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Abstract 
and amongst them, the so-called Takagi-Sugeno 
(TS) FRB models [3]. 

TS models are constructed of many linear sub- 
One of the principal advantages of fuzzy rule 

models and have a predisposition for generating 
based Over approaches such smooth function surfaces. This approach combines 
as Neural Networks or polynomial models is 

the flexibility to enable the representation of 
transparency. The linguistic concept 

complex non-linear systems with simple 
associated with the membership functions 

identification procedures [4-71. 
related to measured variables results in rules 
that are 'readable'. This quality is useful in 
analysing the functionality of processes 
through the model generated by data mining 
techniques. The greater the number of rules 
and the less descriptive the linguistic terms, 
the less transparent the model. The fewer 
rules, however, inevitably reduces the model 
precision with respect to the modelled process. 
This paper investigates the properties of 
Takagi-Sugeno models with either a linear 
function or singleton consequent with respect 
to model precision and transparency. The 
study is focused on a 'steady-state' heat- 
exchanger model applied to the air-cooling 
process commonly found in heating, 
ventilating and air-conditioning (HVAC) 
equipment. The similarity measures are 
suitable to application to the on-line 
generation of these models. 

Keywords: FRB and TS models, 
identification, HVAC, modelling. 

1 Introduction 

The last few decades have marked an intensive 
development of alternative modelling techniques 
such as fuzzy rule-based (FRB) models, neural 
networks (NN) and hybrid versions of these 
approaches. A principal driving force for these 
efforts has been the desire to develop improved 
control of highly non-linear processes, where 
classical approaches [ l ]  do not perform well. 
Several of these methods gained wide acceptance 

The identification of TS models can be solved by 
initially partitioning the input space using a 
clustering technique [5,6]. The parameters of the 
output sub-models can then be estimated by linear 
least squares when linear functions of the inputs 
describe the output space [4-61. When the output 
variable is described using singletons, clustering can 
be used. Techniques such as gradient-based back- 
propagation and genetic algorithms (GA) [8] have 
been applied for simultaneous identification of both 
model structure and parameters. This approach has 
the advantage of a higher resultant model precision, 
but it is computationally more demanding. 

These approaches are often called 'data-driven' or 
'knowledge extraction' modelling techniques. 
Expert knowledge plays an insignificant, if any, role 
in the model generation process. An important issue 
is whether such automated techniques produce 
models that are readily interpretable. This paper 
considers the issue of transparency in conj&cgon 
with the precision of model predictions. TS models 
using both a singleton and a linear function 
consequent are investigated. The focus is on the 
modelling of a heat-exchange process. Emphasis is 
placed on minimising the number of rules and 
parameters in a model through model simplification. 
The simplification measures described are set in the 
context of continuing work based on a recently 
introduced approach for recursive on-line 
identification of TS models [4]. 

2 Parameter and structure adaptation of TS 
models 



FRB models of TS type are considered [3], 

R ;: IF (xl is Vi3 . . . AND (x, is ViJ THEN (yi= pJ, 

where i=I, 2, ..., N. R; denotes the ifh fuzzy rule of 
which there are N number. Vi/ denotes jth linguistic 
variable of the antecedent part for the ifh fuzzy rule 
(j=I, 2 ,..., n), y; is the output of the ifh rule; pi 
represents the output function. This can either be a 
singleton (a constant) or linear function of the input 
variables. x is the input vector x=[xl, x2, ..., x ,JT. The 
model output is calculated by aggregating individual 
rules' contribution and applying centre of area de- 
fuzzification operator [5]. This model can be 
fom.ulated such that it is able to adapt to changes in 
the modelled object [4]. The model can be described 
as self-learning. It is desirable to learn new features 
of the process rather than simply retrain a model at 
given intervals for reasons of computational 
efficiency. TS models are a promising candidate for 
the solution of this problem. A procedure for on-line 
recursive identification of TS models has been 
developed in [4]; The procedure consists of: 

calculation of the potential of new data points to 
form a new or replacement rule; 
recursive up-date of the potential measure of the 
existing membership functions centres; 
recursive up-date of the reference potential that 
controls the rule update process; 
recursive estimation of parameters of the 
consequent part of the rules. 

The FRB model is generated and is used as an initial 
estimation of the non-linear mapping between inputs 
and the output(s). The precision of the model can be 
improved by the application of a GA. 

3 Model structure simplification 

Generating rule bases using subtractive clustering 
[6] can lead to many similar membership functions 
being generated in the data space. This is not always 
adequately controlled by the adjustment of the 
clustering neighbourhood parameter. The existence 
of effectively redundant membership functions 
reduces the transparency of the model. Since the 
membership functions (derived using this technique) 
are of the same type and have the same spread, the 
similarity can be measured using the proximity of 
the membership function centres. One parameter, y , 
(a decimal percentage of the input space, y = 0.1 
here) describes the similarity. Membership functions 
that are 'close' to others are removed in accordance 
with this criterion. The rule base is not altered, but 

the references to the membership functions in 
affected rules, are rewritten accordingly. 

One drawback with the linear function mapping of 
the output space is that there is one function per rule. 
This cannot be reduced and so there is an inevitable 
loss of transparency. Initially, there are also the 
same number of output singletons as rules. Since 
these are single values, however, the similarity 
measure applied to the inputs can be applied here. 
This can increase the transparency significantly, 
although it requires an additional similarity 
parameter, A,  (expressed as a decimal percentage of 
the output space, A = 0.01 here). In general, 
acceptable precision in the model predictions will 
require more 'membership functions' to describe the 
output variable than is needed to describe the input 
variables, and so A < y . 

4 The Heat-Exchanger Model 

Figure 1 demonstrates the critical fluid quantities 
and properties associated with the air to water heat 
exchanger commonly found in HVAC systems. 
Cooling and dehumidification of the air approaching 
the coil is an important process in terms of the 
comfort of the occupants of air-conditioned spaces. 
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Figure 1 : The heat exchanger process. 

One widely used, first principles based, steady-state 
model of this process is based on the N, method first 
introduced by Canier [2]. The model estimates the 
heat transferred between the water and air based on 
the velocities of the fluids and the resistance of the 
heat-exchanger to heat transfer. The mass transfer 
that occurs as the coil dehumidifies the air is also 
modelled. This model has been used to generate the 
data on which to investigate the two types of TS 
model. The data used for training the models and for 



validation, were generated by stepping each of the 
input variables over predefined ranges. Figure 2 
details the training data used. 

Figure 2: Data used for model characterisation. 

4.1 Labelling Membership Functions 

The cooling coil shown in Figure 1 has five input 
variables, water mass flow rate, m, (kg/s), air mass 
flow rate, ma (kgls), air temperature onto the coil, Tai 
PC), humidity of the air onto the coil, Gai (kg/kgak) 
and the temperature of the water into the coil, Twi 
(OC). The controlled variable in the real process is 
usually the air temperature off the coil, T,, (OC). This 
has been selected as the model output. 

In order to evaluate the transparency of the models, 
it is necessary to predefine the linguistic terms 
associated with the input and output variables. Once 
the centres of the membership functions have been 
found, the parameter value is compared to the 
predetermined range and the appropriate linguistic 
term is ascribed. The decision as to which term to 
use is on the basis of crisp rules defining the rnid- 
way point between consecutive values. Table 1 gives 
a surnmarised version of the ranges applicable to the 
results in this work. The linguistic labels; 'u', 'l', ' f ,  

'q', 'r7 and 'v' refer to, 'ultra', 'little', 'fairly', 
'quite', 'really' and 'very', respectively; and 'L', 'H' 
and 'My refer to 'low', 'high' and 'medium'. 

The key point is that the inlet and outlet 
temperatures are labelled on the same scale (as are 
the mass flow rates). These values are therefore 
directly comparable in the analysis of the rules. 

Table 1 : Variable ranges and linguistic terms. 

5 Model structure analysis 

In principle, it is desirable to model the process with 
as few rules as possible. This decreases the 
computational demands, reduces the number of 
parameters required and makes the model more 
comprehensible (increases transparency). Figure 3 
shows the effect that the number of rules has on 
model precision for the linear function and singleton 
models (based on the data in Figure 2). The figure 
demonstrates the increased precision produced by 
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the former approach. The improvement of precision 
significantly reduces after about 14 rules. 
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Figure 3: Number of rules and model precision. 
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Figure 4 demonstrates the prediction errors 
generated by both models with this number of rules. 
Significantly, the prediction errors in validation 
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version cannot be increased passed -30 rules with 
this data because of numerical problems in the least 
squares estimation of the output parameters. 

The simplified singleton model only requires 35 
parameters, a reduction of 58% on the initial model 
configuration. The initial singleton model generated 
an RMSE of 1.82K in validation. The simplified 
singleton model demonstrates a 67% reduction in the 
number of parameters compared to the linear output 
function model. In addition, the singleton model is 
less prone to over fitting and does not have the 
problems associated with least squares estimation 
when the number of data are small compared to the 
number of parameters that require estimation. 
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Figure 4: Model prediction errors. 

The output of the linear output function is given by, 

where a f a r e  the estimated coefficients for each 
rule. For more than 2-dimensional input space this 
becomes difficult to readily understand. Figure 5 
gives the rules for the singleton model used in 
Figure 4. 
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Figure 5: The singleton model rules. 

All the rules in Figure 5 correctly describe the 
process. In particular: rule 14 demonstrates that 

there is no change in temperature over the coil when 
there is no chilled water flowing through the coil; 
rules 10 and 5 show that a larger change in 
temperature across the coil occurs at lower air flow 
rates (due to the process characteristics, the 
difference in the chilled water mass flow rates are 
negligble and the other variables are nominally the 
same). 

6 Conclusions 

This paper investigates Takagi-Sugeno models with 
either a linear function or singleton consequent with 
respect to model precision and transparency. The 
study is focused on a the simplification of a 'steady- 
state' heat-exchanger model applied to the air- 
cooling process commonly found in HVAC 
equipment. The simplification method is suitable for 
application to TS models generated on-line. 
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