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Abstract

In this paper we develop a stochastic model for household liquidity. In the model,

the optimal liquidity policy takes the form of a liquidity range. Subsequently,

we use the model to calibrate the upper bound of the predicted liquidity range.

Equipped with knowledge about the relevant control barriers, we run a series of

empirical tests on a panel data set of Dutch households covering the period 1992-

2007. The results broadly validate our theoretical predictions that households i)

exhaust most of their short-term liquid assets prior to increasing net debt, and

ii) reduce outstanding net debt at the optimally selected upper liquidity barrier.

However, a small minority of households appears to act sub-optimally. Poor

and vulnerable households rely too frequently on expensive forms of credit (such

as overdrafts) hereby incurring substantial amounts of fees and fixed borrowing

costs. Elderly households and people on social benefits tend to accumulate too

much liquidity. Finally, some households take on expensive short-term credit

while having substantial amounts of low-yielding liquid assets.
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1 Introduction

Recent survey evidence by Meleis and Israel (2010) suggests that many US consumers

feel that their financial affairs are simply out of control. A typical family uses checks,

debit cards, credit cards, multiple accounts, automated teller machines and automated

clearing house transactions. Spending is harder to control than ever before because

multiple household members write checks and make debit card purchases against the

same account, increasing the risk of overdrafts. For a typical household the volume

of transactions has doubled over the last few decades, and “so great is the concern

about juggling monthly payments and avoiding overdrafts that many US households are

now trapped into a compulsive routine of electronically verifying their account balances,

often 30 to 50 times per month.” These are, according to Meleis and Israel (2010),

“symptoms of a much larger problem, which is cash management”.

The recent economic crisis has exposed the gravity of the problem and the US gov-

ernment has recently issued a raft of legislation in order to protect consumers. For

example, in November 2009 the Federal Reserve Board issued amendments to “Regu-

lation E” that prohibit financial institutions from charging customers fees for paying

overdrafts on ATM and one-time debit card transactions that overdraw a consumer’s

account, unless a consumer consents or opts in to be charged a fee for these type of

transactions.1

In a similar vein Chairman Ben Bernanke of the Federal Reserve announced in

December 2008 revised rules concerning credit cards that “represent the most com-

prehensive and sweeping reforms ever adopted by the Board for credit card accounts.

These protections will allow consumers to access credit on terms that are fair and more

easily understood... Consumers must understand the pricing of credit card services if

they are to make well informed, responsible decisions about the use of credit and the

management of their accounts”.

While these facts and quotes illustrate the importance of the household cash man-

agement problem, one must be cautious not to generalise. Households are not a ho-

mogenous group and the majority of households do not face serious problems. For

example, a November 2008 FDIC study of Bank Overdraft Programs in the US found

that 74% of consumers do not incur overdraft fees, 12% of consumers are infrequent

overdraft users, 9% are moderate users and 5% are considered heavy overdraft users.

The average annual fee amount incurred by heavy users is $1610. The study shows

that a small minority of households pay the bulk of overdraft fees charged by banks.

1The Electronic Fund Act was passed by US Congress in 1978 to establish the rights and liabilities

of consumers as well as the responsibilities of all participants in electronic fund transfer activities.

The act was implemented in Federal Reserve Board “Regulation E”.
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The nonprofit Center for Responsible Lending (CRL) says that those with frequently

overdrawn accounts are among the most financially vulnerable as they tend to be lower

income, single, non-white and rent their homes. The CRL also labels overdrafts as “the

highest cost credit banks offer” and accuses some banks from engaging in unfair strate-

gies in order to maximise income from overdraft charges as evidenced by a recent court

ruling against Wells Fargo (Newsweek, August 13, 2010).2

Given the high charges for overdrafts, credit cards or credit offered by retailers, one

might wonder why some consumers use these forms of credit and do not rely on cheaper

financing sources. One possible explanation is that some households make decisions

that are sub-optimal from a financial viewpoint. Campbell (2006) claims that “many

households invest effectively, but a minority make significant mistakes”. According to

Campbell (2006) this minority appears to be poorer and less well educated.3

Despite it apparent importance, the existing household finance literature has largely

ignored the study of household cash management, and household liquidity more gener-

ally. Instead the focus has primarily been on the decision of the optimal composition of

the financial investments of the household, the efficiency of household portfolios, and

the role of diversification (see Campbell (2006)).4 In this paper we aim to address this

gap by analysing the dynamics of household liquidity, and the implications of these

dynamics for the financing decisions of households. In the concluding section we also

discuss the implications of our results for the policies and strategies of lenders and

financial regulators.

Households hold cash and other liquid assets for two main motives (Keynes (1936)):

a transaction motive and a precautionary motive. In the latter case cash holdings have

the function of a “safety net”, whereas in the former case cash allows for the smooth

execution of everyday financial transactions.

The determination of optimal cash and liquid asset levels has been analysed in the

literature as the balancing of two main driving forces – the benefits and the costs of

holding these assets – and the existing literature relies mostly on inventory optimisation

approaches. According to these models, cash must be held up to the level where

the marginal benefits of liquid holdings equal the marginal costs. Santomero (1974)

develops a general model of the demand for liquid assets by households, considering

different short-term assets and specific rates of return and transaction costs for each

2In August 2010 a federal judge in California ordered Wells Fargo to pay $230 million to consumers

in the state who overdrafted after the bank engaged in “high-to-low resequencing”, recording debt

transactions from highest amount to lowest, triggering multiple charges.
3The mistakes come in a variety of forms such as nonparticipation in risky asset markets, under-

diversification of risky portfolios, and failure to exercise options to refinance.
4For a detailed analysis of household portfolios (focused on asset allocation) and for an international

comparison see Guiso, Haliassos, and Jappelli (2002).
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asset type. His model, the first derived for household liquid assets, was inspired by the

works of Baumol (1952) and Tobin (1956), and by the works of Miller and Orr (1966)

and Whalen (1965) focusing on firm demand for money under uncertainty. Unlike our

paper, Santomero (1974) does not focus on an empirical linkage between the household

liquid asset holdings and its characteristics.

More recently, Eisfeldt (2007) analyses the demand for liquid assets arising from

consumption smoothing purposes. Bolton and Rosenthal (2005) bring together a se-

lection of papers most of which argue that many poor people live where traditional

banking is not an option. This makes poor people susceptible to largely unregulated

fringe banks and businesses that charge credit-starved borrowers high interest rates,

fees and penalties. Agarwal et al. (2005) study whether consumers choose the right

credit contracts. They find that on average consumers chose the contract that ex post

minimised their net costs. However, a small minority of consumers persists in hold-

ing substantially sub-optimal contracts without switching. Zinman (2007) shows that

many households borrow on credit cards at high rates while holding low-yielding bank

account balances. While some of this may be due to irrational behaviour Zinman ar-

gues that the puzzle can largely be explained by the fact that bank deposits are more

liquid and therefore have an implicit value. For example, many household expenditures

(such as utility bills, home repairs and loan repayments) cannot be executed through

credit cards. Finally, Stango and Zinman (2009) examine what people actually pay

to use their checking and credit card accounts. They find that the median household

pays $500 per year and could avoid more than half these costs with minor changes in

behaviour.5

We develop a household liquidity model that attempts rationally to explain house-

hold liquidity management. Under the optimal liquidity policy, households do not

take any debt before internal funds are fully exhausted. When liquidity is exhausted

households increase net debt (by borrowing or liquidating long-term financial assets)

to restore liquidity to a strictly positive level. The optimality of a discrete increase in

liquidity results from the fixed costs (such as fees or fixed transaction costs) associated

with increasing net debt. If liquidity exceeds some upper threshold then it is optimal

for the household to decrease net debt (by investing in long-term illiquid assets, or by

paying off debt) by a discrete amount to some optimal interior liquidity level.

The objective of our paper is twofold. First, our model provides an empirical

framework that allows quantifying certain parameters of liquidity decisions, such as

(perceived) transaction costs of reducing or increasing net debt. Upon estimating

5Our paper can also be viewed as complementary to the empirical contributions on corporate cash

holdings (such as Kim, Mauer, and Sherman (1998), Opler, Pinkowitz, Stulz, and Williamson (1999),

Dittmar and Mahrt-Smith (2007), and Bates, Kahle, and Stulz (2009)).
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our empirical model using a panel data set of Dutch households covering the period

1992-2007, we are able to assess the significance of these parameters by inferring the

shape of the underlying distribution of the households’ liquidity level and by identifying

lumpy changes in liquidity. The second purpose of our empirical tests is to establish

whether household demand for liquidity is indeed driven by the trade-off between the

interest forgone by holding low-yield short-term liquid assets and the costs of borrowing

or liquidating illiquid assets when the household runs out of short-term liquidity. The

alternative hypothesis is that household liquidity policy is determined by factors outside

the model, such as the inability to make optimal or fully rational financing decisions.

The answers to these research questions may have important policy implications for

regulators and lenders.

One limitation of our theoretical model is that it does not explicitly differenti-

ate between overdrafts and longer term debt, but instead pools the various classes of

debt together. Incorporating overdrafts would substantially complicate the theoretical

model.6 Furthermore, we will show that introducing overdraft balances into (a mod-

ified version) of the empirical model is not all that helpful in explaining household

liquidity for a number of reasons. First, only 7% of household-years include a positive

overdraft balance. Second, these overdrafts are to be attributed to a very small minor-

ity of households (87.38% of households in our sample never report an overdraft while

4.41% have an overdraft every year). It therefore appears that in the Netherlands (as

in the US) only a small group of households rely on overdrafts. Third, rather than

the amount of overdraft debt, what appears to be much more important for explaining

household liquidity is the mere presence of overdrafts (i.e. whether or not a household

has overdraft debt in the first place). In particular, our model for household liquidity

works well for households that do not use overdrafts but it appears to be inconsistent

with the liquidity policy of households that do have overdrafts. This suggests that the

presence of overdrafts is symptomatic of sub-optimal financing decisions. Analysing

the determinants of the probability of a household having an overdraft (using a probit

model) we find that high leverage, a large number of children, being unemployed or a

recipient of social benefits increases the likelihood of a household having an overdraft.

This suggests that poorer and more vulnerable households are more likely to follow

a suboptimal liquidity policy. In a similar vein, we find that elderly households and

those receiving social benefits appear not adequately to reduce their levels of net debt

when accumulating excess liquidity.

The remainder of the paper is organised as follows. The derivation of the stochastic

liquidity model is presented in section 2. Section 3 contains the discussion of the

6Cash management models with overdrafts include Wirth (1984) and Bar-Ilan (1990).
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empirical methodology, whereas the data used is described in section 4. The results of

the empirical analysis are discussed in section 5. Finally, conclusions are presented in

section 6.

2 A simple model

Modelling household liquidity in all its complexity is a challenging task, particularly

if one wants to capture the interaction between liquidity and financial decisions. For

example, a household facing liquidity constraints might engage in additional part-

time employment or increase the number of hours in the current job. Our theoretical

model abstracts from such interactions and assumes that non-financial decisions are

independent of liquidity management decisions.

The model of liquidity management we present is inspired by the stochastic in-

ventory management literature, and by the works of Harrison and Taksar (1983) and

Harrison, Sellke, and Taylor (1983) on the control of Brownian motion. In our model,

the amount of liquid assets L held by a household follows (when not controlled) an

arithmetic Brownian motion:

dL = µdt+ σdzt, (1)

where µ is the drift rate, σ is the variance and dzt is a Wiener increment. The change

in the amount of liquid assets at each instant can be interpreted as the difference

between income and consumption.7 A household can make three types of liquidity

decisions. First, it can raise its level of net debt to increase the liquidity balance, L.

Second, it can reduce the level of net borrowing, which would lead to the reduction

of L. Finally, it can do nothing. The type of decision taken by a household results

from the following trade-off. On the one hand, holding liquidity is costly as short-term

liquid assets do not yield any interest, whereas long-term financial assets do. On the

other hand, liquidity serves as a safety cushion reducing the costs of future borrowing

or the costs if liquidating illiquid long-term assets.

Denote the household’s subjective discount rate by δ. The household faces a market

interest rate r, which applies to both borrowing and investment in long-term illiquid

financial assets (lending). This assumption implies that investment in long-term fi-

nancial assets is equivalent to negative debt and, as a result, it is the amount of net

7Consequently, the process (1) reflects a situation in which income realizations at each instant t

are normally and independently distributed and consumption is either constant, proportional to the

magnitude of the income shock at t or, in general, normally distributed as well. In such a case, the

resulting increments of liquidity are normally and independently distributed too and the (accumulated)

liquidity follows an arithmetic Brownian motion. A detailed description of a possible framework and

set of assumptions leading to equation (1) is presented in Appendix A.
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debt that matters. The fixed cost of increasing net debt (by issuing loans or liquidat-

ing long-term financial assets) is K (≥ 0).8 The amount of borrowing, L∗, is selected

optimally as a result of the tradeoff between its cost, L∗r
δ

+K, and its benefit, which is

the reduction in the present value of the cost of any subsequent increases in net debt.9

Obviously, when K = 0, a household would just increase net debt infinitesimally every

time liquidity is exhausted to avoid the costs of forgone interest. (For r = 0 and K > 0,

the optimal amount of borrowing would be infinite.)

If the liquidity level is sufficiently high, a household may find it optimal to reduce the

level of net debt (which is equivalent to investing excess funds in long-term financial

assets or repaying existing debt). The associated fixed cost of such a reduction is

M ≥ 0. Consequently, each time the liquidity level hits upper barrier L, a household

optimally reduces it to the optimal target level L∗ < L.10 If there is no fixed cost of

reducing the level of net debt (i.e., if M = 0), then a household with excess cash makes

no discrete changes in its liquidity level and uses only the amount in excess of the

upper level L to reduce net debt.11 Moreover, no investment in long-term financial nor

debt repayment is ever made for r = 0. Figure 1 presents a graphical representation of

the liquidity management policy considered.

[Insert Figure 1 about here]

A strictly positive sum of (K + M) is a necessary condition for holding liquidity

and for the policy analysed in this section to be non-degenerate. A strictly positive

interest rate precludes the existence of the trivial optimal policy of borrowing an infinite

amount in order to avoid the fixed cost of future external financing rounds and ensures

that reducing net debt is optimal for a sufficiently high level of liquidity.

8We implicitly assume that loans and long-term financial assets are identical in terms of their

return, r, and transaction costs, K. This assumption may not strictly hold in reality, but is adopted

to keep the model tractable.
9As there is no instantaneous convenience yield of holding liquidity, nor a time lag between the

decision to borrow and the receipt of funds, the household does not optimally borrow until liquidity

is fully exhausted. If we allowed for a time lag between the decision to borrow and the receipt of

funds, borrowing would optimally take place for a strictly positive liquidity level. To find this level,

we would have to specify a penalty associated with letting liquidity drop down to zero. Moreover,

the model itself would become much less tractable without providing obvious additional insights. In

the empirical part of the analysis, a strictly positive lower liquidity barrier would result in lower slope

coefficients.
10Since the borrowing and lending rates are the same, liquidity is always reset to the same level

irrespective whether resetting results from new borrowing or lending, see Harrison (1985).
11In such a case, barriers L and L∗ coincide.
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The value of liquidity from a household’s perspective, F (L), is equal to the difference

of the present values of the interest on (net) long-term assets and the transaction costs

discounted at a rate δ. Given liquidity dynamics (1), the value of liquidity can be

derived using standard dynamic programming techniques (see, e.g., Dixit (1993)). In

general, F (L) is given by

F (L) = A1e
β1L + A2e

β2L, (2)

where A1 and A2 are constants to be determined. Parameters β1 and β2 are the negative

and positive root, respectively, of the following equation:

δ − µx− 1

2
σ2x2 = 0. (3)

Consequently, the liquidity management problem boils down to finding barriers L∗

and L and constants A1 and A2 using the following system of boundary conditions for

F (L):

F (L∗)− F (0) = K +
rL∗

δ
, (4)

F (L)− F (L∗) =
r(L− L∗)

δ
−M, (5)

F ′(L∗) =
r

δ
, (6)

F ′(L) =
r

δ
. (7)

The value-matching condition (4) requires that the difference between the value of

liquidity at L∗ and zero be exactly equal to the total cost of restoring liquidity to L∗

(from the zero level). Condition (5) requires that the value of liquidity at the target

level L∗ be smaller than the value at barrier L exactly by the amount equal to the gain

from reducing the liquidity level from L to L∗ (which equals the present value of future

interest earned, r(L−L∗)
δ

, net of the fixed transaction cost, M). Equations (6) and (7)

are smooth-pasting conditions ensuring the optimality of the barriers. Consequently,

at each of the barriers the marginal benefit of changing the liquidity level (represented

by the first-order derivative of F (L)) is equal to the marginal cost of such a change

( r
δ
).

The value of liquidity, F (L) can be represented as the following function of the

model parameters as well as of barriers L and L∗:

F (L) = Θ(0, L;L)

[
(L− L∗)r

δ
−M

]
−Θ(0, L;L)

[
L∗r

δ
+K

]
(8)

where Θ(0, L;L) and Θ(0, L;L), defined in Appendix B, are annuity-like factors rep-

resenting the present value of a series of e1 payments received each time threshold
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L is hit or liquidity is exhausted, respectively. The first component of (8) represents

the present value of interest on (gross) long-term assets minus the associated transac-

tion costs, whereas the second component equals the present value of interest paid on

(gross) debt, including transaction costs. For a graphical illustration of the value of

liquidity F (L), see Figure 2.

[Insert Figure 2 about here]

The figure shows that for low liquidity levels (L ∈ [0, L∗)) the marginal value

of liquidity exceeds r
δ
. For high liquidity levels (L ∈ (L∗, L)) the marginal value of

liquidity is less than r
δ
. At L∗ and L the marginal value of liquidity equals exactly r

δ
.

For example, if the household’s discount rate, δ, equals the market discount rate, r,

then the marginal value of e1 of liquidity equals 1 at L∗ and L.

3 Empirical methodology

Households’ incremental financing decisions depend on their current liquidity level in

the interval (0, L). For example, upon exhausting liquidity (L = 0) the marginal benefit

of creating financial slack exceeds the marginal cost of external financing (F ′(L) > r
δ
).

In such a case, a household would increase its level of net debt by a strictly positive

amount K + L∗, up to the point at which the marginal benefit and the marginal cost

are equal. (The discrete jump in liquidity results from a strictly positive fixed cost K.)

On the other hand, upon hitting the threshold L, the liquidity level is reduced until

the marginal benefit of holding liquidity is as high as the marginal benefit of reducing

net debt (F ′(L) < r
δ

for L ∈ (L∗, L)). As a result, the level of L is reset from L to L∗.

Following the discussion in the previous section, household i pursues the following

financing policy: i) it increases net debt as soon as liquidity is exhausted so that the

amount of liquidity is restored to a positive level L∗, ii) it reduces net debt when

liquidity rises above the upper trigger, L, which results in depleting liquidity to level

L∗, and iii) it takes no action when the level of liquidity is between 0 and L.

In the remainder of the section we develop the empirical analysis based on the

model of section 2 in three stages. First, we derive the functional form of the stationary

distribution of the household liquidity level. Second, we run a regression model of the

determinants of liquidity to estimate for each household the average level of liquidity.

Finally, we use those estimated values to test whether incremental liquidity decisions

of households are consistent with our model.
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3.1 Application of the stochastic liquidity model

As we are dealing with a large cross-section of households but with a very limited time-

series dimension, we are unable to estimate the model for each household separately.

Therefore, we assume that all households pursue the same liquidity policy up to a

proportionality constant. In other words, a household with an average level of liquidity

equal to, say, e2,000 starts reducing net debt at the liquidity level twice as high (or,

borrows twice as much upon exhausting liquidity) as a household with an average

level of liquidity of e1,000. The average liquidity level E [Lit] is therefore used as

the scaling parameter. In such a framework, one can think of the set of parameters

(µ,K,M,L∗, L) as being scaled for each observation by E [Lit] and σ2 as being scaled

by (E [Lit])
2 (The variance parameter σ2

it is denominated in e2.) For instance, the ratio

of the upper liquidity threshold for household i at time t, and household j at time s

(Lit/Ljs), corresponds to the ratios of average liquidity levels, E [Lit] /E [Ljs].

Consequently, µit, Kit, Mit, L
∗
it and Lit are all denominated in currency units. For

example, parameter µit denotes the expected annual appreciation of the liquidity stock

if neither borrowing nor debt repayment occurs. Kit and Mit denote the lump-sum

costs of borrowing and debt repayment, respectively, while L∗it and Lit denote the

currency-denominated liquidity levels associated with the optimal liquidity policy of

household i in year t. Parameters µ, K, M , L∗ and L are therefore interpreted as

proportions of the average household liquidity level (e.g., if Kit = e100 and E [Lit] =

e1,000, then K = 0.1). Furthermore, the variance parameter of the liquidity process

(1), σ2, is interpreted as a fraction of the squared average household liquidity level.

Discount rate δ and interest rate r are the only parameters which are constant across

households.

The scalability property is very desirable since it allows us to derive the distribution

of the normalised liquidity, which is common for all the households. To do so, we

define lit ≡ Lit/E [Lit] as the normalised liquidity. As a consequence of the scalability

assumption, all observations lit are drawn from the same distribution, the shape of

which can be inferred based on the entire sample of households. The derivation of

the piece-wise exponential density function ϕ(l) of normalised liquidity is presented in

Appendix C (cf. Bertola and Caballero (1990) and Dixit (1993)). An example of such

a distribution is illustrated in Figure 3.

[Insert Figure 3 about here]

What is directly relevant to our empirical test, is the relationship between l, l∗ and
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the mean of the distribution.12 This relationship directly depends on the magnitudes

of transaction costs associated with increases and reductions of net debt (K and M ,

respectively) as well as on such economic parameters as µ, r, δ and σ.13 Therefore,

once the inference is made about the shape of the distribution, we are able to draw

conclusions about the relative transaction costs consistent with the plausible values of

remaining model parameters.

Consequently, the empirical part of our study has three main objectives. First,

we test whether household’s liquidity policy generally follows the policy described in

section 2. Second, by allowing our model to detect discrete changes in the level of

liquid assets, we draw inferences about the relative locations of l, l∗ and the mean.

Finally, based on the inferred shape of the distribution and plausible values of remaining

economic parameters, we provide conclusions about the (perceived) magnitudes of the

transaction costs associated with changes in the level of net debt.

3.2 Estimation of the expected liquidity level

Estimation of the average liquidity level for each observation is done using regression

analysis. We calculate the predicted liquidity level for each household by regressing

liquidity on a number of explanatory variables for the entire sample.14 This predicted

value of liquidity is used as a scaling variable in the regression analysis in section 3.3.

If we were to interpret our model very narrowly, we would expect all the households

to be identical up to the proportionality constant. Therefore, a single variable related to

the wealth of a household, such as total assets, would be sufficient for determining the

average liquidity level.15 To avoid imposing such a restrictive framework, we assume

that the households pursue identical (up to the proportionality constant) liquidity

policies but otherwise are heterogenous. As a consequence, we are able to adopt a

more general model of the average liquidity level.

The determinants of the average liquidity level considered in our study are par-

tially inspired by the study of corporate cash holdings by Opler, Pinkowitz, Stulz, and

Williamson (1999). Obviously, factors affecting households’ demand for liquidity differ

from those for firms. When deciding on the average level of cash holdings, families

consider mainly transaction and precautionary motives. Informational asymmetries

12l and l∗ denote the normalised values of Lit and L∗
it, respectively.

13Strictly speaking, the shape of the distribution depends on the ratios of µ
σ2 , δ

σ2 and r
δ .

14By doing so, we follow, among others, Opler, Pinkowitz, Stulz, and Williamson (1999) and Rhodes-

Kropf, Robinson, and Viswanathan (2005)
15Other household financial characteristics such as income or debt would have no additional ex-

planatory power as they would constitute the same proportion of total assets for each household.

Moreover, non-economic characteristics such as age or educations would play no role at all.
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are unlikely to influence households’ demand for liquidity as creditors can relatively

easily observe a household’s characteristics. Furthermore, no separation of ownership

and control arises, which makes predictions based on agency-theoretic models not rele-

vant. Still, we rely on such determinants of liquid asset holdings known from corporate

finance literature as the leverage ratio, size, and cash flow (income). In addition, we

supplement the set of explanatory variables with additional household-specific charac-

teristics, such as age and education.

Just as bigger firms have on average a higher demand for liquidity, wealthier house-

holds are likely to maintain higher cash amounts. However, as a proportion of total

assets these amounts may be lower, as the economy of scale argument is valid for both

the transaction and precautionary motives for holding liquidity. Also, household size

may proxy for the risk of financial distress or cash-flow uncertainty, and less wealthy

families are expected to hold proportionally more cash for precautionary motives. In-

deed, Opler et al. (1999) document a negative relation between firm size and cash

holdings as a proportion to total assets. This follows a prediction of the static tradeoff

theory of firm financing, where economies of scale in liquid assets exist and expected

bankruptcy costs are negatively related to firm size. Hence, size is expected to have a

positive but concave relation with the cash value of liquid assets.

Net income, the cash flow measure for households, holds an ambiguous relation

with liquidity. Like firms, households experiencing a positive cash-flow shock may be

expected to accumulate liquidity for a given predetermined expenditure (consumption)

and debt reduction plan. However, households may be more “debt” averse than firms.

Also, debt conveys fewer benefits to households than to firms (e.g., in terms of tax

shield benefits or agency cost reduction). Therefore, households may use any excess

income that could otherwise increase liquidity holdings to repay debt, even above the

normal repayment plan (cf. the income and substitution effect of cash flow shocks in

Riddick and Whited (2009)).

The demand for corporate liquidity increases with leverage, as companies with big

financial commitments have their access to new debt restricted and therefore need

more liquidity for precautionary motives. Similarly, if a family has high levels of

debt, access to new debt in troublesome periods may be extremely expensive, if not

impossible. Consequently, a higher level of liquidity holdings would be expected for

highly indebted households. However, the higher demand may not be reflected in

higher observed liquidity levels, as these families may face liquidity constraints, due to

tight debt repayment schedules. As a result, observed liquidity levels may be below

what would be predicted by demand. Therefore, the sign of the relationship between

the leverage ratio and average liquidity is ex ante ambiguous.

The other two determinants of household liquidity that we consider are age and
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education. The preferred level of liquid assets varies over the life cycle. People of

different ages have different perceptions of the amount of liquidity they require to

proceed with their daily economic activities, and the level of liquidity required as a

“safety net”. For example, pensioners and older people tend to be more cautious.

Hence, these individuals are expected to keep higher amounts in liquid assets held for

precautionary motives. Furthermore, most debt is paid off by later age, providing more

scope for liquidity to build up. Therefore, a positive relation between age and liquidity

is expected.

Education has a major influence on the way individuals develop their financial

choices, and thus should be considered in an empirical test of the determinants of

household liquidity. Higher educated individuals are typically subject to less risky fi-

nancial situations, and lower income uncertainty. Considering this argument, education

would have a negative expected relation with cash holdings. However, other factors

may also play a role. Highly educated people may be more risk averse (or, financially

aware), and face lower financing constraints. In such a case, they would be expected

to build up liquidity to its optimal (higher) level.16

Finally, we control for five other factors directly associated with households’ as-

sets and wealth. To take into account a potentially higher risk aversion of retired

individuals, we use an additional dummy to represent those households that receive a

pension. One of the major goals of most households is a house tenure. Hence, prior

to purchasing a house, liquidity accumulation is likely to occur (so that a substantial

initial down-payment on the home can be accumulated). Therefore, we include home

ownership and mortgage debt as explanatory variables. To take into account the pre-

dictability (and expectation) of the income flow, we include two additional dummies

for employment and self-employment.

The basic empirical model of the determinants of expected household liquidity is

therefore as follows:17

E [Lit] = γ̂0 + γ̂1SIZEit + γ̂2INCit + γ̂3LEVit (9)

+γ̂4AGEit + γ̂5EDUit,

where E [Lit] is the expected liquidity (defined below), SIZEit is the natural logarithm

of total assets, INCit is the household’s total net income, LEVit is the ratio of total

debt to total assets, AGEit is the age of the eldest person in the household, and EDUit

16Tong (2010) analyses the relation between risk attitude and cash holdings using US firm data.
17The standard errors are adjusted for clustering at the household level to deal with multiple

observations for the same household in different years. Since nearly 50% of households are observed

only once, the fixed-effects/random-effects estimators are not a viable alternative (as their use would

result in disregarding those observations).
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is a dummy variable equal to 1 for tertiary education, and 0 otherwise. Parameter

estimates γi, i ∈ {0, 1, ..., 5}, are obtained using an OLS regression specification. An

extension of the basic model includes three additional dummy variables: PENSIONit

– equal to 1 for pensioners, and 0 otherwise, OWNERit – equal to 1 for homeowners,

and 0 otherwise, MTGit – equal to 1 for mortgage holders, and 0 otherwise, EMPLit

– equal to 1 for employed individuals, and 0 otherwise, and SELFit – equal to 1 for

self-employed individuals, and 0 otherwise.

In the empirical specification we consider two different definitions of liquidity. The

narrower measure of liquidity, L
(0)
it , considers as liquid assets cash and checking ac-

counts. The broader measure, L
(1)
it , includes savings and deposit accounts in addition

to components of L
(0)
it .18

3.3 A test of incremental financing decisions

Our test of incremental financing decisions resembles to a large extent the test of

the pecking order theory on corporations (Shyam-Sunder and Myers (1999), Frank

and Goyal (2003)). For firms, the test aims to identify which of the two sources of

external financing, debt and equity, is used in the first place. In a household finance

application, such an approach would be impossible to implement since equity is never

issued. Therefore, we aim to investigate the incremental financing decision by looking

at whether households finance their needs using primarily short-term liquid assets and

resort to long-term financial assets or borrowing if the former are exhausted.

First, define the deficit as −∆Wit, that is, the negative change in net worth (re-

sulting from a particular realization of transitory income). The balance sheet of a

household can be expressed as Wit +Bit = Sit +Lit, where Bit, Sit, and Lit denote the

levels of borrowing, long-term financial assets and liquidity, respectively. Changes in

net worth, −∆Wit, are observable via the balance sheet identity:

−∆Wit = ∆Bit − ∆Sit − ∆Lit

≡ ∆Dit − ∆Lit,

where ∆Dit is the change in net debt. According to our model, the deficit arising in

a given period is financed first with short-term liquid assets, −∆Lit, and – as they

become exhausted – with additional (net) debt, ∆Dit.

Therefore, we expect to observe the following piecewise-linear relationship between

incremental net debt and the deficit:19

18For details of all the variables included in each liquidity definition, as well as descriptives for the

sample, see Table 1.
19We do not assume any fixed costs of borrowing at this stage.
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∆Dit =

{
0 −∆Wit < Li,t−1

−∆Wit − Li,t−1 −∆Wit ≥ Li,t−1.
(10)

This is equivalent to

−∆Lit =

{
−∆Wit −∆Wit < Li,t−1

Li,t−1 −∆Wit ≥ Li,t−1.
(11)

By observing that depleting short-term liquidity is preferred to increasing net debt,

the following formulation is used in the first test of the stochastic liquidity model:

−∆lit = ϑ − θ∆wit + ηit, (12)

where ϑ and θ are parameters to be estimated and ηit is the error term. Variables

−∆lit and −∆wit are defined as −∆Lit/E [Lit] and −∆Wit/E [Lit], respectively, as the

model is formulated in terms of normalised variables. The null hypothesis that the

entire deficit is covered by depleting short-term liquid assets is equivalent to ϑ = 0

and θ = 1. In other words, model (12) stipulates a euro-for-euro linear relationship

between financing needs and the use of short-term financial assets (see Figure 4, Panel

A). Obviously, such a formulation can be too restrictive as liquidity may eventually

be exhausted and a household may have to resort to debt financing or, equivalently in

our framework, to reducing the level of long-term financial assets. Consequently, (12)

can be viewed as a test of the liquidity model for households having sufficiently high

liquidity levels to cover any potential deficits.

One way of incorporating the possibility of exhausting liquidity is to allow θ to be

lower than 1 under the null hypothesis (cf. the “weak form” interpretation of financing

hierarchy in Shyam-Sunder and Myers (1999)). However, there are some shortcomings

of such an approach (as pointed out first by Chirinko and Singha (2000)). A coefficient

smaller than one may indicate not only partial debt financing after depleting internal

cash but also financing of any deficit with some combination of liquid assets and changes

in net debt.

In order to overcome these problems, we design an alternative test of incremental

deficit financing decisions. The fact that we are testing the use of short-term liquid

assets versus net debt puts us in a comfortable position of being able to observe whether

short-term liquidity is exhausted or not (cf. panel B of Figure 4).20

20Our approach differs therefore substantially from the one adopted in corporate finance (as in

Shyam-Sunder and Myers (1999) and Frank and Goyal (2003)). Corporate capital structure tests

consider debt versus equity. Since debt capacity is not observable it is not possible to determine when

firms have exhausted their capacity to borrow. In our test, which considers liquidity versus (net) debt

financing, we can observe when a household’s liquid assets have been exhausted.

15



Consequently, our empirical formulation is of the following form:21

−∆lit − li,t−1 = ϑ+ θmin {−∆wit − li,t−1, 0}+ ηit, (13)

where li,t−1 is defined as Li,t−1/E [Lit]. In such a test, ϑ = 0 and θ = 1 would indicate

that only short-term liquid assets are used to finance deficits not exceeding li,t−1, and a

mix of liquidity (amounting to li,t−1) and net debt is used to finance deficits exceeding

the existing level of short-term liquid assets, li,t−1. Consequently, such a result would

support the one-sided case of the liquidity model with K = 0 and M → ∞ (i.e. no

fixed cost of increasing net debt and no possibility of reducing net debt).

A more flexible test of the incremental financing decision, which reflects the effective

debt requirement to finance larger deficits, is of the form:22

−∆lit − li,t−1 = ϑ+ θ1 (−∆wit − li,t−1) + θ2 max {−∆wit − li,t−1, 0}+ ηit. (14)

The null hypothesis of the special case of the liquidity model with K = 0 and M →∞,

is supported for ϑ = 0, θ1 = 1 and θ2 = −1. A value for θ2 = −1 corresponds to

the household increasing its net debt by −∆wit − li,t−1, which places liquidity back at

the predicted level. Compared to model (13), model (14) allows for an extra degree of

freedom as the slope of the relationship between the deficit and the change in liquid

assets is not restricted to zero for levels of deficit exceeding li,t−1 (see Panel C).

Apart from following the developed framework to normalise variables with E [Lit],

we have not made use of the results obtained in section 2. We need them for the

full-fledged test of incremental financing decisions. In such a test, an upper barrier l at

which households start reducing net debt is present. To accommodate this requirement,

we use a range of candidate values for l in the following test:

−∆lit − li,t−1 = ϑ+ θ0 min
{
−∆wit − li,t−1 + l, 0

}
+ θ1 (−∆wit − li,t−1)

+θ2 max {−∆wit − li,t−1, 0}+ ηit. (15)

The upper bound of the distribution of normalised short-term liquid assets, l, is in

itself a function of the parameters of this distribution, such as the drift rate, volatil-

ity or transaction costs. As l cannot be obtained analytically, we perform extensive

simulations to determine its likely values for plausible parameter configurations. We

21The reason for shifting both the explained and the explanatory variable by li,t−1 results from

the need for the functional form of the empirical model to be independent from the household char-

acteristics (li,t−1 in this case). This shift is exactly what differentiates our approach from existing

contributions. To extend these other approaches in a similar fashion requires knowledge of debt

capacity.
22This test does not prevent the coefficient of the deficit to be different from zero even for the

incremental part of the deficit exceeding li,t−1.
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obtain that l in most cases falls into interval (1.5, 3.5). Therefore, we select l = 2 as

our base case. In addition, l = 2 appears to be a good benchmark as it is consistent

with a symmetric distribution of l. As an extension, we also perform a grid search for

the best model fit for l ∈ [1, 4] with a step size of 0.1.

Under specification (15), a kink at −∆wit = −l + li,t−1 is expected as a result of

the fact that any liquidity above the amount l is used to reduce the level of debt.

Therefore, for surpluses exceeding l− li,t−1, the marginal effect of an additional euro of

surplus should not have any effect on the level of short-term liquid assets as it will be

used to reduce net debt (in other words, the slope of the graph in Panel D is expected

to be zero to the left of −l + li,t−1). Consequently, we expect that θ0 = −1. Also, and

as before, we expect ϑ = 0, θ1 = 1 and θ2 = −1.

As a robustness check of (15), we perform an empirical test allowing for the slope

of the regression function for negative values of the explanatory variable −∆wit (which

correspond to households facing a surplus) to differ from the slope over the remaining

interval. The corresponding regression specification has the form

−∆lit − li,t−1 = ϑ+ θ0 min {−∆wit, 0}+ θ1 (−∆wit − li,t−1)

+θ2 max {−∆wit − li,t−1, 0}+ ηit, (16)

where we expect θ0 ∈ (−1, 0). The advantage of using specification (16) is that it does

not require knowledge of the upper barrier of liquidity, l, at which a household would

invest in long-term financial assets (make a debt repayment). Its downside is that it is

subject to the critique of Chirinko and Singha (2000) that a slope smaller (in absolute

terms) than one does not have an unambiguous interpretation (cf. Panel E).

Finally, to test for the presence of a fixed cost of increasing (K) and reducing net

debt (M), we allow for additional degrees of flexibility that capture the discontinuities

of the explained variable (see Panel F):

−∆lit − li,t−1 = ϑ+ θ0 min
{
−∆wit − li,t−1 + l, 0

}
+ θ1 (−∆wit − li,t−1)

+θ2 max {−∆wit − li,t−1, 0}
+κ0D0,it + κ1D1,it + ηit. (17)

D0,it is a dummy variable that equals 1 if the surplus is sufficiently large to optimally

trigger a reduction in net debt (i.e., −∆wit < −l+ li,t−1) and 0 otherwise. Analogously,

D1,it is a dummy variable that equals 1 if the deficit is large enough to trigger additional

borrowing (i.e., −∆wit > li,t−1) and 0 otherwise. A positive value for κ0 (i.e., κ0 > 0)

and a negative value for κ1 (i.e., κ1 < 0) would indicate positive lump-sum costs of

debt reduction and borrowing, respectively. The expected absolute magnitudes of κ0

and κ1 equal the distance between the relevant resetting barrier and the target liquidity
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level (l − l∗ and l∗, respectively). In turn, distances l − l∗ and l∗ are monotonic in the

transaction cost parameters M and K, respectively.

4 Data

The data set used to empirically test our model is based on the DNB Household Survey

(DHS) carried out by CentERdata, a data collection unit of the Center for Economic

Research at Tilburg University (the Netherlands). The rotating panel follows yearly

over 2000 representative households in the Netherlands since 1993, and provides unique

information about the financing, spending, labor and social decisions of individual

households. The panel is constructed with the objective of reflecting the composition

of the Dutch population. Bi-annual refreshment samples are drawn with the main

objective of keeping the panel representative of the Dutch population. In the finance

literature, the data from the DNB survey has been used, among others, by Guiso,

Sapienza, and Zingales (2008).

The Netherlands is a particularly interesting country of study for household finance.

The Dutch financial system is relatively well developed, and Dutch households exhibit

a high level of financial sophistication and are sensitive to changes in the institutional

setting and to financial incentives potentially produced in their economic environment

(see Alessie, Hochguertel, and van Soest (2002)).

Since households are making decisions in an economic environment determined by

some features that are specific to the Netherlands (for example, one of the lowest rates

of home ownership in the EU, a tenant-friendly legal code or the proliferation of fixed

rate mortgages) one has to be careful in extrapolating the results to other countries.

However, considering that we are implementing an analysis of basic liquid assets, we

believe that many of our results also apply to other countries in Western Europe, such

as the United Kingdom.

Our data set corresponds to the period 1992–2007. All currency-denominated values

are expressed in euro (using the official NLG/e conversion rate of 2.20371). Obser-

vations considered are the ones in which all relevant parts of the questionnaire were

answered by household members. Families answering all parts of the questionnaire in

several years are considered as different observations. In our main regression studies,

potential correlation of these is considered by calculating robust standard errors.

The size of the data set that we use in the study is considerably smaller than the to-

tal number of observations in the DNB survey (in excess of 30,000). This is mainly due

to the requirement that several different sections of the questionnaire contain complete

answers in two consecutive years (needed for calculating changes in liquidity related

18



variables). Furthermore, we removed from the sample households with leverage (de-

fined as the ratio of total debt to total assets) above 2. This leaves us with 9,957

observations that are used in regression (9) predicting the average liquidity level. An-

other restriction on the sample size follows from the fact that only households with

a positive estimated average liquidity level (based on regression (9)) are considered

in models (12)–(17), as variables in those models are scaled by the predicted average

liquidity level. As a result, we lose another 469 observations. Finally, to mitigate

the influence of extreme observations, the dataset was truncated. After ranking all

households with respect to −∆wit, the top and bottom 1% of households (that is, 189

observations corresponding to top deficits or top surpluses of funds) were removed from

the sample. The advantage of this procedure is the elimination of households observing

abnormal and sporadic situations in the household economic life, which lead to huge

deficits or surpluses. Examples of such events would be home acquisition or a large

inheritance. The procedure also eliminates the effect on the results of those households

for which the predicted liquidity level (the scaling variable) is very close to zero. The

final sample used in regressions (12)–(17) consists therefore of 9,299 observations.

4.1 Data on liquid assets

The DHS survey presents detailed data on household asset holdings, with a very thor-

ough categorization. Table 1 presents the main liquid asset categories, descriptives

for average liquid asset holdings in our sample, each asset category as a proportion of

total assets, and two definitions of liquidity used in the remainder of the paper. The

average household in our sample holds an average of e2,749 in short-term financial

assets: cash and checking accounts. Deposit books as well as savings accounts and

plans, comprising medium-term less liquid financial assets, account for 6.2% of total

household assets, and are on average e10,502. Both categories of financial assets add

up to our broader definition of liquidity, which has an average total value of e15,097

and corresponds on average to 7.6% of total household assets. Finally, long-term illiq-

uid financial assets, which primarily consist of investments in mutual funds, stocks and

bonds, have an average value of e12,212 and represent 6.1% of total household assets.

[Insert Table 1 about here]

Also, for the 9,299 households considered in our liquid asset dynamics regressions,

and using the measure of liquidity L(1), we observe that 45.3% of households experience

a deficit of funds. Also, of these households in deficit, 45.4% hold enough liquid assets

to repay the deficit. For households with a surplus of funds, 12.8% have a total liquid

assets value above twice the estimated average liquidity level.
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5 Results

This section presents the results of the estimation of the average liquidity level E [Lit]

required for the testing of our proposed model (and implemented as in equation (9)),

and the tests of incremental financing decisions proposed in equations (12)–(17). Re-

sults are shown for the two definitions of liquid assets: the narrower definition, L
(0)
it ,

considering only cash and checking accounts; and the broader definition, L
(1)
it , consider-

ing the above plus deposit and savings accounts. In implementing regressions (12)–(17)

all variables are normalised by scaling the original values by the estimated average liq-

uidity level E [Lit]. In the base case, models (15) and (17) are estimated using l = 2 as

the upper boundary of the liquidity distribution. An extension based on other levels

of the upper barrier is also presented. We conclude the section with an analysis of the

characteristics of those households for which the fit of our theoretical model is much

worse.

5.1 Determinants of the average liquidity level

Table 2 presents the OLS regression results of the determinants of household liquidity

(L
(0)
it and L

(1)
it ). Model 1 presents the results of the basic regression in (9), which

considers leverage, net income, household size, age and education as the explanatory

variables. Model 2 further explores the cross-sectional variation in the sample by

additionally including as determinants of liquidity such dummy variables as pensions,

home ownership, mortgage presence, employment and self-employment. The estimated

coefficients are mainly in line with our predictions.

[Insert Table 2 about here]

Household size, proxied by the natural logarithm of total assets, has a positive and

highly significant relation with liquidity. The results are as predicted, since households

with higher gross assets are expected to hold higher amounts of liquidity.23 The coef-

ficient of net income also exhibits a positive sign, and is significant. Results indicate

that high income households finance their activities internally, repay due debt with

remaining funds, and accumulate liquidity afterwards. Finally, leverage has a negative

effect on the average liquidity level, which is a indication of financing constraints faced

by highly indebted households.

23If the ratio of liquidity to total assets – a relative measure – is the dependent variable, then

the estimated household size coefficient is, however, negative. This confirms the economies of scale

argument described in section 3.2.
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The prediction that households adopt higher liquidity levels as they move through

the life cycle is confirmed, with positive and significant coefficients observed for the

age factor. However, the age factor loses some magnitude in Model 2, possibly due

to the fact that some older people are pensioners, and age is capturing this effect in

Model 1. Also, although the education coefficient is negative, which could lead to the

conclusion that more educated households appear to hold less liquid assets, the results

are statistically significant only for liquidity definition L
(0)
it .

Regarding the additional variables present in Model 2, pensioners have significantly

higher amounts of liquidity. It is likely that higher risk aversion reduces them to hold

more liquidity for precautionary motives. Homeowner households, however, appear to

hold significantly less liquidity than non-homeowner households. This fact confirms the

process of liquid asset accumulation by renters, potentially with the ultimate objective

of a downpayment on a house. Mortgaged homeowner households seem to hold higher

levels of liquid assets than unmortgaged owner households. However, the effect is

not statistically significant. The employment dummy variable is positive and highly

significant for L
(1)
it but not for L

(0)
it . This indicates that employment status does not

affect the shortest-term liquid asset holdings. Finally, self-employment is a significant

positive determinant of L
(0)
it , but not of L

(1)
it .

The regression results explaining L
(0)
it and L

(1)
it allow us not only to understand the

main factors driving liquid asset holding, but also to create an estimate of the average

liquidity level E [Lit] required to scale variables in (12)–(17). In the remainder of the

paper, estimates of E [Lit] are based on the results of Model 2.

5.2 Incremental financing decisions

The regression results for the incremental financing decisions by households are shown

in Tables 3 and 4, with Table 3 reporting results based on L
(0)
it and Table 4 those based

on L
(1)
it . The regression specifications become more flexible (in terms of degrees of

freedom) when moving to the right of each table and the results of these more flexible

models generally follow more closely the predictions of the theoretical model.

[Insert Tables 3 and 4 about here]

Regression results of the basic test of the preference of internal liquidity to external

financing as proposed in (12), and similar to the empirical test of the pecking order

theory proposed by Shyam-Sunder and Myers (1999), give a slope coefficient of 0.009 for

L
(0)
it and and 0.098 for L

(1)
it and deviate from the predicted value of one for the coefficient

of −∆wit (using the 5% confidence intervals). In both cases, the intercept is close to the
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predicted value of zero (the difference is not significant at the 5% level). These results

appear to indicate only a partial external (debt) financing of the deficit of funds by

households. Several critiques of this basic test applied to corporate capital structure

(see Chirinko and Singha (2000)) also hold for our framework. Although suitable

for households with a very high level of liquid assets, this test leads to ambiguous

interpretations for the coefficients of the deficit variable (−∆wit) that are lower than

1.

In general, we expect a lower coefficient for the narrower definition of short-term

liquidity (L
(0)
it ) than for the broader definition of short-term and medium-term liquidity

(L
(1)
it ). This is due to the fact that larger deficits usually have to be financed by some

combination of liquidity and net debt. For any size of the deficit, the probability of

financing it entirely with short-term liquid assets (which is equivalent to the slope coef-

ficient being equal to 1) is lower than the probability of financing it with a combination

of short-term and medium-term assets.24

Equation (13) provides an alternative test of household behaviour in the presence

of a funds deficit. It explicitly takes into account the fact that net debt needs to be

increased once short-term liquid assets are exhausted. Since the available amount of

short-term assets is observable we know exactly when short-term liquidity is exhausted.

We obtain a slope coefficient of 0.017 for L
(0)
it and of 0.224 for L

(1)
it , which is in both cases

significantly different from 1 at the 5% level. The results of regression (13) suggest once

more that the financing of the arising deficits is being made through a combination of

liquid funds and an increase in net debt. The results suggest that net debt is increased

before existing liquid assets are fully exhausted. As expected, a greater share of the

deficit is funded by liquidity if we consider the definition L
(1)
it , compared to L

(0)
it where

households rely to a larger extent on net debt. Also, an accumulation of liquid assets

independent of the level of the deficit and its partial financing, appears to exist for

both liquidity definitions, as the estimated coefficient ϑ is negative and significant.

A more flexible test of incremental financing decisions is conducted using (14).

Results obtained are of a very similar magnitude to the ones just discussed. The

results confirm a partial reduction of liquidity by households in deficit prior to new

debt being issued as θ1 and θ2 exhibit some distance from the theoretically predicted

values of 1 and −1, respectively (they are equal to 0.017 and −0.018 for L
(0)
it and 0.228

and −0.249 for L
(1)
it , respectively). As before, results are much closer to the predicted

magnitudes if considering L
(1)
it , for which around a quarter of the available liquidity is

24As a robustness check, we have re-estimated equations (12)–(17) with observations corresponding

to the top and bottom 5, 10 and 25% of the normalised deficit level removed from the sample. As

expected, regression coefficients of the basic model specifications move closer to 1 if these extreme

observations are removed.
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exhausted before the level of net debt is increased.

In model (15), we introduce an upper barrier l at which households start repaying

debt (or investing in long-term assets) by using excess liquidity. Our candidate value

is 2 (see section 3.3). Empirical results partially confirm our theoretical predictions.

Namely, if L
(1)
it is considered, the estimated value of θ1 is 0.735 (predicted θ1 = 1),

whereas the estimate of θ2 equals −0.806 (predicted θ2 = −1). The estimated param-

eter values indicate that household fund deficits are covered mostly with the available

liquidity stock. In households a significant reduction in the level of net debt is ob-

served – the estimated value of θ0 is −0.739 (predicted θ0 = −1). Some accumulation

of liquid assets beyond the defined upper threshold may reflect situations that the

households commonly face, such as an accumulation of assets for home purchase, or

the lack of alternative financial investments (e.g., the accumulation of liquid assets by

the elderly after mortgage repayment). A partial reduction in net debt is also observed

for the tighter liquidity definition L
(0)
it , as θ0 = −0.356. Results for model (16), im-

plemented as a robustness check to the more data demanding model (15), support the

aforementioned conclusions.

The results obtained so far are broadly confirmed by the (more complex) setting of

(17), where discrete changes in short-term liquid assets resulting from debt repayment

and borrowing are considered. For specification (17), the estimation results support

(for both liquidity definitions) the hypothesis that there discrete positive changes in

short-term liquid assets when net debt increases. This result is consistent with a strictly

positive lump-sum cost associated with increasing net debt. For L
(1)
it , κ1 = −0.356,

whereas for L
(0)
it , κ1 = −0.224 (both coefficients are significant at the 1% level). The

existence of discrete reductions in short-term liquid assets associated with lowering the

level of net debt would be confirmed by a strictly positive estimate for the coefficient

κ0. However, for neither of the definitions of liquidity κ0 is positive, which indicates

that households do not associate reductions in net debt with lump-sum cost and, as a

result, do not pursue them in a discrete fashion.25 To summarise, the results of (17)

indicate that the discrete change l∗ at the lower liquidity threshold is greater than the

change (l − l∗) at the upper threshold. In other words, l∗ ∈ ( l
2
, l).

25We assume that the incremental financing structure decisions do not entail any “round trips”. In

other words, the annual deficit is implicitly interpreted as the supremum of all deficits between t− 1

and t− 1 + τ , where τ ∈ [0, 1]. However, this is just an approximation. In general an additional debt

issue occurring when −∆wit < li,t−1 (i.e., when the deficit can apparently be financed using internal

liquidity) does not automatically contradict our model. In fact, it may have happened that during

the course of the year the household ran into a deficit bigger than li,t−1 (which triggered a debt issue)

and only later it bounced back. The round trips potentially contribute to the estimated regression

coefficients in models (12)-(17) to be smaller (in absolute terms) than 1. Furthermore, without the

round trips, the sum of absolute values of κ0 and κ1 would equal
(
l − l∗

)
+ l∗ = l.

23



Table 5 presents sensitivity results of regressions (15) and (17) with respect to the

upper bound of household liquidity, l, considering definition L
(1)
it . As mentioned before,

a grid search is performed to identify the best model fit for l ranging from 1 to 4 (with a

step size of 0.1). The best fit (the highest R2) is obtained with l = 2.6 for specification

(15) and with l = 3.1 for (17). (In both cases R2 is an inverted U-shaped function

of l.) For l = 3.1, both the sign and significance of κ0 improve. Still, only a partial

adjustment of liquidity to reduction of net debt is observed.

[Insert Table 5 about here]

Having determined l associated with the best model fit and concluding that l∗ ∈
( l

2
, l), we are now in position to infer the magnitude of the transaction costs K and M ,

associated with increases and reductions in net debt, respectively. To do so, we use the

system of equations (4)-(7), and use the equation for the distribution mean to link l∗

and l with other model parameters. To eliminate the remaining degrees of freedom, we

adopt the estimate of income volatility of Dutch households of 0.197 obtained by Diaz-

Serrano (2005) and assume that r = δ = 0.04.26 Solving the model for l ∈ {2.6, 3.1}
and l∗ ∈ ( l

2
, l) indicates that the (perceived) lump-sum cost of increasing net debt, K,

varies from 0.10 to 0.21 (as a fraction of the average liquidity level) and is generally

much higher than the cost of reducing net debt, M , which ranges from 0.01 to 0.11. The

estimated costs K and M decrease with the assumed level of l∗ and K (M) decreases

(increases) with l. Furthermore, both costs increase with the assumed level of r and

decrease with σ.

To summarise the main part of the empirical analysis, our evidence supports to a

large extent the theoretical prediction that the presence of a financing deficit leads in

the first instance to the depletion of the stock of (internal) liquidity and only then is

followed by an increase in the level of net debt. Still, even with the most flexible model

specification, the relevant adjustment coefficients are smaller (in absolute values) than

1, which indicates that the financing hierarchy is followed only imperfectly. Throughout

Tables 3-5 we report confidence intervals of the estimated coefficients. The results of

the empirical analysis only partially support the hypothesis that the excess funds over

the (theoretically predicted) upper liquidity threshold are used to reduce the level of net

26To obtain an estimate of the actual volatility of liquidity process (1), we assume that there are

no transitory changes in consumption (see Appendix A) and that any shocks to income level fully

translate into shocks to the (unconstrained) liquidity level. Subsequently we scale income volatility

by the ratio of average liquidity to average income (0.56) to obtain the (standardised) estimate of σ.

Obviously, if transitory changes in consumption absorb a strictly positive fraction of shocks to income,

the actual σ will be lower and the estimates of the transaction costs consistent with it – higher.
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debt. Furthermore, we find evidence of a (perceived) significant lump-sum transaction

cost associated with increases in the level of net debt and of a substantially lower cost

associated with its reductions.

5.3 Analysis of households adopting sub-optimal financing de-

cisions

Previously we found that our financing hierarchy is only partially supported by the

data. This suggests that some households may be behaving sub-optimally. In this

section we try to identify households that behave sub-optimally and their character-

istics. We subsequently examine in what way their liquidity policy deviates from the

one predicted by our model.

As highlighted in the introduction, overdrafts constitute a very expensive source

of financing and they are therefore likely to be symptomatic of suboptimal financing

decisions. We therefore first analyse whether, and to what extent, households in our

sample rely on overdrafts. Subsequently we identify the characteristics of households

that use overdrafts using a probit and tobit model with, respectively, the presence (a

binary variable) and the monetary level of overdrafts as dependent variable. Finally, we

examine whether those household characteristics and the mere presence of overdrafts

help explaining household liquidity policy.27

We start off by analysing the occurrence and the level of overdrafts across house-

holds. As overdrafts constitute an expensive form of financing, which is likely incon-

sistent with the minimisation of financing costs, the analysis of overdrafts is useful

in two ways. Firstly, the empirical model of incremental financing decisions can be

extended to explicitly take into account the fact that some households use overdrafts.

If the presence of an overdraft is interpreted as irrational behaviour, such an extension

would allow us to test whether incremental financing decisions of households that use

overdrafts are further away from those predicted by our model. Secondly, identifying

the determinants of overdrafts is useful in selecting explanatory variables that are po-

tentially associated with less-than-rational financial decision making. We subsequently

test whether those variables indeed affect the incremental financing decisions.

For our initial sample of 9,957 observations, an overdraft is reported for 7.27% of

household-years. 4.41% of households report an overdraft every year and 87.38% never

resort to this source of financing. A simple analysis of variance (ANOVA) confirms

that the occurrence of an overdraft differs significantly between households. In other

words, household identity (household fixed effect) is a significant determinant of an

overdraft occurrence (F = 3.11 rejects the hypothesis that household fixed effects are

27We thank the anonymous referee for suggesting the analysis of overdrafts.
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not jointly significant at the 1% level). If we replace an overdraft occurrence with its

value and do an ANOVA on the overdraft levels, then there is no systematic difference

across households (F = 1.03 implies that the fixed effects are not significant at the

10% level). We conclude that the variation of overdraft levels cannot be explained by

the household fixed effects due to a high within variation of the overdraft levels.28

As overdrafts do not occur randomly across households, we investigate household

characteristics that explain the presence and the level of overdrafts. We predict that

financially more sophisticated households (cf. Campbell (2006)) will tend to use over-

drafts less often and to a lesser extent. Consequently, the probability and the mag-

nitude of an overdraft is expected to be negatively related to income (INC), wealth

(SIZE) and education (EDU), and positively related to leverage (LEV ), age (AGE),

unemployment (UNEMPL) and social benefits (BENEFIT ). We do not form expec-

tations regarding the direction of the effect of being self-employed (SELF ), pensioner

status (PENSION), the number of kids (KIDS), being a homeowner (OWNER) or

having an outstanding mortgage contract (MTG). The signs of the estimated coeffi-

cients of a probit model largely confirm our predictions. We find (see Table 6, column

3) that the probability of a household having an overdraft is positively related to LEV ,

SELF – but to a smaller magnitude than UNEMPL – as well as to BENEFIT and

KIDS. In turn, the probability of observing an overdraft is negatively influenced by

SIZE. All the results are significant at the 1% level with an exception of SIZE (5%)

and BENEFIT (10% level). Upon analysing the marginal effects, it can be concluded

that unemployment (UNEMPL) is the most highly economically significant determi-

nant of the probability of resorting to an overdraft facility. To complete the analysis,

we identify the determinants of the magnitude of overdrafts across households by es-

timating a tobit model. The expected magnitude of overdrafts is explained essentially

by the same variables as its probability, except that SIZE and BENEFIT lose their

statistical significance and AGE becomes statistically significant (see Table 6, column

5).

Since the use of overdraft accounts may be interpreted as a symptom of a sub-

optimal financing policy, we hypothesize that households using overdrafts are also

more likely to deviate from the optimal policy predicted by our model. Consequently,

we augment the empirical specification (17) by including interaction terms that cap-

ture the effect of overdraft use. Such an approach is equivalent to splitting the total

sample into two subsamples – with and without overdrafts – and allows us to test

the significance of the differences in key model coefficients and to compare discrete

changes related to increases/reductions in net debt. By comparing the incremental

28This finding can therefore be interpreted as the average level of an overdraft being the same (i.e.,

the actual level being drawn from the same distribution) across households.
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policies of households with and without overdrafts (see Table 7, column 2) we show

that the former are more likely to finance their deficit with debt even if short-term

liquidity is not fully exhausted (the coefficient of (−∆wit− li,t−1) is reduced by 0.375).

Moreover, households with overdrafts appear to borrow too little (and, as a result, too

frequently) once their short-term financial assets are actually fully exhausted (a posi-

tive coefficient of D1 ∗OV ERDRAFT , where OV ERDRAFT is a dummy equal to 1

if a household uses an overdraft facility and 0 otherwise, indicates a reduced magnitude

of the lump-sum borrowing). Those results imply that the behaviour of households us-

ing overdrafts indeed differs from other households’ and from the behaviour predicted

by our theoretical model.

Finally, we analyse whether the household characteristics that determine the pres-

ence and level of overdrafts also affect a household’s incremental financing policy. In

particular, we analyse the effect on liquidity policy of dummy variables linked to in-

come, total assets, leverage, age, benefit and unemployment. For all continuous vari-

ables of interest, the dummies are defined according to whether the relevant explana-

tory variable is above or below its median. Therefore, we define INCL and SIZEL,

as dummy variables equal to 1 if INC and SIZE, respectively, are below their median

and to 0 otherwise. Analogously, we define LEV H and AGEH as dummy variables

equal to 1 if LEV and AGE, respectively, are above their median and to 0 otherwise.29

We use again model (17) augmented with a range of interaction terms to capture the

effect of the variable of interest. The results of our tests support to a large extent the

hypothesis that the factors affecting the probability and level of overdrafts also affect

the incremental financing policy (see Table 7, columns 3-8). Borrowing before fully

exhausting liquidity is particularly common for households with high leverage – the

coefficient of (−∆wit− li,t−1)∗LEV Hit equals −0.052 (cf. column 5). Once short-term

liquid assets are exhausted, borrowing too little and too frequently occurs predomi-

nantly among households with low income, low assets and those who are unemployed –

the coefficient of D1 ∗X30 for X ∈ {INCL, SIZEL,UNEMPL} equals 0.106, 0.145,

and 0.292, respectively, which means that for these 3 categories the amount being

borrowed upon exhausting liquidity is smaller. Finally, elderly households and those

receiving social benefits appear not to adequately reduce their levels of net debt after

accumulating excess liquidity – the coefficient of D0 ∗X equals −0.512 for X = AGEH

and −0.603 for X = BENEFIT .

[Insert Tables 6 and 7 about here]

29Education and the number of kids are not significant determinants of the incremental financing

decisions, so we do not report them.
30Recall that D1 = 1 indicates that the deficit exceeds the amount of short-term liquid assets.
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6 Conclusions

We develop and test a theoretical model of household liquidity inspired by the stochas-

tic inventory management literature. According to our theoretical model, households

do not optimally increase net debt before short-term liquid assets are exhausted. If the

liquidity level hits zero, households take on enough debt to place liquid assets at a pos-

itive level. Furthermore, the model considers the possibility of a surplus of funds, and

predicts that net debt is optimally reduced above a certain upper liquidity threshold.

We test our model predictions using a panel data set of Dutch households. We

estimate the upper liquidity threshold at which a reduction in net debt occurs – by

partial repayment or investment in long-term financial assets. Five key liquidity deter-

minants, required for the implementation of our incremental financing decisions model,

are considered (we further extend the model for additional five determinants). House-

hold size and income are shown to affect positively the average level of household

liquidity. Household leverage appears to affect negatively the average level of liquid

asset holdings. Although more educated households take on less liquidity, the relation

is statistically significant only for the narrower definition of liquidity that does not in-

clude medium-term liquid assets. The significance of the age factor shows an increasing

importance of the precautionary motive for holding liquidity while moving through the

life cycle. Older people may also have a stronger preference towards cash to execute

financial transactions.

Concerning the incremental financing model, our empirical results for households

facing a deficit of funds are largely consistent with the theoretical predictions, and

are in line with a financing policy where households use the various financing options

according to a strict order of preference. Households use debt financing or deplete the

stock of long-term financial assets only after their liquidity is substantially reduced.

However, our prediction of debt repayment (or investment in long-term assets) for

the levels of liquidity above the derived upper threshold is only partially supported in

our sample, which indicates that the perceived benefits of reducing net debt may vary

widely across households. Furthermore, we find evidence of significant fixed transaction

costs associated with increases in the level of net debt, whereas decreases in the level

of net debt do not appear to entail costs of such a magnitude.

The finding that the financing hierarchy is only partially supported suggests that

some households may not be behaving optimally. First, elderly households and those

receiving benefits appear not to reduce adequately their level of net debt after ac-

cumulating excess liquidity. Second, some households have a significant amount of

short-term liquidity while having costly overdrafts. In fact, households having over-

drafts appear to borrow small amounts on a frequent basis, which indicates they ignore
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the fixed costs (fees) associated with this sub-optimal liquidity policy. In our data sam-

ple households with overdrafts tend to have few assets, high leverage and they are more

likely to be unemployed.

Our results have implications for regulators, lenders and policy makers. First, our

result that the implied transaction costs associated with increasing net debt are much

higher than those associated with reducing net debt suggests that policy measures

aimed at reducing frictions associated with the former may not only be necessary but

also more effective. Second, our finding that a small minority of poor and vulnerable

households rely too much and too frequently on the most costly forms of financing (such

as overdrafts) implies that there is clearly a need for providing those people with more

financial education, advice and protection. Some countries (like the US) have in the

wake of the recent crisis introduced legislation to protect consumers and adopted bills

that restrict overdraft services. Third, the fact that some households engage in costly

overdraft borrowing while holding substantial amounts of liquidity may be a symptom

of the cash management problem described in the introduction. If this sub-optimal

behaviour is indeed a result of the increased complexity (such as managing multiple

accounts) and volume of a household’s financial transactions then there seems to be

a need for a banking service that links a customer’s various accounts more efficiently

together. For example, a service that automatically transfers available funds from a

savings account to an account that risks being overdrawn could save customers a lot of

money in overdraft fees. Finally, our results show that some households (especially the

elderly) accumulate excessive amounts of short-term liquidity. We can only speculate

about the reasons for this. It might be because these households are more risk-averse

and therefore have a higher precautionary need for liquidity. They might prefer cash

transactions and attach a higher implied value to cash. Some might not be aware (or

not be bothered) that they are losing money by not investing in long-term financial

assets with a higher return. Others might have a very short horizon or perceive the

risk of liquidity shortage in the economy to be unreasonably high. If some of these

conjectures are true then boosting consumer confidence as well as maintaining trust

in the financial system may be important policy goals, particularly during recessions.

The excess liquidity in the hands of some households also suggests a potential source of

funds governments could tap into. In the wake of the credit crunch and sovereign debt

crisis some governments are considering to borrow more extensively from their own

citizens (and less for foreign investors) and to make government debt more attractive

by making it exempt from income tax, for example.

The absence of strong results concerning debt repayment and the transfer of liq-

uid assets to long-term assets are aspects certainly worth exploring in future research.

Different types of households may have different incentives to proceed with debt re-
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payment or to engage in long-term investments, and hence may adopt very different

liquidity policies. For example, pensioners having no debt may exhibit inertia in shift-

ing their investments, or households saving for home acquisition may not be keen on

investments involving high withdrawal penalties.

30



A Derivation of the liquidity dynamics

The liquidity model of Section 2 is formally rationalized as follows. Assume that

a household has an infinite horizon (cf. Deaton (1993), Wang (2006)) and that its

cumulative income process follows an arithmetic Brownian motion

dYt = αdt+ σdzt, (A.1)

where α is the expected value of the instantaneous income flow and σ is its standard

deviation. Consequently, σdzt is interpreted as the difference between the expected

and realized income over interval dt. Such a model specification corresponds to income

being distributed normally in a discrete time setting.

In a perfect capital market, that is, with borrowing rate r equal to the lending rate

and no transaction costs, a household’s wealth Wt would have the following dynamics

dWt = dYt + rWtdt− ctdt = (α + rWt − ct) dt+ σdzt, (A.2)

where ct is the level of the household’s instantaneous consumption. Equation (A.2)

is interpreted as follows: the change in wealth over interval dt equals the sum of the

realized income stream and the capital gain on the existing wealth reduced by the

household’s consumption.

In a situation, in which borrowing (and, potentially, saving) is associated with

transaction costs, the household finds it optimal to maintain a liquidity balance. In

such a case, the dynamics of wealth is given by an equation similar to (A.2) but which

also takes into account the the transaction costs as well as the forgone interest on any

liquidity balance. Before deriving such an equation, let us first observe that the balance

sheet of the household can be written as Wt+Bt = St+Lt, where Bt, St, and Lt denote

the levels of borrowing, savings and liquidity, respectively. The instantaneous change

in the level of wealth can therefore be written as

dWt = [α + r(St −Bt)−KξK −MξM − ct] dt+ σdzt, (A.3)

where ξi, i ∈ {K,M} denotes an indicator function that has the value of 1 if the

fixed transaction cost i is incurred in interval dt and zero otherwise. Equation (A.3)

simply states that the change in wealth over interval dt equals the sum of the realized

instantaneous income stream and the interest on net savings reduced by any transaction

costs and the household’s consumption. Given that the balance sheet identity also holds

for changes in the levels

dWt + dBt = dSt + dLt, (A.4)
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the dynamics of stochastic process for liquidity is obtained by adding dBt− dSt to the

RHS of (A.3). Since

dSt = (rSt + ∆SξM) dt, and

dBt = (rBt + ∆BξK) dt,

where ∆S (∆B) is the lumpy saving (borrowing) made upon hitting the savings thresh-

old (exhausting liquidity), household liquidity Lt is governed by

dLt = [α + (∆B −K) ξK − (∆S +M) ξM − ct] dt+ σdzt, (A.5)

At this point, we need to impose a simplifying assumption that results in consump-

tion being constant over time. Namely, we assume that the household’s consumption

level is only a function of time and not of the state variable and that the household’s

discount rate δ is consistent with a constant consumption path under such a scenario.31

In such a case, liquidity follows the controlled arithmetic Brownian motion:

dLt = [α + (∆B −K) ξK − (∆S +M) ξM − c] dt+ σdzt

≡ [µ+ (∆B −K) ξK − (∆S +M) ξM ] dt+ σdzt. (A.6)

Equation (A.6) is therefore equivalent to (1) inside the control boundaries, that is,

when ξK = ξM = 0.32

Finally, to obtain µ, we determine the optimal consumption level, such that the

value of the household’s wealth and liquidity (that takes into accounts income and

consumption dynamics) is zero:

0 = W0 +G(L0;µ = α− c), (A.7)

with

G(L) ≡ F (L; δ = r) (A.8)

being the value of the liquidity (see (8)) with household discount rate δ replaced with

market rate r.

31If no such assumptions were made, one would need typically to maximise the integral of the dis-

counted instantaneous utilities of consumption subject to the wealth constraint. Such a maximisation

would be equivalent to solving the stochastic optimal control problem that would yield the optimal

instantaneous level of consumption as a function of two state variables Wt and Lt. As the resulting

Bellman equation would have a form of a partial differential equation, an analytical solution would

be unlikely.
32In fact, consumption can be allowed to partially reflect shocks to the income process Yt. In such

a case the stochastic component of the process governing the liquidity dynamics equals ρσdzt, with

ρ ∈ (0, 1).
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B Stochastic discount factors and annuity formulae

First, we observe that the present value of e1 received upon hitting an upper boundary

L before exhausting liquidity for a current level of liquidity equal to L is given by (cf.

Dixit (1993)):

Λ(L, 0;L) ≡ E
[
e−rTL1{TL<T0}|L

]
= e(L−L)( µ

σ2 +a) e
2aL − 1

e2aL − 1
, (B.1)

where Ty is the stopping time at realization y of process (1) and

a ≡
√( µ

σ2

)2

+
2r

σ2
. (B.2)

Similarly, we define the present value of e1 received upon when liquidity is exhausted

before L is hit as

Λ(L, 0;L) ≡ E
[
e−rT01{TL>T0}|L

]
= e−L( µ

σ2 +a) e
2a(L−L) − 1

e−2aL − 1
. (B.3)

Now, we can write (for simplicity, we drop the parameters of Λ(.) and Λ(.))

F (L) = Λ(L)

[
(L− L∗)r

δ
−M

]
− Λ(L)

[
L∗r

δ
+K

]
+
[
Λ(L) + Λ(L)

]
F (L∗), (B.4)

where F (L∗) is simply obtained by substituting L∗ for L in (B.4). Consequently, F (L)

can be expressed as

F (L) = Λ(L)

[
(L− L∗)r

δ
−M

]
− Λ(L)

[
L∗r

δ
+K

]
(B.5)

+
[
Λ(L) + Λ(L)

] Λ(L∗)
[

(L−L∗)r
δ
−M

]
− Λ(L∗)

[
L∗r
δ

+M
]

1− Λ(L∗)− Λ(L∗)
,

which is equivalent to (8) with

Θ(0, L;L) ≡ Λ(L) [1− Λ(L∗)] + Λ(L∗)Λ(L)

1− Λ(L∗)− Λ(L∗)
, and (B.6)

Θ(0, L;L) ≡
Λ(L)

[
1− Λ(L∗)

]
+ Λ(L)Λ(L∗)

1− Λ(L∗)− Λ(L∗)
. (B.7)

C Stationary distribution

Below, we present the derivation of the density function of normalised liquidity, ϕ(l), for

the general case, that is with non-zero drift rate and positive transaction costs. Using
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the discrete approximation of the process (1), the steady-state distribution should

satisfy (see Dixit (1993))

ϕ(l) = ϕ(l −∆l)p+ ϕ(l + ∆l)(1− p), (C.1)

where

p =
1

2

(
1 +

µ
√

∆t

σ

)
, (C.2)

with ∆l = σ
√

∆t. By using Taylor expansion of (C.1) and setting ∆t→ 0, one obtains

σ2

2
ϕ′′(l) = µϕ(l). (C.3)

The general solution is follows:

ϕ(l) = Al +B for µ = 0, (C.4)

= Ae
2µl

σ2 +B otherwise. (C.5)

The coefficients of the general solution differ across different intervals of the domain

of the controlled process l (in this case, there are two intervals, [0, l∗) and [l∗, l]), such

that (for µ 6= 0; for µ = 0 solution is obtained analogously)

ϕ(l) = A1e
2µl

σ2 +B1 for l ∈ [0, l∗), (C.6)

= A2e
2µl

σ2 +B2 for l ∈ [l∗, l]. (C.7)

First, as resetting is applied at barriers, ϕ(0) = ϕ(l) = 0. Second, the density function

is continuous at l∗. Finally, it has to integrate over its domain to 1.33 The resulting

constants A1, A2, B1, and B2 are given by

A1 =

[
e

2µl∗

σ2 − 1

e
2µl

σ2 − e
2µl∗
σ2

e
2µl

σ2 (l − l∗)− l∗
]−1

,

A2 = −

[
e

2µl

σ2 (l − l∗)− e
2µl

σ2 − e
2µl∗

σ2

e
2µl∗
σ2 − 1

l∗

]−1

,

B1 = −A1,

B2 = −A2e
2µl

σ2 .

The mean of the distribution, E [l], is determined by integrating lϕ(l) over its domain.

33If K (M) is zero, ϕ(0) (ϕ(l)) is strictly positive and l∗ = 0 (l∗ = l). Therefore, there is only

one function specification to be determined, so two unknown constants are calculated using the two

remaining conditions, i.e., that ϕ(l) = 0 (ϕ(0) = 0) and ϕ(l) has to integrate over its domain to 1.
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Figure 1: Liquidity Management Policy

The figure presents the representation of the optimal liquidity management policy. Barrier L∗ corresponds to the

target liquidity level. Barrier L (zero) corresponds to the liquidity level that triggers a reduction (an increase) in

net debt.
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Figure 2: The Value of Household Liquidity

The figure presents the value of household liquidity, F (L), for the following set of parameters: K = 0.15, M = 0.05,

r = 0.05, δ = 0.05, µ = 0.04, and σ = 0.1. Barrier L∗ corresponds to the target liquidity level. Barrier L corresponds

to the liquidity level that triggers a reduction in net debt.
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Figure 3: Stationary Distribution of Household Liquidity

The figure presents a stationary distribution of household normalised liquidity, ϕ(l), for the following set of parame-

ters: r = 0.05, δ = 0.04, σ = 0.1a, K = 0.15a, M = 0.05a, µ = 0.04a. The mean value, E [l] = 1, of the distribution

is represented with a dot. Parameter a = 2.95 is used for normalisation to ensure that the mean of the distribution

is 1.
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Figure 4: Graphical Representation of Predicted Incremental Financing Decisions

The figure presents the hypothesized coefficients of the incremental financing decisions models (12)-(17) (Panels A-F, respectively). The

horizontal axis represents the deficit of funds (−∆w) and the vertical axis represents the reduction of short-term liquid assets (−∆l).

Consequently, the top-right quadrant of each panel represents a situation in which a household faces the deficit of funds and depletes its

short-term assets and the bottom-left quadrant corresponds to the surplus of funds. Discontinuous changes in −∆l in panel F correspond

to the resetting of the level of liquid assets to the target, l∗, associated with a reduction (the left-hand side of the graph) and an increase

(the right-hand side) of net debt.
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Table 1: Summary of Average Household Liquid Assets

The table presents liquid assets descriptives for the 9,957 Dutch households sample. The

values presented are in euros. Also, the total values and proportions of the asset categories

to liquidity variable L
(1)
it (cash and deposit accounts plus savings) and to total assets are

presented.

e %L
(1)
it %Assets

Cash and Checking Accounts, L
(0)
it 2,748.9 18.2% 1.4%

Savings

- Deposit Books 1,846.2 12.2% 0.9%

- Savings or Deposit Accounts 8,888.6 58.9% 4.5%

- Savings Plans 1,613.7 10.7% 0.8%

Total L
(1)
it 15,097.4 100.0% 7.6%

Other Financial Assets 12,212.1 6.1%

Total Debt 56,962.4 28.5%

Net Debt 44,750.3 22.4%

Total Assets 199,665.7 100.00%
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Table 2: Determinants of Household Expected Liquidity
The dependent variable is household liquid assets, measured as cash and deposit accounts (L

(0)
it ) and cash and deposit

accounts plus savings (L
(1)
it ). Regarding independent variables, SIZE is the logarithm of total assets; INC is the

total household net income; LEV is the ratio of total household debt to total household assets; AGE is the age of the

eldest member of the household; EDU is a dummy variable of value 1 when senior vocational education or university

education is present, and zero otherwise; PENSION is a dummy variable of value 1 when a pension is present, and

zero otherwise; OWNER is a dummy variable of value 1 when household owns house, and zero otherwise; and MTG

is a dummy variable of value 1 when household has mortgage debt, and zero otherwise; EMPL is a dummy variable

of value 1 when the head of the household is employed and zero otherwise; and SELF is a dummy variable of value 1

when the head of the household is self-employed and zero otherwise. The regression is estimated using OLS. Predicted

coefficient signs are presented in brackets. Outputs reported are estimated coefficients, standard errors of coefficients

(Std. Error), and significance level (p-value).

Model 1 Model 2

L
(0)
it Std. Error p-value Std. Error p-value

Constant -5110.12 509.23 0.00 -8440.88 743.42 0.00

SIZEit (+) 556.69 47.66 0.00 993.24 82.20 0.00

INCit (+/-) 0.02 0.01 0.02 0.02 0.01 0.02

LEVit (+/-) -1574.93 168.54 0.00 -1157.31 176.50 0.00

AGEit (+) 27.37 5.19 0.00 17.28 5.94 0.00

EDUit (+/-) -227.80 115.52 0.05 -244.66 113.70 0.03

PENSIONit (+) 539.45 271.83 0.05

OWNERit (-) -2108.39 329.25 0.00

MTGit (+/-) 159.09 264.55 0.55

EMPLit (+) 58.51 179.52 0.74

SELFit (+) 1305.51 551.99 0.02

R-Square 0.08 0.10

L
(1)
it Std. Error p-value Std. Error p-value

Constant -28922.88 1900.00 0.00 -53164.68 3647.24 0.00

SIZEit 3600.30 175.48 0.00 6482.40 385.53 0.00

INCit 0.08 0.03 0.00 0.07 0.02 0.00

LEVit -12694.67 736.93 0.00 -10298.05 758.08 0.00

AGEit 79.47 22.55 0.00 52.68 24.79 0.03

EDUit -451.06 462.14 0.33 -475.92 454.35 0.30

PENSIONit 2427.66 940.94 0.01

OWNERit -14433.11 1572.51 0.00

MTGit 1747.06 1082.20 0.11

EMPLit 1564.07 652.57 0.02

SELFit 2105.62 1688.13 0.21

R-Square 0.19 0.22

N. Obs. 9,957 9,957

N. Clusters 3,423 3,423
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Table 3: Incremental Financing Decisions Model for L
(0)
it

The table presents results for regressions (12)-(17) considering definition L
(0)
it : cash and deposit accounts. The dependent variable is −∆lit

for regression (12), and −∆lit − li,t−1 for (13)-(17). D0 is a dummy variable observing the value of 1 if −∆wit < −l + li,t−1, and D1

is a dummy variable observing the value of 1 if −∆wit > li,t−1. The regression is estimated using OLS. Outputs reported are estimated

coefficients, standard errors of coefficients (in italics), and confidence intervals at the 5% level. Statistical significance is indicated by ∗∗∗

for 1% level, ∗∗ for 5% level, and ∗ for 10% level.

Equation (12) (13) (14) (15) (16) (17)

Constant -0.019 -0.880∗∗∗ -0.876∗∗∗ -0.557∗∗∗ -0.541∗∗∗ -0.423∗∗∗

0.012 0.019 0.021 0.020 0.022 0.027

(-0.04,0.00) (-0.92,-0.84) (-0.92,-0.84) (-0.60,-0.52) (-0.58,-0.50) (-0.48,-0.37)

−∆wit 0.009∗∗∗

0.002

(0.01,0.01)

min(−∆wit − li,t−1, 0) 0.017∗∗∗

0.002

(0.01,0.02)

(−∆wit − li,t−1) 0.017∗∗∗ 0.355∗∗∗ 0.697∗∗∗ 0.308∗∗∗

0.002 0.020 0.039 0.026

(0.01,0.02) (0.32,0.39) (0.62,0.77) (0.26,0.36)

max(−∆wit − li,t−1, 0) -0.018∗∗∗ -0.366∗∗∗ -0.708∗∗∗ -0.315∗∗∗

0.003 0.020 0.039 0.026

(-0.02,-0.01) (-0.41,-0.33) (-0.79,-0.63) (-0.37,-0.26)

min(−∆wit − li,t−1 + l, 0) -0.356∗∗∗ -0.312∗∗∗

0.020 0.026

(-0.40,-0.32) (-0.36,-0.26)

min(−∆wit, 0) -0.699∗∗∗

0.040

(-0.78,-0.62)

D0,it -0.316∗∗∗

0.053

(-0.42,-0.21)

D1,it -0.224∗∗∗

0.035

(-0.29,-0.15)

R-Square 0.009 0.011 0.011 0.048 0.258 0.054
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Table 4: Incremental Financing Decisions Model for L
(1)
it

The table presents results for regressions (12)-(17) using definition L
(1)
it : cash and deposit accounts plus savings. The dependent variable

is −∆lit for regression (12), and −∆lit− li,t−1 for (13)-(17). D0 is a dummy variable observing the value of 1 if −∆wit < −l+ li,t−1, and

D1 is a dummy variable observing the value of 1 if −∆wit > li,t−1. The regression is estimated using OLS. Outputs reported are estimated

coefficients, standard errors of coefficients (in italics), and confidence intervals at the 5% level. Statistical significance is indicated by ∗∗∗

for 1% level, ∗∗ for 5% level, and ∗ for 10% level.

Equation (12) (13) (14) (15) (16) (17)

Constant 0.012 -0.629∗∗∗ -0.612∗∗∗ -0.219∗∗∗ -0.296∗∗∗ -0.129∗∗∗

0.008 0.020 0.021 0.015 0.031 0.009

(-0.00,0.03) (-0.67,-0.59) (-0.65,-0.57) (-0.25,-0.19) (-0.36,-0.23) (-0.15,-0.11)

−∆wit 0.098∗∗∗

0.008

(0.08,0.11)

min(−∆wit − li,t−1, 0) 0.224∗∗∗

0.018

(0.19,0.26)

(−∆wit − li,t−1) 0.228∗∗∗ 0.735∗∗∗ 0.880∗∗∗ 0.761∗∗∗

0.018 0.027 0.048 0.013

(0.19,0.26) (0.68,0.79) (0.79,0.97) (0.74,0.79)

max(−∆wit − li,t−1, 0) -0.249∗∗∗ -0.806∗∗∗ -0.940∗∗∗ -0.798∗∗∗

0.021 0.030 0.052 0.014

(-0.29,-0.21) (-0.86,-0.74) (-1.04,-0.84) (-0.83,-0.77)

min(−∆wit − li,t−1 + l, 0) -0.739∗∗∗ -0.795∗∗∗

0.060 0.047

(-0.86,-0.62) (-0.89,-0.70)

min(−∆wit, 0) -0.843∗∗∗

0.048

(-0.94,-0.75)

D0,it -0.175∗∗

0.083

(-0.34,-0.01)

D1,it -0.356∗∗∗

0.024

(-0.40,-0.31)

R-Square 0.092 0.168 0.170 0.302 0.551 0.316
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Table 5: Incremental Financing Decisions Model for Different Values of l
The table presents results for regressions (15) and (17) using definition L

(1)
it : cash and deposit accounts plus savings accounts, and different

values of l. l equals 2 for a symmetric distribution of liquidity. l = 2.6 maximises the fit of model (15). l = 3.1 maximises the fit of

model (17). The dependent variable is −∆lit − li,t−1. D0 is a dummy variable observing the value of 1 if −∆wit < −l + li,t−1, and D1

is a dummy variable observing the value of 1 if −∆wit > li,t−1. The regression is estimated using OLS. Outputs reported are estimated

coefficients, standard errors of coefficients (in italics), and confidence intervals at the 5% level. Statistical significance is indicated by ∗∗∗

for 1% level, ∗∗ for 5% level, and ∗ for 10% level.

Equation (15) (15) (15) (17) (17) (17)

l = 2 l = 2.6 l = 3.1 l = 2 l = 2.6 l = 3.1

Constant -0.219∗∗∗ -0.263∗∗∗ -0.305∗∗∗ -0.129∗∗∗ -0.158∗∗∗ -0.174∗∗∗

0.060 0.067 0.075 0.047 0.059 0.070

(-0.25,-0.19) (-0.29,-0.23) (-0.34,-0.27) (-0.15,-0.11) (-0.18,-0.14) (-0.19,-0.15)

(−∆wit − li,t−1) 0.735∗∗∗ 0.638∗∗∗ 0.569∗∗∗ 0.761∗∗∗ 0.715∗∗∗ 0.692∗∗∗

0.027 0.025 0.024 0.013 0.013 0.014

(0.68,0.79) (0.59,0.69) (0.52,0.62) (0.74,0.79) (0.69,0.74) (0.66,0.72)

max(−∆wit − li,t−1, 0) -0.806∗∗∗ -0.702∗∗∗ -0.628∗∗∗ -0.798∗∗∗ -0.752∗∗∗ -0.728∗∗∗

0.030 0.028 0.027 0.014 0.014 0.015

(-0.86,-0.75) (-0.76,-0.65) (-0.68,-0.58) (-0.83,-0.77) (-0.80,-0.72) (-0.76,-0.70)

min(−∆wit − li,t−1 + l, 0) -0.739∗∗∗ -0.700∗∗∗ -0.669∗∗∗ -0.795∗∗∗ -0.776∗∗∗ -0.737∗∗∗

0.060 0.067 0.075 0.047 0.059 0.070

(-0.86,-0.62) (-0.83,-0.57) (-0.82,-0.52) (-0.88,-0.70) (-0.89,-0.66) (-0.86,-0.60)

D0,it -0.175∗∗ 0.102 0.505∗∗∗

0.083 0.114 0.138

(-0.34,-0.01) (-0.12,0.32) (0.23,0.78)

D1,it -0.356∗∗∗ -0.328∗∗∗ -0.312∗∗∗

0.024 0.024 0.025

(-0.40,-0.31) (-0.37,-0.28) (-0.36,-0.26)

R-Square 0.302 0.309 0.304 0.316 0.318 0.318
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Table 6: Determinants of the Probability and the Magnitude of Overdrafts
The table presents results of a probit model of the determinants of the probability

of an overdraft, and results of a tobit model of the determinants of the magnitude

of an overdraft. The second column presents the expected signs of model coeffi-

cients. All explanatory variables are defined in section 5.3. Outputs reported are

estimated coefficients, marginal effects, standard errors of coefficients (in italics),

and p-values.

Predicted Probit model Tobit model

sign Coeff. Marg. effect Coeff.

Constant -1.441 -45756.92

0.305 5159.01

0.000 0.000

SIZEit (-) -0.063 -0.008 -440.67

0.027 0.003 502.95

0.020 0.018 0.381

INCit (-) -0.000 -0.000 0.004

0.000 0.000 0.017

0.727 0.727 0.804

LEVit (+) 0.826 0.101 19580.19

0.073 0.010 1401.48

0.000 0.000 0.000

AGEit (+) 0.004 0.001 135.55

0.003 0.000 44.82

0.119 0.122 0.002

EDUit (-) 0.069 0.009 933.31

0.053 0.007 905.60

0.193 0.200 0.303

PENSIONit (+/-) -0.155 -0.018 -356.33

0.095 0.010 1583.03

0.104 0.076 0.822

OWNERit (+/-) 0.090 0.011 1470.95

0.127 0.015 2280.06

0.475 0.463 0.519

MTGit (+/-) 0.007 0.001 -1156.31

0.099 0.012 1662.88

0.945 0.945 0.487

SELFit (+/-) 0.335 0.052 7206.43

0.116 0.022 2135.49

0.004 0.018 0.001

UNEMPLit (+) 0.694 0.136 14042.26

0.180 0.050 2687.95

0.000 0.006 0.000

BENEFITit (+) 0.085 0.010 590.55

0.051 0.006 889.85

0.095 0.096 0.507

KIDSit (+/-) 0.078 0.010 1684.63

0.026 0.003 413.39

0.002 0.002 0.000

R-Square 0.067 0.016
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Table 7: Augmented Incremental Financing Decisions Model
The table presents results for augmented regression (17) using definition L

(1)
it : cash and deposit accounts plus savings. The dependent

variable is −∆lit− li,t−1. D0 is a dummy variable equal to 1 if −∆wit < −l+ li,t−1 and 0 otherwise, and D1 is a dummy variable equal to

1 if −∆wit > li,t−1 and 0 otherwise. Xit corresponds to the dummy variable stated at the top of each column. The regression is estimated

using OLS. Outputs reported are estimated coefficients, standard errors of coefficients (in italics), and confidence intervals at the 5% level.

Statistical significance is indicated by ∗∗∗ for 1% level, ∗∗ for 5% level, and ∗ for 10% level.

OV ERDRAFT INCL SIZEL LEVH AGEH BENEFIT UNEMPL

Constant -0.174∗∗∗ -0.194∗∗∗ -0.190∗∗∗ -0.150∗∗∗ -0.178∗∗∗ -0.226∗∗∗ -0.174∗∗∗

0.011 0.016 0.015 0.013 0.015 0.015 0.011

(-0.19,-0.15) (-0.23,-0.16) (-0.22,-0.16) (-0.18,-0.13) (-0.21,-0.15) (-0.26,-0.20) (-0.20,-0.15)

min(−∆wit − li,t−1 + l, 0) -0.745∗∗∗ -0.813∗∗∗ -0.879∗∗∗ -0.886∗∗∗ -0.649∗∗∗ -0.578∗∗∗ -0.735∗∗∗

0.073 0.063 0.030 0.031 0.102 0.105 0.071

(-0.89,-0.60) (-0.94,-0.69) (-0.94,-0.82) (-0.95,-0.83) (-0.85,-0.45) (-0.78,-0.37) (-0.87,-0.60)

(−∆wit − li,t−1) 0.706∗∗∗ 0.697∗∗∗ 0.698∗∗∗ 0.714∗∗∗ 0.682∗∗∗ 0.613∗∗∗ 0.693∗∗∗

0.014 0.017 0.017 0.018 0.020 0.020 0.014

(0.68,0.73) (0.66,0.73) (0.66,0.73) (0.68,0.75) (0.64,0.72) (0.57,0.65) (0.67,0.72)

max(−∆wit − li,t−1, 0) -0.741∗∗∗ -0.738∗∗∗ -0.730∗∗∗ -0.788∗∗∗ -0.715∗∗∗ -0.653∗∗∗ -0.729∗∗∗

0.015 0.019 0.019 0.035 0.022 0.021 0.015

(-0.77,-0.71) (-0.78,-0.70) (-0.77,-0.69) (-0.86,-0.72) (-0.76,-0.67) (-0.70,-0.61) (-0.76,-0.70)

D0,it 0.491∗∗∗ 0.314∗∗ 0.052 0.457∗∗∗ 0.736∗∗∗ 0.753∗∗∗ 0.517∗∗∗

0.142 0.127 0.096 0.098 0.217 0.205 0.139

(0.21,0.77) (0.064,0.563) (-0.14,0.24) (0.27,0.65) (0.31,1.16) (0.35,1.16) (0.25,0.79)

D1,it -0.381∗∗∗ -0.353∗∗∗ -0.365∗∗∗ -0.218∗∗∗ -0.327∗∗∗ -0.245∗∗∗ -0.316∗∗∗

0.027 0.035 0.035 0.040 0.031 0.030 0.025

(-0.43,-0.33) (-0.42,-0.28) (-0.43,-0.30) (-0.30,-0.14) (-0.39,-0.27) (-0.30,-0.19) (-0.36,-0.27)

min(−∆wit − li,t−1 + l, 0) ∗Xit 0.318∗∗∗ 0.182 0.337∗∗ 0.324∗∗ -0.222∗∗ -0.329∗∗ -0.210

0.112 0.144 0.138 0.135 0.109 0.129 0.185

(0.10,0.54) (-0.10,-0.46) (0.07,0.61) (0.06,0.59) (0.44,-0.01) (-0.58,-0.08) (-0.57,0.15)

(−∆wit − li,t−1) ∗Xit -0.375∗∗∗ -0.020 -0.023 -0.052∗ 0.018 0.155∗∗∗ -0.083

0.058 0.026 0.027 0.027 0.027 0.025 0.090

(-0.49,-0.26) (-0.07,0.03) (-0.08,0.03) (-0.11,0.00) (-0.03,0.07) (0.11,0.20) (-0.26,0.09)

max(−∆wit − li,t−1, 0) ∗Xit 0.388∗∗∗ 0.034 0.014 0.095∗∗ -0.027 -0.147∗∗∗ 0.091

0.060 0.029 0.029 0.041 0.030 0.028 0.093

(0.27,0.51) (-0.02,0.09) (-0.04,0.07) (0.01,0.18) (-0.09,0.03) (-0.20,-0.09) (-0.09,0.27)

D0,it ∗Xit -0.018 0.433 1.089∗∗∗ 0.043 -0.512∗∗ -0.603∗∗ -1.113

0.285 0.287 0.277 0.275 0.242 0.254 0.825

(-0.58,0.54) (-0.13,1.00) (0.55,1.63) (-0.50,0.58) (-0.99,-0.04) (-1.10,-0.10) (-2.73,0.50)

D1,it ∗Xit 0.417∗∗∗ 0.106∗∗ 0.145∗∗∗ -0.099∗∗ 0.039 -0.136∗∗∗ 0.292∗∗∗

0.057 0.047 0.047 0.050 0.049 0.048 0.081

(0.31,0.53) (0.01,0.20) (0.05,0.24) (-0.20,-0.00) (-0.06,0.13) (-0.23,-0.04) (0.13,0.45)

Xit -0.018 0.030 0.020 -0.055∗∗ 0.008 0.100∗∗∗ 0.019

0.042 0.021 0.021 0.022 0.021 0.020 0.065

(-0.10,0.06) (-0.01,0.07) (-0.22,0.06) (-0.10,-0.01) (-0.03,0.05) (0.06,0.14) (-0.11,0.15)

R-Square 0.340 0.326 0.343 0.337 0.326 0.338 0.320
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