
Please cite this paper as:

Trivikram Dokka & Yves Crama & Frits C.R. Spieksma (2014) Approximation Algorithms for
Multi-Dimensional Vector Assignment Problems. LUMS Working Paper 2014:2, Lancaster
University Management School, Lancaster, United Kingdom.

Lancaster University Management School

Working Paper 2014:3

Approximation Algorithms for Multi-

Dimensional Vector Assignment Problems

Trivikram Dokka & Yves Crama & Frits C.R. Spieksma

The Department of Management Science

Lancaster University Management School

Lancaster LA1 4YX

UK

© Trivikram Dokka & Frits C.R. Spieksma

All rights reserved. Short sections of text, not to exceed

two paragraphs, may be quoted without explicit permission,

provided that full acknowledgment is given.

The LUMS Working Papers series can be accessed at http://www.lums.lancs.ac.uk/publications

LUMS home page: http://www.lums.lancs.ac.uk

Approximation Algorithms for
Multi-Dimensional Vector Assignment Problems

Trivikram Dokkaa,∗, Yves Cramac, Frits C.R. Spieksmab

aDepartment of Management Science, Lancaster University Management School, Lancaster, LA1 14X,
United Kingdom.

bORSTAT, K.U.Leuven, Naamsestraat 69, B-3000, Leuven, Belgium.
cQuantOM, HEC Management School, University of Liège, Rue Louvrex 14 (N1), B-4000 Liège,

Belgium.

Abstract

We consider a special class of axial multi-dimensional assignment problems called multi-
dimensional vector assignment (MVA) problems. An instance of the MVA problem is
defined by m disjoint sets, each of which contains the same number n of p-dimensional
vectors with nonnegative integral components, and a cost function defined on vectors.
The cost of an m-tuple of vectors is defined as the cost of their component-wise maximum.
The problem is now to partition the m sets of vectors into n m-tuples so that no two
vectors from the same set are in the same m-tuple and so that the total cost of the m-
tuples is minimized. The main motivation comes from a yield optimization problem in
semi-conductor manufacturing. We consider two classes of polynomial-time heuristics for
MVA, namely, hub heuristics and sequential heuristics, and we study their approximation
ratio. In particular, we show that when the cost function is monotone and subadditive,
hub heuristics, as well as sequential heuristics, have finite approximation ratio for every
fixed m. Moreover, we establish better approximation ratios for certain variants of hub
heuristics and sequential heuristics when the cost function is monotone and submodular,
or when it is additive. We provide examples to illustrate the tightness of our analysis.
Furthermore, we show that the MVA problem is APX-hard even for the case m = 3 and
for binary input vectors. Finally, we show that the problem can be solved in polynomial
time in the special case of binary vectors with fixed dimension p.

Keywords: multi-dimensional assignment; approximability; worst-case analysis;
submodularity; wafer-to-wafer integration;

1. Introduction

1.1. Problem statement
We consider a multi-dimensional assignment problem motivated by an application

arising in the semi-conductor industry. Formally, the input of the problem is defined by

∗Correspondence to: Department of Management Science, Lancaster University Management School,
Lancaster, LA1 14X, United Kingdom.

Email addresses: t.dokka@lancaster.ac.uk (Trivikram Dokka), Yves.Crama@ulg.ac.be (Yves
Crama), frits.spieksma@kuleuven.be (Frits C.R. Spieksma)

Preprint submitted to Elsevier April 15, 2014

m disjoint sets V1, . . . , Vm, where each set Vk contains the same number n of p-dimensional
vectors with nonnegative integral components, and by a cost function c(u) : Zp

+ → R+.
Thus, the cost function assigns a nonnegative cost to each p-dimensional vector. A
(feasible) m-tuple is an m-tuple of vectors (u1, u2, . . . , um) ∈ V1 × V2 × . . . × Vm, and
a feasible assignment for V ≡ V1 × . . . × Vm is a set A of n feasible m-tuples such
that each element of V1 ∪ . . . ∪ Vm appears in exactly one m-tuple of A. We define the
component-wise maximum operator ∨ as follows: for every pair of vectors u, v ∈ Zp

+,

u ∨ v = (max(u1, v1),max(u2, v2), . . . ,max(up, vp)).

Now, the cost of an m-tuple (u1, . . . , um) is defined as c(u1 ∨ . . . ∨ um) and the cost of a
feasible assignment A is the sum of the costs of its m-tuples: c(A) =

∑
(u1,...,um)∈A c(u

1∨
. . . ∨ um).

With this terminology, the multi-dimensional vector assignment problem (MVA-m, or
MVA for short) is to find a feasible assignment for V with minimum total cost. A case of
special interest is the case when all vectors in V1∪ . . .∪Vm are binary 0–1 vectors; we call
this special case binary MVA. Finally, the wafer-to-wafer integration problem (WWI-m
or WWI for short) arises when the cost function of the binary MVA is additive, meaning
that c(u) =

∑p
i=1 ui.

In this paper, we investigate how closely the optimal solution of MVA-m and WWI-m
can be approximated by polynomial-time approximation algorithms.

Example 1. An instance of WWI with m = 3, n = p = 2 is displayed in Figure 1.1.
The optimal value of the instance is equal to 2: it is achieved by assigning the first vector
of V1, the second vector of V2, and the first vector of V3 to the same triple, thus arriving
at vector (1, 0) with cost c(1, 0) = 1; the remaining three vectors form a second triple
with cost c(0, 1) = 1.

00

01

00

10

10

01

V1 V2 V3

Figure 1: A WWI-3 instance with m = 3, n = p = 2

1.2. Wafer-to-wafer integration and related work

The motivation for studying the WWI problem arises from the optimization of the
wafer-to-wafer production process in the electronics industry. We only provide a brief
description of this application; for additional details, we refer to papers by Reda, Smith
and Smith [11], Taouil and Hamdioui [17], Taouil et al. [18], and Verbree et al. [19].

For our purpose, a wafer can be viewed as a string of elements called dies. Each die
can be either good (operative) or bad (defective). So, a wafer can be modeled as a binary

3

vector, where each ‘0’ represents a good die and each ‘1’ represents a bad die. There are
m lots of wafers, say V1, . . . , Vm, and each lot contains n wafers. All wafers in a given
lot are meant to have identical functionalities, were it not for the occasional occurence
of defective dies during the previous production steps. The wafer-to-wafer integration
process requires to form stacks, where a stack is obtained by “superposing” m wafers
chosen from different lots; thus, a stack corresponds to a feasible m-tuple. As a result of
integration, each position in the stack gives rise to a three-dimensional stacked integrated
circuit (3D-SIC) which is ‘good’ only when the corresponding m entries of the selected
wafers are ‘good’; otherwise, the 3D-SIC is ’bad’. The yield optimization problem now
consists in assigning the available wafers to n stacks so as to minimize the total number
of bad 3D-SICs. Thus, the WWI problem provides a model for yield optimization.

The wafer-to-wafer yield optimization problem has recently been the subject of much
attention in the engineering literature. One example is the contribution by Reda et
al. [11]. These authors formulate WWI as a multi-dimensional assignment problem. A
natural formulation of WWI as an integer linear programming problem turns out to be
hard to solve to optimality for instances with large values of m (typical dimensions for
the instances are: 3 ≤ m ≤ 10, 25 ≤ n ≤ 75, 500 ≤ p ≤ 1000). On the other hand, Reda
et al. [11] propose several heuristics and show that they perform well in computational
experiments. Some recent work in this direction is also reported in [13, 17, 18, 19].

Our main objective in this paper is to study the approximability of the MVA problem
and of the WWI problem (in the sense of [20]). Let us note at this point that the wafer-
to-wafer integration problem is usually formulated in the literature as a maximization
problem (since one wants to maximize the yield). However, we feel that from the ap-
proximation point of view, it is more appropriate to study its cost minimization version.
Indeed, in industrial instances, the number of bad dies in each wafer is typically much less
than the number of good dies. Therefore, it is more relevant to be able to approximate
the (smaller) minimum cost than the (larger) maximum yield.

Since MVA is defined as a multi-dimensional assignment problem with a special cost
structure, our work relates to previous publications on special classes of multi-dimensional
assignment problems, such as Bandelt, Crama and Spieksma [1], Burkard, Rudolf and
Woeginger [3], Crama and Spieksma [4], Dokka, Kouvela and Spieksma [6], Goossens
et al. [7], Spieksma and Woeginger [15], etc. Surveys on multi-dimensional assignment
problems can be found in Chapter 10 of [2] and in [14]. To the best of our knowledge,
the approximability of MVA has only been previously investigated by Dokka et al. [5],
who mostly focused on the case m = 3 with additive cost functions. The present paper
extends to MVA-m and considerably strengthens the results presented in [5].

1.3. Contents of the paper

Section 2 contains a formulation of the problem as an integer program (Subsec-
tion 2.1), discusses various possible assumptions on the cost function (Subsection 2.2),
describes two classes of heuristics (Subsection 2.3), and gives an overview of our results
in Subsection 2.4. In Section 3, we prove that the heuristics have finite worst-case perfor-
mance for every fixed m under various assumptions on the cost function c. In Section 4,
we prove that the WWI-m problem is APX-hard even when m = 3, all input vectors are
binary, and the cost function is additive. Finally, we show in Section 5 that WWI-m can
be solved in polynomial time when p is fixed.

4

2. Problem formulation, properties, heuristics and results

2.1. Problem formulation

As mentioned before, let V = V1×V2× . . .×Vm be the set of feasible m-tuples. By a
slight abuse of notations, we write uk ∈ a when a = (u1, . . . , um) and 1 ≤ k ≤ m. We also
extend the definition of c to m-tuples of Zmp

+ by setting c(u1, . . . , um) := c(u1∨ . . .∨um),
and, when W is any set of m-tuples, we define c(W) =

∑
a∈W c(a).

Let us first provide an IP-formulation of MVA-m as an m-dimensional axial assign-
ment problem. For each a ∈ V , let xa be a binary variable indicating whether m-tuple a
is selected (xa = 1) or not (xa = 0) in the optimal assignment. Reda et al. [11] give the
following formulation of WWI, which directly extends to MVA:

minimize
∑

a∈V c(a)xa

s.t.
∑

a:u∈a xa = 1 for all u ∈ ∪mi=1Vi,

xa ∈ {0, 1} for all a ∈ V.

Other formulations of MVA exist; for instance, Dokka et al. [5] propose an alternative
IP-formulation that may be more effective from a computational perspective.

In any application of MVA, the cost function c is likely to have some structure.
Indeed, in the WWI-application motivating this study, we have, as mentioned before, an
additive cost function: c(u) =

∑p
i=1 ui. We now list various possible assumptions on the

cost function c.

2.2. Properties of the cost function c

We focus our attention on cost functions c(u) satisfying one or more of the following
properties:

Monotonicity: The cost function c is monotone if, for all u, v ∈ Zp
+ with u ≤ v, we

have 0 ≤ c(u) ≤ c(v).

Subadditivity: The cost function c is subadditive if, for all u, v ∈ Zp
+, we have c(u∨v) ≤

c(u) + c(v).

Submodularity: The cost function c is submodular if, for all u, v ∈ Zp
+, we have c(u ∨

v) + c(u ∧ v) ≤ c(u) + c(v).

(Here, ∧ denotes the component-wise minimum operator:

u ∧ v = (min(u1, v1),min(u2, v2), . . . ,min(up, vp)).

Submodular cost functions frequently appear in the analysis of approximation algorithms
for combinatorial optimization problems; for recent illustrations, see for instance [9, 16]
and the references therein. The additive cost function of problem WWI actually satisfies
a much stronger property than submodularity, namely:

Modularity: The cost function c is modular if, for all u, v ∈ Zp
+, we have c(u ∨ v) +

c(u ∧ v) = c(u) + c(v).

5

It is well-known that c is modular if and only if there exist p functions f`(u`) such that
c(u) =

∑p
`=1 f`(u`) (see, e.g., Theorem 2.3.3 in Simchi-Levy, Chen and Bramel [12]). For

the MVA problem, therefore, assuming additivity is essentially equivalent to assuming
monotonicity and modularity.

2.3. Heuristics

Consider any heuristic algorithmH for MVA-m. Following standard terminology (see,
e.g., Williamson and Shmoys [20]), we say that H is a ρH(m)-approximation algorithm
for MVA-m if H runs in polynomial time and if ρH(m) is (an upper bound on) the
approximation ratio of H, in the following sense: for every instance of MVA-m with
optimal value cOPT

m , when H returns the assignment Am, then c(Am) ≤ ρH(m)cOPT
m .

Here, we are interested in the behavior of the following hub and sequential heuristics,
which all rely on the observation that MVA-2 boils down to a classical bipartite assign-
ment (or matching) problem (see, e.g., Bandelt et al. [1] for other examples of sequential
and hub heuristics).

We first describe so-called hub heuristics, where one particular set Vh acts as a “hub”,
and where a feasible solution is obtained by combining bipartite assignments constructed
for each pair (Vh, Vi) into a feasible assignment; see Algorithm 1. We will also analyze a
version of the single-hub heuristic called heaviest-hub heuristic, or Hhhub; here, the hub
Vh is the heaviest set, that is, c(Vh) ≥ c(Vk) for k = 1, . . . ,m; see Algorithm 2. The idea
underlying this initial condition is to make sure that all assignments will be able to take
the “worst lot” into account.

Finally, since there is one feasible single-hub solution for each possible choice of the
hub Vh, h = 1, . . . ,m, we call multi-hub heuristic the heuristic that outputs the best of
these m solutions; see Algorithm 3.

Algorithm 1 Single-hub heuristic Hhub(Vh)

{comment: h ∈ {1, . . . ,m} is the index of the hub}
for i = 1 to m, i 6= h, do

solve an assignment problem between Vh and Vi, i 6= h, based on costs c(u ∨ v),
u ∈ Vh, v ∈ Vi; call the resulting optimal assignment Mhi, say, Mhi = {(uhj , uij) | uhj ∈
Vh, u

i
j ∈ Vi, j = 1, . . . , n};

end for
construct the feasible solution Mh = {(u1j , u2j , . . . , umj) | (uhj , u

i
j) ∈ Mhi, i =

1, 2, . . . ,m, j = 1, . . . , n};
output Mh.

Algorithm 2 Heaviest-hub heuristic Hhhub

reindex V1, . . . , Vm so that c(V1) ≥ c(Vk) for k = 1, . . . ,m;
apply the single-hub heuristic Hhub(V1).

Let us now turn to the sequential heuristic Hseq described as Algorithm 4: Hseq

progressively builds a feasible solution Hm by optimally assigning the next set Vi to a
partial solution Hi−1. We point out that, for WWI-m, Reda et al. [11] proposed an

6

Algorithm 3 Multi-hub heuristic Hmhub

for h = 1 to m do
apply the single-hub heuristic Hhub(Vh) to produce the feasible solution Mh;

end for
let h∗ = arg minhc(Mh); output Mh∗ .

iterative matching heuristic which performed very well in their computational experi-
ments. Algorithm 4 is a natural generalization of this iterative matching heuristic. (See
also Taouil et al. [18] for a related study where sequential heuristics are called “layer-by-
layer” heuristics.)

Observe that the order of the sets V1, . . . , Vm is arbitrary in the sequential heuristic.
We obtain a slightly more restrictive heuristic, called heaviest-first heuristic, or Hheavy,
when we specify that the heaviest set is contained in the first assignment; see Algorithm 5.
(A more specific version, where the sets are ordered by nonincreasing weights, was shown
by Singh [13] to be computationally effective.)

Algorithm 4 Sequential heuristic Hseq

let H1 := V1;
for i = 2 to m do

solve a bipartite assignment problem between Hi−1 and Vi based on the costs c(u1∨
. . . ∨ ui−1 ∨ v), for all (u1, . . . , ui−1) ∈ Hi−1 and v ∈ Vi; let Hi be the resulting
assignment for V1 × V2 × . . .× Vi;

end for
output Hm.

Algorithm 5 Heaviest-first heuristic Hheavy

reindex V1, . . . , Vm so that max(c(V1), c(V2)) ≥ c(Vk) for k = 1, . . . ,m;
apply the sequential heuristic.

Clearly, each of the above heuristics runs in polynomial time. In fact, one can measure
the complexity of these heuristics by observing how many (two-dimensional) assignment
problems they need to solve. The most expensive one is Hmhub, since it solves O(m2)
assignment subproblems, whereas Hhub, Hhhub, Hseq, and Hheavy only solve O(m) sub-
problems. Observe that the preprocessing step needed for Hhhub and Hheavy does not
increase their complexity.

2.4. Overview of results

In this section we list the main results proved in our paper. First, in case, c is
monotone and subadditive, no feasible solution can be arbitrarily far away from the
optimum, as expressed by the next theorem.

Theorem 2. Every heuristic H that returns a feasible solution is an m-approximation
algorithm when the cost function c is monotone and subadditive. The approximation ratio
ρH(m) = m is tight for all m ≥ 2, even for WWI-m.

7

We prove this result in Subsection 3.1. Next, we establish that the multi-hub heuristic
has an approximation ratio of m

2 when c is monotone and submodular. In fact, this
ratio already holds for the single-hub heuristic Hhub(Vh) when we assume that Vh is the
heaviest set.

Theorem 3. The heaviest-hub heuristic Hhhub and the multi-hub heuristic Hmhub are
m
2 -approximation algorithms for MVA-m when the cost function c is monotone and sub-

modular. The approximation ratio ρhhub(m) = ρmhub(m) = m
2 is tight for all m ≥ 2,

even for binary MVA.

We prove this result in Subsection 3.2. Also, when c is monotone and submodular,
the sequential heuristic has the same worst-case approximation ratio:

Theorem 4. The sequential heuristic Hseq is an m
2 -approximation algorithm for MVA-

m when the cost function c is monotone and submodular, for every order of the sets
V1, . . . , Vm. The approximation ratio ρseq(m)) = m

2 is tight for all m ≥ 2, even for the
heaviest-first heuristic and even for binary MVA.

We prove this result in Subsection 3.3. When c is additive, a better bound can be
proved for the heaviest-first heuristic:

Theorem 5. The heaviest-first heuristic Hheavy is a (1
2 (m+1)− 1

4 ln(m−1))-approximation
algorithm for MVA-m when the cost function c is additive.

We prove this result in Subsection 3.4. Although we do not know whether the bound
in Theorem 5 is tight, we exhibit in Section 3.5 a family of instances for which Hheavy

displays the following behavior:

Theorem 6. There exists an infinite sequence of values of m such that the heaviest-

first heuristic produces a feasible assignment with cost larger than
√
m
2 cOPT

m on certain
instances of WWI-m.

This concludes the overview of our results concerning approximation ratios of the
heuristics; see also Figure 2.

One might wonder about the precise complexity status of MVA-m, and of its special
case WWI-m. The following result implies that, when restricting ourselves to polynomial-
time algorithms, constant-factor approximation algorithms are the best we can hope for
(unless P=NP), even for WWI-3:

Theorem 7. WWI-3 is APX-hard, even when all vectors in V1∪V2∪V3 are 0–1 vectors
with exactly two nonzero entries per vector.

We prove this in Section 4. Finally, in case the dimension p of the vectors is fixed,
we show in Section 5 that binary MVA-m can be solved in polynomial time:

Theorem 8. Binary MVA can be solved in polynomial time for each fixed p.

3. Proofs of approximation ratios

This section is devoted to the proofs of the approximation ratios of the heuristics
described in Subsection 2.3.

8

Monotone
• ratio:

unbounded

Monotone and Submodular
• ratio: O(m/2)

Monotone and Modular
 (Additive)
• ratio: O(m/2 – ln(m)/4)

Submodular
• ratio: unbounded

Figure 2: Overview of approximability results for monotone and submodular cost functions

3.1. Monotone and subadditive costs: feasible solutions

Here, we first establish some properties of feasible solutions depending on various
assumptions on the cost function c. Consider a feasible assignment Am for V1× . . .×Vm,
and let Ak denote the restriction of this assignment to V1 × . . . × Vk, for all k ≤ m.
Denote by cOPT

k the optimal value of the restricted instance V1 × . . .× Vk.

Lemma 9. If the cost function c is monotone and if Am is a feasible assignment, then,
for all i ≤ k ≤ m,

c(Vi) ≤ cOPT
k ≤ c(Ak) ≤ c(Am). (3.1)

Proof. Obvious.

Lemma 10. If the cost function c is subadditive and if Am is a feasible assignment, then

c(Am) ≤ c(Am−1) + c(Vm). (3.2)

Proof. Assume without loss of generality that the jth m-tuple of Am is (u1j , . . . , u
m
j)

(that is, the jth m-tuple in the assignment contains the jth vector of Vi for each i). Then,

c(Am) =

n∑
j=1

c(u1j ∨ . . . ∨ umj)

≤
n∑

j=1

c(u1j ∨ . . . ∨ um−1j) +

n∑
j=1

c(umj)

= c(Am−1) + c(Vm).

These two lemmas allow us to prove:

9

Theorem 2. Every heuristic H that returns a feasible solution is an m-approximation
algorithm when the cost function is monotone and subadditive. The approximation ratio
ρH(m) = m is tight for all m ≥ 2, even for WWI-m.

Proof. The statement holds for m = 1. Then, using Eq. (3.2) from Lemma 10,
Eq. (3.1) from Lemma 9, and induction on m, we obtain that every feasible solution Am

satisfies

c(Am) ≤ c(Am−1) + c(Vm)

≤ (m− 1) cOPT
m−1 + cOPT

m

≤ mcOPT
m .

To see that the bound is tight, let p = 1, n = m, Vi = {1, 0, . . . , 0} for i = 1, . . . ,m,
and c(u) = u for all u ∈ R. The cost function is obviously additive, hence this is an
instance of WWI-m. The worst feasible assignment yields {1, 1, . . . , 1} with cost m,
whereas the optimal assignment has cost 1.

Thus, Theorem 2 implies that every heuristic has bounded worst-case performance
(for fixed m) under the assumption that c is monotone and subadditive. On the other
hand, if we relax either of the assumptions on c, then even the heaviest-hub and heaviest-
first sequential heuristics do not have bounded approximation ratios on WWI-3, as shown
by the following examples.

Example 11. For any p, we denote by 0, 1, and ei, respectively, the all-zero, all-one,
and i-th unit vector of Zp.

Let p = 3, V1 = {e1,0}, V2 = {0, e2}, V3 = {1,0}, and c(u) = u1 + u2 + u3 −
3 min(u1, u2, u3). This cost function is nonnegative, subadditive (and even submodular),
but not monotone since 1 = c(e1) � c(1) = 0, while e1 ≤ 1. The optimal solution
for this instance is {(e1, e2,1), (0,0,0)} with cost 0. Since c(V1) = c(V2) > c(V3), the
heaviest-first heuristic could match V1, V2 to produce {(e1,0), (0, e2)}, then V3 to produce
{(e1,0,1), (0, e2,0)} with cost 1. Heaviest-hub can produce the same solution.

A similar observation applies when c is not subadditive: let p = 3, V1 = {e1,0}, V2 =
{0, e2}, V3 = {e3, e3}, and c(u) = u1+u2+M min(u1, u2, u3) with M > 0. This cost func-
tion is nonnegative, monotone (and supermodular), but not subadditive since c(1, 0, 1) =
c(0, 1, 1) = 1 and c(1, 1, 1) = 2 +M . The optimal solution is {(e1,0, e3), (0, e2, e3)} with
cost 2. Note that c(V1) = c(V2) = 1, c(V3) = 0; hence, heaviest-first could match V1, V2
to produce {(e1, e2), (0,0)}, then V3 to produce {(e1, e2, e3), (0,0, e3)} with cost M + 2.
So, the performance of heaviest-first (and similarly, heaviest-hub) is unbounded for this
instance.

3.2. Monotone and submodular costs: hub heuristics

The proof of Theorem 2 easily implies that the ratio ρhub(m) = m− 1 is valid for the
solution produced by any single-hub heuristic when the cost function is monotone and
subadditive (simply start the induction with m = 2 in the proof). This ratio is actually
tight: To see this, consider an arbitrary instance I of MVA-(m− 1), and extend it with
an additional set Vm consisting of n zero vectors. With Vm as the hub, Hhub(Vm) can
produce any feasible solution of I. Hence, Theorem 2 establishes the tightness of the
bound.

10

We are going to show next that, for heaviest-hub and multi-hub heuristics, better ap-
proximation ratios can be established when we assume that the cost function is monotone
and submodular.

In the sequel, we frequently assume without loss of generality, as in the proof of
Lemma 10, that the jth m-tuple of Am is (u1j , . . . , u

m
j). Under this assumption, we now

derive inequalities that are valid for every feasible assignment Am.

Lemma 12. If the cost function c is monotone and submodular, and if Am is a feasible
assignment such that the jth m-tuple of Am is (u1j , . . . , u

m
j), then, for all k ∈ {1, . . . ,m−

1},

c(Am) ≤ c(Am−1) +

n∑
j=1

c(ukj ∨ umj)− c(Vk) (3.3)

≤ c(Am−1) + c(Vm)−
n∑

j=1

c(ukj ∧ umj) (3.4)

≤ c(Am−1) + c(Vm). (3.5)

Proof.

c(Am) =

n∑
j=1

c(u1j ∨ . . . ∨ umj) (3.6)

≤
n∑

j=1

c(u1j ∨ . . . ∨ um−1j) +

n∑
j=1

c(ukj ∨ umj)

−
n∑

j=1

c((u1j ∨ . . . ∨ um−1j) ∧ (ukj ∨ umj)) (3.7)

≤
n∑

j=1

c(u1j ∨ . . . ∨ um−1j) +

n∑
j=1

c(ukj ∨ umj)−
n∑

j=1

c(ukj) (3.8)

≤
n∑

j=1

c(u1j ∨ . . . ∨ um−1j) +

n∑
j=1

c(umj)−
n∑

j=1

c(ukj ∧ umj) (3.9)

≤
n∑

j=1

c(u1j ∨ . . . ∨ um−1j) +

n∑
j=1

c(umj) (3.10)

where (3.6) is by definition of the cost function, (3.7) holds by submodularity applied to
u = u1j ∨ . . . ∨ u

m−1
j and v = ukj ∨ umj for each j, (3.8) follows by monotonicity (since

ukj ≤ (u1j ∨ . . . ∨ u
m−1
j) ∧ (ukj ∨ umj)), (3.9) by submodularity applied to u = ukj , v = umj ,

and (3.10) by nonnegativity of c. Inequalities (3.8), (3.9), (3.10) are equivalent to (3.3),
(3.4), (3.5), respectively.

We can now prove:
Theorem 3. The heaviest-hub heuristic Hhhub and the multi-hub heuristic Hmhub

are m
2 -approximation algorithms for MVA-m when the cost function c is monotone and

submodular. The approximation ratio ρhhub(m) = ρmhub(m) = m
2 is tight for all m ≥ 2,

11

even for binary MVA.
Proof. We prove the theorem by induction on m. The result is trivial when m = 2.

For larger values of m, assume as in the description of Algorithm 2 that V1 is the heaviest
set, let Hm = M1 be the solution found by the heaviest-hub heuristic Hhhub, and let
Hm−1 be the restriction of this assignment Hm to W = V1 × . . .× Vm−1.

We consider now two cases. Assume first that c(V1) ≤ 1
2c

OPT
m . Applying (3.5) to the

assignment M1, we obtain

c(Hm) ≤ c(Hm−1) + c(Vm). (3.11)

Since Hm−1 results from applying the heaviest-hub heuristic (with heaviest hub V1) to
W = V1 × . . .× Vm−1, we have by induction and by monotonicity of c :

c(Hm−1) ≤ ρhhub(m− 1) cOPT (W) ≤ 1

2
(m− 1) cOPT

m (3.12)

where cOPT (W) is the cost of an optimal assignment on W .
Finally, using the assumption that c(V1) ≤ 1

2c
OPT
m , we conclude from (3.11)–(3.12)

that

c(Hm) ≤ (
m− 1

2
+

1

2
) cOPT

m =
m

2
cOPT
m .

Consider next the case where c(V1) ≥ 1
2c

OPT
m . Assume, without loss of generality, that

the jth vector of Hm is (u1j , . . . , u
m
j). Then, by Eq. (3.3):

c(Hm) ≤ c(Hm−1) +

n∑
j=1

c(u1j ∨ umj)− c(V1).

With M1,m denoting the optimal matching of V1 and Vm as in Algorithm 1, we find:∑n
j=1 c(u

1
j ∨ umj) = c(M1,m) ≤ cOPT

m . Thus,

c(Hm) ≤ c(Hm−1) + c(M1,m)− c(V1)

≤ ρhhub(m− 1) cOPT
m−1 + cOPT

m − 1

2
cOPT
m

≤ (
m− 1

2
+

1

2
) cOPT

m

=
m

2
cOPT
m .

This proves that the approximation ratio ρhhub(m) = 1
2m is valid for the heaviest-hub

heuristic Hhhub and hence, for the multi-hub heuristic Hmhub as well.
To prove that the ratio is tight, consider the function r2(u) = f(

∑p
i=1 ui), where

f : R → R is defined by f(x) = x when x ≤ 2, and f(x) = 2 when x ≥ 2. Since
f is monotone nondecreasing and concave, it follows easily that r2 is monotone and
submodular on Zp

+ (see, e.g., Theorem 2.3.6 in Simchi-Levy et al. [12]). (When u is a
binary vector, r2(u) is the rank function of the uniform matroid of rank 2.)

Now, let p = n = m, Vi = {ei,0, . . . ,0} for i = 1, . . . ,m, and c(u) = r2(u). By
symmetry, any of the sets Vi can be chosen as the heaviest set, and the multi-hub heuristic
delivers a solution with the same cost as the heaviest-hub heuristic. In particular, it is

12

easy to see that multi-hub can produce the assignment Hm in which ei is matched with
m−1 zero vectors, for all i. The resulting assignment Hm has cost m, whereas the optimal
solution assigns (e1, . . . , em) to the same tuple, and has cost r2(e1 ∨ . . . ∨ em) = 2.

Let us observe that the submodulariy assumption is necessary in Theorem 3, as shown
by the following example.

Example 13. Let m = 3, n = 2, p = 3, V1 = {e1, e1}, V2 = V3 = {e2, e3}, and c(u) =
max(u1, u2, u3)+min(u1, u2, u3). This cost function can be checked to be subadditive, but
not submodular. The optimal solution is {(e1, e2, e2), (e1, e3, e3)}, with cost 2. However,
using V1 as a hub, heaviest-hub may find the solution {(e1, e2, e3), (e1, e3, e2)} with cost
4 > m

2 . Multi-hub may fail in the same way.

3.3. Monotone and submodular costs: sequential heuristics

Let us now turn to the analysis of sequential heuristics. It follows again from the proof
of Theorem 2 that the performance ratio of any sequential heuristics is bounded by m−1
when the cost function is monotone and subadditive. Under the stronger submodularity
assumption, we can establish a better bound:

Theorem 4. The sequential heuristic Hseq is an m
2 -approximation algorithm for

MVA-m when the cost function c is monotone and submodular, for every order of the
sets V1, . . . , Vm. The approximation ratio ρseq(m)) = m

2 is tight for all m ≥ 2, even for
the heaviest-first heuristic and even for binary MVA.

Proof. Let Hm be a feasible assignment for V found by the sequential heuristic. We
prove the theorem by induction on m. The result is trivial when m = 2. For larger
values of m, we distinguish among two cases as in the proof of the previous theorem.
Assume first that c(Vm−1) ≤ 1

2c
OPT
m . Then, consider the partial assignment Am−2,m that

is obtained by assigning optimally Vm to Hm−2 (independently of Vm−1). Let H∗m be the
concatenation of Hm−1 and Am−2,m (that is, H∗m assigns Vm−1 to Hm−2 as in Hm−1,
and Vm to Hm−2 as in Am−2,m). Note that H∗m−1 = Hm−1; therefore, c(Hm) ≤ c(H∗m)
since, by definition, the sequential heuristic assigns Vm optimally to Hm−1. Applying
(3.5) to the assignment H∗m, we obtain

c(Hm) ≤ c(H∗m) ≤ c(Am−2,m) + c(Vm−1). (3.13)

Since Am−2,m results from applying the sequential heuristic to W = V1×. . .×Vm−2×Vm,
we have by induction:

c(Am−2,m) ≤ ρseq(m− 1) cOPT (W) ≤ 1

2
(m− 1) cOPT

m (3.14)

where cOPT (W) is the cost of an optimal assignment on W .
Finally, using the assumption that c(Vm−1) ≤ 1

2c
OPT
m , we conclude from (3.13)–(3.14)

that

c(Hm) ≤ (
m− 1

2
+

1

2
) cOPT

m =
m

2
cOPT
m .

Assume now alternatively that c(Vm−1) ≥ 1
2c

OPT
m . Let Mm−1,m be an optimal matching

of Vm−1 with Vm, and consider the assignment H+
m obtained by concatenating Hm−1 with

Mm−1,m. Assume, without loss of generality, that the jth vector of H+
m is (u1j , . . . , u

m
j).

13

Then, by definition of Hm, c(Hm) ≤ c(H+
m) and by Eq. (3.3):

c(Hm) ≤ c(H+
m) ≤ c(Hm−1) +

n∑
j=1

c(um−1j ∨ umj)− c(Vm−1). (3.15)

Moreover,
∑n

j=1 c(u
m−1
j ∨ umj) = c(Mm−1,m) ≤ cOPT

m . Thus, we derive

c(Hm) ≤ c(Hm−1) + c(Mm−1,m)− c(Vm−1)

≤ ρseq(m− 1) cOPT
m−1 + cOPT

m − 1

2
cOPT
m

≤ (
m− 1

2
+

1

2
) cOPT

m

=
m

2
cOPT
m .

This establishes the validity of the approximation ratio ρseq(m) = 1
2m.

The example given in the proof of Theorem 3 proves that the approximation ratio
ρseq(m) = m

2 is tight even for the heaviest-first heuristic.
As a side-remark, the worst-case example used in the proof of Theorem 3 and of

Theorem 4 shows that, for monotone submodular instances of binary MVA-m, the same
ratio m

2 is tight for the (expensive) combined heuristic that results by successively running
the single-hub heuristic and the sequential heuristic for all possible choices of the hub
and for all possible permutations of the sets V1, . . . , Vm. Also, Example 13 shows that
the submodularity assumption is necessary in Theorem 4.

We return in Section 3.5 to a discussion of the approximation ratio of sequential
heuristics for the more restrictive WWI-m problem.

3.4. Additive costs: heaviest-first heuristic

In this section, we explicitly rely on the assumption that the cost function is additive,
i.e., c(u) =

∑p
`=1 u`, and we derive an improved approximation ratio for the heaviest-first

heuristic. We first establish a series of preliminary results.

3.4.1. Preliminary results for additive cost functions

If the jth m-tuple of an arbitrary assignment Am is uj = (u1j , . . . , u
m
j), then, for all

j = 1, . . . , n

c(uj) =

p∑
`=1

(u1j` ∨ . . . ∨ umj`).

Thus,

c(Am) =

n∑
j=1

c(uj)

= c(Am−1) + c(Vm)−
n∑

j=1

p∑
`=1

(
(u1j` ∨ . . . ∨ um−1j`) ∧ umj`

)
.

14

For each j, `, let k(j, `) be an (arbitrary) index k ∈ {1, . . . ,m− 1} such that

u
k(j,`)
j` = u1j` ∨ . . . ∨ um−1j` .

For each j, k, let L(j, k) = {` : k(j, `) = k} (roughly speaking, L(j, k) is the set of
coordinates ` for which the maximum of u1j`, . . . , u

m−1
j` is attained in set Vk). Then,

c(Am) = c(Am−1) + c(Vm)−
n∑

j=1

p∑
`=1

(
u
k(j,`)
j` ∧ umj`

)
(3.16)

= c(Am−1) + c(Vm)−
n∑

j=1

m−1∑
k=1

∑
`∈L(j,k)

(ukj` ∧ umj`).

Consider now the quantity Q =
∑n

j=1

∑m−1
k=1

∑
`∈L(j,k)(u

k
j`∧umj`). Intuitively, c(Vm)−

Q in Eq. (3.16) represents the amount by which the cost of the partial solution Am−1
increases when the set Vm is appended to this partial solution: so, Q can be viewed as
the amount of c(Vm) that is “covered” by V1, . . . , Vm−1.

Clearly, there exists an index k∗ ∈ {1, . . . ,m− 1} such that

n∑
j=1

∑
`∈L(j,k∗)

(uk
∗

j` ∧ umj`) ≥
1

m− 1
Q

(there is a set Vk∗ that, by itself, covers at least the fraction 1
m−1Q of the amount of

c(Vm) that is covered by V1, . . . , Vm−1 together).
Assume now that Am is an optimal assignment: c(Am) = cOPT

m . Denote by Hm

the assignment produced by a sequential heuristic which optimally matches the partial
assignment Hm−1 with Vm, and denote by Hm,k∗ the assignment obtained by concate-
nating Hm−1 with the assignment {(uk∗

j , umj) : j = 1, . . . , n} extracted from the optimal
solution Am. Clearly, c(Hm) ≤ c(Hm,k∗). Inequality (3.4) implies that

c(Hm) ≤ c(Hm,k∗)

≤ c(Hm−1) + c(Vm)−
n∑

j=1

p∑
`=1

(uk
∗

j` ∧ umj`)

≤ c(Hm−1) + c(Vm)−
n∑

j=1

∑
`∈L(j,k∗)

(uk
∗

j` ∧ umj`)

≤ c(Hm−1) + c(Vm)− 1

m− 1
Q.

Using the definition (3.16) of Q, we obtain

c(Hm) ≤ c(Hm−1) + c(Vm)− 1

m− 1
(c(Am−1) + c(Vm)− cOPT

m) (3.17)

= c(Hm−1) +
m− 2

m− 1
c(Vm) +

1

m− 1
(cOPT

m − c(Am−1)). (3.18)

15

Note that the inequality (3.17)-(3.18) is valid for any sequential heuristic. But we are
going to apply it next to the analysis of the heaviest-first heuristic.

3.4.2. A bound for the heaviest-first heuristic

As described in Algorithm 5, the heaviest-first heuristic arises when the first assign-
ment contains the heaviest set Vi. Here, we assume with loss of generality that V1 is the
heaviest set.

We let Hodd(m) =
∑m

k=1
1

2k−1 . Then Hodd(m) = H(2m − 1) − 1
2H(m − 1), where

H(m) =
∑m

k=1
1
k is the harmonic function. It is well-known that ln(m+1) ≤ H(m) ≤ 1+

lnm for all m ≥ 1. Thus, the function Hodd grows like 1
2 ln(m) and Hodd(m) ≥ 1

2 ln(m).
Theorem 5. The heaviest-first heuristic Hheavy is a (1

2 (m − Hodd(m − 1) + 1)-
approximation algorithm for MVA-m when the cost function c is additive. Thus, ρheavy(m) ≤
1
2 (m−Hodd(m− 1) + 1) ≤ 1

2 (m+ 1)− 1
4 ln(m− 1).

Proof. Let Hm be the solution found by the heaviest-first heuristic. The proof
proceeds by induction, starting with m = 2 and ρheavy(2) = 1.

Consider first the case where c(V1) ≤ m−1
2m−3c

OPT
m . By induction,

c(Hm−1) ≤ ρheavy(m− 1) cOPT
m−1 ,

where cOPT
m−1 is the cost of the optimal assignment for V1 × . . .× Vm−1. Let Am again be

an optimal assignment for V1 × . . .× Vm. Clearly, cOPT
m−1 ≤ c(Am−1). Using this in (3.17)

together with c(Vm) ≤ c(V1) ≤ m−1
2m−3c

OPT
m yields

c(Hm) ≤ ρheavy(m− 1)c(Am−1) + (
m− 2

m− 1
)(
m− 1

2m− 3
)cOPT

m +
1

m− 1
(cOPT

m − c(Am−1))

≤ ρheavy(m− 1)
(
c(Am−1) + cOPT

m − c(Am−1)
)

+
m− 2

2m− 3
cOPT
m

≤
(
ρheavy(m− 1) +

m− 2

2m− 3

)
cOPT
m .

The alternative case is when c(V1) ≥ m−1
2m−3c

OPT
m . Repeat the analysis leading to

Eq. (3.15) in the second part of the proof of Theorem 4, but this time with V1 replacing
Vm−1. From there,

c(Hm) ≤ c(Hm−1) + c(M1,m)− c(V1)

≤ ρheavy(m− 1) cOPT
m−1 + cOPT

m − m− 1

2m− 3
cOPT
m

≤
(
ρheavy(m− 1) +

m− 2

2m− 3

)
cOPT
m .

Altogether, we obtain the recurrence equation:

ρheavy(m) = ρheavy(m− 1) +
m− 2

2m− 3
.

To analyze this relation, let rm = m − 2ρheavy(m). Then, rm − rm−1 = 1
2m−3 , so that

rm = r2 +
∑m−1

k=2
1

2k−1 . Since r2 = 0, rm = Hodd(m− 1)− 1.

16

The tightness of the bound established in Theorem 5 is discussed in Section 3.5.

3.5. Bad instances for additive cost functions

In this section we complement the previous results by showing that hub and sequential
algorithms can perform rather poorly even when the cost function is additive. (Recall
that for monotone submodular nonadditive functions, the bounds in Theorem 3 and
Theorem 4 were already shown to be tight for all m ≥ 2, even for the multi-hub and for
the heaviest-first heuristic.)

Let us first consider the case m = 3. For MVA-3 with additive costs, Dokka et
al. [5] established the validity and the tightness of the bounds established in Theorem 4
and Theorem 5, respectively. To see the former, observe that tightness of the bound
ρseq(3) = 3

2 follows from the instance depicted in Figure 1.1: indeed, for this instance,
cOPT = 2, whereas the sequential heuristic might find a solution with value 3.

To see that ρheavy(3) = 4
3 , consider the instance with p = 3, V1 = {e1, e2,0}, V2 =

{e3, e2,0}, V3 = {e1,0, e3}. Its optimal value is cOPT = 3, whereasHheavy might produce
first H2 = {(e1, e3), (e2, e2), (0,0)}, then H3 = {(e1, e3, e1), (e2, e2,0), (0,0, e3)}, with
c(H3) = 4.

An obvious improvement to heuristics Hseq and Hheavy would be to run Hseq for
all possible permutations of the sets V1, . . . , Vm in the first step, then to retain the best
of the m! feasible solutions found (see Bandelt et al. [1], Crama and Spieksma [4] for
related “multiple-pass” heuristics). Interestingly, when m = 3, it follows again from the
previous example that this multiple-pass heuristic (which involves solving six bipartite
matching problems) has the same worst-case ratio as Hheavy (which only solves two
matching problems). This observation also entails that the ratio ρ(3) = 4

3 is tight for the
iterative matching algorithm of Reda et al. [11].

Let us now turn to the general case m ≥ 3 for additive cost functions. The ratio
ρhhub(m) = m

2 is tight in this case for the heaviest-hub heuristic, as illustrated by the
following example: Let p = 2 and n = m, let V1 contain e1 and let V2, . . . , Vm contain
e2; all other vectors are 0. Then, cOPT = 2 but the heaviest-hub heuristic may yield
c(Hhub(V1)) = m. For multi-hub, on the other hand, Dokka et al. [5] give an example
showing that the performance ratio of the heuristic may be as bad a m

4 , whereas Theo-
rem 3 only proves the upper bound m

2 . We do not know the exact approximation ratio
of multi-hub for additive cost functions.

Dokka et al. [5] observed that the worst-case approximation ratio of the sequential
heuristic can grow as fast as Ω(

√
m) for certain instances with additive cost functions.

We now strengthen this result by establishing a lower bound of the same order for the
heaviest-first heuristic.

Theorem 6. There exists an infinite sequence of values of m such that the heaviest-

first heuristic produces a feasible assignment with cost larger than
√
m
2 cOPT

m on certain
instances of WWI-m.

Proof. Fix an arbitrary positive integer r. We are going to describe an instance of
WWI-m with m = r2 + 1 and n = p = 2r. In order to simplify the description of the
instance, we label the input sets from V0 to Vr2 . We write vij to denote the jth vector
of set Vi, i = 0, . . . , r2, j = 1, . . . , 2r. The construction of the sets V0, V1 . . . , Vr2 is as
follows. (An instance with r = 3 is displayed in Figure 3, and the corresponding heuristic
and optimal solutions are illustrated in Figure 4.)

17

• In V0, v0j = ej for j = 1, . . . , r, and v0j = 0 for j = r + 1, . . . , 2r.

• For i > 0, write i = (k − 1)r + ` with k, ` ∈ {1, . . . , r}. Then, in Vi,
• for j = 1, . . . , r, vij = ej if j 6= ` and vi` = 0;
• for j = r + 1, . . . , 2r, vij = 0 if j 6= r + k and vi,r+k = er+k.

For this instance, the optimal cost equals 2r: for j = 1, . . . , 2r, the jth tuple of the
optimal assignment simply collects all vectors ej (note that there is at most one such ej
in each set Vi).

However, the heaviest-first heuristic may find a solution with cost r2 + r as follows:
First, note that c(Vi) = r for all i, so that Hheavy may consider the sets V0, V1 . . . , Vr2
in that order. When matching V1 to V0, Hheavy may assign the (r + 1)st vector of V1
to the first vector of V0. In the next r − 1 assignment stages, it assigns the (r + 1)st

vector of Vi (i = 2, . . . , r) to the tuple containing the ith vector of V0. Then, in the next
r assignments, Hheavy assigns the (r + 2)nd vector of Vi (i = r + 1, . . . , 2r) to the tuple
i = 1, . . . , r containing the ith vector of V0. Proceeding in this way yields a solution with
cost r2 + r.

100000

010000

001000

000000

000000

000000

000000

010000

001000

000100

000000

000000

100000

000000

001000

000100

000000

000000

100000

010000

000000

000100

000000

000000

V1 V6 V7 V4 V5 V3 V2

100000

010000

000000

000000

000010

000000

000000

010000

001000

000000

000010

000000

100000

000000

001000

000000

000010

000000

000000

010000

001000

000000

000000

000001

100000

000000

001000

000000

000000

000001

100000

010000

000000

000000

000000

000001

V8 V9 V0

Figure 3: A bad instance for the heaviest-first heuristic with r = 3, m = 10

4. WWI-3 is hard to approximate

As mentioned earlier, Reda et al. [11] have observed that WWI-m is NP-hard for
m ≥ 3. An explicit proof is found in Dokka et al. [5]. Our objective is now to strengthen
this result by showing that WWI-3 does not admit a polynomial-time approximation
scheme, unless P=NP.

18

100000

010000

001000

000100

000010

000001

100111

010111

001111

000000

000000

000000

Hheavy OPT

Figure 4: Cost of optimal solution is 6; cost returned by Hheavy is 12

We shall describe a reduction from 3-bounded maximum 3-dimensional matching
(MAX-3DM-3) to WWI-3. An instance of MAX-3DM-3 consists of three pairwise dis-
joint sets X,Y, Z such that |X| = |Y | = |Z| = q, and of a set of triples S ⊆ X × Y × Z
such that every element of X ∪ Y ∪ Z appears in at most three triples of S; let |S| = s.
A matching in S is a subset S′ ⊆ S such that no element of X ∪ Y ∪ Z appears in two
triples of S′. The goal of the MAX-3DM-3 problem is to find a matching of maximum
cardinality in S.

Kann [8] showed that MAX-3DM-3 is APX-hard. An instance of MAX-3DM-3 is
called a perfect instance if its optimal solution consists of q triples that cover all elements
of X ∪ Y ∪ Z (that is, if S contains a feasible assignment). Petrank [10] proved that
perfect instances of MAX-3DM-3 are hard to approximate, and that the existence of a
polynomial-time approximation scheme for perfect instances would imply P=NP.

Now, consider an arbitrary perfect instance I ′ of MAX-3DM-3. We build a corre-
sponding instance I of WWI-3 by using the gadget depicted in Figure 5, as explained
next.

The instance I consists of three sets VX , VY , VZ , each of cardinality q + 3s. Each
element e of each Vk, k ∈ {X,Y, Z}, is a 0-1 vector of length 6q+4s containing exactly two
nonzero elements. So, we can view each e as an edge in an undirected graph G = (U,A)
where U is a vertex set with cardinality 6q+4s and A can be identified with VX∪VY ∪VZ .
The elements of U are

• x1, x2 for each x ∈ X

• y1, y2 for each y ∈ Y

• z1, z2 for each z ∈ Z
19

ut

xt
yt zt

x1 x2 y1 y2 z1 z2

X Z Y

Y Y

Y X

X X Z Z

Z

Figure 5: Gadget

• xt, yt, zt and ut for each triple t ∈ S

and the edges in A = VX ∪ VY ∪ VZ are

• (x1, x2) ∈ VX for each x ∈ X (element edges)

• (y1, y2) ∈ VY for each y ∈ Y (element edges)

• (z1, z2) ∈ VZ for each z ∈ Z (element edges)

• (x1, xt) ∈ VY , (x2, xt) ∈ VZ , (y1, yt) ∈ VX , (y2, yt) ∈ VZ , (z1, zt) ∈ VX , (z2, zt) ∈
VY , for each t ∈ S (gadget edges)

• (xt, ut) ∈ VX , (yt, ut) ∈ VY , (zt, ut) ∈ VZ for each t ∈ S (gadget edges).

We say that an element of VX (VY , VZ) is an X-edge (Y -edge, Z-edge). The subgraph
induced by all gadget edges associated with a same triple t is called the gadget associated
with t and is denoted by g(t). Note that g(t) contains three element edges.

Observe that a feasible triple for WWI-3 consists of an X-edge, a Y -edge and a Z-
edge. A feasible triple of edges T ⊆ A defines (and can be identified with) a subgraph
(UT , T) of G, where UT is the subset of vertices covered by T . The cost of T is |UT |.
Note that a feasible triple is either

• a triangle K3 with cost 3, or

• a claw K1,3, or a path P4, with cost 4, or

• disconnected with cost either 5 or 6.

We say for short that T is connected if (UT , T) is connected.
A feasible assignment for I is a collection of q + 3s feasible triples covering all edges

of G. We now collect some properties of feasible assignments for further reference.

20

Lemma 14. Let M ⊆ VX × VY × VZ be a feasible assignment for I, with |M | = q + 3s.
(1) M contains at most 3q triangles.
(2) The cost of M (and hence, the optimal value of I) is at least q + 12s.
(3) If the cost of M is q+12s, then M contains 3q triangles, 3s−2q additional connected
triples, and no disconnected triples.
(4) If the cost of M is equal to q + 12s + r (r ≥ 0), then M contains at least 3q − r
triangles and at most r disconnected triples.

Proof. (1) We say M covers A′, with A′ ⊆ A, if all edges in A′ are contained in M .
Observe that M contains the same number of edges as A (namely, 3q + 9s edges), and
hence, since M covers A, each edge of A must be covered exactly once. In particular,
each element edge can be covered by at most one triangle, which implies that there are
at most 3q triangles in M .

(2) The cost of M is equal to 3c3 + 4c4 + 5c5 + 6c6, where ck is the number of triples
with cost equal to k, and c3 + c4 + c5 + c6 = |M |. There holds:

c(M) = 3c3 + 4c4 + 5c5 + 6c6 (4.19)

≥ 3c3 + 4(|M | − c3 − c5 − c6) + 5(c5 + c6) (4.20)

= −c3 + (c5 + c6) + 4|M |. (4.21)

Since c3 ≤ 3q and c5 + c6 ≥ 0, Eq. (4.21) implies that the cost of M is at least −(3q) +
4(q + 3s) = q + 12s.

(3) The previous reasoning shows that the cost of |M | can be equal to q + 12s only
if c3 = 3q and c5 + c6 = 0.

(4) Intuitively, every missing triangle and every disconnected triple increases the cost
of M by at least one unit with respect to the lower bound q + 12s, as expressed by the
inequality (4.21). More formally, if c3 < 3q − r, then Eq. (4.21) leads to

3c3 + 4c4 + 5c5 + 6c6 > −(3q − r) + 4|M | = q + 12s+ r. (4.22)

Similarly, if c5 + c6 > r, then Eq. (4.21) together with c3 ≤ 3q imply

3c3 + 4c4 + 5c5 + 6c6 > −3q + r + 4|M | = q + 12s+ r. (4.23)

We are now ready to establish the relation between the solutions of I and I ′

Lemma 15. If I ′ is a perfect instance of MAX-3DM-3, then the optimal value of I is
q + 12s.

Proof. If t ∈ S is in the perfect matching, then use three triangles and the claw
centered at ut in the associated gadget g(t). Otherwise, use three claws centered at
xt, yt and zt, respectively. Clearly, in the constructed solution for WWI-3 there are only
triangles and claws with exactly 3q triangles. Hence, by Lemma 14 it follows that the
cost of the solution is q + 3s.

The converse statement will follow from Lemma 16 hereunder, with δ ≥ 0.

21

Lemma 16. Let δ ≥ 0 be a real number. If instance I has a feasible solution with cost
at most q + 12s+ δq, then instance I ′ possesses a matching with size at least (1− 6δ)q.

Proof. Consider a feasible solution M for instance I with cost at most q+ 12s+ δq.
We call a gadget damaged (by M) if :
(Type (g)) at least one of its gadget edges is in a disconnected triple of M , or
(Type (e)) one of its element edges is not included in a triangle of M .
Equivalently, a gadget is undamaged if all its gadget edges are in connected triples of M
and if all its element edges are in triangles of M .

We call an element edge damaged (by M) if it is not included in a triangle of M ,
or it is in a triangle contained in a damaged gadget. Equivalently, an element edge is
undamaged if it is in a triangle contained in an undamaged gadget.

It follows from Lemma 14 that M contains at least 3q − δq triangles. Thus, at most
δq element edges are not included in triangles.

Note that if an edge is damaged, then it is contained in a damaged gadget. Since I ′

is an instance of MAX-3DM-3, each element edge occurs in at most three gadgets. In
particular, each damaged element edge can damage at most three gadgets, so that there
are at most 3δq damaged gadgets of type (e).

Furthermore, Lemma 14 also implies that at most δq triples can be disconnected;
these triples contain at most 3δq gadget edges, which can damage at most 3δq gadgets
(damaged gadgets of type (g)).

Since each damaged gadget may yield at most three damaged element edges of type
(ii), we find that, altogether there are at most 18δq damaged element edges, which leaves
at least 3(1− 6δ)q undamaged element edges.
counting of δq potential damaged edges of type (i).)

Now, the main element of the proof of the lemma is the following claim:

Claim 17. Every undamaged element edge, say (x1, x2), is in a triangle (x1, x2, xt) from
some undamaged gadget g(t). We claim that the other two element edges in g(t) are also
included in triangles from g(t).

(Proof of claim.) To see this, consider one of the other element edges in g(t), say
(y1, y2). Since g(t) is undamaged, (y1, y2) must be covered by a triangle contained in a
gadget g(t′). Assume by contradiction that t 6= t′ (otherwise, we are done).

Again because g(t) is undamaged, the X-edge (y1, yt) is in a connected triple T , which
must necessarily contain the Y -edge (yt, ut) (indeed, at vertex y1, (y1, yt) is only incident
to X-edges and to the Y -edge (y1, y2) which is already covered by a triangle in g(t′);
so, T must contain either the Y -edge (yt, ut) or the Z-edge (y2, yt); but the latter case
implies the former one).

The previous reasoning applies similarly to (y2, yt), so that the claw {(y1, yt), (y2, yt), (yt, ut)}
must be in M .

This implies, in turn, that (xt, ut) and (zt, ut) must be in the same triple, which can
only contain (z2, zt) as Y -edge. Thus, (z1, zt) must be in a triple together with (z1, z2),
contradicting the hypothesis that (z1, z2) is undamaged. (End of claim.)

Hence the 3(1 − 6δ)q undamaged element edges can be divided into groups of three
that correspond to (1 − 6δ)q undamaged gadgets. Then the corresponding (1 − 6δ)q
triples in instance I ′ form a matching.

We are now ready for the main result of this section.
22

Theorem 7. WWI-3 is APX-hard even when all vectors in VX ∪ VY ∪ VZ are 0–1
vectors with exactly two nonzero entries per vector.

Proof. When we apply the reduction to a perfect instance I ′ of MAX-3DM-3,
Lemma 15 yields cOPT (I) = q + 12s for the resulting instance I of WWI-3. A (1 + ε)-
approximation algorithm for WWI-3 would imply that we can compute, in polynomial
time, a solution of I with objective value at most equal to

(1 + ε) cOPT (I) ≤ q + 12s+ 37ε q

(here we have used s ≤ 3q). Then Lemma 16 (with δ = 37ε) implies the existence of
a matching of size at least (1 − 222ε) for instance I ′, and this matching can be found
in polynomial time. Hence, a PTAS for WWI-3 would imply a PTAS for any perfect
instance of 3-bounded MAX-3DM.

5. Binary inputs and fixed p

In this section we consider again the binary MVA problem, that is, the special case
of MVA where all vectors in V1 ∪ . . . ∪ Vm are binary. We want to argue that the binary
MVA problem can be solved in polynomial time when p is fixed.

For an instance of the binary MVA problem, we let, as in Theorem 6, vij denote the
jth vector in set Vi, j = 1, . . . , n, i = 1, . . . ,m. Let b1, . . . b2p be all distinct 0-1 vectors of
length p, arbitrarily ordered, and consider a feasible m-tuple (u1, . . . , um). We say that
(u1, . . . , um) is of type t if u1 ∨ . . . ∨ um = bt.

We construct a mixed integer formulation of MVA featuring variables xt:

xt = number of m-tuples of type t in the assignment, t = 1, . . . , 2p.

We also need assignment variables: for each i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , 2p,

zijt = 1 if vij is assigned to an m-tuple of type t.

The formulation is now:

min

2p∑
t=1

c(bt)xt (5.24)∑
j: bt≥vij

zijt = xt for each t = 1, . . . , 2p, i = 1, . . . ,m, (5.25)

∑
t: bt≥vij

zijt = 1 for each j = 1, . . . , n, i = 1, . . . ,m, (5.26)

xt integer for each t = 1, . . . , 2p, (5.27)

zijt ≥ 0 for each j = 1, . . . , n, t = 1, . . . , 2p, i = 1, . . . ,m. (5.28)

The objective function (5.24) minimizes the total cost. Constraints (5.25)-(5.26)
are the familiar transportation constraints. Notice further that integrality of xt implies
integrality of zijt.

23

Lemma 18. Formulation (5.24)-(5.28) is a correct formulation of the binary MVA prob-
lem.

Proof. Consider a feasible solution of the binary MVA problem. This solution prescribes,
for each binary vector vij in each set Vi, whether this vector should be assigned to an
m-tuple of type t. This determines the xt and zijt values, which clearly satisfy constraints
(5.25)-(5.28).

Conversely, consider xt, z
i
jt values that satisfy (5.25)-(5.28). One can construct a

feasible solution of MVA-m as follows: (1) Create a set X containing a copy of vector bt
for each xt > 0. (2) For each i = 1, . . . ,m, construct a bipartite graph G = (Vi ∪X,E)
where vector vij of Vi is connected with vector bt of X if vij ≤ bt. The values xt, z

i
jt

define a feasible solution of the transportation problem with supply equal to 1 for each
vertex in Vi and demand equal to xt for vertex t in X. (3) Construct m-tuples of vectors
by assigning m vectors – one from each Vi – to the same m-tuple if they all are matched
to same vector in X in the solution of the transportation problem (there may be several
ways of performing this step; however, any way suffices). This yields a feasible solution

of the MVA problem with value at most equal to
∑2p

t=1 c(bt)xt. Hence, the optimal value
of (5.24)-(5.28) is equal to the optimal value of the MVA problem.

Theorem 8. Binary MVA can be solved in polynomial time for each fixed p.
Proof. Lemma 18 shows that formulation (5.24)-(5.28) is correct. This formulation

involves 2p integer variables xt, O(mn2p) continuous variables zijt, and O(m2p + mn)
constraints. When we fix p, this results in a fixed number of integer variables xt, each of
which takes at most n+ 1 distinct values. Therefore, in order to find an optimal solution
it is enough to check the feasibility of (5.25)-(5.28) for O(n2

p

) assignments of values to
the xt variables, and to choose the solution with the minimum cost.

6. Conclusions

In this paper, we have considered the multi-dimensional vector assignment problem
MVA-m and we have analyzed the performance of several polynomial-time heuristics for
this problem in terms of their worst-case approximation ratio. We have also proved that
the problem is APX-hard, even when m = 3. Among the main questions that remain
open at this stage, let us mention the following ones:

1. What is the exact approximation ratio of the multi-hub heuristic in case of additive
costs? We know that it lies between m/4 and m/2.

2. What is the exact approximation ratio of the heaviest-first sequential heuristic in
case of additive costs? We know that it lies between Ω(

√
m) and O(m− lnm).

3. Does there exist a polynomial-time algorithm with constant (i.e., independent of
m) approximation ratio for MVA-m?

Acknowledgments. The project leading to these results was partially funded by OT
Grant OT/07/015 and by the Interuniversity Attraction Poles Programme initiated by
the Belgian Science Policy Office, Grant P7/36.

24

References

[1] H. Bandelt, Y. Crama, and F. Spieksma. Approximation algorithms for multi-dimensional assign-
ment problems with decomposable costs. Discrete Applied Mathematics, 49:25–50, 1994.

[2] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM, Philadelphia, 2009.
[3] R. Burkard, R. Rudolf, and G. Woeginger. Three-dimensional axial assignment problems with

decomposable cost coefficients. Discrete Applied Mathematics, 65:123–139, 1996.
[4] Y. Crama and F. Spieksma. Approximation algorithms for three-dimensional assignment problems

with triangle inequalities. European Journal of Operational Research, 60:273–279, 1992.
[5] T. Dokka, M. Bougeret, V. Boudet, R. Giroudeau, and F. Spieksma. Approximation algorithms for

the wafer to wafer integration problem. In WAOA 2012, 10th Workshop on Approximation and
Online Algorithms, 2012. to appear.

[6] T. Dokka, A. Kouvela, and F. Spieksma. Approximating the multi-level bottleneck assignment
problem. Operations Research Letters, 40:282–286, 2012.

[7] D. Goossens, S. Polyakovskiy, F. Spieksma, and G. Woeginger. Between a rock and a hard place: the
two-to-one assignment problem. Mathematical Methods of Operations research, 2:223–237, 2012.

[8] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Pro-
cessing Letters, 37:27–35, 1991.

[9] C. Koufogiannakis and N. Young. Greedy ∆-approximation algorithm for covering with arbitrary
constraints and submodular cost. Algorithmica, Online March 2012. doi 10.1007/s00453-012-9629-3.

[10] E. Petrank. The hardness of approximation: gap location. Computational Complexity, 4:133–157,
1994.

[11] S. Reda, L. Smith, and G. Smith. Maximizing the functional yield of wafer-to-wafer integration.
IEEE Transactions on VLSI Systems, 17:1357–1362, 2009.

[12] D. Simchi-Levi, X. Chen, and J. Bramel. The Logic of Logistics: Theory, Algorithms, and Ap-
plications for Logistics and Supply Chain Management. Springer Series in Operations Research.
Springer, New York, second edition, 2005.

[13] Eshan Singh. Wafer ordering heuristic for iterative wafer matching in w2w 3d-sics with diverse
die yields. In 3D-Test First IEEE International Workshop on Testing Three-Dimensional Stacked
Integrated Circuits, 2010. poster.

[14] F. Spieksma. Multi-index assignment problems: complexity, approximation, applications. in L.
Pitsoulis and P. Pardalos, eds., Nonlinear Assignment Problems, Algorithms and Applications
(Kluwer Academic Publishers, pages 1–12, 2000.

[15] F. Spieksma and G. Woeginger. Geometric three-dimensional assignment problems. European
Journal of Operational Research, 91:611–618, 1996.

[16] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and lower
bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.

[17] M. Taouil and S. Hamdioui. Layer redundancy based yield improvement for 3D wafer-to-wafer
stacked memories. IEEE European Test Symposium, pages 45–50, 2011.

[18] M. Taouil, S. Hamdioui, J. Verbree, and E. Marinissen. On maximizing the compound yield for 3D
wafer-to-wafer stacked ICs. In IEEE, editor, IEEE International Test Conference, pages 183–192,
2010.

[19] J. Verbree, E. Marinissen, P. Roussel, and D. Velenis. On the cost-effectiveness of matching repos-
itories of pre-tested wafers for wafer-to-wafer 3D chip stacking. IEEE European Test Symposium,
pages 36–41, 2010.

[20] D. Williamson and D. Shmoys. The Design of Approximation Algorithms. Cambridge University
Press, New York, 2011.

25

