numbers: cij, the cost of traveling from i to j, and tij, the

time taken to travel from i to j. In reality, however, many VRPs are concerned

with the routing of vehicles on road networks. In a real-life road network, the

cheapest path between two points is unlikely to be the same as the quickest path.

Therefore, to model and solve time-constrained VRPs on road networks correctly,

one should take into account the trade-off between travel costs and travel times.

This issue was explained in detail in a recent paper by Garaix et al. [59], who

proposed to remedy the situation as follows. First, in a pre-processing stage, they

solve a series of bicriteria shortest path problems in the road network. This yields,

for each pair of customer and/or depot nodes in the road network, a set of paths

that completely represent the cost-time trade-off. These paths are stored in an

auxiliary multi-graph. Then, they use a traditional branch-and-price algorithm,

but solve the pricing subproblem on the multi-graph rather than the original road

network. Finally, dynamic programming is used to convert the optimal solution

into a collection of feasible routes in the road network.

Although the approach of Garaix et al. [59] is elegant, it does require the

use of specialised techniques for constructing the multi-graph, solving the pricing

problem, and converting the solution. Moreover, as we explain in Section 5.4,

constructing and storing the multi-graph can take exponential time and space in
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the worst case. These considerations led us to develop more ‘natural’ algorithms

for the pricing subproblem, that work directly on the original road network. It

turns out that these natural algorithms, as well as being simpler, are faster in both

theory and practice.

The paper is organized as follows. In Section 5.3, we review the relevant lit-

erature. In Section 5.4, we present a result about the size of the multi-graph. In

Section 5.5, we present our first pricing routine, which is designed for the case

of ‘elementary’ routes. We also show that we obtain, as a by-product, an exact

algorithm for the ‘road network’ version of the TSPTW. In Section 5.6, we present

our second pricing routine, for the case in which ‘non-elementary’ routes are per-

mitted, and show that it is faster (in the worst case) than the one of Garaix et

al. [59]. In Section 5.7, we show that it is faster also in practical computations.

Finally, some concluding remarks appear in Section 5.8.

5.3 Literature Review

We now review the relevant literature. Subsection 5.3.1 deals with the TSPTW,

m-TSPTW and VRPTW, Subsection 5.3.2 covers VRPs on road networks, and

Subsection 5.3.3 focuses on VRPs with time windows on road networks.

5.3.1 Standard VRPs with time windows

The TSPTW is defined as follows [6]. Let G be a complete directed graph with

vertex set V = {0, 1, . . . , n} and arc set A. Vertex 0 represents the depot and the

other vertices represent customers. For each (i, j) ∈ A we are given a cost cij and

a traversing time tij. Each customer i has a time window [ei, `i] and a service time

si. Service at customer i must start no earlier than ei and no later than `i. If the

vehicle arrives at customer i before ei, it has to wait. The vehicle departs from

the depot at time 0 and must return to the depot by time T . The objective is to

find a minimum cost route that services each customer once and satisfies the time
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window requirements. It is usually assumed that all costs and times are positive

integers.

The m-TSPTW is identical to the TSPTW, except that there are several ve-

hicles and each customer must be visited by exactly one vehicle [39, 114]. The

VRPTW is similar, except that each customer i has a positive integral demand qi

and the total load of each vehicle must not exceed some positive integral capacity

Q [36, 37].

Exact approaches to the TSPTW include, e.g., dynamic programming (DP)

[45], hybrid DP / branch-and-bound [10], constraint programming [111] and branch-

and-cut [4, 32]. Exact approaches to the multi-vehicle problems include, e.g., La-

grangian relaxation [77], branch-and-cut [91], branch-and-price [17, 37, 39, 51],

branch-cut-and-price [35, 74, 80] and, very recently, hybrid DP / dual ascent /

branch-and-bound [9].

All of the exact approaches to the multi-vehicle problems are based, either

explicitly or implicitly, on set covering or set partitioning formulations. The set

covering formulation takes the form

min
∑

r∈Ω crλr (5.1)

s.t.
∑

r∈Ω airλr ≥ 1 (∀i ∈ V \ {0}) (5.2)

λr ∈ {0, 1} (∀r ∈ Ω), (5.3)

where Ω denotes the set of all feasible routes for a single vehicle, cr denotes the

cost of route r, λr is a binary variable taking the value 1 if and only if a vehicle

uses route r, and air is a binary constant, taking the value 1 if and only if customer

i is serviced by route r. The set partitioning formulation is identical, except that

the inequalities (5.2) are changed to equations. (If the costs and times obey the

triangle inequality, which is usually the case in practice, this change affects neither

the optimal solution, nor the lower bound from the LP relaxation.)

Since |Ω| can be exponentially large, if one wishes to solve the LP relaxation of
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(5.1)–(5.3) exactly, it must be solved via column generation, i.e, the variant of the

simplex method in which columns of negative reduced cost are generated on-the-fly

via pricing routines. The pricing subproblem is strongly NP-hard [42], but can

be solved in pseudo-polynomial time if one permits non-elementary routes, i.e.,

routes that visit customers more than once [37, 39]. The resulting enlargement of

the column set Ω does not change the validity of the set covering / partitioning

formulations, but it weakens the lower bound obtained when one solves the LP

relaxation. As a compromise, one can forbid some non-elementary routes but not

others (e.g., [9, 35, 73]).

5.3.2 Routing on road networks

All of the approaches mentioned in the previous subsection assume that the in-

stance is defined on a complete directed graph. Most VRPs arising in practice,

however, take place on road networks. It is usually possible to transform a VRP

on a road network into a VRP on a complete graph, via a series of shortest-path

computations (e.g., [28, 34, 53]). Nevertheless, it can be preferable to work with

the original road network, in an attempt to exploit any properties, such as sparsity

or planarity, that it may have (e.g., [28, 53, 88, 89]).

Much of the literature on VRPs on road networks has been concerned with

so-called arc routing problems, in which the customers are located along the edges

or arcs of the network, rather than at nodes. For brevity, we do not review the arc

routing literature here, and refer the reader to the book [43]. We mention however

that the paper [89], concerned with the so-called Capacitated Arc Routing Problem

(CARP), can be viewed as a companion paper to the present one. It shows that

pricing for the CARP can be performed more quickly if one works on the original

road network rather than on a complete graph. The pricing routines presented in

[89] are however quite different from the ones presented here. In particular, the

routine for elementary routes in [89] is based on integer programming, whereas



5. Pricing Routines for VRPTW on Road Networks 102

the one we present in Section 5.5 is based on dynamic programming. Moreover,

the routine for non-elementary routes in [89] is slower and more complex than the

one we present in Section 5.6, due to the fact that, in the case of the CARP, the

vehicle load does not change when an edge is deadheaded.

We now return to node routing. The following ‘road network’ version of the

TSP was defined in [28, 53, 106]. We are given:

• an undirected road network G̃ = (Ṽ , Ẽ),

• a specified depot node, say node 0,

• a set of customer nodes C ⊂ Ṽ \ {0},

• a cost c̃e for each e ∈ E.

The task is to find a minimum-cost tour, starting and ending at the depot, that

passes through each customer node at least once. Nodes may be visited more than

once, and edges may be traversed more than once, if desired. (Note that nodes in

Ṽ \ (C ∪ {0}) represent road junctions.)

Following [28, 88], we call the above variant of the TSP the Steiner TSP.

In [26, 53], the Steiner TSP is formulated as an integer program with O(|Ẽ|)

variables and an exponential number of constraints, and solved with cutting planes

and branch-and-bound. In [88], it is formulated as an integer program with only

O(|Ẽ|) variables and constraints, and solved via plain branch-and-bound.

Several generalisations of the Steiner TSP were also presented in [88]. Of

relevance to us is the Steiner version of the TSPTW. This is like the Steiner TSP,

but each customer i ∈ C now has a time window [ei, `i] and a service time si,

and the vehicle must leave the depot at time 0 and return by time T . One can

easily define Steiner versions of the m-TSPTW and VRPTW in a similar way. (In

[88], the graph G̃ was assumed to be undirected, but one can also allow it to be

directed, or mixed.)
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5.3.3 Routing on road networks with time windows

Unfortunately, VRPs on road networks become significantly harder to model and

solve when time windows are present. Indeed, in [88], we were able to formulate

all problems considered as integer programs with only O(|Ẽ|) variables and con-

straints, except the Steiner TSPTW. The reason for this phenomenon is as follows:

for the other problems considered in [88], it is never optimal for a vehicle to tra-

verse an edge more than once in any given direction. When time windows are

present, this is no longer true.

As mentioned in the introduction, another key paper in this regard is Garaix et

al. [59]. They point out that, when time windows are present, one cannot always

transform a ‘road network’ VRP into a standard VRP. This is because in a real-life

road network the cheapest path between two points is unlikely to be the same as

the quickest path.

To see this, consider the simple road network displayed in Figure 5.1. Suppose

the depot is located at node 0, and the customers are located at nodes 2 and

4. Also suppose that we have (undirected) edges rather than (directed) arcs, for

simplicity. For each of the seven edges, the corresponding traversing cost and time

are displayed in parentheses. Between the depot and node 4, the cheapest path

costs 2 and takes 4 time units, and the quickest path costs 4 and takes 2 time

units. So there is no unique way to define c02 and t02. A similar consideration

applies to the paths between the two customers.

Garaix et al. proposed to remedy the situation with a three-phase procedure.

In the first phase, they solve a series of bicriteria shortest path problems in G̃, in

order to compute, for each ordered pair of nodes in {0} ∪C, a complete and non-

redundant set of efficient (or non-dominated, or pareto-optimal) paths. (A variety

of algorithms exist for generating such complete sets; see [112].) A (loopless and

directed) multi-graph is then constructed, which has node set {0} ∪ C and, for
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Fig. 5.2: Corresponding multi-graph.

each ordered pair of nodes, a set of parallel arcs, representing the corresponding

complete set. (Figure 5.2 is the multi-graph corresponding to the road network in

Figure 5.1, but with edges instead of arcs, for clarity.)

In the second phase, Garaix et al. formulate the problem as a set covering

problem with a variable for each feasible route in the multi-graph, and solve it

by branch-and-price. In the third and final phase, the optimal set covering solu-

tion is converted into an optimal solution for the original problem, via dynamic

programming.

5.4 Drawbacks of the Multi-Graph Approach

Although the branch-and-price approach of Garaix et al. [59] performs reasonably

well in practice, it seems both simpler and more natural to work with the origi-

nal road network G̃ rather than the multi-graph. Moreover, the time and space

requirements of the multi-graph approach can be very high in the worst case.
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Specifically:

• Computing complete sets from a source node to all other nodes takesO(|Ã|T )

time (see [112]). Therefore, computing complete sets for all ordered pairs

(i, j) with i and j in C ∪ {0} will take O(|C| |Ã| T ) time.

• For a given ordered pair (i, j), the cardinality of a complete set can be as

large as T [68]. So the number of arcs in the multi-graph can be exponential

in the encoding length of T .

• Converting the solution for the transformed problem into a solution for the

original problem takes O(m |Ã| T ) time, where m is the number of vehicles

used.

In fact, the situation is even worse than this, as shown by the following theorem.

Theorem 6. The multi-graph can contain Θ(|C|2 T ) arcs, even if the original
graph G̃ contains only O(|C| log T ) arcs.

Proof. Suppose initially that |C| = 1, i.e., there is just a single customer. Let
k be any positive integer. Construct a graph G̃k as follows. The vertex set is
{0, . . . , 2k}, where 0 is the depot and 2k is the customer. For i = 1, . . . , k, the arc
set Ã contains the arcs (i− 1, i), (i− 1, i+ k) and (i, i+ k), together with arcs in
the opposite direction. The arcs (i− 1, i) have cost 2 + 2i−1 and time 1. The arcs
(i− 1, i+ k) have cost 1 and time 1. The arcs (i, i+ k) have cost 1 and time 2i−1.
For each of these arcs, the arc going in the opposite direction has the same cost
and time. (Figure 5.3 shows the graph G̃3, but with pairs of opposite arcs shown
as edges, to aid clarity.)

By construction, for any integer t between 0 and 2k − 1, there is a path from
0 to 2k in G̃k that has time k + t and cost 2k + 2k − 2 − t. Each of these paths
is non-dominated. If we set T = 2k+1, then each of these paths is also feasible,
and therefore corresponds to an arc from 0 to 2k in the multi-graph. The multi-
graph also contains analogous arcs from 2k to 0. Thus, the multi-graph contains
2k+1 = T arcs, yet G̃k contains only 3k = O(log T ) arcs. This proves the result for
|C| = 1.

To prove the result for |C| > 1, create |C| copies of the graph G̃k, one for each
customer, and merge them into a single graph, by identifying the depot nodes.
Now, between any pair of customers, for any integer t between 0 and 2k − 2, there
is a non-dominated path between the customers that has time 2k + t. (It suffices
to concatenate a non-dominated path from the first customer to the depot, of time
k + bt/2c, with a non-dominated path from the depot to the other customer, of
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Fig. 5.3: The graph G̃3, with costs and times.

time k+ dt/2e.) Moreover, if we set T = 2k+2, then each of these paths is feasible,
and therefore corresponds to an arc in the multi-graph. Thus, the multi-graph
contains Θ(|C|2 T ) arcs, yet the original graph contains only 3k|C| = O(|C| log T )
arcs.

The above considerations suggest that it may be better to work directly with

the original road network G̃ rather than with the multi-graph. So, suppose we have

an instance of the ‘Steiner’ m-TSPTW or VRPTW, and consider once again the

set covering formulation (5.1)–(5.3). In the Garaix et al. approach, Ω is assumed

to contain all feasible routes in the multi-graph. We propose instead to assume

that Ω contains all feasible routes in G̃. It is important to note that this change

in the definition of Ω has no effect on the cost of the optimal solution to the set

covering problem, nor on the lower bound from its LP relaxation. Indeed, given

any feasible route in the multi-graph, there is a corresponding feasible route in G̃

of no greater cost that services the same set of customers, and vice-versa.

We remark that it is always valid to use set covering rather than set partitioning

when working on G̃. Indeed, if an optimal solution to the set covering problem

corresponds to a set of routes that collectively service a customer more than once,

we can always take one of the routes that services that customer, and modify it so

that the vehicle passes through the given customer node without actually servicing

the customer. The modified route remains feasible and has the same cost as the

original route. Repeating this procedure, if necessary, we obtain an optimal set of

routes that collectively service each customer exactly once. (Incidentally, the same

argument shows the validity of using set covering in the multi-graph approach.)
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As in the case of the standard m-TSPTW and VRPTW [37, 39], one can if

desired enlarge the column set Ω so that non-elementary routes are permitted.

In the ‘Steiner’ context, this corresponds to permitting routes in G̃ that service

some customers more than once. (Recall that even elementary routes in G̃ are

permitted to pass through nodes more than once, regardless of whether or not they

are customer nodes.) In the following two sections, we present pricing routines for

the Steiner m-TSPTW and Steiner VRPTW for the cases of elementary and non-

elementary routes, respectively.

5.5 Pricing Elementary Routes

In this section, we present an exact pricing routine for the Steiner m-TSPTW,

for the case in which only elementary routes are permitted. We also show how to

adapt it to the Steiner VRPTW. We will see that these routines are much faster

than the analogous routines based on the multi-graph. Throughout, we assume

for simplicity of notation that the graph G̃ is directed, with node set Ṽ and arc

set Ã. The routines can be easily modified for the case in which G̃ is undirected

or mixed.

For a given Ω′ ⊂ Ω, suppose that the LP relaxation of the formulation (5.1)–

(5.3) has been solved, but only using columns in Ω′. For each i ∈ C, let πi ≥ 0 be

the dual price of the corresponding constraint (5.2) in the solution to the relaxation.

The reduced cost of the variable λr for a route r ∈ Ω \ Ω′ is equal to its true cost

cr, minus
∑

i∈C airπi. We now show that, in the case of the Steiner m-TSPTW,

one can find routes of negative reduced cost in O
(

2|C| |Ã| T
)

time.

For all S ⊆ C, all i ∈ Ṽ and all 0 ≤ t ≤ T , let f(S, i, t) denote the reduced

cost of the cheapest feasible path in G̃ (if any) that starts at the depot, services

every customer in S exactly once, possibly visiting other nodes in Ṽ along the way,

and ends at node i at time t. (If no such feasible path exists, we view f(S, i, t)
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as being infinite.) Also, for any given node i ∈ Ṽ , let n+(i) denote the set of

forward neighbors of i in G̃, by which we mean the set of nodes j for which the arc

(i, j) exists in Ã. One can then compute f(S, i, t) for all feasible triples (S, i, t) as

follows:

Set f(∅, 0, 0) = 0.

For t = 0, . . . , T do:

For all i ∈ Ṽ do:

For all S ⊆ C do:

For all j ∈ n+(i) such that t+ t̃ij < T do:

If f(S, i, t) + c̃ij < f(S, j, t+ t̃ij),

Set f(S, j, t+ t̃ij) to f(S, i, t) + c̃ij .

For all j ∈ n+(i) ∩ (C \ S) such that t+ t̃ij < ej do:

If f(S, i, t) + c̃ij − πj < f(S ∪ {j}, j, ej + sj),

Set f(S ∪ {j}, j, ej + sj) to f(S, i, t) + c̃ij − πj .

For all j ∈ n+(i) ∩ (C \ S) such that ej ≤ t+ t̃ij ≤ `j do:

If f(S, i, t) + c̃ij − πj < f(S ∪ {j}, j, t+ t̃ij + sj),

Set f(S ∪ {j}, j, t+ t̃ij + sj) to f(S, i, t) + c̃ij − πj .

In this DP algorithm, the three inner loops involving j correspond, respectively,

to (i) travelling from i to j without servicing j, (ii) travelling from i to j, waiting,

and then servicing j, and (iii) travelling from i to j and servicing j immediately.

When the DP terminates, any pair (S, t) with f(S, 0, t) < 0 corresponds to a

column with negative reduced cost. To construct such a column one simply traces

the path backward from the end state (S, 0, t) to the initial state (∅, 0, 0).

Note that, for a given t and S, each arc in Ã is examined no more than three
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times. Since there are at most T+1 choices for t and 2|C| choices for S, the running

time is O
(

2|C| |Ã| T
)

, as claimed. Although this running time is exponential in

|C|, it compares very favourably with the running time that would be obtained if

one used the multi-graph. Indeed, in that case, to compute f(S, i, t) for a given

S, i and t, one would have to examine every arc in the multi-graph whose head

is i and whose tail is in S \ {i}. From the proof of Theorem 6, this would take

O(|C| T ) time. Since there are O
(

2|C|
)

choices for S, O(|C|) choices for i, and T

choices for t, the DP would take O
(

2|C| |C|2 T 2
)

time.

As usual with DP algorithms (e.g., [17, 35, 45, 51]), some simple tests can be

used to eliminate states from consideration. For example, suppose that we pre-

compute, for all i ∈ Ṽ \ {0}, the time taken to travel from node i to the depot,

via a quickest path. Then one can eliminate the state (S, i, t) if the time taken to

travel from i to the depot exceeds T − t. Even with such additional tests, however,

the algorithm can be expected to be viable for large values of |C| only if the time

windows are very narrow. This is because pricing typically has to be performed

many times in a branch-and-price algorithm.

We remark that to adapt the above pricing routine to the Steiner VRPTW

it suffices to introduce an additional state variable q, representing the cumulative

load of the partial path, and add another ‘for’ loop in which q ranges from 0 to Q.

The running time does however then increase by a factor of Q.

To close this section, we observe that the above pricing routine can easily be

converted into an exact algorithm for the Steiner TSPTW. Indeed, if we set πj to

zero for all j ∈ C and run the routine, then the cost of an optimal Steiner TSPTW

solution is given by:

min
0<t≤T

{f(C, 0, t)} ,

and one can construct such an optimal solution by tracing the path backward from
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the optimal final state to the initial state (∅, 0, 0). The running time remains un-

changed at O
(

2|C| |Ã| T
)

. We imagine that, with the addition of some standard

state-elimination and dominance tests (as in [45]), this could lead to a viable solu-

tion algorithm for the Steiner TSPTW, provided the time windows are reasonably

narrow. We are not aware of any other exact algorithm for the Steiner TSPTW.

5.6 Pricing Non-Elementary Routes

In this section, we present exact pricing routines for the Steiner m-TSPTW and

VRPTW, for the case in which non-elementary routes are permitted. Once again,

we will see that the routines are much faster than the analogous routines based on

the multi-graph.

The new pricing routine for the Steiner m-TSPTW is similar to the one de-

scribed in the previous section, but we drop the index S from the state, since we

no longer need to keep a record of which customers have already been serviced.

Accordingly, for all i ∈ Ṽ and all 0 ≤ t ≤ T , let f(i, t) denote the reduced cost of

the cheapest feasible path (if any) that starts at the depot, services any customers

any number of times, possibly visiting other nodes in Ṽ along the way, and ends

at node i at time t. One can compute f(i, t) for all i and t as follows:

Set f(0, 0) = 0.

For t = 0, . . . , T do:

For all i ∈ Ṽ do:

For all j ∈ n+(i) such that t+ t̃ij < T do:

If f(i, t) + c̃ij < f(j, t+ t̃ij),

Set f(j, t+ t̃ij) to f(i, t) + c̃ij .

For all j ∈ n+(i) ∩ C such that t+ t̃ij < ej do:

If f(i, t) + c̃ij − πj < f(j, ej + sj),

Set f(j, ej + sj) to f(i, t) + c̃ij − πj .
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For all j ∈ n+(i) ∩ C such that ej ≤ t+ t̃ij ≤ `j do:

If f(i, t) + c̃ij − πj < f(j, t+ t̃ij + sj),

Set f(j, t+ t̃ij + sj) to f(i, t) + c̃ij − πj .

The explanation of this DP routine is similar to that given in the previous

section. When it terminates, any t with f(0, t) < 0 corresponds to a column with

negative reduced cost.

This DP routine is easily seen to run in O(|Ã| T ) time. As we will show in

the next section, this is fast enough to be practically useful. It also compares

very favourably, again, with that which would be obtained with the multi-graph

approach, which can easily be shown to be O (|C|2 T 2).

As in the previous section, state-elimination and dominance tests could improve

the practical performance of the routine, and one can adapt the routine to the

Steiner VRPTW, at the cost of increasing the running time by a factor of Q.

5.7 Computational Experiments

In this section, we report on some computational experiments. Subsection 5.7.1

explains how we created a collection of sparse graphs for use in the experiments.

Subsection 5.7.2 is concerned with the construction of the multi-graph and Sub-

section 5.7.3 is concerned with the pricing routines.

5.7.1 Construction of sparse graphs

To begin with, we constructed ten sparse, undirected graphs, each with its own

edge costs. This was done using a similar procedure to the one used in our earlier

paper [88], which was specifically designed to produce graphs that resemble real

life road networks. In detail, the following was done for n ∈ {50, 100, 150, 200, 250}

and then for n = {100, 200, 300, 400, 500}:

1. Set Ṽ = {1, . . . , n} and Ẽ = ∅.
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2. Place the n nodes at random in a circle of radius 10
√
n.

3. Define the set of potential edges P = {{i, j} : 1 ≤ i < j ≤ n}.

4. For each {i, j} ∈ P , let the cost cij be the Euclidean distance between the

end-nodes, rounded up to the nearest integer.

5. Sort the potential edges in non-decreasing order of cost.

6. Examine each edge in P in turn. Insert it into Ẽ if both of the following

conditions are satisfied:

(a) It does not cross one of the edges already inserted into Ẽ.

(b) It does not form an angle of less than 60◦ with an edge that has already

been inserted into Ẽ and with which it shares an end-node.

7. If there are no isolated nodes in the resulting graph, output the graph (Ṽ , Ẽ).

Otherwise, repeat the procedure.

The only difference between this procedure and the one used in [88] is that, in step

2, the circle is of radius 10
√
n, rather than 100. This change was made to ensure

that the average edge cost is roughly the same across all instances, which is closer

to what happens in real life.

For each of the ten graphs, one node was selected at random to be the depot.

For the first five graphs, with n ∈ {50, . . . , 250}, each non-depot node was then

given a probability of 2/3 of being required. For the other five graphs, with

n = {100, . . . , 500}, the probability was set to 1/3.

Figure 5.4 shows the graph that was obtained for n = 200 and a probability of

2/3. The required and non-required nodes are represented by small red and green

circles, respectively, and the depot is represented by the small black square.
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Fig. 5.4: Graph with n = 200 and |C| = 133.

5.7.2 Experiments with multi-graph construction

In our first set of experiments, we examined the complexity of multi-graph com-

putation in practice. Along the way, we also explored the effect of correlations

between the costs and travel times. Intuitively, one would expect the number of

edges in the multi-graph to increase as the correlation between costs and times

decreases. Accordingly, for each of the ten graphs we created three different sets

of random travel times, with differing levels of correlation with the costs: strong

correlation, weak correlation and no correlation. This was done as follows, for each

instance:

• Let c̄ be the maximum edge cost.

• For each edge e ∈ Ẽ, let re be a random number uniformly distributed

between 0 and 1. Set:

– te = d0.9ce + 0.1rc̄e for strong correlation,
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– te = d0.5ce + 0.5rc̄e for weak correlation,

– te = drc̄e for no correlation.

The formulae used here were intended to make the travel times of the same order

of magnitude as the costs.

For each of the resulting 30 cases, we computed the corresponding multi-graph

using an algorithm of our own. This consisted of calling a single-source bi-criterion

shortest-path subroutine |C| times, with each customer in turn taking the role of

the source node. The subroutine was a straightforward dynamic programming

algorithm. Although our algorithm is fairly rudimentary, its running time is

O(|C| |Ẽ| T ), which matches that of the best algorithms (see Section 5.4).

Table 5.1 shows the results obtained. The first three columns show the number

of nodes, edges and customers in each of the ten sparse graphs. The next column

shows the degree of correlation (strong, weak, none). The following two columns

show the number of edges in the multi-graph, and the time taken to compute the

multi-graph using our algorithm, in seconds.

We see that the number of edges in the multi-graph is rather high in all cases.

As expected, it increases as the correlation decreases, and increases as |Ṽ |, |Ẽ| and

|C| increase. From the way the multi-graph is constructed, one would expect the

number of edges in the multi-graph to grow quadratically in |C| and exponentially

in |Ṽ | and |Ẽ|. This is consistent with the results in the table.

The running times, on the other hand, are quite reasonable for these instances.

This suggests that the time taken to compute the multi-graph is not an issue after

all, although it could be, if the travel times were measured to a higher precision.

5.7.3 Comparison of pricing routines

Next, we wished to compare the time taken to perform pricing (with non-elementary

routes permitted), when using either our algorithm (described in Section 5.6), or
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|Ṽ | |Ẽ| |C| Corr |E| Time (s)

50 69 33 S 674 0.5
W 903 0.5
N 1324 0.5

100 139 66 S 2850 2.2
W 5009 2.1
N 6892 2.2

150 215 100 S 5852 5.1
W 12765 5.1
N 18337 5.0

200 291 133 S 11641 9.0
W 31770 9.0
N 35617 9.1

250 367 166 S 18454 13.3
W 37585 13.9
N 56042 13.4

100 139 33 S 776 1.0
W 1241 1.0
N 1646 1.1

200 291 66 S 2857 4.3
W 6096 4.2
N 9708 4.3

300 442 100 S 7224 10.0
W 16030 9.9
N 23480 9.9

400 597 133 S 12946 18.1
W 32087 18.9
N 47359 18.7

500 744 166 S 23650 29.5
W 60824 29.5
N 79321 30.3

Tab. 5.1: Results on the construction of the multi-graph.
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the corresponding algorithm based on the multi-graph. Since we expected the pric-

ing time to depend on the width of the time windows, for each of the thirty combi-

nations mentioned in the previous subsection, we created two Steiner m-TSPTW

instances, with two different widths for the time windows. Each customer node

i ∈ C was assigned an integer service time si ∈ [1, 2] at random. A set of routes

was then constructed in a greedy way, so that each customer was serviced by ex-

actly one vehicle. Finally, time windows [ei, `i] were assigned to each customer

such that the given routes were feasible and such that either ei + 3 ≤ `i ≤ ei + 4

(for narrow time windows) or ei +10 ≤ `i ≤ ei +15 (for wide time windows). The

time horizon T was set to 3000 in all cases.

Table 5.2 shows the results obtained for the resulting 60 instances. The first

four columns have the same meaning as before. The next four columns show the

time taken, in seconds, to solve the LP relaxation of the set covering problem

under various settings. The subscripts ‘n’ and ‘w’ indicate narrow and wide time

windows, respectively, and the subscripts ‘m’ and ‘o’ indicate the multi-graph

approach and our approach, respectively. All times include the time taken to re-

optimise the LPs after adding columns, but, for these instances, the bulk of the

time was spent pricing. The last two columns present the acceleration in speed

gained by using our approach instead of the multi-graph approach, for both narrow

and wide windows (i.e., column An is computed by dividing column Tnm by column

Tno, and column Aw is computed by dividing column Twm by column Two).

A first observation is that the pricing times are rather high in all cases. This

is because we only added one column after each pricing call, namely, the one with

the most negative reduced cost. One could probably reduce the number of pricing

iterations, and therefore the pricing time, if one added many columns after each

call. A second observation is that the pricing times tend to be higher when time

windows are wide. This is probably because the cardinality of the column set Ω is
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|Ṽ | |Ẽ| |C| Corr Tnm Tno Twm Two An Aw

50 69 33 S 8 2 10 3 4.0 3.3
W 13 3 10 3 4.3 3.3
N 32 6 32 7 5.3 4.6

100 139 66 S 103 23 216 29 4.5 7.4
W 301 49 294 35 6.1 8.4
N 504 59 518 75 8.5 6.9

150 215 100 S 974 122 760 126 8.0 6.0
W 1405 139 2344 198 10.1 11.8
N 7369 219 3713 208 33.6 17.9

200 291 133 S 17377 692 4854 569 25.1 8.5
W 7777 479 11666 446 16.2 26.2
N 14151 588 12187 620 24.1 19.7

250 367 166 S 5613 457 4753 300 12.3 15.8
W 8415 720 10095 411 11.7 24.6
N 4596 381 14264 538 12.1 26.5

100 139 33 S 17 10 17 9 1.7 1.9
W 19 8 24 10 2.4 2.4
N 28 13 37 14 2.2 2.6

200 291 66 S 348 97 398 100 3.6 4.0
W 1043 223 697 161 4.5 4.3
N 999 129 796 120 7.7 6.6

300 442 100 S 1008 210 695 365 4.8 1.9
W 1875 259 1714 248 7.2 6.9
N 3692 340 2362 272 10.9 8.7

400 597 133 S 1457 300 2462 423 4.9 5.8
W 2055 194 4171 408 10.6 10.2
N 11011 380 7428 436 29.0 17.0

500 744 166 S 4554 795 7803 942 5.7 8.3
W 6643 620 12197 984 10.7 12.4
N 23220 1775 47820 1551 13.1 30.8

Tab. 5.2: Time taken by pricing routines on Steiner m-TSPTW instances.



5. Pricing Routines for VRPTW on Road Networks 118

larger when the windows are wider.

More importantly, for our purposes, it is clear that our approach is significantly

faster than the multi-graph approach. Moreover, the difference seems to grow as

the size of the original graph grows. In our view, this demonstrates clearly that

working on the original graph is preferable in terms of running time, as well as in

terms of ease of implementation.

5.8 Discussion

Despite the vast research effort that has been put into VRPs with time windows,

most of the existing exact and heuristic solution algorithms cannot be relied upon

to give meaningful solutions when the original instance is defined on a road net-

work. The approach of Garaix et al. [59], based on the computation of an auxiliary

multi-graph, provides one way around this difficulty. In this paper, we have shown

that it is possible instead to work with the original graph throughout, and that

this can lead to significant savings in computing time.

We leave to future research the development of a full branch-and-price or

branch-cut-and-price algorithm for the Steiner versions of them-TSPTW or VRPTW.

We remark that in order to develop such algorithms one would need to develop

specialised branching rules that work on the original graph rather than the multi-

graph. For a discussion of this issue in the context of the Capacitated Arc Routing

Problem, see Bode & Irnich [16].



6. CONCLUSION

6.1 Summary

The vehicle routing problem and its variants are amongst the most famous com-

binatorial optimisation problems and have a prominent role in the Operational

Research literature. Over the years they have drawn much attention from many

researchers in the transportation and logistics sectors due to their complexity and

their wide applicability.

The main goal of this thesis is to produce a viable solution algorithm for one

or more vehicle routing problems with correlated congestion. At the preliminary

stage, alternative integer programming formulations for routing problems on road

networks have been proposed and their performances have been examined theo-

retically and computationally. Then the structure of correlation between travel

speeds on roads has been studied using a real traffic data set and different corre-

lation structures have been incorporated in the integer programming formulations

that we proposed for the Steiner TSP. The outcome of this research has been four

separate research articles that each focusses on modelling aspects or the solution

methods of VRPs defined on the original road network graph.

In the first research article presented in chapter 2, we have derived a family

of compact formulations for the TSP and some other variants of VRP, that are

defined on the original road network graph. The performance of these formulations

and strength of their LP relaxation has been investigated both theoretically and

experimentally. It has been shown that instances with over 200 nodes can be

solved on a standard branch-and-bound solver in under two hours, using the best
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of our formulations.

In the second article presented in chapter 3, an in-depth study has been carried

out into the structure of the correlations between travel speeds on a very congested

road network by performing statistical analysis on real traffic data that has been

collected in the City of London. It has been shown that for this data set, there is

still significant spatial correlations between speeds on roads that are up to twenty

links apart and the temporal fluctuations become less correlated as the gap between

time periods grows. A principal component analysis of the correlations suggests

that although speeds on this congested road network have long-range correlations,

the correlation structure itself is not very complex. In fact up to 89% of the

variation in the temporal correlation have been explained in 3 dimensions and for

spatial correlation 82% of the variation has been explained in 6 dimensions. This

could be useful for data compression.

The third article presented in chapter 4, is an extension of our first paper that

incorporates our findings in chapter 3 into a modelling framework for VRP. The

STSPCC has been defined as a potentially useful variant of VRP that considers the

TSP on a real road network where the costs are stochastic random variables with

correlation. STSPCC is best thought of as a bi-objective problem, but we have

used standard techniques to convert it into a single-objective problem with eight

different integer programming formulations presented. It has also been shown how

to account for three different correlation structures in each of the formulations.

Our experimental results on a number of test instances have shown that instances

of up to 100 nodes can be solved on a standard branch-and-bound solver in less

than two hours.

Finally, the fourth research article presented in chapter 5 has shown how most

of the exact algorithms proposed for the VRPs with time windows, might not

be applicable if the original problem is defined on the road network graph. This
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is due to the underlying assumption of these algorithms that the cheapest path

between a pair of customers is the same as the quickest path. This assumption

often is not valid on a real road network. Garaix et al. [59] have proposed to

tackle this issue by first storing alternative paths in an auxiliary multi-graph, and

then using that multi-graph within a branch-and-price algorithm. We have shown

that it is possible instead to work with the original graph throughout. Considering

pricing routines as a key component in an exact branch-and-price solution method,

we have proposed some alternative pricing routines for the algorithm that can be

used to solve the problem directly on the original graph. It has been shown clearly

that using this routine can lead to significant savings in computing time compared

to the Garaix et al.’s approach.

6.2 Further Research

The transportation problems faced by many companies in real life can generally be

stated as transferring goods between a number of customers at different locations

by some means of transportation. Typically there are many additional restrictions

such as capacity limitations associated with the use of different vehicles or drivers

working hours and availability. Furthermore, there may be restrictions on presence

of customers and delivery times. These problems are basically contained in CVRP

and VRPTW. In current solution methods of these variants, the stochastic nature

of the travel times and the correlations between them is often overlooked. A

natural direction for future research would be to investigate how to handle this

uncertainty and incorporate the correlations in other variants of VRP.

Furthermore, each chapter of this thesis puts forward new ideas and directions

for future research. Some of these ideas are as follows:

• Considering the article presented in chapter 2, one could try a cut-and-

branch approach, in which cutting planes are used to strengthen the initial
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formulation, before feeding the strengthened formulation into the branch-

and-bound solver. This approach may have an affect on the performance of

some or all the formulations proposed and is an interesting matter for further

investigation.

• In chapter 2, we mentioned that the Steiner TSPTW can be formulated as a

mixed 0− 1 linear program with O(|C||E|) variables and constraints, where

C is the set of customers and E is the set of edges. The details are presented

in the appendix. However, whether there there exists a formulation with

fewer variables and constraints, is still an open question. Also adapting the

formulations to other problems, e.g., problems with multiple vehicles could

be a potential research area for future.

• Our analysis on the correlation structures between travel speeds on road net-

works in the second article presented in chapter 3 were based the traffic data

for City of London. However, since correlations can depend on a number

of factors such as congestion levels, the distance between road links and the

road types (i.e., motorways or small city links), results may be different for

a less congested area or a road network with more sparsity. A systematic

characterization of road networks for this purpose and a study of correla-

tion structures for different types could be another logical step for further

research.

• An interesting extension of the third article presented in chapter 4 would be

to try to develop methods for computing the entire efficient frontier, or at

least approximating it from above and/or below. One could also define and

explore different versions of the problem, e.g., two-stage stochastic, robust,

chance-constrained or dynamic versions.
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• Regarding the pricing routine that was proposed in the fourth article pre-

sented in chapter 5 for solving the VRPTW on the original road network,

there is a need to develop specialised branching rules, so that the routine

can be used effectively within a branch-and-price algorithm.

• Another interesting direction for future research would be to try to develop

formulations and bounding techniques for vehicle routing problems where

travel times are stochastic, correlated and time-varying (i.e., are random

variables with probability distribution functions that vary with time).

Finally, we believe that the work presented in this thesis has has made great

contributions towards modelling and solving the vehicle routing problems on real

road network and potentially initiates some new ideas for future research.



7. APPENDIX

This appendix provides two sets of formulations for VRPs with time windows that

can be used to solve the problem directly on the original road network.

7.1 Time-indexed Formulations

First, we adapt the time-indexed formulation for the TSPTW in [32] to the Steiner

version. For each a ∈ Ã, let c̃a be the cost of traversing a and let t̃a be the time

taken. We define si, ei and `i as in Subsection 5.3.1, except that they are defined

only for i ∈ C. Finally, we define T as in Subsection 5.3.1.

We define three sets of binary variables as follows. For a ∈ Ã and 0 ≤ t < T ,

let xt
a take the value 1 if and only if the salesman begins to traverse arc a at time t.

For i ∈ C and ei ≤ t ≤ `i, let y
t
i take the value 1 if and only if service at customer

i begins at time t. For i ∈ C and 0 < t < ei, let z
t
i take the value 1 if and only

if the salesman arrives at node i at time t, waits until time ei, and then begins

servicing customer i.

We will also need the following additional notation. For any node i ∈ Ṽ , we

let δ+(i) denote the set of arcs leaving i (i.e., whose tail is i), and δ−(i) denote the

set of arcs arriving at i (i.e., whose head is i). Also, C̄ will denote V \ (C ∪ {0}).

Then, to solve the Steiner TSPTW, it suffices to minimise

T
∑

t=0

∑

a∈Ã

c̃ax
t
a
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subject to the following constraints:

∑`i
t=ei

yti = 1 (i ∈ C) (7.1)

∑

a∈δ+(0) x
0
a = 1 (7.2)

∑

a∈δ+(0) x
t
a ≤

∑

a∈δ−(0) x
t−t̃a
a (0 < t < T ) (7.3)

∑

a∈δ+(i) x
t
a =

∑

a∈δ−(i) x
t−t̃a
a (i ∈ C̄, 0 < t < T ) (7.4)

∑

a∈δ+(i) x
t
a + zti =

∑

a∈δ−(i) x
t−t̃a
a (i ∈ C, 0 < t < ei) (7.5)

∑

a∈δ+(i) x
ei
a + yeii =

∑

a∈δ−(i) x
ei−t̃a
a +

∑ei−1
t=1 zti (i ∈ C) (7.6)

∑

a∈δ+(i) x
t
a + yti =

∑

a∈δ−(i) x
t−t̃a
a + yt−si

i (i ∈ C, ei < t < T ) (7.7)

∑ei−1
t=1 zti ≤ yeii (i ∈ C) (7.8)

∑

a∈δ+(i) x
t+si
a ≥ yti (i ∈ C, ei ≤ t ≤ `i) (7.9)

xt
a ∈ {0, 1} (a ∈ Ã, 0 ≤ t < T ) (7.10)

yti ∈ {0, 1} (i ∈ C; ei ≤ t ≤ `i) (7.11)

zti ∈ {0, 1} (i ∈ C; 0 < t < ei). (7.12)

The equations (7.1) ensure that every customer is serviced within its time window.

The constraint (7.2) ensures that the salesman departs from the depot at time 0.

The constraints (7.3) permit the salesman to pass through the depot node any

number of times, but ensure that the route eventually ends at the depot. The

equations (7.4) ensure that, if the salesman arrives at a node that is neither the

depot nor a customer, then he departs immediately. The equations (7.5)–(7.7)

ensure that, if the salesman arrives at a customer node, then he either waits,

or services, or departs immediately. (In constraints (7.7), y variables are to be

included on the left-hand side only if they are defined for the given value of t.) The

constraints (7.8) ensure that, if the salesman is waiting at a customer node, then he

goes on to service that customer at the start of its time window. The constraints

(7.9) ensure that, when the salesman has finished servicing a customer, he departs

immediately. Finally, constraints (7.10)–(7.12) are the binary conditions.
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This time-indexed formulation of the Steiner TSPTW has O(|Ã| T ) variables

and constraints. Although its size is pseudo-polynomial (rather than polynomial).

When G̃ is sparse and T is fairly small, one can solve small- to medium- instances

to proven optimality using a standard branch-and-bound solver.

To adapt the time-indexed formulation to the Steiner m-TSPTW, the most

obvious way is to create m copies of each variable, one for each vehicle. Suppose

the variables are labelled xt
ak, y

t
ik and ztik, for k = 1, . . . ,m. Then, one must make

three changes. First, change the objective function to:

m
∑

k=1

T
∑

t=0

∑

a∈Ã

c̃ax
t
ak.

Second, change the equations (7.1) to:

m
∑

k=1

`i
∑

t=ei

ytik = 1 (i ∈ C).

Third, create one copy of the constraints (7.2)–(7.12) for each vehicle. We will call

the resulting formulation the three-index formulation.

Note that the three-index formulation has O(m|Ã|T ) variables and constraints.

This is so large that the formulation is unlikely to be of practical use.

However, there is a more economical way to adapt the time-indexed formulation

of the Steiner TSPTW to the Steiner m-TSPTW: simply change the right-hand

side of the constraint (7.2) to m, and permit the x variables to be general integers,

rather than binary. This keeps the number of variables and constraints at O(|Ã|T ).

We will call this the aggregated formulation of the Steiner m-TSPTW.

These two formulations of the Steinerm-TSPTW can be adapted to the Steiner

VRPTW in various ways. For example, to adapt the aggregated formulation, one

could:

• Add 2|C| − 1 constraints, to ensure that, for each non-empty set S ⊆ C, at

least
⌈
∑

i∈S qi/Q
⌉

vehicles traverse the arcs that connect S to Ṽ \ S.
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• Add O(|Ã| T ) variables, representing the total load carried along each arc

at each time step, and O(|Ã| T ) constraints, ensuring that each customer

receives qi units and that the vehicle capacity Q is never exceeded at any

time.

• Add a ‘load’ index to the variables, so that, for example, xtq
a represents the

number of vehicles that begin to traverse arc a at time t while carrying a

load of q. This leads to a huge formulation, with O(|Ã| T Q) variables and

constraints.

We omit further details, for the sake of brevity.

7.2 Compact Formulations

The formulation given in the previous section, though smaller than the one of

Geraix et al. [59], is still of exponential size. In this section, we present formula-

tions of polynomial size.

We begin with the TSPTW. For every a ∈ A and k = 0, . . . , nR, let the binary

variable x̃k
a take the value 1 if and only if the salesman traverses arc a after having

serviced exactly k customers so far. Also let gka be a non-negative continuous

variable representing the total time that has elapsed when the salesman starts to

traverse arc a, having exactly serviced k customers, or 0 if no such traversal occurs.

Finally, for all i ∈ VR and k = 1, . . . , nR, let the binary variable yki take the value

1 if and only if customer i is the kth customer to be serviced.

The objective function is simply:

min

nR
∑

k=0

∑

a∈A

cax̃
k
a.

To ensure that each required node is serviced exactly once, we have the following
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constraints:

∑nR

k=1 y
k
i = 1 (∀i ∈ VR)

∑

i∈VR
yki = 1 (k = 1, . . . , nR).

To ensure that the vehicle departs from and returns to the depot a correct number

of times, we have:

∑

a∈δ+(1) x̃
0
a = 1

∑

a∈δ−(1) x̃
k
a =

∑

a∈δ+(1) x̃
k
a (∀k = 1, . . . , nR − 1)

∑

a∈δ−(1) x̃
nR

a = 1.

Then, to ensure that the vehicle departs from each non-depot node as many times

as it arrives, we have:

∑

a∈δ−(i) x̃
0
a = y1i +

∑

a∈δ+(i) x̃
0
a (∀i ∈ VR)

yki +
∑

a∈δ−(i) x̃
k
a = yk+1

i +
∑

a∈δ+(i) x̃
k
a (∀i ∈ VR, k = 1, . . . , nR − 1)

ynR

i +
∑

a∈δ−(i) x̃
nR

a =
∑

a∈δ+(i) x̃
nR

a (∀i ∈ VR)

∑

a∈δ−(i) x̃
k
a =

∑

a∈δ+(i) x̃
k
a (∀i ∈ V \ VR ∪ {1}, k = 0, . . . , nR).

Next, to ensure that the gka variables take the value that they should, we add the

following constraint for i ∈ VR and for k = 0, . . . , nR − 1:

∑

a∈δ+(i) g
k+1
a + T (1− yk+1

i ) ≥∑a∈δ−(i) g
k
a +

∑

a∈δ−(i) tax̃
k
a + siy

k+1
i

∑

a∈δ+(i) g
k
a + Tyk+1

i ≥∑a∈δ−(i) g
k
a +

∑

a∈δ−(i) tax̃
k
a.

the following constraints for i ∈ VR:

∑

a∈δ+(i)

gnR

a ≥
∑

a∈δ−(i)

gnR

a +
∑

a∈δ−(i)

tax̃
nR

a .

and the following constraint for i ∈ V \ VR and for k = 0, . . . , nR:

∑

a∈δ+(i)

gka ≥
∑

a∈δ−(i)

gka +
∑

a∈δ−(i)

tax̃
k
a.
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Moreover, to ensure that the time windows are obeyed, we add the following

constraints:

∑

a∈δ+(i) g
k
a ≥ (ai + si)y

k
i (∀i ∈ VR, k = 1, . . . , nR)

∑

a∈δ−(i) g
k−1
a +

∑

a∈δ−(i) tax̃
k−1
a ≤ T − (T − bi)y

k
i (∀i ∈ VR, k = 1, . . . , nR).

Finally, we have the trivial constraints:

x̃k
a ∈ {0, 1} (∀a ∈ A, k = 0, . . . , nR)

yki ∈ {0, 1} (∀i ∈ VR, k = 1, . . . , nR)

0 ≤ gka ≤ T x̃k
a (∀a ∈ A, k = 0, . . . , nR).

This formulation has O(|C||E|) variables and constraints, and is therefore poly-

nomial in size. It can be adapted to the m-TSPTW by using an additional index.

That is, xk
aj takes the value 1 if and only if vehicle j traverses arc a after having

serviced k customers, ykij takes the value 1 if and only if customer i is the kth

customer serviced by vehicle j, and gkaj is the total time that has elapsed when

vehicle j starts to traverse arc a, having serviced exactly k customers, or 0 if no

such traversal occurs. The number of variables and constraints would increase to

O(m|C||E|). We omit the details for brevity.

We leave the existence of a significantly smaller compact formulation as an

open question.
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[45] Y. Dumas, J. Desrosiers, E. Gélinas, and M. Solomon. An optimal algorithm

for the travelling salesman problem with time windows. Oper. Res., 43:367–

371, 1995.

[46] M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial

optimization problems. Comput. Oper. Res., 34:2674–2694, 2007.

[47] EnviromentalProtectionUK. Car pollution. http://www.

environmental-protection.org.uk/committees/air-quality/

air-pollution-and-transport/car-pollution. Accessed: 2014-06-

02.

[48] L. Escudero. An inexact algorithm for the sequential ordering problem.

Eur. J. Oper. Res., 37:232–253, 1988.



BIBLIOGRAPHY 134

[49] Y. Fan, R. Kalaba, and J. Moore. Shortest paths in stochastic networks

with correlated link costs. Computers and Mathematics with Applications,

49:1549–1564, 2005.

[50] D. Feillet, P. Dejax, and M. Gendreau. Travelling salesman problems with

profits. Transp. Sci., 39:188–205, 2005.

[51] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for

the elementary shortest path problem with resource constraints: application

to some vehicle routing problems. Networks, 44:216–229, 2004.
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[56] R. Fortet. L’algèbre de boole et ses applications en recherche opérationnelle.

Cahiers Centre Etudes Rech. Oper., 4:5–36, 1959.

[57] R. Fukasawa, H. Longo, J. Lysgaard, M. P. de Arago, M. Reis, E. Uchoa, and

R. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle

routing problem. Math. Program. Series A, 106:491–511, 2006.

[58] D. Gale. A theorem of flows in networks. Pacific J. Math., 7:1073–1082,

1957.

[59] T. Garaix, C. Artigues, D. Feillet, and D. Josselin. Vehicle routing prob-

lems with alternative paths: An application to on-demand transportation.

Eur. J. Oper. Res., 204:62–75, 2010.

[60] B. Gavish and S. Graves. The travelling salesman problem and related prob-

lems. Working paper, Operations Research Centre, Massachusetts Institute

of Technology, 1978.

[61] M. Gendreau, G. Laporte, and R. Seguin. Stochastic vehicle routing.

Eur. J. Oper. Res., 88:3–12, 1996.



BIBLIOGRAPHY 135

[62] B. Golden and A. Assad. Vehicle routing: methods and studies. North-

Holland, Amsterdam, 1988.

[63] B. Golden and A. Assad. Introduction to linear algebra. Wellesley–Cambridge

Press, Wellesley MA, 2009.

[64] B. Golden, L. Levy, and R. Vohra. The orienteering problem.

Nav. Res. Log., 34:307–318, 1987.

[65] B. Golden, S. Raghavan, and E. Wasil. Series in Operations Re-

search/Computer Science Interfaces, chapter The vehicle routing problem:

latest advances and new challenges. Springer, Berlin, 2008.

[66] L. Gouveia and S. Voss. A classification of formulations of the (time-

dependent) travelling salesman problem. Eur. J. Oper. Res., 83:69–82,

1995.

[67] G. Gutin and A. Punnen, editors. The Travelling Salesman Problem and its

Variations. Kluwer, Dortrecht, 2002.

[68] P. Hansen. Bicriterion path problems. In G. F. . T. Gal, editor, Multi-

ple Criteria Decision Making: Theory and Applications. Lectures Notes in

Economics and Mathematical Systems. Springer, Heidelberg, 1980.

[69] W. Hardgrave and G. Nemhauser. On the relation between the travelling

salesman and longest path problems. Oper. Res., 10:647–657, 1962.
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