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Abstract

Consider a single-leg dynamic revenue management problem with fare classes con-

trolled by capacity in a risk-averse setting. The revenue management strategy aims

at limiting the down-side risk, and in particular, value-at-risk. A value-at-risk op-

timised policy offers an advantage when considering applications which do not

allow for a large number of reiterations. They allow for specifying a confidence

level regarding undesired scenarios.

We state the underlying problem as a Markov decision process and provide a

computational method for computing policies, which optimise the value-at-risk for

a given confidence level. This is achieved by computing dynamic programming so-

lutions for a set of target revenue values and combining the solutions in order to

attain the requested multi-stage risk-averse policy. Numerical examples and com-

parison with other risk-sensitive approaches are discussed.
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1 Introduction

Revenue management deals with controling a revenue stream resulting from selling

products using a fixed and perishable resource. The industries which use revenue

management are manifold. The most popular representatives are airlines, hotels, rental

cars, and advertising. But revenue management is also common in event management,

ferry lines, retailing or healthcare, to name a few. Talluri and van Ryzin (2005) and

Chiang et al. (2007) provide a comprehensive overview of revenue management.

The firm sells multiple products, each consuming a fixed resource with a limited

capacity. In this setting, we consider quantity-based revenue management in which a

company offers all or just a subset of all products at each point in time. There is a finite

time horizon for selling the products, as at the end of the horizon, the salvage value of

the resource is zero.

The most common settings use the assumption of a risk-neutral objective. Thus, the

policy of the firm is the maximisation of the expected value of its revenue. Often, such

a risk-neutral objective is conducive. As in most applications, such as daily operating

ferry lines, this policy is repetitively used. By the law of large numbers, using the

expected value as the objective function is then appropriate.

Nevertheless, risk neutrality may not be adequate to other industries, such as event

management, that do not support a large number of repetitions of a policy. Several

scenarios are known that argue for the considerations of risk-sensitive or risk-averse

policies.

Levin et al. (2008) emphasize that, in particular, an event promoter has a high risk,

as the promoter cannot count on a large number of reiterations of events. The pro-

moter faces high fixed costs and predominantly has to recover them in order to avoid

a possible high loss. Financial and also strategic reasons might not allow running into

negative cash, because operational mobility might suffer.

Both Bitran and Caldentey (2003) and Weatherford (2004) provide further examples

that risk-neutral considerations are not applied for every real scenario. They report

that airline analysts show some natural risk-averse behaviours, and they overrule their

revenue management system in situations when the system recommends waiting for

high-fare passengers, instead accepting low-fare passengers a few days before flight

departure.

That risk-neutral and risk-sensitive policies make a difference is shown in several

recent papers. Barz and Waldmann (2007), Huang and Chang (2009), Koenig and Meiss-

ner (2009a) and Koenig and Meissner (2009b) analyse both types of policies using the

same underlying model that is used in this paper. All four approaches analyse the

http://www.meiss.com/
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effects of applying different kinds of risk-sensitive polices, assuming various levels of

risk aversion for a decision maker. However, none of these approaches computes an

optimal policy for the common risk measures, such as standard deviation, value-at-risk,

or conditional-value-at-risk. However, simulations can be run to determine their values

for a given policy.

In this paper, we propose a method which computes a value-at-risk optimal policy.

The value-at-risk (V@R) is a common risk measure often used in finance (cf. Jorion

2006). It measures down-side risk and is determined for a given probability level. With

regard to V@R, this probability level is often referred to as confidence level. In our

context, the V@R is the lowest revenue which exceeds the confidende level, which is

often set at 5 or 10%. Basically, it is a quantile of the revenue distribution determined

by the given confidence level.

The advantage of using V@R as parameter to be optimised is that it is a well-known

risk measure, and it is easily interpreted by practitioners. A desired confidence level

is specified, and the V@R is returned in the monetary unit of the revenue. Other risk-

sensitive approaches often require an interpretation of an uncommon parameter to

adjust the desired level of risk preference.

In order to find a V@R optimal policy, we take advantage of the computing a target

level optimal policy proposed by Koenig and Meissner (2009b). The target level optimal

policy can be computed for a certain target and gives information about the probability

of not achieving this target. This probability is minimised to find the best policy. It

defines a confidence level for a fixed target, which is the corresponding V@R. Hence,

our task is similar to computing a target level optimised policy, but we optimise the

treshold value instead of the percentile. We are given with V@R optimal policies and

have to determine the policy which is the best one for the desired confidence by their

associated confidence levels. We describe in this paper how that can be accomplished

in an efficient manner.

The paper is structured as follows. This introduction is followed a brief overview

of related work dealing with revenue management models incorporating risk in Sec-

tion 2. In Section 3, we continue with the description of the revenue model, which

builds our basic position. We describe the target level approach and how we use it

to efficiently obtain a V@R optimal policy. We discuss different strategies useful for

numerical approximation of such a policy. Section 4 gives a detailed overview of the

numerical results and studies the effect of numerical approximation methods. Finally,

we conclude this paper in Section 5.

http://www.meiss.com/
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2 Related Work

As a starting point for our analysis we use the basic model by Lee and Hersh (1993).

They introduce the dynamic capacity control model in a risk-neutral setting. Lauten-

bacher and Stidham (1999) take this model further and derive a corresponding Markov

decision process. This description as a Markov decision process is advantageous for

model extensions.

First risk considerations in revenue management models are proposed by Feng and

Xiao (1999). Their model considers risk in terms of variance of sales due to changes

of prices. To this end, a penalty function reflecting this variance is incorporated in the

objective function of the model. Further, Feng and Xiao (2008) integrate expected utility

theory into revenue management models in order to support risk-sensitive decisions.

Expected utility theory as tool for risk consideration is recommended by Weather-

ford (2004), as well. From a practitioner’s perspective, he criticizes risk-neutral revenue

management and endorses risk-averse models, in particular, the expected marginal seat

revenue (EMSR) heuristic by Belobaba [reference].

Barz and Waldmann (2007) base their risk-sensitive model on the Markov decision

process of the dynamic capacity model and expected utility theory. They integrate an

exponential utility function as the objective function into the Markov decision model.

The exponential utility function allows the use of different levels of risk-sensitivity.

Another way of employing expected utility theory in a revenue management context

is proposed by Lim and Shanthikumar (2007). They analyse robust and risk-sensitive

control with an exponential utility function for dynamic pricing.

Lai and Ng (2005) formulate a robust optimisation model for revenue manage-

ment in the hotel industry. Their model incorporates mean versus average deviation.

Mitra and Wang (2005) look at mean-variance, mean-standard-deviation and mean-

conditional-value-at-risk approach for deriving a risk-sensitive objective function with

revenue management application in traffic and networks. Koenig and Meissner (2008)

demonstrate that risk considerations might lead to different decisions when deciding

between a quantity-based or and price-based revenue model.

Also applying risk considerations to the dynamic capacity model, Huang and Chang

(2009) show the effect of using a relaxed optimality condition instead of the optimal

one. They investigate model behaviour in numerical simulations and discuss results,

given as mean and standard deviation and in a ranking based on a Sharpe ratio. A

related approach is presented by Koenig and Meissner (2009a), who provide a detailed

study of several risk-averse policies for the dynamic capacity model by applying risk

measures.

http://www.meiss.com/
http://www.meiss.com/
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Regarding the use of V@R, Lancaster (2003) provides some strong arguments. He

demonstrates that risk-neutral revenue management models are vulnerable to the inac-

curacy of demand forecasts. Inspired by the V@R metric, he recommends the relative

revenue per available seat mile at risk metric. His metric measures the expected maxi-

mum of underperformance over a time period for a given confidence level.

Finally, the idea of expanding the state spaces of revenue management models is

used by Levin et al. (2008) and Koenig and Meissner (2009b) in order to consider risk

in terms of probability for achieving a certain given revenue target. Levin et al. (2008)

incorporate risk aversion into a dynamic pricing model of perishable products by in-

tegrating constraints into the objective function. Koenig and Meissner (2009a) use the

Markov decision model of the dynamic capacity control model and compute optimal

policies for revenue targets. Section 3 explains how to find a V@R optimal policy that

can employ this model. In a similar manner, finding a V@R optimal policy could also

integrate the approach of Levin et al. (2008) for computing probability of achieving a

desired target in the associated context.

3 Modelling and Algorithm

In this section, we begin with a brief introduction of a well-known revenue management

problem originally stated as risk-neutral formulation by Lee and Hersh (1993). We con-

tinue with a short summary of a recently proposed modification of this problem which

leads to a risk-sensitive model. The risk-sensitive model optimises the risk of failing a

previously defined revenue target and provides a basis for the proposed computational

approach focussing on the value-at-risk metric. The value-at-risk metric is explained,

and its computation is described in our setting.

3.1 Dynamic Capacity Control Revenue Management Problem

Lee and Hersh (1993) introduce a revenue management model often referred to as the

dynamic capacity control model. It was originally formulated for the airline industry,

and we too describe it in terms of this industry. Lautenbacher and Stidham (1999)

state the problem as a Markov decision process. Using this representation, it is more

convenient to derive risk-sensitive policies as done by Barz and Waldmann (2007) for

an exponential utility and by Koenig and Meissner (2009b) for a target level. As we

are interested in a computational approach for value-at-risk policies, we focus on dy-

namic programming equations, which are equivalent to their Markov decision process

counterparts but more suitable for computation.

http://www.meiss.com/
http://www.meiss.com/
http://www.meiss.com/
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The model of Lee and Hersh (1993) divides the booking period for a single-leg flight

into N decision periods. The decision periods are assumed small enough so that there

is no more than one arrival in that period. The decision periods are represented by

n ∈ {0, . . . , N} and 0 is the period of departure. There are k different fare classes with

fares Fi, F1 > F2 > . . . > Fk. Further, the probability prn,i denotes a request for the

fare class i in period n. Probabilities for the last decision period n = 0 are zero for

all fare classes: pr0,i = 0, meaning the last decision is made at n = 1. The probability

of no request for any class is given by prn,0 = 1 −
∑k
i=1p

r
n,i. Initial seat capacity is C ,

and remaining seats in time period n are given by c ≤ C . In this model, a policy π is

built from the decision rules which decide to accept or reject a booking request given

the current capacity and time. The set of all policies is denoted by Π. The optimal

risk-neutral policy π∗ ∈ Π is the policy which achieves the maximal expected revenue

Vπ
∗

n (c) = maxπ E
(∑n

j=0 rj

)
, where rn denotes the random variable for the gained

revenue at time n when using a policy π . As Lee and Hersh (1993) show, such optimal

policy can be computed by a dynamic programming solution:

Vπ
∗

n (c) =





k∑

i=0

prn,i max
a∈{0,1}

{
aFi + V

π∗

n−1(c − a)
}
, n > 0, c > 0,

0 otherwise.

(1)

3.2 Target Level Objective

The risk-sensitive approach proposed by Koenig and Meissner (2009b) builds the basis

for calculating a value-at-risk optimised policy. Their approach computes an optimal

policy for achieving a given target revenue. Boda and Filar (2006) describe the latter ap-

proach as a target-percentile problem, as the percentile for a fixed target is optimised.

To this end, they follow a method described by White (1988), Wu and Lin (1999) and

Boda and Filar (2006). First, the objective function is the probability of failing the given

target revenue. Thus, the objective function has to be minimised in order to derive the

risk-sensitive policy. Second, the Markov decision process is augmented by a further

state representing the currently remaining target to be achieved in latter time steps.

We use the same notation as before and introduce a few more variables. The recent

target revenue is denoted by xn and the given target value to be achieved at N time

steps to go is xN . The value function Wπ
n (c, xn) := Pπ

(
(
∑n
j=0 rj) ≤ xn

)
stands for the

probability of failing a target xn, applying a policy π ∈ Π in n remaining time steps

and with remaining capacity c. The optimal policy π̃∗ = argminπ W
π
N minimises the

risk of not attaining the target xN . The dynamic programming solution computing this

http://www.meiss.com/
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policy is given as:

W π̃∗

0 (c, x0) =





1 x0 > 0,

0 otherwise,

W π̃∗

n (c, xn) =

k∑

i=0

prn,i min
a∈{0,1}

{
W π̃∗

n−1(c − a,xn − aFi)
}
. (2)

For a target level xN , we have to consider all possible realisations ending at the final

time step 0. With each ongoing time step, a part of the target value can be achieved

according to the decision made. The new target revenue xn−1 of the next time step

n − 1 is given by the current target value minus the fare achieved in the current time

step xn − aFi.

The border conditions for time step 0 are initialised with 1 for all positive targets

and 0 otherwise. For all fares Fi attainable in the previous time step 1, the probabil-

ity of failing is less than 1, so their probabilities can be excluded while summing up.

Computing W π̃∗

N starts with initialising time step 0 and proceeds to time step N .

The optimal decision rule looks for the minimal probability between accepting a seat

request while reducing the target with its fare and rejecting a request while retaining

the current target.

However, the computation of the dynamic programming solution as described re-

quires the computation of all cumulative rewards up the specified target xN . As this

computation of the complete solution is very inconvenient, a more suitable way is using

a grid as discussed by Boda et al. (2004). In particular, the state space dimension which

represents the target levels is reduced.

To this end, the complete range of all cumulative rewards is discretised. The interval

between 0 and the target xN is separated into m smaller intervals. Each interval spans

a width of xNm . We use yi, i ∈ {0, . . . ,m} as variables for interval boundaries, and the in-

tervals are [y0, y1] := [0, xNm ], [y1, y2] := [xNm ,
2xN
m ], . . . , [ym−1, ym] := [xN(m−1)

m , xN].

Instead of computing for each possible cumulative reward target x, only the upper

boundaries are taken as targets. A target value inside an interval y ∈ (yi, yi+1] is

rounded to the upper interval boundary yi+1. This boundary value yi+1 is used while

approximately computing the dynamic programming solution.

The computation ofW π̃∗
n is done only with value pairs of targets yi and probabilities

W π̃∗
n (c,yi). We obtain a grid of values {(y0,W

π̃∗
n (c,y0)), . . . , (ym,W

π̃∗
n (c,ym))} for

c ∈ {0, . . . , C}. Using the dynamic programming, the probability values of the grid can

be updated in various ways.
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The simplest method is rounding occurring target values to the upper value, thus

W π̃∗
n (c,y) = W π̃∗

n (c,yj+1)∀y ∈ (yj , yj+1]. However, this is very inaccurate. Us-

ing nearest neighbour or linear interpolation offers a more accurate way. Nearest

neighbour approximation selects the value nearest to the actual required target value

y . If the inequality |yj+1 − y| < |yj − y| is valid, the upper value on the grid

is taken W π̃∗
n (c,y) = W π̃∗

n (c,yj+1) else the lower value W π̃∗
n (c,y) = W π̃∗

n (c,yj) is

taken. Linear interpolation computes weights according to the distances between ac-

tual value and grid values. These weights are combined for computing a value for

W π̃∗
n (c,y) =

|yj+1−y|

yj+1+yj
W π̃∗
n (c,yj)+

|yj−y|

yj+1+yj
W π̃∗
n (c,yj+1).

The dynamic program of Equation 2 is indifferent for equality when taking the min-

imum. There can be several ways for achieving the same minimum, and one of these

ways should be selected. As a decision might be indifferent for minimising the proba-

bility, it might be beneficial for increasing the revenue. Thus, one strategy is to accept

a request instead of rejecting it in such cases.

3.3 Value-at-Risk

The target level approach provides us with the means for computing a value-at-risk

policy. We explain the value-at-risk metric first and move then to the computation of a

value-at-risk optimal policy.

Given a predefined fixed confidence level, the value-at-risk metric computes the

maximum loss that one might be exposed to. The confidence level α ∈ [0, . . . ,1] speci-

fies the level of risk as probability level and its associated α-quantile is the value-at-risk.

There is some inconsistency in the nomenclature of value-at-risk in the literature (cf.

Pflug and Römisch 2007a, p57). We use the following definition of the value-at-risk:

V@Rα(Y) = inf{u : P(Y ≤ u) ≥ α},

where Y is a random variable and P denotes a probability measure. Using this defini-

tion, common values for α are 5 or 10 percent.

Applying the V@Rα metric to our model, we use the gained revenue rn as the ran-

dom variable and get

V@Rπα




n∑

j=0

rj


 = inf



u : Pπ




n∑

j=0

rj ≤ u


 ≥ α



 = inf{u : Wπ

n (c,u) ≥ α}, (3)

with a policy π , remaining time steps n and remaining capacity c.
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As we are dealing with revenue, we are interested in finding the policy π̄∗, which

has the maximal V@Rα of all policies Π given confidence α. In other words, we are

looking for the policy π̄∗ which has the highest revenue target of all policies Π given

the quantile α. Thus, α fixes the probability of failing a target searched for every policy

π ∈ Π. The best policy π̄∗ fails with same probability α as other policies but achieves

a higher target.

The results of Wu and Lin (1999) show, that W π̃∗

N (c, xN) as computed by Equation 2

has the property of a cumulative distribution function of variable xN . Thus, we can

employ Equation 2 for computing the policies which optimise the target quantiles of a

range of targets. We can find the V@Rα by using a look-up table or in a similar way by

a binary search.

The targets xN and their associated confidence level W π̃∗

N (c, xN) can be stored in

a look-up table. The table is filled by such value pairs, whereby the accuracy of the

result depends on the used step size and the interval boundaries used for the various

values for xN . This enables us to look up the target which achieves a quantile equal to

confidence α.

Binary search looks up in a sorted sequence for an element by continually splitting

the sequence by its median and retaining only the part where the element must be

contained in. We can search the V@Rα in a similar way, as W π̃∗

N (c, xN) is a increasing

function in xN . We start with a arbitrary target xN and decrease or increase it depend-

ing on W π̃∗

N (c, xN). Again, the accuracy depends on the increment respectively to the

decrement when searching the V@Rα.

4 Numerical Results and Discussion

We evaluated the proposed computation method by the same model introduced by Lee

and Hersh (1993). Their model serves as an example in various recent papers, cf. Barz

and Waldmann (2007), Huang and Chang (2009), Koenig and Meissner (2009a), Koenig

and Meissner (2009b). Hence, it provides a basis for a comparison of different policies.

4.1 Experiment Setup

The parameters of this model use N = 30 time periods to go before departure. At

this point in time, there is a capacity C = 10 of seats left. Four fare classes are given

with the prices F1 = 200, F2 = 150, F3 = 120, F4 = 80. The probability of an arriving

customer requesting a distinct fare in the remaining periods are given in Table 1.

http://www.meiss.com/
http://www.meiss.com/
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i Fi 1 ≤ n ≤ 4 5 ≤ n ≤ 11 12 ≤ n ≤ 18 19 ≤ n ≤ 25 26 ≤ n ≤ 30

1 200 0.15 0.14 0.10 0.06 0.08

2 150 0.15 0.14 0.10 0.06 0.08

3 120 0 0.16 0.10 0.14 0.14

4 80 0 0.16 0.10 0.14 0.14

Table 1: Fares and probabilities of an arriving customer requesting fare class i in time

period n.

4.2 V@R Computation and Evaluation

We demonstrate a computational approach for finding optimal V@R policies for α = 5%

and α = 10% as described in the previous section. In this way, we get an achievable

V@R value, as well as its corresponding optimal policy.

Table 2 shows the results of computing for a range of possible targets the probabili-

ties of failing them. The underlying computation is based on computing the probability

of not achieving a target for every possible target. Thus, no grid which combined ranges

of values was used in this case. The first row of Table 2 shows each possible target in

the range between 1100 and 1250. This range is just an extract of the overall range of

achievable targets. The second row shows the probability of not achieving the target.

The next three rows are the simulation results evaluating the policy computed for a

target.

We evaluated a policy by using its decision rules in a simulation applying random

arrivals according to the probabilities of Table 1. Each simulation result was based on

1000 random runs, whereby for each set of runs, the same random values were used.

We used the decision rule of accepting a request, if the decision had no effect on the

probability. Further, we switched to the risk-neutral policy, if the V@R was attained in

a simulation run.

Table 2 shows the fraction of runs which failed the corresponding target, the av-

erage and the standard deviation over all achieved revenues. Comparison of the com-

puted probability and the fraction of simulation runs of not reaching the target were

plausible within numerical errors.

A possible target represents the V@Rα value and the associated probability, its α

value. We find the searched V@R5% for by looking up the α nearest to 5%, the same

way it is done for α = 10%. This determined values-at-risk are highlighted in bold

face in Table 2. As the possible targets were not a continuous but a discrete domain,

there were also no continuous values for α. Thus, there is no V@R10% but a V@R10.1%,
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Target value 1100 1110 1120 1130 1140 1150 1160 1170

W π̃∗

N 0.039 0.044 0.047 0.050 0.054 0.060 0.065 0.068

Simulation of target value policies

Failed target 0.041 0.046 0.048 0.049 0.055 0.059 0.068 0.071

Rev. (average) 1327 1327 1326 1326 1326 1326 1327 1327

Rev.(std. dev.) 166 164 162 161 161 159 158 157

Target value 1180 1190 1200 1210 1220 1230 1240 1250

W π̃∗

N 0.074 0.082 0.088 0.093 0.101 0.111 0.120 0.126

Simulation of target value policies

Failed target 0.072 0.077 0.082 0.089 0.101 0.121 0.125 0.131

Rev. (average) 1328 1329 1329 1330 1331 1333 1335 1336

Rev.(std. dev.) 155 154 153 151 152 152 152 151

Table 2: Extract of the look-up table for finding the V@R nearest to desired values

0.05 and 0.10 for α. Target levels, theoretical percentiles, achieved percentiles (failed

target), averages and standard deviation of revenues are shown. The results of the

simulations are generated by applying the corresponding policy.

which is nearest to 10% confidence. This is the same for α = 5%, respectively, but the

difference is smaller and not visible in the table.

The effect of applying a grid is demonstrated in Table 3. The target level dimension

of the state space is reduced by lowering the grid resolution. Results of grid resolu-

tions of m = 10, m = 20, m = 40, m = 80 and m = 166, which is the highest grid

resolution as all possible 166 targets are considered, are compared using exemplarily

the confidence value α = 10%. The result of applying the risk-neutral policy is given for

comparison. We selected the policy with W π̃∗

N , which is nearest and greater or equal to

the desired α. The results in Table 3 show that the inaccuracy increases with decreas-

ing grid resolution. A lower grid resolution results in a lower accuracy of W π̃∗

N , and

the determined policies π∗ do achieve their objective more imprecisely. The standard

deviations, which increase with decreasing grid resolution, emphasis this.

Further, the simulation results demonstrated that policies which were computed by

linear interpolation with a grid are more suitable for finding a V@R optimal policy for a

desired α confidence than policies computed by the nearest neighbour method. Taking

into consideration that the state space was strongly reduced, the policies computed by

linear interpolation worked quite well with grid sizes down to m = 20.
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Simulation of policy π∗

α :=W π̃∗

N V@Rα V@R10% Rev. (avg.) Rev. (std.)

Risk-neutral - - 1130 1408 203

All targets m = 166 0.101 1220 1210 1331 152

Linear interpolation

m = 80 0.105 1225 1180 1336 151

m = 40 0.126 1250 1140 1346 154

m = 20 0.105 1200 1200 1361 157

m = 10 0.160 1200 1140 1398 188

Nearest neighbour

m = 80 0.119 1250 1150 1337 152

m = 40 0.118 1110 1130 1322 159

m = 20 0.199 1200 1070 1309 174

m = 10 0.100 1400 1130 1334 162

Table 3: Comparison of approximation methods by using a grid with different resolu-

tion and interpolation. Simulation results were generated by applying the determined

V@R optimal policy.

We take a closer look at the different effects of using nearest neighbour selection or

linear interpolation in Figure 1 and 2. Both figures show on axis of abscissae the V@Rα

and on the axis of ordinates, the corresponding confidence level α. Each depicted graph

represents the computed best α for a V@Rα or vice visa. The several graphs in the

figures show the effect of using different grid resolutions with nearest neighbour and

linear interpolation. Grid resolutions were the same as in Table 3: 166,80,40,20,10,

and for 166, no grid approximation was necessary.

Figure 1 makes obvious how the accuracy decreased along with decreasing grid

resolution when using the nearest neighbour approximation. The graphs of m = 80

and m = 40 deviated only a little from the accurate graph of m = 166. However, the

graphs of m = 20 and m = 10 deviated significantly from the accurate graph and thus,

did not longer provide reasonable results. This was quite different from the use of

linear interpolation.

As shown in Figure 2, linear interpolation provided better approximation results

than the nearest neighbour selection. The graph of m = 80 nearly matched the graph

for accurate resolution, and the graph of m = 40 deviated only slightly from it. The

first obvious deviation came with the graph m = 20 which might be an acceptable

approximation. The graph of m = 10 deviated strongly and might no longer be a
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Figure 1: Increasing inaccuracy as effect by decreasing grid size when using nearest

neighbour.

useful approximation in practice. However, linear interpolation was significantly more

accurate than nearest neighbour and provided reasonable resolution down to ca. 1/8

of the original and accurate resolution.

As linear interpolation was a more accurate approximation than the nearest neigh-

bour selection, we focused on linear interpolation for a further investigation of the

impact of grid resolution. Figure 3 displays revenue results from 1000 simulation runs.

Using different grid sizes as before, the determined policy for α = 10% was computed

and applied for each simulation run. The axis of the abscissae is the achieved rev-

enue, and the axis of the ordinates is the number of counts the associated revenue was

achieved. A histogram shows for a policy of a certain grid resolution the revenue dis-

tribution. Further, the results achieved by a risk-neutral policy is given for the purpose

of comparison.

Comparing the histograms, we can see that the shape of the revenue distribution

of the risk-neutral policy differs from those of the risk-sensitive V@Rα policies for

α = 10%. We distinguish between the V@Rα used for finding a policy for α = 10%

and the resulting V@R10% measurement of the simulation runs. The histograms of
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Figure 2: Increasing inaccuracy as effect by decreasing grid size when using linear

interpolation.

the results of the policies of grid resolutions m = 166, m = 80 and m = 40 look

very similar in their general shape. We note the peak at revenue of approximately

1200. This was expected as the polices were optimised by ‘moving’ the V@Rα to the

highest revenue (the right hand side of the distribution) while limiting revenues which

are lower the V@Rα (the left hand side of the distribution). However, the policies did

not ‘consider’ the shape of the distribution on either side of the V@Rα. This resulted

in the appearance of the peak near the V@Rα.

The results of grid size of m = 20 and m = 10 were quite interesting. The limited

grid resolution seemed no longer possible to ‘shift’ revenues above the V@Rα and the

shape of the revenue distributions became similar to that of the risk-neutral policy

results. We can see that the histogram of the results from the risk-neutral policy has

the largest similarity with that of the results of the policy using m = 10. There were

differences which yielded consequent different mean revenue and attained V@R10% of

the simulations. The shape of the histogram of the results of the m = 166 policy and

the shape of the histogram of the risk-neutral policy can be considered as two extremes.

By decreasing the grid resolution, the shape of a histogram alters from the one extreme
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to the other. Thus, the shape of the histogram of the results of the m = 20 policy looks

like the two extreme shapes merged together.

However, the achieved V@R10% of each experiment has to be assessed with the data

of Table 3. The policies were the results of an approximation which did not allowed

every possible α. The table shows that for m = 166, m = 80 and m = 20 only,

the values of W π̃∗

N were 0.101, 0.105 and 0.105, respectively, and thus close to the

desired value of α = 10%. Taking this into account, the results of the simulations were

consonant with the expected behavior of the policies.

Hence, only a grid resolution m approximating a policy π̃∗ should be chosen which

predicts a value W π̃∗

N , which has a small difference to the desired confidence level α.

4.3 Comparison with Exponential Utility Employing Policies

Finally, we present a comparison of the V@Rα policies with another risk-sensitive pol-

icy, in particular, policies which employ an exponential utility function for implement-

ing risk-aversion. We only used this further kind of risk-sensitive policies, because the

results of Koenig and Meissner (2009a) show that there are only small differences be-

tween the several risk-sensitive policies, including exponential utility-based ones. We

refer to the paper of Koenig and Meissner (2009a) for a detailed explanation of the

other risk-sensitive policies.

A comparison between the presented V@Rα approach and the exponential utility

based one is difficult due to their different objectives. Whereas an V@Rα policy max-

imises the revenue for a certain confidence level α, the exponential utility policy max-

imises the utility defined by a parameter specified by a level of risk aversion. In order

to arrive at comparable experiments, we had to find the level of risk aversion which

matches the confidence level. To this end, we ran simulations of utility based policies

for a range of levels of risk aversion. For comparison, we chose the utility-based pol-

icy which achieved the best V@Rα and highest mean revenue. We ran the experiment

exemplarily with α = 10%.

Figure 4 shows the difference of the results achieved by both types of policies. The

policy which was based on an exponential utility and achieved the highest V@R10% had

a lower V@R10% than the V@Rα optimised policy. The mean of the results of the utility

based policy was higher and its standard deviation was lower than those of the results

of the V@Rα based policy. The histograms illustrate these statistical comparison. The

histogram shape of the utility policy that results is broader than that of the V@Rα

policy results. Furthermore, the left hand side histogram is more skewed to the left,

while the right hand side histogram is more skewed to the right. This shows that the

http://www.meiss.com/
http://www.meiss.com/
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V@Rα policy ‘shifted’ the revenue above the V@Rα, whereas the utility policy optimises

an utility function and achieved a more balanced distribution.

We show also the conditional-value-at-risk measure (CV@Rα) which is actually the

mean of the revenue values lower than the V@Rα. The V@Rα policy did not perform

better than the utility-based, regarding the CV@Rα. This was an important result, as

it illustrated one more time that a V@Rα policy does not guarantee the most beneficial

lower tail distribution.

5 Conclusions

We have developed a computational approach for finding and approximating the opti-

mal value-at-risk policy for a revenue management problem. The used dynamic capacity

control model is one of the quantity-based revenue management models.

Given a confidence level specifying the value-at-risk, the proposed method com-

putes possible value-at-risk results leveraging target level computation and selects the

best result fitting the confidence level. In order to reduce computational effort, an ap-

proximation method for finding an approximate optimal value-at-risk policy has been

proposed.

We have evaluated the proposed approach by computing policies in numerical ex-

periments. A comparison with another risk-sensitive method for the same revenue

management problem has been conducted.

The presented methods allow for a fast computation of a good approximation of

value-at-risk optimal policies. They provide a basis for applying risk-sensitivity in rev-

enue management. However, such policies optimise for value-at-risk but, as often, on

costs of other measures. This should be borne in mind when applying such policies in

practice.

Finally, the presented computation approach aiming at value-at-risk optimal policies

could also be used for other revenue management models, such as dynamic pricing, if

the target level optimal policy is already known.



Koenig and Meissner: Value-At-Risk Optimal Policies for RM Problems 16

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

Risk neutral, V@R10%: 1130

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

Grid 166, V@R10%: 1210

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

Grid: 80, V@R10%: 1180

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

Grid: 40, V@R10%: 1140

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

Grid: 20, V@R10%: 1200

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

Grid: 10, V@R10%: 1140

Figure 3: The histograms show the effect of grid resolution on the revenue distribution

of numerical simulation. The V@R10% is given for 1000 simulation runs applying the

computed best policy for α = 10%.



Koenig and Meissner: Value-At-Risk Optimal Policies for RM Problems 17

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

220

Revenue

C
ou

nt
s

V@R10% 1200

Rev. (avg) 1361

Rev. (std.) 157

CV@R10% 1035

V@Rα with grid m = 20

V@R10% 1180

Rev. (avg) 1374

Rev. (std.) 164

CV@R10% 1039

Exponential utility

Figure 4: Statistics and histograms of revenue distribution comparing results of V@Rα
policy with α = 10% and results of exponential utility based policy with best V@R10%.
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