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Non-Linear Identification of Judgmental

Forecasts Effects at SKU-Level

Juan R. Trapero ∗, R. Fildes, A. Davydenko

Lancaster University

Department of Management Science, LA1 4YX, UK

Abstract

Prediction of demand is a key component within supply chain management. Im-
proved accuracy in forecasts affects directly all levels of the supply chain, reduc-
ing stock costs and increasing customer satisfaction. In many application areas,
demand prediction relies on statistical software which provides an initial forecast
subsequently modified by the expert’s judgment. This paper outlines a new method-
ology based on State Dependent Parameter (SDP) estimation techniques to identify
the non-linear behaviour of such managerial adjustments. This non-parametric SDP
estimate is used as a guideline to propose a non-linear model that corrects the bias
introduced by the managerial adjustments. One-step-ahead forecasts of SKU sales
sampled monthly from a manufacturing company are utilized to test the proposed
methodology. The results indicate that adjustments introduce a non-linear pattern
undermining accuracy. This understanding can be used to enhance the design of
the Forecasting Support System in order to help forecasters towards more efficient
judgmental adjustments.

Key words: Forecast adjustment, Supply chain, Non-linear system identification

1 Introduction

Companies working within supply chains use forecasts of demand to drive pur-
chasing and supply chain management. Accurate forecasts can affect positively
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to the operational management of companies leading to significant monetary
savings, greater competitiveness, enhanced channel relationships and customer
satisfaction, lower inventory investment, reduced product obsolescence, im-
prove distribution operations, schedule more efficient production and distri-
bution, and more profitable financial decisions (Moon et al., 2003). For most
of these companies, a particular type of a Decision Support System, known
as a Forecasting Support System (FSS) is employed to prepare the forecasts
(Fildes et al., 2006). These FSS integrate a statistical forecasting approach
with managerial judgment from forecasters in the organization.

The manager’s judgment is an important element within the forecasting pro-
cess. For instance, judgment influences a wide range of decisions which range
from the selection of a more appropriate statistical method to direct mod-
ification of the quantity being forecast. In fact, managers by adjusting the
statistical system forecast often add information to the final forecast which
may be difficult to include in a statistical model such a future product pro-
motion (Fildes et al., 2006).

Despite the importance of judgment, for example around 89.5% of model fore-
casts were adjusted in the case study presented by Franses and Legerstee
(2009), the literature devoted to study its effect with regards to company
forecasts of the demand for SKUs is scarce with only three data sets cover-
ing 6 companies Mathews and Diamantopoulos (1990), Fildes et al. (2009),
Syntetos et al. (2009), Franses and Legerstee (2009).

The recent literature suggests the existence of a bias towards making overly
positive adjustments (Fildes et al., 2009) or as a consequence of a non-symmetric
loss function of the managers (Franses and Legerstee, 2009). Mello (2009) an-
alyzes the biases introduced by means of forecast game playing, defined as the
intentional manipulation of forecasting processes to gain personal, group, or
corporate advantage. Eroglu and Croxton (2009) explore the effects of par-
ticular individual differences and suggest that a forecaster’s personality and
motivational orientation influence significantly the forecasting biases. Since
the companies in the supply chain are interdependent, the bias introduced
into sales forecasts by one company affects the rest of companies along the
chain. Therefore, the reduction of biases in sales forecasts is of paramount
importance.

In order to correct the presence of the bias several works have modeled the ap-
propriate weight that statistical forecasting and judgmental forecasting should
have. For instance, Blattberg and Hoch (1990) took the mean of each approach
which proved effective. Fildes et al. (2009) propose an Optimal Adjust model
based on Linear Regression classifying the data depending on the adjustment
sign. In contrast to Blattberg and Hoch (1990), it was found that negative
adjustments were more precise than positive ones. This discontinuity between
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positive and negative adjustments may indicate the desirability of adopting
non linear models to describe the judgmental process, knowing the form of the
adjustment process has the potential to influence the design of the forecasting
support system in order to mitigate the worst effects of such biases.

The present work reports the non-linear effect of adjustments on the final fore-
cast accuracy on the basis of a manufacturing company database containing
one-step-ahead forecasts and the actual sales. Assuming the expert adjustment
is predictable (Franses and Legerstee, 2009) or fixed this non-linear identifi-
cation is employed to propose a model which can correct the aforementioned
bias and improves overall forecasting accuracy.

A State Dependent Estimation (SDP) approach is used to study the non-
linearities involved in the manager’s adjustment. SDP nonlinear estimation
belongs to a family of methods within the data-based mechanistic modelling
(DBM) developed by Young and co-workers, see Young et al. (2001), Young
(2006), Young and Garnier (2006) and references therein among others. The
SDP technique uses recursive methods like Fixed Interval Smoothing (FIS)
combined with special data re-ordering and ”backfitting” procedures which
shows in a non-parametric way, i.e. through a graph, the state dependency
between the parameter under study and an associated state variable (Young
et al., 2001).

The outline of the paper is the following: Section 2 describes the problem
formulation; Section 3 explains the SDP approach; Section 4 analyzes a case
study to verify the model proposed and finally, Section 5 reports the main
conclusions and their implications for achieving improvements in practice.

2 Problem formulation

The Optimal Adjust model, proposed by Fildes et al. (2009) aimed at opti-
mally combining two of the sources of information available to the forecaster,
the system forecast and the forecaster’s subjective adjustment in order to
deliver a more accurate forecast. It is given by:

yi,t = α1SFi,t + α2Adji,t + νi,t (1)

where yi,t is the actual value for the ith product of the analyzed company at
time t. The regressors are SFi,t and Adji,t which stand for the System Forecast
(Statistical Forecast) and the Adjustment Forecast one step ahead at time t,
respectively. The Adjustment Forecast variable is computed as:

Adji,t = FFi,t − SFi,t (2)
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where FFi,t is the Final Forecast employed by the FSS. The error term is νi,t.

In order to assess the influence of the judgmental adjustment on the accu-
racy of forecasts we propose a more flexible version of the Optimal Adjust
model. Fildes et al. (2009) provided statistical tests which indicated that co-
efficients α1 and α2 are different depending on the adjustment sign. Also they
claimed that, according to the data extracted from the companies analyzed,
negative adjustments tended to improve the forecast accuracy and the size of
the adjustment affected the accuracy. In turn, positive adjustments tended to
decrease the forecast accuracy. In order to correct the aforementioned bias a
non-linear model is proposed:

yi,t = α1(v1(i, t))SFi,t + α2(v2(i, t))Adji,t + νi,t (3)

The aim is to determine the potential states v1(i, t) and v2(i, t), as well as, to
estimate the unknown SDP α1(v1(i, t)) and α2(v2(i, t)) which may offer a bet-
ter explanation of the non-linear process described by yi,t. By understanding
how the company’s forecasters misweight the information available it may be
possible to develop a FSS that overcomes some of the worst excesses (Fildes
et al., 2009)

3 A State Dependent Parameter Estimation approach

Following the works of Fildes et al. (2009) and Syntetos et al. (2009) we
have grouped all the observations as cross-sectional data, dealing with each
observation as an individual case. Since the variance of each SKU can be
different, data normalization is also required. For instance, it is possible to
normalize with respect to the standard deviation of each SKU as proposed
by Fildes et al. (2009). Furthermore, since the parameters are expected to
vary depending on the adjustment size, the data is sorted with respect to the
adjustments. Accordingly, the data can be reindexed by k = 1, . . . , N , where
N is the sample size. In this sense equation (3) is rewritten as:

yk = α1(v1(k))SFk + α2(v2(k))Adjk + νk (4)

The State Dependent Parameters are expressed by α1(v1(k)) and α2(v2(k)),
where vi(k), i = 1, 2 is the variable which drives the behaviour of the afore-
mentioned SDP. The random noise νk is assumed Gaussian with zero mean
and variance σ2.

In order to determine α1(v1(k)) and α2(v2(k)) described in (4) several as-
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sumptions have been made to capture the adjustment process. Firstly, it is
assumed that v1(k) remains constant. In other words, as a company usually
needs to predict the demand of a vast number of products, an “automatic”
forecasting technique 1 implemented in a Forecasting Support System is used
for this purpose, providing the first regressor (SFk) in (1). Therefore, it is
expected the weight of SFk is approximately the same for the wide range of
products yielding a constant α1. In the second place, since the effectiveness of
the adjustments may differ depending on the adjustment sign, it is assumed
the parameter α2 does not remain constant. Indeed, we assume that α2 is
function of the adjustments represented by Adjk.

The SDP modeling procedure allow us to incorporate this form of non-linearity.
Therefore, taking into account the previous assumptions the SDP-Optimal Ad-
just model is proposed as an extension of the Optimal Adjust model described
in (1), such as:

yk = α1SFk + α2(Adjk)Adjk + νk (5)

Note that it is possible to formulate more complicated models based on the
SDP procedure, for example, we can assume α1 is also state dependent. Nev-
ertheless, we prefer expression (5) because even when it is a non-linear model
each term can be easily interpreted following the DBM philosophy (Young,
2006).

In order to let the parameter α2 vary with adjustment, a first approach would
be to define stochastically the parameter α2 as a two-dimensional stochastic
state vector, whose stochastic properties are defined by a Generalized Random
Walk (Jakeman and Young, 1984). There is a wide range of options (Pedregal
and Young, 2002). Generally, the stochastic state vector is also called Time
Varying Parameter (TVP) because the data is ordered in a temporal fashion
associated to time series problems. However, we are interested in looking for
the variations of α2 with respect to the adjustments instead of time. Since we
are not working on-line, the data can be sorted with respect to the adjustments
and run the TVP procedure. After that, the data is unsorted to its original
time order.

Fortunately, the SDP technique allow us to sort and unsort the data and run
the TVP procedure. Additionally, the algorithm includes back-fitting proce-
dures employing recursive FIS algorithms to achieve estimations of any state
dependent parameter. The outcome of the SDP algorithm is a non-parametric
estimate displayed as a graph of the state dependent parameter (α2(Adjk))
against the variable which affects it in a non-linear fashion (Adjk).

1 For instance, an exponential smoothing method
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The stochastic behaviour of α2 chosen in this application is an Integrated

Random Walk which consists of:
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where α2 and α∗

2
are associated to the changing level and slope of the state

dependent parameter; the flexibility in the model is introduced by the random
Gaussian noise w∗(k) with mean zero and variance σ2

α.

The full model is formulated as a State Space (SS) system by assembling the
observation equation in (5) and the State equations in (6). The SS formulation
is well-suited for optimal recursive estimation accomplished by well-known
recursive algorithms as the Kalman Filter (KF) in Kalman (1960) and the
Fixed Interval Smoothing (FIS) in Bryson and Ho (1969). However, in order to
use these algorithms all the system matrices must be assumed known. In this
case the unknown parameters (often called hyper-parameters to distinguish
them from the main parameters or states in (6)) are the noise variances of the
Observation equation (σ2) and the State equations (σ2

α).

Usually, the variances are normalized by the innovations variance (σ2) reducing
to one the number of unknown parameters. In this sense, the Noise Variance
Ratio (NVR) is defined as σ2

α/σ2. The optimization of the NVR can be done
by Maximum Likelihood (ML) in the time domain obtained via “prediction
error decomposition”, see Harvey (1989).

A complete description of the technique with numerous examples can be found
in Young et al. (2001), and some applications to environmental systems are
shown in Young and Garnier (2006) and Young (2006) among others. Addi-
tionally, SDP algorithms are available within the CAPTAIN 2 toolbox (Taylor
et al., 2007), developed for using with Matlab/Simulink TM software.

4 Case study

Data from a manufacturing company specialized in household products has
been collected. The data has been split in three series which represent: i)
one-step-ahead systems forecasts; ii) one-step-ahead final forecasts; and iii)
corresponding actual outcomes for 413 Stock Keeping Units (SKU). The data
comprises 7544 completed triplets that have been sampled monthly between

2 see http://www.es.lancs.ac.uk/cres/captain/
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2004 and 2007. It is an extended data set from that analysed as company A
in Fildes et al. (2009).

Basically, the final forecast produced by the company is the result of two
sources of information (Fildes et al., 2009). On the one hand, there is avail-
able computer software which provides the statistical system forecasts. On
the other hand, various meetings, which involve the forecasters meeting with
personnel in sales, marketing, and production occur to share pieces of informa-
tion that cannot be included in a statistical model. Thus, the previous system
forecast is adjusted accordingly with the meeting group decisions obtaining an
agreed forecast (final forecast). For instance, approximately 65% of the 7544
complete triples was modified by the demand forecaster’s adjustments.

4.1 Data selection

Since the characteristics of the data are heterogeneous a pre-treatment step is
required in order to generate a homogeneous sample. We agree with Syntetos
et al. (2009) about the fact that data selection has been overlooked in the
past. Basically, this step eliminates those time series that are not useful for
the experimental analysis (depending the goals of the research). For instance,
Fildes et al. (2009) removes SKUs without the required continuous forecast
history or those with low volume SKUs because these are the result from
special circumstances such as the particular items have been withdrawn from
the market. In contrast, Syntetos et al. (2009) was focused on intermittent
demand.

Our aim here is to develop a model of the adjustment process for established
SKUs that captures any non-linear effects, so the pre-treatment stage in this
work removes the time series which fulfils any of these conditions:

• Time series with less than 12 months history available.
• Time series with any Actual observation equal to zero.

After this pretreatment the number of SKU’s is reduced to 91 with 2882
triplets. An example of the time series considered per each SKU can be seen
in Figure 1, where actual values are in solid line, System Forecasts are in dotted
line and Final Forecasts are in dashed line. Recall that FFk = SFk + Adjk.

4.2 Exploratory Data Analysis

In order to take advantage of the judgemental adjustments we have to check
that adjustments improve the forecasting accuracy provided by the Statistical
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Forecast. Basically, if there is no evidence that the Final Forecasts based on
adjustments beat the Statistical Forecast accuracy it would be quite unlikely
to propose a model, which uses as a regressor those adjustments, capable of
beating the Statistical Forecast. In this sense, Table 1 assesses the forecasting
performance provided by the company under study, where cases with lower
error are shown in bold. In this table the Mean Absolute Percentage Error
(MAPE) and the Median Absolute Percentage Error (MdAPE) were chosen
as accuracy measures, such as:

MAPE = mean(|pt|)

MdAPE = median(|pt|) (7)

where pt is the percentage error given by pt = 100|Yt−Ft|/Yt, t = 1, . . . , N . In
this expression Yt stands for the actual value at time t and Ft is the forecast
at that time. All forecasts considered are one-step-ahead and N is the sample
size.

In particular, these error measures have been computed across time for each
SKU, and then the mean of these values were calculated across SKUs. The last
row in Table 1 shows the total Mean of the MAPE and MdAPE, where the val-
ues in bold highlight the best performance method. In general terms, the FF is
more accurate than the SF. Additionally, we can breakdown the errors accord-
ing to the adjustment sign obtaining three rows which analyze the forecasting
performance of the positive and negative adjustments, as well as, when there
is no adjustment. The row denoted by Overall adjusted comprises positive and
negative adjustments excluding those observations that were not modified by
judgmental adjustments. In addition, the second column also shows the sam-
ple size of each kind of adjustment, where it is possible to verify that positive
adjustments are more frequent.

In relation to the negative adjustments, we can see from Table 1 that the FF
is more accurate than the SF. Nevertheless, this same conclusion cannot be
extrapolated to the positive adjustments case. In fact, there is no clear conclu-
sion about whether the FF is more accurate than the SF because according to
the Mean(MAPE) the SF outperforms the FF but, conversely, assessing the
Mean(MdAPE) the FF beats the SF. A possible explanation to this discrep-
ancy is that the Absolute Percentage Error puts a heavier penalty on positive
errors than on negative ones (Hyndman and Koehler, 2006) and whilst the
MdAPE is robust to this penalty, the MAPE is quite sensitive to it. In order
to solve this discrepancy we can normalize the data and then compute the
Mean Absolute Error (MAE=mean(|Yt−Ft|)) which is not a percentage error
measure. In the next section such data normalization is carried out, where it
will be shown that not only is it valuable for error comparison purposes but
also it is necessary to identify a non-linear pattern in the process of adjust-
ments.
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4.2.1 Data Normalization

One of the main objectives of this work is to find out if there is a bias in
the adjustments accomplished by the forecasters. If so this information can be
used to propose a model which improves the forecasting accuracy. Nonetheless,
we are mixing different SKUs with different statistical properties. Thus, it is
convenient to provide a framework where it is possible to compare them. This
can be done by means of a data normalization. In particular, each product
can be normalized with respect to its standard deviation (Fildes et al., 2009).

A statistical description of the normalized data can be found in Table 2. It is
interesting to note that central measures like the mean and median correspond-
ing to the Actual column are higher than their System Forecast counterpart.
This difference between the real and SF has been detected and managerial
adjustments were imposed to compensate this SF bias as can be seen in the
statistics for the FF. However, this compensation were too optimistic achiev-
ing a FF mean and median higher than the actual ones. In the last two rows
of this Table we can also find two dispersion measures, the standard deviation
(Std.) and the Median Absolute Deviation (MAD). These measures show a
similar dispersion between the SF, FF and Actual values.

Figure 2 depicts the boxplot of the actual values, as well as the System and
Final Forecast provided by the company. Note that there are a higher number
of extreme values in the Final Forecast which do not correspond to any actual
value, see Figure 2. This implies that some large positive adjustments have
been made incorrectly.

Figure 3 shows the histogram of the normalized adjustments, where it is pos-
sible to see that the adjustments are positively biased. In this sense, Table 3
analyzes the overoptimism in adjustments. For instance, the first row shows
that positive adjustments tend to overestimate. In particular, 62% of them
are positively biased because they were too large or they were in the wrong
direction. In contrast, negative adjustments are less biased since only 51.7%
of them were overoptimistic.

Previously, it was mentioned that the Mean(MAPE) and the Mean(MdAPE)
might not be good error measures to compare the accuracy of the System
and Final Forecast for positive adjustments because of the penalization of
positive errors associated to those error measures. Therefore, we can take
advantage of the suggested normalization to solve this problem by computing
the MAE on this normalized dataset. In this way, Table 4 shows the MAE
accomplished by the SF and FF. Unlike Table 1, Table 4 shows that the FF
is more accurate than SF even for positive adjustments. The explanation of
the difference between the results for the normalized versus the percentage
error measures lies in the different weight given to longer errors associated
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with volatile SKUs.

Another advantage of the normalization is that we can analyze the evolution
of the MAE with respect to the size of the adjustment. Indeed, Figures 4 and
5 depict the aforementioned evolution with regards to positive and negative
adjustments, respectively. We can observe that: i) FF is more accurate than
SF for larger adjustments; ii) there is no big differences between SF and FF
methods for small adjustments; iii) the improvement achieved by the FF in
negative adjustments is larger than for the positive counterparts. It should
be pointed out that these findings agree with those suggested in Fildes et al.
(2009).

4.3 Non-parametric SDP estimation

Under the assumption that some parameters may be state dependent, SDP al-
gorithms have been employed to obtain non-parametric estimates. The model
estimated assumed that the weight of the adjustments in (5) is potentially
dependent of the Adjustments as a state. In order to perform this estimation
an Integrated Random Walk described in (6) is used to model variations in
the SDP, where the observations are ordered by adjustments size. As a re-
sult of this stage, a graph is provided giving us an indication of the possible
non-linearity shape. This stage has been accomplished with the MATLABTM

toolbox called CAPTAIN (Taylor et al., 2007).

Figure 6 depicts the estimation of α2(Adjk) as a solid line, and the standard
errors of its estimation in dashed lines. According to this figure, there is a vari-
ation of the parameter α2 depending on the adjustment sign. It is interesting
to note that the weight of the adjustments represented by α∗

2
is greater for

negative adjustments. This means that positive adjustments tend to be opti-
mistic and the SDP is tuned to damp this optimism. In other words, negative
adjustments are more accurate than positive adjustments. Additionally, con-
fidence intervals show that there is a big uncertainty for adjustments values
close to zero. One explanation is that forecasters may make small adjustments
when they mistake noise for patterns in the signal. Furthermore, confidence
intervals are tighter for positive small adjustments, indicating that a large
quantity of data is concentrated in this range, see Figure 3.

4.4 Identification and estimation of non-linearities regarding SDP

With the non-parametric estimate computed in the previous step, we now
examine the graph obtained to propose a non-linear model capable of cap-
turing the source of such non-linearities. Typically, this task can be done via
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non-linear parametric models which may range, for instance, from a radial
basis function to a sigmoidal law, see (Young, 2006) and (Young et al., 2001).
Then, the parametric model is efficiently estimated by nonlinear least squares,
Prediction Error minimization or Maximum Likelihood optimization.

Considering Figure 6 the following non-linear model is proposed:

yk = β1 · SFk + β2 · Adjk + (β3 + β4 · e
−β5·Adjk)Adjk · Xd + νk (8)

where Xd is a dummy variable such as:

Xd =











0 if Adjk < 0

1 if Adjk > 0
(9)

The estimates of the model parameters are given below (the respective esti-
mated standard deviation is between brackets) :

β̂1 = 0.94919 (7.36 · 10−5) β̂2 = 0.824 (2.74 · 10−3)

β̂3 = −0.94 (1.36 · 10−2) β̂4 = 1.323 (6.70 · 10−3)

β̂5 = 0.247 (2.52 · 10−3)

Hereafter the non-linear expression in (8) is referenced as (NL).

4.5 Comparison with previous methodologies

Once we have estimated the SDP parameter in (5) and the non-linear function
in (8), we will compare those results with two approaches. Firstly, we will
use the Blattberg-Hoch (B-H) “50% model, 50 % manager” as a benchmark
(Blattberg and Hoch, 1990), where:

yk = 0.5 · SFk + 0.5 · (SFk + Adjk) + νk

= SFk + 0.5 · Adjk + νk (10)

We also analyze the Optimal Adjust (OA) model proposed by Fildes et al.
(2009) that can be expressed using the dummy variable Xd defined in (9) such
as:

yk = γ1 · SFk + γ2 · Adjk + γ3 · SFk · Xd + γ4 · Adjk · Xd + νk (11)
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The estimates of the model described in (11) are given below:

γ̂1 = 0.96 (0.014) γ̂2 = 0.81 (0.073)

γ̂3 = 0.07 (0.018) γ̂4 = −0.42 (0.076)

In order to compare models (8), (10) and (11) we related them to the general
equation in (5). Assuming that the System Forecast weight of the aforemen-
tioned models is approximately 1, it is possible to plot in the same graph
the Adjustments weight computed by the different models. For instance, α1

and α2 are defined as the SF and Adjustments weights, respectively in (5).
The equivalent of α1 in the non-linear model (8) is β1 and the equivalent of
α2(Adjk) is given by α2(Adjk) = β2 + (β3 + β4 · e

−β5·Adjk)Xd. Furthermore, we
can see that β̂1 = 0.949 ≈ 1.

Figure 7 depicts the estimation of the Adjustment weight accomplished by
(8) in solid line; the non-parametric SDP estimation is depicted by a dashed
line and the Optimal Adjust model in (11) is in dotted line. The dashdot line
shows the Blattberg and Hoch model described in (10).

According to the non-parametric SDP estimation shown in Figure 7, the ex-
planatory weight of the managerial adjustments depends on its sign. Basi-
cally, without the SDP guidance one might consider as a starting point the
adjustments average (Blattberg and Hoch, 1990) to ponder the influence of
adjustments on the forecasting accuracy. Nevertheless, the analysis carried
out by Fildes et al. (2009) over different companies shows that adjustments
accuracy was asymmetric with respect to its sign, i.e., negative adjustments
was shown to be more precise than the positive ones. Effectively, the Opti-
mal Adjust Model proposed in that reference is a better approximation to
the non-linear nature of the adjustment process. Nonetheless, the Optimal
Adjust Model only allows the variation of α2 between constant values. This
restriction is valid for negative adjustments (see Figure 7) but it is apparently
not the best method to describe the positive adjustments in relation to the
non-parametric SDP. In order to resolve this limitation, the non-linear func-
tion given by (8) is proposed, which models the negative adjustments with a
constant (as the Optimal Adjust Model) but it uses an exponential function
to describe the positive adjustments. Note this non-linear function is inspired
by the non-parametric SDP estimate.

4.6 Model validation

In this section predictive validation is used to compare models, where we
expect that if a better description of the adjustment process is offered by the
non-linear model(s), these models should contribute to reduce the forecasting
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error compared to the simpler linear models. For this purpose, 20% of the
data (582 triplets) constituted by the last months of each SKU, which were
not used for the parameter estimation of the models, were employed as the
hold-out sample to compare the performance of the proposed models. This
hold-out sample design results in a more demanding experiment than selecting
20% of the data randomly (Fildes et al., 2009).

Table 5 shows the Mean(MAPE) and Mean(MdAPE) on the validation dataset.
In the lower part of the table, we can see the overall performance of the
methods analyzed. In order to get a deeper insight into the adjustment sign
influence, the results have been separated according to the adjustment sign.
Essentially, the Final Forecast beats the System Forecast (quite substantially
for negative adjustments). The NL method outperforms the non-parametric
“state dependent model” and in particular the linear models. The number of
observations taken into account are shown in the second column. Again, the
NL method delivers very promising results except for positive adjustments.

However, the Mean(MAPE) and Mean(MdAPE) are not well-suited to mea-
sure the positive adjustments performance for the reasons given in section
4.2. As previously, the normalized data was employed to compute the Mean
Absolute Error (MAE) on the validation dataset, shown in Table 6. From this
Table we can corroborate the good performance of the NL model for positive
adjustments as well. Additionally, Table 7 shows the standard deviation of the
Absolute Error in order to analyze the forecasting error dispersion. Assessing
Tables 6 and 7 we can conclude that the non-linear model(s) proposed achieve
a lower forecasting error and also reduces the variance of such errors compared
to the Final Forecast.

Figures 8 and 9 depict the MAE against the size of positive and negative
adjustments for the validation dataset, respectively. From these figures we can
observe that the FF is more accurate than the SF. Furthermore, the margin of
improvement is more visible for larger adjustments. Note that these findings
are consistent with those reached in the exploratory data analysis assessing
the SF and FF, in section 4.2

Regarding the proposed models for positive adjustments in Figure 8, the NL
approach outperforms the rest of the models. In addition, the OA model works
slightly worse than the FF and the B-H models. Since neither the OA model
nor the B-H model are flexible enough to describe the non-linear process asso-
ciated with positive adjustments, see Figure 7, the differences found between
them may not be systematic. This means that this result may not be consistent
for another sample.

In relation to the negative adjustments shown in Figure 9, the analyzed meth-
ods, except for the B-H technique, achieve a similar performance, where the
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NL method outperforms them slightly. The B-H method performs rather worse
than the rest of methods. This poor performance can be explained by analyzing
negative adjustments in Figure 7. From this Figure we can see that the weight
adjustment α2(Adjk) suggested by the B-H for negative adjustments is lower
than the one computed by the other methods based on parameter estimation
from the data. Therefore, this discrepancy results in a bigger forecasting error
for the B-H method.

Considering the case data where no managerial adjustment is made the NL
method also improves forecasting accuracy. This indicates that there is room
to improve the SF design.

Finally, it is interesting to note that NL beats SDP but only slightly since NL
is estimated in a more efficient way than the SDP.

5 Conclusions

The use of State Dependent Parameter estimation was exploited in a new
application in order to understand the non-linear complexity involved in judg-
mental adjustments. These adjustments are of paramount importance in nu-
merous companies since they have a direct and substantial influence on the
forecasting accuracy of supply chain demand. Actual data sampled monthly
were collected from a manufacturer company to verify the approach. In fact,
an SDP estimate was the baseline to formulate a non-linear model which was
employed to reduce the forecasting errors on the basis of a better description
of the nonlinearity observed in managerial adjustments. In order to compare
the performance of the methods considered, several well-known error measures
were considered including the MAPE and MdAPE. Nonetheless, it was shown
that normalization of the data can be very helpful to get a better understand-
ing of the influence of the adjustment size. Basically, this normalization allow
us to use another error measure (MAE) that avoid the heavy penalization
which the percentage errors apply to positive errors. Therefore, this MAE
gave a better description of the methods’ relative performance when positive
adjustments are considered.

Putting these together, several conclusions can be drawn: i) there were not
big differences between the methods analyzed for small adjustments; ii) FF
forecasts outperform the SF when adjustments are larger; iii) the NL model
proposed on the basis of a non-parametric SDP estimation was shown to
provide a description of the non-linear behaviour involved in the adjustment
process of the company analyzed by means of an efficient estimation. This
ability was translated into a reduction of the forecasting error on the hold-
out sample data. The non-linear weights derived from the model(s) we have
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proposed have implications for the design of Forecasting Support Systems. If
such systems are to be effective in supporting judgmental interventions, they
need to help users distinguish between the various sources of information,
guiding them in weighting reliable and major pieces of information much more
effectively.

Since there is considerable potential in State Dependent Parameters models in
this field, further research is needed to analyze a wider range of datasets from
more companies with different features, as Fildes et al. (2009) have already
shown that companies differ in their responses to information when making
adjustments.
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Table 1
Mean of the MAPE and MdAPE for the SF and FF.

Adjustment No. of observations Mean(MAPE) Mean(MdAPE)

SF FF SF FF

Positive 1249 26.99 32.72 23.37 18.48

Negative 601 71.42 38.24 34.13 23.82

None 1032 30.34 30.34 21.32 21.32

Overall adjusted 1850 40.39 33.38 24.04 17.47

Total 2882 38.05 32.71 21.49 17.13
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Table 2
Exploratory normalized data analysis

Actual System Forecast Final Forecast

Mean 3.5 3.4 3.7

25th. percentile 2.3 2.2 2.5

Median 3.4 3.3 3.6

75th. percentile 4.6 4.5 4.7

Std. deviation 1.6 1.6 1.6

MAD 1.1 1.1 1.1
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Table 3
Evidence of optimism bias in adjustments

Adjustments % of times adjustment % of times adjusment Total % of adjustments that

is too large is in wrong direction are overoptimistic

Positive 34.3 27.7 62.0

Negative 25.3 23.0 51.7
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Table 4
MAE on the basis of normalized data

Adjustment System Forecast Final Forecast

Positive 0.798 0.719

Negative 0.779 0.513

None 0.552 0.552

Overall adjusted 0.789 0.652

Total 0.704 0.616
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Table 5
Mean of MAPE and MdAPE for the validation dataset

Adjustment No. of Error System Final SDP NL Optimal Blattberg-

observations (Mean) Forecast Forecast Adjust Hoch

Positive 235 MAPE 27.04 33.97 28.13 27.79 27.91 27.71

MdAPE 25.09 26.78 24.70 24.22 23.71 23.16

Negative 125 MAPE 70.72 36.58 39.90 36.14 37.10 50.69

MdAPE 68.06 35.49 39.30 35.15 36.07 49.15

None 222 MAPE 35.28 35.28 35.92 33.06 33.44 35.28

MdAPE 24.34 24.34 24.77 22.82 23.07 24.34

Overall 360 MAPE 39.00 30.66 28.75 27.46 28.06 31.95

Adjusted MdAPE 26.38 21.30 20.40 20.15 20.21 21.34

Total 582 MAPE 38.52 31.08 30.12 28.53 29.34 32.61

MdAPE 23.73 19.09 18.26 18.23 18.78 19.46
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Table 6
MAE for the normalized validation dataset

Adjustment System Final SDP NL Optimal Blattberg-

Forecast Forecast Adjust Hoch

Positive 0.929 0.725 0.699 0.698 0.737 0.710

Negative 0.747 0.459 0.457 0.455 0.456 0.560

None 0.579 0.579 0.563 0.564 0.564 0.579

Overall Adjusted 0.866 0.633 0.615 0.613 0.640 0.658

Total 0.757 0.612 0.595 0.594 0.611 0.628
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Table 7
Standard deviation of the Absolute Error for the normalized validation dataset

Adjustment System Final SDP NL Optimal Blattberg-

Forecast Forecast Adjust Hoch

Positive 0.912 0.823 0.693 0.686 0.672 0.651

Negative 0.611 0.446 0.433 0.428 0.426 0.461

None 0.561 0.561 0.54 0.549 0.548 0.561

Overall Adjusted 0.825 0.726 0.626 0.620 0.613 0.597

Total 0.749 0.669 0.595 0.594 0.590 0.585
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