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Stochastic Resonance in Electrical Circuits—I:
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Abstract—Stochastic resonance (SR), a phenomenon in which
a periodic signal in a nonlinear system can be amplified by added
noise, is introduced and discussed. Techniques for investigating
SR using electronic circuits are described in practical terms. The
physical nature of SR, and the explanation of weak-noise SR
as a linear response phenomenon, are considered. Conventional
SR, for systems characterized by static bistable potentials, is
described together with examples of the data obtainable from
the circuit models used to test the theory.

Index Terms—Fluctuations, noise, nonlinear.

I. INTRODUCTION

T HE phenomenon of stochastic resonance (SR) has been
in the news recently, partly on account of its wide

occurrence in many areas of science. In this paper, we present
a succinct introductory review of SR, discussing its physical
nature and the insights that can be obtained by treating it as
a linear response phenomenon. We describe how electronic
experiments have been making major contributions to the
understanding of SR in systems characterized by static bistable
potentials, which we will describe asconventional SR. In a
following companion paper [1], we extend the treatment to
other forms of SR that arise in seemingly very different kinds
of systems.

A. What Is SR?

SR is commonly said to occur when a weak periodic signal
in a nonlinear system is enhanced by an increase of the ambient
noise intensity; a stronger definition requires that the signal-to-
noiseratio (SNR) should also increase. The usual observation
is that the signal amplitude increases with increasing noise
intensity, passes through a maximum, and then decreases
again. Thus, the general behavior is somewhat similar to a
conventional resonance curve, but plotting the response as a
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Fig. 1. Sketch showing basis of the SR phenomenon. A signal passing
through a nonlinear system (a) and its SNR at the output (b) can sometimes
be enhanced by the addition of noise at the input. The full and dashed curves
show the behavior expected for continuous systems, and systems with discrete
levels, respectively.

function of noise intensity instead of frequency. The SNR
typically displays very similar behavior, except that it falls
very rapidly before the onset of the counter-intuitive increase
(full curve in Fig. 1). In the case of systems with thresholds,
or 2-state systems (or systems with just a few discrete states,
or where the signal is “filtered” through such a system prior to
analysis), this initial decrease in the SNR is not seen (dashed
line in Fig. 1). In the strongly nonlinear (large signal/weak
noise) regime, the variation of the response with noise intensity
can be more complicated.

The SR phenomenon appears to be widespread. After being
introduced as a possible explanation of the earth’s ice-age
cycle [2], [3], SR has subsequently been observed or invoked
in contexts that include lasers [4]–[7], passive optical systems
[8]–[11], tunnel diodes [12], a Brownian particle in an optical
trap [13], a magnetoelastic ribbon [14], crayfish [15] and rat
[16] mechanoreceptors, a bistable SQUID (superconducting
quantum interference device) [17], arrays of SR elements [18],
ion channels [19], magnetic systems [20], the El Nino phenom-
enon [21], social ills [22], a quantum 2-level system [23], an
array of coupled bistable systems [24], [25], a system driven by
quasi-monochromatic (harmonic) noise [26], excitable neurons
[27], chemical systems [28], [29], and various types of bistable
electronic system [30]–[35] modeling e.g., coexisting periodic
attractors [36], [37], subcritical bifurcations [38], systems with
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thresholds [39], and transient dynamics [40]. There have been
two topical conferences [41], [42], several general scientific
articles [43]–[46] and topical reviews [47]–[51], one of which
[50] places SR in its historical context in physics.

In bistable systems, the underlying mechanism of SR is
easily appreciated, and in fact has been known since the work
of Debye [52] on reorienting polar molecules. In a static
double-well potential with equally deep wells, the effect of an
additive low-frequency periodic force is to tilt the wells first
in one direction and then the other, so that one of the wells
become deeper than the other, in turn. The effect of additive
noise is, on average, to induce fluctuational transitions to the
deeper well. For very weak noise intensity, there will be, on
average, no transitions within a half cycle of the periodic force;
for very strong noise intensity, the directions of transitions will
be random, virtually unaffected by the periodic force; and for
an optimum noise intensity, the probability of such transitions
occurring coherently twice (once in each direction) per full
cycle of the periodic force will be maximized. Thus, noise
can effectively amplify small coordinate variations within one
of the potential wells, caused directly by the rocking effect
of the periodic force, to an amplitude corresponding to the
coordinate separation of the potential minima—which can be
made large.

B. Diverse Forms of Stochastic Resonance

SR was originally discussed [2], [3] for a bistable system
and, for the next several years, it was widely assumed that
bistability was an essential prerequisite for the phenomenon
to occur. The perception of SR as a linear response phe-
nomenon (see Section III-A below) led naturally, however, to
the realization that SR can also occur without bistability [53]
and to observation of the phenomenon in an underdamped,
monostable, nonlinear oscillator [54]. In fact, it is well known
that the response of a monostable system to signals in certain
frequency ranges can be strongly increased by noise, e.g., just
by raising the temperature. Examples range from currents in
electron tubes to optical absorption near absorption edges in
semiconductors. For underdamped oscillators, a temperature-
induced shift and broadening of the absorption peaks, i.e.,
“tuning” by external driving due to the oscillator nonlinearity,
was first discussed by Ivanovet al. [55]; complete classical
and quantum theories of these effects were given by Dykman
and Krivoglaz [56].

Some nonconventional forms of SR, including monostable
SR, were reviewed in [57]. Since then, forms of SR without
bistability have been identified in a system with a cyclic
variable [58], a class of systems where the signal is applied
as a multiplicative force [59], and thresholdless systems
[60]. SR in a monostable SQUID model has recently been
shown [61] to meeta fortiori even the stronger of the above
definitions: the observed noise-induced SNR enhancements
were comparable both in magnitude and form with those
of conventional SR. We return to nonconventional SR in the
companion paper [1], where we consider specific examples
of such phenomena in detail.

In the next section, we describe the use of circuit models
for the study of SR. In Section III, we outline the theory of

conventional SR. In Section IV, we discuss how the theory has
been tested by circuit modeling, and in Section V, we draw
conclusions.

II. CIRCUIT MODELLING OF SR

Analytic theories of stochastic phenomena often involve
approximation, so it is important to find independent means
of testing and validating them. One approach that has been
found to be of great value in practice is based on analog
electronic experiments [62]. The aim here is to build an
electronic model of the system in which the occurrence of SR
has been inferred theoretically, and then to study its properties
under appropriate conditions, usually while being driven by
randon fluctuations (noise) and a periodic force. Quantitative
measurements are made for comparison with the predictions
of the (usually) approximate analytic theory. In this section,
we briefly review the basic principles of circuit design, discuss
the noise-generators used for producing the necessary driving
noise, and outline the steps to be taken in analysing the
signal(s) coming from the circuit model.

A. Circuit Design

The workhorse of non-VLSI analog circuit design still
remains the operational amplifier. For present purposes, it
enables most of the arithmetic operations needed to model
the equations of interest to be effected in a very convenient
and economical fashion [63]. Although addition, subtraction,
multiplication/division by a constant factor, integration, and
differentiation are easily implemented with operational ampli-
fiers, it is usual to employ specialized integrated circuits (IC’s)
or devices for certain other operations. In particular:

• Multiplication of two voltages is most conveniently
performed by use of an analog multiplier IC, e.g., the
Analog Devices AD534 or the Burr-Brown MPY-100.
The operation of these differential input IC’s in multiplier
mode can be as sketched in Fig. 2(a), for which

(1)

where the scale factor is used to prevent the product
voltage exceeding the specified maximum. The default
value can be adjusted to suit particular situations.
In what follows, multipliers will often be shown in circuit
block-diagrams as though their inputs were single-ended
(rather than differential). In such cases, the appropriate
input terminals are chosen so as to provide the desired
sign of product at the output, and the other terminal of
each pair is earthed.

• Division of two voltages can be performed using the same
multiplier IC’s, but connecting the output back into one
of the inputs as shown in Fig. 2(b), in which case

(2)

• Trigonometric functions can be implemented by use of
e.g., the Analog Devices AD639 universal trigonometric
converter IC, which can be connected to transform the
input voltage into its sine, cosine, tangent, cosecant,
secant, cotangent, or their inverse functions; e.g., it can
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(a) (b)

(c) (d)

Fig. 2. Some mathematical operations with analog electronic circuits. (a) Multiplication of two voltages. (b) Division of two voltages. (c) Generation of
trigonometric functions. (d) Generation of general functions. The respective transformation equations are given in the text.

be connected as indicated in Fig. 2(c), where the output
voltage is

(3)

Here, and are in volts and the argument of the
sine is in degrees. Obviously, a cosine can be generated
by setting either or to 90 . A range of 500
is accommodated, but can effectively be extended where
necessary by use of an analog multiplier IC to generate
the double angle (see [1, Section II-B).

• General functionscan be created by use of a hybrid ana-
log/digital device, as sketched in Fig. 2(d). The required
function is held in the erasable programmable read-only
memory (EPROM) as a look-up table. The input voltage
is digitized by the analog-to-digital converter (ADC) and
used to look up the corresponding number in the EPROM,
which is then converted to a voltage at the output by the
digital-to-analog converter (DAC). Devices of this kind
have been used e.g., to create trigonometric functions
[64] (before the corresponding converter IC’s had become
available), and for creating the potential corresponding
to a one-dimensional (1-D) quantum-mechanical binary
alloy [65]. The period of the clock used to drive the
device must, of course, be very much shorter than all
characteristic times in the system under study.

In assembling these circuit elements to model a given
equation or system of equations, there are several points to
be borne in mind.

1) To minimize extraneous noise introduced by the circuit
itself, the design should minimize the number of active
components [66].

2) Care must, of course, be taken to ensure that the voltage
limits for the various components are not exceeded, even
when external forces are driving the circuit far from its
stationary state.

3) At the same time, care must also be taken to ensure
that the signal is at all points in the circuit larger
(preferably much larger) than the background noise and
drift produced by the circuit itself. This requirement,
taken with the preceding one, limits the dynamic range
of the analog technique to2 10 . With careful circuit
design, this is more than sufficient for most purposes.

4) To speed up data acquisition, it is normal to scale time
in such a way that time in the model effectively runs
much faster than real time. In doing so, care must of
course be taken to ensure all components remain within
their allowed frequency limits or slew-rates.

5) As usual, connections should be made as short and direct
as possible to reduce the effect of stray capacitance.
Where a circuit model is likely to be needed for many
different applications, or where particular stability is
needed, it is worth designing and fabricating a printed
circuit board (PCB). In most cases, however, a simple
mounting board into which the components can be
inserted (with pressure contacts) is sufficient.

6) It is usually best to choose resistor values within (or not
too far outside) the range 10–100 k, and capacitance
values of at least 100 pF in view of the typical stray
capacitance of a few picofarads.

Optimization of the design requires that all of the above cri-
teria should be taken into account, but some degree of compro-
mise between them is usually necessary in practice. Minimiza-
tion of the number of active components can often be achieved
by making judicious combinations (in single circuit elements)
of the separate arithmetic operations described above.

To see how a circuit model can be designed in practice,
we now consider a particular example: the underdamped
single-well Duffing oscillator [67] used [37] for experiments
on supernarrow spectral peaks and high frequency stochastic
resonance in a system with co-existing periodic attractors (see
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Fig. 3. Block diagram of analog electronic circuit modeling an underdamped single-well Duffing oscillator (4) [37].

Section II-A of [1]). The equation to be modeled is

(4)

where the oscillator is driven by a periodic force of amplitude
, frequency , and is zero-mean white Gaussian noise

of intensity such that

(5)

Here, represents the average of and
its correlation function.

The circuit used to model (4) is shown in Fig. 3; two inte-
grators are needed because of the inertial term. The periodic
force in the dashed box is set to zero for present purposes (but
it will be needed in [1, Section II-A] in the discussion of high-
frequency stochastic resonance in the same system). We use
superscript primes to distinguish times and frequencies in the
circuit (in units of seconds and hertz) from the corresponding
dimensionless times and frequencies that appear in (4). To
understand the relationships between quantities in the circuit
and in (4), we sum the currents at point A, and those at point
B, and we equate them to zero in each case (using Kirchhoff’s
law and the assumption of infinite input impedance of an
operational amplifier). For point A

(6)

and at point B

(7)

Using (7) to substitute for in (6), we obtain

(8)

The component values used in the circuit were

k

M

nF

Thus, (8) may be written

(9)

where

(10)

It can be seen, therefore, that with the transformations

(11)

(9) goes over into (4) with and . Note that the
multiplication of by 5 (Fig. 3) is used to prevent the

term being too small compared to background noise and
voltage offsets in the circuit, following the additional scaling
by 0.1 in the second multiplier. The relatively large value of

M was used to obtain a small value of the damping
constant . Under these circumstances, it is better tomeasure
quantities like and for the completed circuit [68], treating
it as an experimental object in its own right, rather than just
calculating them from component values; the measured and
calculated values typically agree to within10%.

B. Noise Generators

Experiments are often undertaken to model systems driven
by white noise. In reality, of course, white noise—with zero
correlation time and thus a power spectrum that remains
flat up to infinite frequency—is an idealization. Noise in
real physical systems always has a finite correlation time,
and correspondingly a roll-off in the power spectrum above
some characteristic frequency. Provided that the correlation
time of the noise is much smaller (e.g., by a factor of
30) than all characteristic times (the vibration period(s) for
an underdamped system, or the relaxation time(s) for an
overdamped one), the noise can be considered quasi-white and
its effects will be indistinguishable from those of white noise
with the same intensity.

A number of commercial noise generators have been used
for experiments in stochastic nonlinear dynamics. These have
included the Quan-Tech model 420 (no longer manufactured)
and, more recently, the Wandel and Goltermann1 model

1Wandel u. Goltermann, 7410 Reutlingen, Germany.
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Fig. 4. Block diagram of the linear-feedback shift-register digital noise-generators used at Lancaster [74], based on a design developed at the University
of Pisa [66], [69], [70]. Pseudorandom dichotomous (2-level) pulse sequences are generated by the 41-stage feedback shift-register SR2. The high-cut filter
converts this dichotomous noise to an output that is Gaussian and exponentially correlated, with a correlation timeR2C2. The first feedback shift-register
SR1 pseudorandomly inverts the sign of the feedback in SR2, thereby eliminating skewness of the distribution. An additional 41-stage feedback shift-register
SR3 (not shown), taking its invertinginput from stage-9 of SR1 but otherwise connected exactly like SR2, provides a second independent noise source.
FF is a flip-flop that divides the 4-MHz clock frequency by a factor of 32, and X1–X4 are exclusive-OR gates. The low-frequency cutoff, determined
by R1C1; is fixed at�1 Hz, and the high-frequency cutoff is adjustable. The output noise finally passes through a variable-gain operational amplifier
(not shown) before being applied to an experiment.

RG1. The latter produces Gaussian noise with a power
spectrum that is flat to within 0.5 dB up to 108 kHz;
above this frequency, there is a very fast roll-off. It possesses
the advantage that the output is genuinely random, with
essentially infinite repetition period.

For many purposes, however, a much cheaper and simpler
“home-made” noise generator will suffice which, in some
respects, is actually superior. This is the device used and
described by Faettiet al. [69], [70] and Fronzoni [66]. It is
based on the generation of a pseudorandom sequence by a
linear-feedback shift-register [71]; the dichotomous (two-state)
output is then filtered through a Miller integrator to produce
[72] Ornstein–Uhlenbeck (i.e., exponentially correlated) noise.
In its original form, the dichotomous noise suffered from
asymmetry in that the times spent in the upper and lower states
were systematically different on account of theOR-feedback
being used [73]. Consequently, the distribution function of the
approximately Gaussian noise created after passage through
the filter suffered from significant skewness. Faettiet al.
showed [70] that this problem could be overcome by randomly
inverting the sign of the feedback voltage betweenEX-OR and
EX-NOR. A version of this device (Fig. 4) used at Lancaster
[74] employs the output from two different stages of the same
17-stage feedback shift register (SR1) as feedback inverters for
two separate 41-stage [75] shift registers (SR2 and SR3). In
this way, two independent pseudorandom pulse sequences are
obtained which, after filtration, provide uncorrelated pseudo-
white noise sources. With a clock frequency of4 MHz,
and the filter time constants set to give a cut-off above
40 kHz, the distribution functions at the output are Gaussian
to more than 4 standard deviations and the repetition time
of the pseudorandom time sequences is6.5 days. It is
essential to remember that these noise generators should not
be used for experiments whose duration exceeds the repetition
time; in all other respects, however, they have been found
entirely satisfactory.

The root-mean-square (rms) amplitude of the Ornstein–
Uhlenbeck noise being applied to a circuit model can con-
veniently be measured with a true rms-to-dc converter such as
the Analog Devices AD536A IC. It is then necessary to relate
this value (in volts) to the intensity of white noise appearing
in model equations such as (4) and (5). To do so, we note
that Ornstein–Uhlenbeck noise (e.g., see [76]) is exponentially
correlated, with

(12)

where is the correlation time. Thus, the mean-square noise
amplitude is

(13)

But the circuit operates in scaled time, so that

(14)

where is correlation time of the noise (in seconds), which
is given by the resistance–capacitance (RC) time constant of
the Miller integrator used to create it (see above), or can be
obtained from a measurement of the correlation function of
the noise; is the time scaling of the model, given by (11) in
the example in Section I-C. Hence

(15)

Here, can be measured directly. Values of all the other
parameters are also known, because they can be calculated
from the component values or measured directly. Thus, (15)
provides the required connection betweenand the rms noise
voltage measured by the true rms-to-dc converter IC.

C. Signal Acquisition and Analysis

Analysis of the behavior of the circuit model usually in-
volves two main stages: digitization of the analog signal

( in the circuit of Fig. 3), and then processing
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of the resultant digital time series to extract the particular
information required, which is often in the form of a statistical
distribution.

There is now a very wide range of ADC cards available for
operation in PC’s; reviews are published from time to time,
e.g., [77], [78], helping in selection for a particular application.
Sample intervals below 1 s are not normally needed for
modeling of this kind, and 10 s is short enough for most
purposes. If fast data acquisition without gaps—coupled with
intensive processing—is needed, a co-processor is likely to
be essential: most of the data processing can then take place
on the card itself, with relatively infrequent transfers of input
data and ensemble-averaged distribution to the main memory.
The PC’s central processing unit (CPU) thus remains free
to operate displays of the input and averaged data, interact
with the user, and service the “housekeeping” needs of the
operating system. The systems currently in use at Lancaster are
based on the Microstar2 model DAP 3200a/415 (12-bit) and
DAP 3216/415 (16-bit) ADC’s, each of which incorporates
an on-board 100-MHz Intel 486DX co-processor. A MatLab-
based PC software system developed by I. Kh. Kaufman is
used to provide real-time data acquisition with simultaneous
digital signal processing within the MatLab environment, for
both Win32 and Linux operating systems. It is designed as
a configurable and extendable system with additional drivers,
service tools, and software templates.

III. T HEORY OF STOCHASTIC RESONANCE

A. Stochastic Resonance as a Linear Response Phenomenon

When it was first discovered, and for some time afterwards,
SR seemed a rather mysterious phenomenon and a number of
highly sophisticated theoretical approaches were proposed (see
citations in e.g., the reviews [47]–[49], [51]). Only some years
later, it was appreciated [32], [33] that a much simpler formal-
ism—linear response theory(LRT)—would suffice to describe
what was often the most interesting limit in practice, where
the signal was relatively small and the noise was relatively
strong; an analytic theory of the more complicated effects that
occur for stronger signal strengths [33], [79], [80], [81] was
also developed. Both limits have been explored in considerable
detail through analog electronic experiments, validating and
clarifying the theory. LRT places SR in perspective, enables
it to be understood in the context of other more familiar
phenomena in physics [50], and therefore provides the best
starting point for understanding SR.

If a system with a coordinate is driven by a weak force
then, according to LRT [82], a small periodic term

will appear in the ensemble-averaged value of the coordi-
nate oscillating at the same frequency and with
amplitude proportional to that of the force

(16)

2Microstar Laboratories Inc., 2265 116th Avenue NE, Bellevue, WA 98004
USA; and see http://www.mstarlabs.com/. The U.K. distributor is: Amplicon
Liveline Ltd., Centenary Industrial Estate, Hollindean Road, Brighton BN2
4AW U.K.

In the limit this equation holds for dissipative and
fluctuating systems that do not display persistent periodic
oscillations in the absence of the force and where the
correlations of fluctuations decay in time. The susceptibility

contains all information on the response of the system to
a weak driving force. It gives both theamplitude of the signal
and itsphase lag with respect to the force (and the partial
amplitudes and phase lags for vibrations at the combination
frequencies). The theory is readily generalized to the case of
nonsinusoidal forces, and forces acting under nonequilibrium
conditions. Provided that the amplitude of the modulation is
weak enough, the response of the system will always be linear
and described by (16).

The periodic term (16) induced by the force gives rise to a
-shaped spike in the power spectrum of the coordinate, i.e.,

in the spectral density of fluctuations(SDF)

(17)

at the frequency of the force. Theintensity(i.e., the area) of
this spike is equal to one fourth of the squared amplitude of
the corresponding vibrations, i.e., to . The SNR

can thus be written

(18)

where is the SDF in the absence of the periodic
driving. The evolutions of the susceptibility and of
with varying noise intensity therefore show immediately
whether or not SR (in terms of the strong definition, as an
increase in SNR with increasing in a certain range of )
is to be expected at a given frequency.

Describing SR in terms of a susceptibility in this way
is particularly advantageous for systems that are in ther-
mal equilibrium, or in quasi-equilibrium. In such cases, the
Kramers–Kronig and fluctuation-dissipation relations [82] can
be used to express the susceptibility in terms of

(19)

(20)

where denotes the Cauchy principal value and corre-
sponds to the temperature in energy units. It follows from
(18)–(20) that it should be possible to predict the onset of
SR in a given system purely from the evolution of its SDF

with noise intensity (temperature), without knowing
or assuming anything at all about the equations that describe
its dynamics, i.e., for a system treated as a “black box.”

Note that the linear response is obtained as aconsequence
of the noise. The paradigmatic systems that we consider below
are all highly nonlinear, but their response to a periodic
force—which need not necessarily be an extremely weak
one—is linearized in each case by the addition of noise [83]
(see also [1, Section III-B]) of sufficient intensity.

B. What Can SR Do and Not Do?

We now address the vexed question of whether an SR-
displaying system (a “stochastic resonator”) can be expected
to improve the SNR of a given signal. There has been much
confusion on this point in the literature, with more than one
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Fig. 5. Block diagram of a circuit model of the overdamped double-well Duffing oscillator.

research group claiming that absolute SNR improvements
have been observed in experiments. However, Dykmanet
al. [50] and DeWeese and Bialek [84], using different LRT-
based arguments, have pointed out that, for small-amplitude
signals, the SNR at the output of a system driven by a
stationary Gaussian noise does not exceed that at the in-
put, even if the system displays SR. Indeed, the Fourier
components of the noise are statistically independent and
the total power of the noise in a small spectral
interval about the frequency of the signal is small. The
SNR at the input is given by whereas that at
the output is . The
quantity gives the value of the spectral density of
fluctuations in the system at frequency as it would be if
there was no signal and the spectral components of the noise
at frequency were suppressed, i.e., as if the power spectrum
of the input noise had a hole at frequency. By construction

which proves the statement. (In linear systems,
on the other hand, which do not mix frequencies,
and the SNR at the output must be the same as at the
input.) These points deserve, and have recently received [85],
emphasis given the level of misinformation in some of the
recent literature on SR.

The situation with large-amplitude signals (beyond the LRT
range) is less clear. Generally, such signals are distorted by
a nonlinear system: the response to a sinusoidal signal has
overtones, and therefore may not be characterized by the
SNR at the signal frequency. In some models, the SR effect
decreases with signal amplitude for large signals [86], whereas
for specific types of nonlinear systems and signals, and/or
definitions of the SNR, an increase of the SNR has been
reported by Kiss [87] and by Khovanov and Anishchenko [88].

IV. CONVENTIONAL STOCHASTIC RESONANCE IN CIRCUITS

The idea that SR might be describable in terms of LRT
was tested [32], [33] through analog electronic simulation of
underdamped 1-D Brownian motion

(21)

in the simple symmetric bistable potential

(22)

Fig. 6. Demonstration that stochastic resonance can be described in terms of
LRT. The filled circles represent direct measurements of the SNRR for the
system (21) and (22) as a function of scaled noise intensityD=�U; where�U
is the depth of each potential well below the central potential maximum; the
open squares represent LRT calculations based onmeasuredspectral densities
and the use of (18)–(20). There are no adjustable parameters.

Note that it is theresponseof the system in the presence of
noise that is expected to be linear [82], proportional to the
amplitude of the periodic force; the system itself is, of
course, highly nonlinear.

The circuit model was very similar to that of Fig. 3, except
that the term was not inverted before being fed back to
point A. More accurate measurements have been made on the
equivalent overdamped system

(23)

Note the different conventional definitions of noise intensity
that are used for underdamped (21) and overdamped (23)
systems.

A. SNR Measurements

The circuit used to model (22) and (23) is shown in Fig. 5.
Some data obtained from it are plotted in Fig. 6. They are of
two entirely different kinds, obtained as follows. First, SDF’s
were measured for several values ofwith the weak periodic
force applied and the SNR was determined through
measurements of the ratio of the height of the spike atto
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Fig. 7. The phase shift�� (degrees) between the periodic force of amplitude
A and the averaged coordinatehx(t)i measured [88] as a function of noise
intensityD in the electronic model of (22) and (23) for
 = 0:1 andA = 0:04
(circles);A = 0:2 (squares). The full curve is a theoretical prediction based
on LRT and the fluctuation dissipation theorem.

that of the noisy background [30]. These direct measurements
of the SNR are shown as filled circle data points in Fig. 6.
Secondly, SDF’s were measured in theabsenceof the periodic
force for several different noise intensities. These
results were used to compute the SNR to be expected from
the LRT relations (18)–(20), which are shown as open squares
in the figure. Given that there areno adjustable parameters, the
agreement between the theory and the direct measurement may
be considered an impressive vindication of the LRT approach
to SR. Of course, the SDF for insertion in (18)–(20)
does not necessarily need to be measured, as here. It can also
be calculated analytically over a wide range of parameters
[89], [90].

Note that the onset of SR in a bistable system can be
understood in terms of the evolution with of its SDF and,
in particular, the broadening of the zero-frequency peak [89],
[90] associated with the interwell fluctuational transitions.
As the peak broadens, for finite but small, rises
exponentially fast. Thus, from (19) and (20), it is clear that
both and for will also increase
exponentially fast. It is clear from (16) and (18) thatand

will also both increase with . This perception of bistable
SR is, of course, a counterpart of the picture of noise-enhanced
hopping between the wells in response to the external driving,
discussed by [52].

B. Phase-Shift Measurements

In close analogy with conventional resonance phenomena, it
is to be expected that a phase difference will exist in stochastic
resonance between the periodic driving force and the periodic
response of the system. The magnitude of this phase shift,
and its variation with noise intensity, was initially a subject of
controversy; the matter was resolved partly through the relative
simplicity and transparency of the LRT approach [see (16),
(19), (20)], and partly through measurements on an analog
electronic model of (22) and (23).

The phase shift between the force and the response
was determined experimentally by measurement of ensemble-

averages comparing the resultant sinusoid directly with
the weak periodic driving force . Results are shown
by the data points of Fig. 7. It can be seen that, asis
increased, starts from a very small value, rises extremely
fast, passes through a maximum, and then decreases more
slowly again. A theory able to describe this behavior is readily
constructed [91] on the basis of LRT, and leads to the full
curve. LRT also provides a satisfactory description of the
system behavior [92], even when has become so large
that the SR effect has disappeared, andjust decreases
monotonically with increasing .

V. CONCLUSION

The successful development of the LRT approach to SR is
attributable in significant measure to the model experiments
based on analog electronic circuits, which enabled the ap-
proximate analytic theory to be tested while it was being
developed. As was made clear, LRT provides a very general
perception of SR and shows that the phenomenon does not
necessarily require bistability, or even a static potential, but
that it should appear in diverse systems and contexts. We
consider some examples of suchnonconventional SRin the
companion paper [1].
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[51] L. Gammaitoni, P. Ḧanggi, P. Jung, and F. Mar.esoni, “Stochastic
resonance,”Rev. Mod. Phys., vol. 70, no. 1, pp. 223–287, 1998.

[52] P. Debye,Polar Molecules. New York: Dover, 1929.
[53] N. G. Stocks, N. D. Stein, S. M. Soskin, and P. V. E. McClintock,

“Zero-dispersion stochastic resonance,”J. Phys. A: Math. Gen., vol. 25,
no. 18, pp. L1119–L1125, 1992.

[54] N. G. Stocks, N. D. Stein, and P. V. E. McClintock, “Stochastic
resonance in monostable systems,”J. Phys. A: Math. Gen., vol. 26, no.
7, pp. L385–L390, 1993.

[55] M. A. Ivanov, L. B. Kvashnina, and M. A. Krivoglaz, “Spectral
distribution of localized vibrations,”Sov. Phys. Solid State, vol. 7, pp.
1652–1659, 1966.

[56] M. I. Dykman and M. A. Krivoglaz, “Theory of nonlinear oscillator
interacting with a medium,” inSoviet Phys. Rev., M. I. Khalatnikov
(Ed.). New York: Harwood Academic, 1984, vol. 5, pp. 265–442.

[57] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N.
D. Stein, and N. G. Stocks, “Nonconventional stochastic resonance,”J.
Stat. Phys., vol. 70, nos. 1–2, pp. 479–499, 1993.

[58] K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and F. Moss,
“Stochastic resonance on a circle,”Phys. Rev. Lett., vol. 72, no. 14,
pp. 2125–2129, 1994.

[59] J. M. G. Vilar and J. M. Rubi, “Divergent signal-to-noise ratio and
stochastic resonance in monostable systems,”Phys. Rev. Lett., vol. 77,
no. 14, pp. 2863–2866, 1996.

[60] S. M. Bezrukov and I. Vodyanoy, “Stochastic resonance in nondynam-
ical systems without response thresholds,”Nature, vol. 385, no. 6614,
pp. 319–321, 1997.

[61] I. Kh. Kaufman, D. G. Luchinsky, P. V. E. McClintock, S. M. Soskin,
and N. D. Stein, “High-frequency stochastic resonance in SQUID’s,”
Phys. Lett. A, vol. 220, nos. 4–5, pp. 219–223, 1996.

[62] D. G. Luchinsky, P. V. E. McClintock, and M. I. Dykman, “Analogue
studies of nonlinear systems,”Rep. Prog. Phys., vol. 61, no. 8, pp.
889–997, 1998.

[63] A. J. Peyton and V. Walsh,Analog Electronics with Op Amps. Cam-
bridge, U.K.: Cambridge Univ. Press, 1993.

[64] K. Vogel, H. Risken, W. Schleich, M. James, F. Moss, and P. V. E. Mc-
Clintock, “Skewed probability densities in the ring-laser gyroscope—A
colored noise effect,”Phys. Rev. A, vol. 35, no. 1, pp. 463–465, 1987.

[65] N. G. Stocks, C. J. Lambert, R. Mannella, and P. V. E. McClintock,
“Analog stochastic quantization for a one-dimensional binary alloy,”
Phys. Rev. B, vol. 47, no. 14, pp. 8580–8587, 1993.

[66] L. Fronzoni, “Analogue simulation of stochastic processes by means
of minimum component electronic devices,” inNoise in Nonlinear Dy-
namical Systems, F. Moss and P. V. E. McClintock (Eds.). Cambridge,
U.K.: Cambridge Univ. Press, vol. 3, pp. 222–242, 1989.

[67] C Hayashi,Nonlinear Oscillations in Physical Systems. New York:
McGraw-Hill, 1964.

[68] P. V. E. McClintock, S. M. Soskin, N. D. Stein, and N. G. Stocks,
“Universality of zero-dispersion peaks in the fluctuation spectra of
underdamped nonlinear oscillators,”Phys. Rev. E, vol. 48, no. 1, pp.
147–156, 1993.

Authorized licensed use limited to: Lancaster University Library. Downloaded on February 28,2010 at 05:16:15 EST from IEEE Xplore.  Restrictions apply. 



1214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1999

[69] S. Faetti, C. Festa, L. Fronzoni, P. Grigolini, and P. Martano,
“Multiplicative stochastic-processes in nonlinear-systems—Noise-
induced transition from the overdamped to the inertial regime,”Phys.
Rev. A, vol. 30, no. 6, pp. 3252–3263, 1984.

[70] S. Faetti, C. Festa, L. Fronzoni, and P. Grigolini, “Experimental in-
vestigation on the effect of multiplicative noise by means of electrical
circuits,” in Memory Function Approaches to Stochastic Problems in
Condensed Matter, M. W. Evans, P. Grigolini, and G. Pastori-Paravicini
(Eds.). New York: Wiley, 1985, pp. 445–475.

[71] S. Golomb,Shift Register Sequences. San Francisco, CA: Holden-Day,
1967.

[72] O. Rice, “Mathematical analysis of random noise,”Bell Syst. Tech. J.,
vol. 23, pp. 282–332, 1944.

[73] G. H. Tomlinson and P. Galvin, “Elimination of skewing in the
amplitude distributions of long-m sequences subjected to low-pass
filtering,” Electron. Lett., vol. 11, pp. 77–78, 1975.

[74] J. Casademunt, J. I. Jim´enez-Aquino, J. M. Sancho, C. J. Lambert, R.
Mannella, P. Martano, P. V. E. McClintock, and N. G. Stocks, “Decay
of unstable states in the presence of colored noise and random initial
conditions. 2. Analog experiments and digital simulations,”Phys. Rev.
A, vol. 40, no. 10, pp. 5915–5921, 1989.

[75] W. Freeman, “Pseudorandom sequence generation with trinomials,”
Electron. Prod. Des., pp. 18–20, Dec. 1988.

[76] W. Horsthemke and R. Lefever,Noise-Induced Transitions. Berlin,
Germany: Springer-Verlag, 1984.

[77] D. Barton, “A PC user’s guide to data acquisition,”Phys. World, vol.
4, no. 2, pp. 56–60, 1991.

[78] C. Rand, “The ins and outs of data-acquisition and analysis,”Phys.
World, vol. 7, no. 1, pp. 30–33, 1994.

[79] T. Zhou, F. Moss, and P. Jung, “Escape-time distributions of a periodi-
cally modulated bistable system with noise,”Phys. Rev. A, vol. 42, no.
6, pp. 3161–3169, 1990.

[80] M. I. Dykman, R. Mannella, P. V. E. McClintock, N. D. Stein, and
N. G. Stocks, “Giant nonlinearity in the low-frequency response of
a fluctuationg bistable system,”Phys. Rev. E, vol. 47, no. 3, pp.
1629–1632, 1993.

[81] N. G. Stocks, “A theoretical-study of the nonlinear response of a
periodically driven bistable system,”Nuovo Cimento D, vol. 17, nos.
7–8, pp. 925–940, 1995.

[82] L. D. Landau and E. M. Lifshitz,Statist. Phys., 3rd ed. New York:
Pergamon, 1980, Pt. 1.

[83] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, H.
E. Short, N. D. Stein, and N. G. Stocks, “Noise-induced linearization,”
Phys. Lett. A, vol. 193, pp. 61–66, 1994.

[84] M. DeWeese and W. Bialek, “Information-flow in sensory neurons,”
Nuovo Cimento D, vol. 17, nos. 7–8, pp. 733–741, 1995.

[85] M. I. Dykman and P. V. E. McClintock, “What stochastic resonance
can do,” Nature, vol. 391, p. 344, 1998.

[86] P. Jung and P. Hanggi, “Amplification of small signals via stochastic
resonance,”Phys. Rev. A, vol. 44, no. 12, pp. 8032–8042, 1991.

[87] K. Loerincz, Z. Gingl, and L. B. Kiss, “A stochastic resonator is able
to greatly improve signal-to-noise ratio,”Phys. Lett. A, vol. 224, nos.
1–2, pp. 63–67, 1996.

[88] I. A. Khovanov and V. S. Anishchenko, “Effect of periodic signal
on mean switching frequency of chaotic bistable system,”Radiotekh.
Electron., vol. 42, no. 7, pp. 823–827, 1997.

[89] M. I. Dykman, R. Mannella, P. V. E. McClintock, F. Moss, and S.
M. Soskin, “Spectral density of fluctuations of a double-well Duffing
oscillator driven by white noise,”Phys. Rev. A, vol. 37, no. 4, pp.
1303–1313, 1988.

[90] M. I. Dykman, M. A. Krivoglaz, and S. M. Soskin, “Transition prob-
abilities and spectral density of fluctuations of noise driven bistable
systems,” inNoise in Nonlinear Dynamical Systems, F. Moss and P. V.
E. McClintock (Eds.) Cambridge, U.K.: Cambridge Univ. Press, vol.
2, pp. 347–380, 1989.

[91] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks,
“Phase shifts in stochastic resonance,”Phys. Rev. Lett., vol. 68, no. 20,
pp. 2985–2988, 1992.

[92] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks,
“Phase-shifts in periodically modulated bistable potentials—Reply,”
Phys. Rev. Lett., vol. 70, no. 6, p. 874, 1993.

Dmitrii G. Luchinsky was born in Moscow, Rus-
sia, in 1959. He received the B.Sc. degree in physics
from Moscow State University (Radiophysics Divi-
sion), Russia, in 1983, and the Ph.D. degree from the
Russian Research Institute for Metrological Service
(VNIIMS), Moscow, Russia, in 1990.

He is currently an Engineering and Physical Sci-
ences Research Council Research Associate, on
leave-of-absence from his permanent position as
Senior Scientific Researcher with VNIIMS. He has
been a Royal Society Visiting Fellow at Lancaster

University, U.K., on three occasions. His research in nonlinear optics has
included the invention of a new optically bistable device, the discovery of
a new form of optical hysteresis, and the first observation of optical het-
erodyning noise-protected with stochastic resonance. He has made numerous
contributions to the understanding of topics in stochastic nonlinear dynamics,
including stochastic resonance and large rare fluctuations.

Riccardo Mannella was born in Massa, Italy, in
1960. In 1985, he became a Dottore in Fisica of
Pisa University, with a dissertation on linear response
theory. He received the Ph.D. degree from Lancaster
University, U.K., and the Dottorato di Ricerca degree
in physics from Pisa University, Italy.

He has been a Postdoctoral Research Associate at
both Pisa University and Lancaster University, and
since 1992, a Researcher in physics at the University
of Pisa. His research activities are in the field of
nonlinear stochastic physics.

Peter V. E. McClintock was born in Omagh, Northern
Ireland, in 1940. He received the B.Sc. degree in
physics in 1962 and the D.Sc. degree from Queen’s
University, Belfast, Ireland.

After his D.Phil. research at Oxford University,
U.K., on spin–phonon interactions in paramagnetic
crystals at very low temperatures, and postdoctoral
research on superfluid helium at Duke University,
Durham, NC, he joined Lancaster University, U.K.,
in 1968, where he is now a Professor of Physics and
Head of the Physics Department. His current research

interests center on superfluid helium-4 and stochastic nonlinear dynamics.
Dr. McClintock is a Fellow of the Institute of Physics.

Nigel G. Stocks received the Ph.D. degree from
Lancaster University, Lancaster, U.K., in 1990, in the
field of stochastic nonlinear dynamics.

After spending three years at Lancaster University
on research topics including stochastic resonance
and noise-induced linearization, he joined Warwick
University, U.K., where he currently holds a Warwick
Research Fellowship in the Department of Engineer-
ing. His current research interests are in the nonlinear
response of periodically driven stochastic systems,
including stochastic resonance, and the modeling of

the laminar-turbulent transition in fluid flow.

Authorized licensed use limited to: Lancaster University Library. Downloaded on February 28,2010 at 05:16:15 EST from IEEE Xplore.  Restrictions apply. 


