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Abstract— Measurement-based performance evaluation of 
network traffic is becoming very important, especially for 
networks trying to provide differentiated levels of service quality 
to the different application flows. The non-identical response of 
flows to the different types of network-imposed performance 
degradation raises the need for ubiquitous measurement 
mechanisms, able to measure numerous performance properties, 
and being equally applicable to different applications and 
transports. This paper presents a new measurement mechanism, 
facilitated by the steady introduction of IPv6 in network nodes 
and hosts, which exploits native features of the protocol to 
provide support for performance measurements at the network 
(IP) layer. IPv6 Extension Headers have been used to carry the 
triggers involving the measurement activity and the 
measurement data in-line with the payload data itself, providing 
a high level of probability that the behaviour of the real user 
traffic flows is observed. End-to-end one-way delay, jitter, loss, 
and throughput have been measured for applications operating 
on top of both reliable and unreliable transports, over different-
capacity IPv6 network configurations. We conclude that this 
technique could form the basis for future Internet measurements 
that can be dynamically deployed where and when required in a 
multi-service IP environment. 

Keywords- active/passive measurements, extension headers, 
Internet Protocol version 6 (IPv6), performance metrics 

I.  INTRODUCTION 
A major challenge for network operators and service 

providers is the ability to provide a stable service with 
consistently predictable performance characteristics to include 
high network reliability, low delay, low jitter and high 
availability [1]. Especially when considering introducing 
preferential treatment to some arbitrary amount of network 
traffic, as opposed to all traffic being treated as best-effort, then 
the necessary mechanisms need to be in place to provide 
feedback over the different service quality characteristics 
experienced by the different traffic flows.  

Current measurement techniques do not provide a 
generalised framework for performance evaluation, because 
either their focus is on measuring specific properties of certain 
types of traffic, or their scope is limited within the boundaries 
of single administrative domains. In addition, they are quite 
tightly coupled with particular measurement infrastructures and 
applications, performing specific measurement tasks. 

Recent discussions within IRTF’s Internet Measurement 
Research Group [2] have shown a clear interest in defining 
another Internet measurement protocol to try and measure 
performance and path properties that current deployments do 
not address, due to their inherent design or due to the way the 
network itself treats the associated measurement traffic.  

In this paper, a service-oriented measurement mechanism is 
presented, namely in-line, IPv6-based measurements; the 
mechanism is using native features of the IPv6 protocol to 
provide for accurate, transparent, low-overhead and reliable 
traffic flow measurements for any type of traffic. At the same 
time it surpasses the associated difficulties and shortcomings of 
existing measurement protocols and systems, by not being 
coupled to particular applications, transport protocols, or 
network topologies.  

Due to the evolution of the Internet Protocol as a universal 
transport mechanism there is an increasing aggregation of 
multi-service traffic onto IP networks carrying various 
equivalence classes of network flows. As a consequence, the 
different Quality of Service (QoS) requirements and different 
sensitivities to potential service degradation of these 
equivalence classes of traffic make timely and accurate 
measurement of actual network flow QoS essential. 
Measurements revealing the real service experienced by user 
traffic can prove valuable for long and short term network 
design decisions, dynamic traffic engineering, as well as for 
Service Level Agreement (SLA) negotiation and policing, and 
advanced network and service management. 
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This paper is organized as follows: Section 2 selectively 
discusses measurement-related work, identifying strengths and 
weaknesses of existing measurement approaches and 
techniques. Section 3 introduces the concept of in-line, IPv6-
based measurements, highlighting the major relevance of this 
work to theory and practice. Section 4 describes the 
implementation of an In-line measurement prototype, where 
measurement functionality has been built into systems’ 
network protocol stack. Section 5 presents and discusses the 
results taken from instrumenting with measurement data 
different types of traffic, carried over different-capacity IPv6 
configurations. Numerous service quality characteristics in the 
form of performance metrics have been documented. Section 6 
contains concluding remarks and highlights future directions 
for this work. 

II. RELATED WORK 
Existing measurement techniques and infrastructures fall 

into two main categories, namely active and passive. The 
primary focus of active and passive measurements has been on 
measuring end-to-end path properties, and on characterising 
network traffic mainly through backbone link monitoring, 
respectively. Both active and passive streams exhibit particular 
limitations reflecting the fact that they are independent and 
non-native mechanisms (protocols, tools, etc.) operating on top 
of or in parallel with the actual network traffic, while trying to 
measure and assess its characteristics. 

A. Active Measurements 
Active techniques are based on the concept of injecting 

additional traffic with known characteristics into the network to 
test particular attributes of a service [3]. Part of the 
measurement process is the generation/injection of this 
synthetic traffic into the network. This traffic usually consists 
of ICMP packets [4], [5] or variations [6], UDP packets [5], 
[7], [8], but also of dedicated measurement protocol traffic like 
NLANR’s Internet Performance Measurement Protocol (IPMP) 
[9]. Active measurements projects have been focusing on 
measuring properties of end-to-end network paths between 
instrumented systems by implementing metrics defined within 
IETF’s IP Performance Metrics (IPPM) Working Group, such 
as delay and loss, and also by defining (and implementing) 
higher-level metrics such as unreachability and quiescence [4].  

Two major limitations of active measurements are first that 
the performance properties measured by the injected traffic do 
not necessarily reflect the performance experienced by 
operational network traffic; and second, the additional traffic 
associated with active measurements obviously impacts the 
network and may itself be a factor in measuring a poorer 
performance than the network would otherwise deliver. Also, 
periodic sampling and packet injection used by some 
architecture may fail to observe periodic network events [4]. 
Therefore, although active techniques are service oriented, their 
dependence on certain types of traffic and applications limits 
their ability to provide a generalized measurement framework. 

B. Passive Measurements 
Passive measurements provide for highly accurate results 

by observing and analysing real traffic on a link without 
disruption to the service. They are usually deployed within 
single administrative domains and are mainly concerned with 
monitoring link utilisation [10], [11], deriving network traffic 
demands [12] and characterising backbone traffic [13]. They 
are particularly useful in gathering measurements of user traffic 
at a single observation point in the network but may also be 
deployed for two-point measurements by employing additional 
correlation techniques. 

Passive measurements suffer from continuous increases in 
network speeds that make the amount of measurement data, 
which often needs to be transferred across the monitored links 
substantial; there is consequential difficulty in targeting 
specific services and identifying packets that belong to the 
same flows. Also, correlating samples collected at two distinct 
observation points to yield one-way flow measures can be a 
challenging task, consuming significant resources and network 
bandwidth [11]. Hence passive techniques are more oriented 
towards network engineering and investigation of the overall 
traffic characteristics of backbone topologies, rather than 
measuring the service quality properties of the different 
application flows carried over the Internet. 

III. IN-LINE, IPV6-BASED MEASUREMENTS 
The main motivation behind defining and implementing in-

line, IPv6-based measurements is the lack of a generic service-
quality-oriented measurement mechanism to be equally 
applicable to different types of traffic, independent of particular 
transport protocols and applications; at the same time the 
mechanism should mainly offer accurate, flexible and 
transparent performance measurements of the real -rather than 
special-purpose- network traffic. 

In-line measurements are an intrinsically multi-point 
mechanism. It makes use of piggybacked data, containing 
measurement-related indicators such as timestamps and packet 
counters, carried in a special header within regular user 
packets. The presence of such special headers acts as a trigger 
that invokes the measurement activity. 

Underpinning this functionality is the programmable and 
extensible specification of IPv6 [14] and the use of IPv6 
extension headers, which allow such a measurement 
mechanism to be deployed independently from the applications 
and from the intermediate network nodes between the two (or 
more) instrumented points. 

Hence, the contribution of IPv6-based, in-line 
measurements is not only the fact that the measurement data is 
carried along within the user packets per se. Studies of carrying 
timestamps and tags within packets have been conducted in the 
past, targeted at specific traffic (e.g. modified ICMP) [6]. 

The main novelty of this technique is threefold: 

• The user traffic carries the minimal measurement 
information, virtually guaranteeing that the 
measurements reflect the performance experienced by 
the payload data; at the same time 



• the underlying network (IPv6) layer provides the space 
for measurement extensions to be defined as part of the 
protocol itself, hence making the mechanism 
applicable to any type of traffic. 

• Selective processing of the measurement extensions 
only where and when required (at specific 
instrumented nodes/hosts) is guaranteed by the IPv6 
specification. 

 

Optional functionality in IPv6 has been designed as a set of 
Extension Headers. These are inserted between the main IPv6 
header and the upper layer (transport) header. The Destination 
Options extension header is specified to carry Type-Length-
Value (TLV)-encoded options to be processed only by the 
packet’s destination. This can either be the ultimate destination 
or a pre-specified intermediate destination. Destination options 
are not examined by the nodes along the packet’s route, and 
therefore intermediate nodes forward the packets normally, 
irrespective of whether they carry such options or not. 
Furthermore, the IPv6 specification provides space for 
additional TLV-encoded options to be defined as long as they 
conform to certain structural and alignment requirements. 

The latter two properties of the destination options header 
make IPv6 particularly suitable for measurement extensions to 
be designed efficiently, cost-effectively, and be a native part of 
the protocol’s operation without influencing the core of the 
forwarding mechanism. 

This also demonstrates an important difference in the 
design between IPv4 and IPv6: in IPv4, there is a fixed set of 
options defined to be carried within the main IPv4 header. 
Moreover, options are processed en route, and all IPv4 
modules need to implement all the standardised options. “What 
is optional is their transmission in any particular datagram, not 
their implementation” (RFC 791). Not only the need for 
standardisation would impose immense difficulties in 
designing new options for IPv4, but also the need for all IPv4 
modules to support them, would make their seamless operation 
virtually impossible. 

Moreover, the necessity of option processing en route, 
would alter the forwarding behaviour of packets, and hence 
even if measurement extensions were designed for IPv4, the 
measurement results would not reflect the performance 
experienced by the rest of the (un-instrumented) traffic. 

Indeed, studies on IPv4 option support in the Internet have 
shown that IPv4 packets carrying options would either be 
discarded en route (high volume routers don't have the power 
to process options), or they would be put on different 
processing queues (fast/slow path) [15].  

The incremental and selective option processing of IPv6 
eliminates these concerns, and henceforth makes it feasible for 
a native measurement mechanism to be defined and targeted to 
any traffic type carried over IPv6. 

As part of this work, numerous measurement destination 
options TLVs have been defined to carry timestamps, counters 
and trace information as well as other associated measurement 

system traffic. For a detailed description of the particular 
encoding of these options and their insertion between the main 
IPv6 header and the upper layer headers, the reader is referred 
to [16]. Figure 1 shows two destination options TLVs designed 
to measure one-way delay (a) and one-way loss (b). The rest of 
the paper will focus on the implementation of and the 
experimental results gathered from these particular 
measurement options. 

The one-way delay TLV has been used to measure delay 
between two points along an Internet path, as well as more 
synthetic time-related parameters such as jitter and throughput. 
Its operation is based on the source and destination hosts 
inserting departure and arrival timestamps, respectively, with 
microsecond accuracy. The one-way loss TLV provides a 
means of IP-based sequencing of packets by having a source 
node inserting incremental sequence counters to packets 
belonging to the same flows, which are then observed at the 
destination. Packet loss as well as out of order delivery can be 
measured. 

Figure 2 shows the different places along an end-to-end 
Internet path where in-line, IPv6-based measurements can be 
deployed; measuring properties of the real end-to-end path 
between hosts <A> and <D> needs the measurement 
functionality (extension header processing) be implemented at 
the two end-systems. In this scenario, nodes <B> and <C> will 
not process the measurement extension header options, rather 
they will forward the packet as if no extensions were present. 
An alternative measurement scenario is to have measurements 
conducted between host <A> and node <C>. In this case the 
encoding of the extension headers itself would explicitly 
specify node <C> as an intermediate destination to examine the 
optional header along the path from <A> to <D> [14], [16]. 
Upon arrival at node <C> the packet header would be 
inspected and the measurement data observed/amended; the 
packet would then be forwarded to the ultimate destination 
<D>. 

 

 
Figure 1.  (a) One-way delay and (b) one-way loss TLVs 



 
 

Figure 2.  The different notions of end-to-end 

Again, under this scenario, node <B> need not know 
anything about the measurements; it forwards packets 
normally. Equivalent principles hold true when measuring 
performance between host <A> and node <B>, and between 
nodes <B> and <C>. This demonstrates the important ability of 
the mechanism to enable end-to-end as well as intermediate 
path (e.g. between edge nodes of an Autonomous System) 
measurements. 

In contrast to active measurements that are applied to 
certain types of traffic, two-point in-line measurements can be 
applied to the majority of traffic flows, with a small additional 
systematic delay and marginally larger packet headers. 
Moreover, in contrast to two-point passive measurements 
correlation of data from path endpoints is not necessary, 
reducing the complexity of the measurement system, 
potentially reducing the amount of measurement data that must 
be shipped across the network and speeding up the availability 
of the measurement results.At the same time, it is important to 
ensure that the addition of measurement data does not become 
intrusive and therefore adversely affect the traffic being 
measured. For example, if the addition of measurement data 
were to cause packet fragmentation and reassembly, then any 
resulting measurements might be highly questionable, 
especially in relation to delay. Also, the addition of 
measurement data to time- or length-sensitive packets, such as 
Voice-over-IP packets, may have detrimental consequences 
and, in any case, be difficult because of header compression 
techniques.  

In-line techniques should thus be considered as another 
potentially favourable approach to measurement rather than as 
an omnipotent answer appropriate for all situations. 

IV. PROTOTYPE IMPLEMENTATION 
As was emphasised earlier in the paper, an important 

property of in-line measurements is the decoupling between the 
measurement mechanism that instruments packets with 
measurement data, and the higher-level architecture/tool that is 
used to gather and analyse the measurements. In this section 
the implementation details of the measurement instrumentation 
mechanism and the measurement system prototypes are treated 
separately. 

A. In-line Measurement Modules 
At a system level, the required functionality for 

instrumenting traffic with measurement-related information 
can be implemented in a variety of different ways, depending 
on the other roles of the system in question (e.g. network node, 
host), and its available resources and processing capabilities. A 
network element might implement separate measurements 

modules for different measurements that can be dynamically 
loaded onto a line interface as dynamically reconfigurable 
hardware, as software, or as a hybrid combination of both 
options.  

For the purposes of the prototype, measurement modules 
are implemented as dynamically Loadable Kernel Modules 
(LKMs) running on Linux systems (kernels 2.4.x), that can be 
linked with a running Linux kernel at runtime. The modules 
provide insertion, manipulation, extraction and removal of 
IPv6 measurement destination options TLVs, as an integral 
part of the kernel’s implementation of the network protocol 
stack. These typically provide better processing performance 
compared to external, user-space applications. 

Separate modules have been used not only for the different 
types of measurement extension headers (e.g. figure 1 (a) and 
(b)), but also for the distinguished functionality between the 
“source” and the “destination” systems in an experiment. 

Each measurement is implemented as a pair of 
source/destination modules that -once loaded- attach 
themselves to the IP6_output and IP6_input queues, 
respectively. The responsibility of the source module is to 
select packets to be instrumented before they are forwarded to 
the network interface; create the destination options extension 
header and the appropriate measurement TLV, and fill the 
corresponding fields with local measurement data. Then the 
module inserts the extension header between the main IPv6 
header and the payload data, and returns the packet under the 
control of the IP6_output routine. If a packet to be 
instrumented already contains another extension header, then 
the source module creates and inserts the measurement TLV 
according to the IPv6 extension headers’ processing rules [14]. 

The destination module observes packets as these come in 
from the network interface. If a packet contains a destination 
options header carrying the appropriate optional TLV, then the 
module, depending on the experiment, stores the measurement 
data, and sometimes adds further local measurement indicators 
to the TLV fields. Then the measurement header is extracted 
and the packet is passed back to the IP6_input routine which 
resumes processing control. 

Figure 3 shows the operations of source and destination 
measurement modules when measurements are taken between 
hosts A and B. It can also be seen how the two modules can 
simultaneously operate on each system, hence providing for bi-
directional measurements of traffic flows. 

 
Figure 3.  Source and destination measurement modules also showing bi-

directional operation 



 

The measurement modules use character devices in order to 
read data from and write data to the user space, through the 
input/output control (ioctl) system calls. The source module 
reads configuration commands from the user space, which 
include filtering and sampling parameters, so that traffic 
instrumentation can be tuned to be as fine or as coarse-grained 
as necessary. Filtering can be based on the source and 
destination addresses and ports, on transport protocol, traffic 
class, and on flow label values. Sampling can be configured to 
determine whether the module should instrument all packets 
(that match filtering criteria), 1-in-N packets, or act at a 
specific temporal sampling rate. The destination module writes 
to the character device the measurement-related information of 
packets belonging to instrumented flows. For each packet, this 
information contains copies of the main IPv6 header, the 
destination options measurement TLV, and the transport layer 
header of the packet, all encapsulated in the form of an opaque 
test-object. Test-objects can then be accessed from a user space 
measurement application for further data analysis. 

Referring to the examples of the one-way delay and loss 
TLVs (figure 1), the corresponding source and destination 
modules perform the following measurement-specific tasks: the 
one-way delay source module inserts a 64-bit timestamp to the 
TLV marking the departure time from the system, and the 
destination module inserts an arrival timestamp to the TLV. 
The one-way loss source module builds a database of active 
flows (based on the source/destination addresses and ports 
tuple) since the time it was loaded. It then starts inserting a 32-
bit incremental sequence number to the TLV of every 
departing packet that matches the filtering criteria. After 
insertion, the sequence number of each flow is stored in the 
corresponding flow record in the database. The module resets 
the counters of a flow if it has been inactive for more than a 
configurable number of seconds. The one-way loss destination 
module simply copies the extension header (together with the 
IPv6 and the transport layer header) to the user-space-
accessible character device, without making any amendments 
to the loss TLV. 

B. Measurement tools 
The test-objects created by the destination module for a 

particular measurement are then read by a measurement system 
that decodes the data and extracts values of interest. Each 
object contains encoded information specifying the particular 
measurement class it belongs to (e.g. delay, loss, or trace 
measurement), and depending on that class, trace-files are 
created containing measurement-specific indicators 
(timestamps, counters) as well as network and transport layer 
values, such as e.g. packet payload length or TCP window size. 

Further off-line and computational analysis of the 
measurement data is being conducted by protocol-specific 
engines that re-build the flows out of the individual packets and 
reveal their performance characteristics in the form of first (e.g. 
delay, loss) and second order (e.g. throughput, jitter) 
performance metrics. The tool also offers the possibility of 
combining unidirectional flow traces to build the entire TCP 
streams, and examine the relevance in performance between 

the forward the reverse paths of the connections. This is 
particularly applicable when investigating sessions where the 
data characteristics massively differ in each direction (e.g. file 
transfers), or when measuring the performance of traffic over 
asymmetric paths. 

V. EXPERIMENTAL RESULTS 
The operation of the in-line measurements prototype has 

been initially demonstrated by instrumenting representative 
types of traffic end-to-end, over a variety of different-capacity 
network configurations. Future experimentation will also 
consider conducting measurements between selective 
intermediate nodes, transparently to the end-systems, 
essentially demonstrating a scenario of measurements being 
taken between edge nodes of an ISP. 

In this section time-related and loss performance results are 
presented for bulk transfers running over TCP, and for 
streaming video traffic running over UDP.  

Figure 4 shows an overview of the overall connectivity 
between the different IPv6 networks at Lancaster University 
and the rest of the Internet. Measurements were conducted over 
a variety of topologies, including private and public wired 100 
Mb/s Ethernet networks, IEEE 802.11b operational topologies, 
and 512/256 kb/s ADSL links. Wireless connectivity is 
provided at major parts of the University campus and also at a 
number of places in the city centre. End-to-end IPv6 
connectivity for the residential broadband links is provided 
through IPv6-in-IPv4 tunnels to/from the university’s network.  

In order to demonstrate the applicability of the technique 
and its inter-operation with current protocol stack 
implementations and higher level services, we chose to 
instrument traffic of existing off-the-shelf applications; a FTP 
server [17] generated bulk TCP transfers, and a streaming 
video client-server pair [18] was used to create the UDP 
streams. 

 

 
Figure 4.  Overall IP connectivity at Lancaster 

 



Measurements were coarse-grained, instrumenting every 
packet of the flows of interest with no selective sampling. 
Filtering has been based on the transport protocol, 
piggybacking with measurement data “all TCP” or “all UDP” 
traffic, respectively. For the time-related measurements the 
systems synchronised using NTP [19] with a stratum 1 server. 
The offset of each system from the NTP server was included in 
the timestamp calculation and it was empirically validated that 
this was sufficient to always produce positive delays, even over 
100 Mb/s delay-free private wired Ethernet topologies. Of 
course, for test cases revealing delays at the order of hundreds 
of milliseconds, a NTP synchronisation error/offset of a few 
milliseconds is not significantly affecting the accuracy of the 
measurements. 

 

The remainder of this section focuses on the presentation 
and discussion of measurement results taken over the 
experimental IPv6 configurations, and demonstrating the 
operation of the one-way delay and loss TLVs (figure 1) to 
assess a variety of performance metrics.  

End-to-end paths over the IEEE 802.11b networks as well 
as over the 512/256 kb/s ADSL links have been considered as a 
set of more attractive topologies to measure, mainly for two 
reasons. First, they are relatively low capacity, operational 
configurations where there is a significant amount of cross-
traffic present that creates higher contention along the path, and 
influences the performance of the instrumented flows. On the 
wireless side, traffic traverses a 4-hop path over university’s 
wireless networks into the IPv6 Testbed network, and then 
routed within the private IPv6 measurement networks; more 
interestingly, IPv6 traffic to/from the residential ADSL links is 
tunnelled in IPv4 and traverses a 15-hop path over UK ISPs’ 
backbone topologies, before it is de-capsulated at the tunnel 
end-points and routed within the IPv6 configurations (figure 4). 
Second, these topologies provide a better approximation of 
access networks and of more complex end-to-end paths, where 
there is no administrative access to network nodes and no 
control over the path followed by the traffic. Two-point, in-line 
measurements are used to provide an insight on the 
performance properties experienced by user traffic. 

The overhead of the in-line technique was 20 and 8 bytes 
per instrumented packet for the time-related and loss 
measurements, respectively. For TCP that uses the full space 
(indicated by the MSS option) to carry data, this meant that 
more packets were needed (and more time) to complete the 
data transfer. For UDP, the overhead was mainly the additional 
processing delay of adding the extension header to each 
measured packet. 

A. TCP Measurements 
Bulk file transfers were generated over the wireless and 

ADSL topologies, and measurements were collected for both 
the forward (data) and reverse (ack) path by running 
simultaneously the source and destination measurement 
modules at the two end-systems of interest, as illustrated in 
figure 3. For TCP, the performance properties of interest were 
the absolute application goodput and packet loss. In this sense, 
goodput is defined as the number of payload bytes received per 

unit time in each direction, as opposed to throughput, which 
measures the number of packets sent, regardless of their 
eventual fate [20]. Measurements show the number of payload 
data bytes (excluding all network and transport layer headers) 
received at the destination over the end-to-end, one-way transit 
delay of each packet. The measurement system had to 
guarantee that packet fragmentation due to the addition of 
measurement data was strictly avoided, since fragmentation 
would not only impact the performance experienced by the 
traffic flows, but could also have cause instrumented packets to 
be treated differently by the network nodes than the rest of the 
traffic. 

For TCP traffic this was achieved by decreasing the TCP 
Maximum Segment Size (MSS) option to accommodate space 
for the extension headers within the MTU boundaries. The in-
line measurement source modules altered the MSS option in 
the header of TCP SYN messages and re-calculated the 
checksum of the packet. This approach is similar to the one 
used within the Netfilter project [21]. Another approach would 
have been to inform the applications about the space 
requirements of the in-line measurements, but this would be 
more tightly-coupled with the systems’ kernel implementation. 

Figure 5 is a kernel density plot [22] showing the 
estimation of the probability density function (pdf) of the 
application goodput (both forward and reverse paths) for three 
different bulk transfers over the wireless network. There is a 
clear similarity in the goodput of the three different transfers 
shown. The upper plot suggests that the application goodput of 
the data path mainly takes values between 8 and 15 KB/s; the 
lower plot shows the reverse path that has some peaks mainly 
around 4, 5 and 6 KB/s. The data paths of the transfers follow a 
distribution, such that the goodput tends to get larger values 
than the mode (around 10 KB/s). The shape of the lower plot 
reflects the more “static nature” of the goodput in the reverse 
path, which consists of small-sized acknowledgements that do 
not make optimal use of the bandwidth capacity. Reference 
[23] explains how TCP throughput, and hence goodput too, is 
directly proportional to the packet size. 

 
Figure 5.  Density plots of TCP Goodput over the wireless networks 



 
 
Figure 6 shows the density estimation of the distribution of 

application goodput of the data path for the ADSL downlink 
(512 kb/s) and uplink (256 kb/s). It can be seen that the data 
path of the ADSL line in each direction follows a very similar 
distribution, with similar peaks. The fact that the downlink 
graph (solid line) is shifted to the right (i.e. larger goodput 
values) can among others, also illustrate the difference in 
bandwidth capacity in each direction. Again, the distribution 
here implies values larger than the mode, but these seem much 
smaller and less smooth than what is shown at the upper plot of 
figure 5. These spikes at the tails of the distribution can be 
attributed to the high contention (50:1) of the path and the 
significant presence of competing traffic. Also, the IPv6-in-
IPv4 tunnelling might have influenced the performance 
experienced by the flows; native IPv6 mode could have 
resulted in more optimistic goodput figures for the ADSL 
paths. However the difference of the peak values between the 
upper plot of figure 5 and figure 6 does not reflect the 
difference neither in capacity nor in utilisation between the two 
networks (11 Mb/s vs. 512 kb/s) in addition to the tunnelling 
that took place for experiments over the ADSL. Hence, signal 
strength of the wireless network might have also been an 
influencing factor of performance degradation. 
 

 
Figure 6.  Density plots of TCP Goodput over the ADSL links 

 

 
Figure 7.  TCP Loss over the wireless networks 

 
Figure 7 shows an interesting case of packet loss 

experienced by a TCP bulk transfer over the wireless network, 
where there were burst occurrences of lost packets, mainly in 
the reverse path. Figure 8 shows a more normal case of packet 
loss over the ADSL link, where occasionally some packets are 
lost/dropped. Packet loss is being measured as the difference in 
the sequence numbers in the packet loss TLV (figure 1), 
between successive packets received by the destination 
measurement module. 

 
Figure 8.  TCP Loss over the ADSL link 



B. UDP Measurements 
UDP traffic consisted of packets adequately-sized (1348 

bytes) to accommodate the measurement information. For the 
video streaming sessions, measurements of end-to-end one-
way transit delay, inter-packet delay variation (jitter), and 
packet loss are presented, as a set of more appealing 
performance properties for UDP traffic. 

Figure 9 shows the density estimation of the distribution of 
the one-way delay experienced over the wireless network and 
the ADSL down and up-links, respectively. The video stream 
over the higher capacity 11 Mbps wireless link experiences 
relatively small delay values having a mean of 19.25 
milliseconds and the 3rd quantile of the distribution is 23 ms, 
hence 75% of the observations fall below this value.  

Over the ADSL link the delays are clearly much larger with 
means 679.6 and 1558 ms for the down and up-link 
respectively. Between the two asymmetric ADSL channels the 
difference in the delays is considerably large, reflecting much 
better the difference in bandwidth (512 vs. 256 kb/s) than the 
TCP goodput experiments did. 

Figure 10 shows UDP Jitter density estimation for the three 
different-capacity channels. Over the wireless link, jitter is 
mainly concentrated on small positive values, although some 
sudden decreases in delay can also be seen. Although the mean 
is 0.00172 ms, which is influenced by the large negative 
values, and the standard deviation is approximately 6.56, the 
plot itself shows that most values are not very widely-spread. 

This can imply that the delays experienced by the UDP 
flow tend to slightly increase with time, being influenced by 
the delays experienced from the previous packets. On the 
ADSL side the means are not much larger, but values are 
clearly more spread, with standard deviations approximately 
36.8 for the downlink, 43.8 for the uplink, respectively. 

 

 
 

Figure 9.  Density plots of the end-to-end one-way delay for UDP over the 
wireless and the ADSL networks 

 
Figure 10.  Density plots of Jitter for the UDP streams over the wireless and 

ADSL links 

A very interesting situation with severe packet loss is 
shown in figure 11, where 1.5 Mb/s MPEG video was streamed 
over the wireless and ADSL topologies. Frequent bursts of up 
to 60 lost packets have been experienced during a video 
experiment over the wireless link. It can be implied that packet 
loss almost follows a pattern of tens of packets being lost 
approximately every 15 hundred packets being streamed, with 
only a few occasional losses in the order of 1-5 packets. 

An even more severe situation arose during the same video 
experiment over the ADSL uplink, where bursts of losses 
occasionally reached a few thousands and more frequently a 
few hundreds of packets. It is indicative that from the more 
than four thousand packets sent from the server, only around 
360 packets were received by the client. Needless to say that at 
the application front-end there was no video playback, 
although the end-system kept receiving packets occasionally. 

 

Figure 11.  Packet loss of the UDP stream over the wireless and ADSL links 



VI. CONCLUSIONS 
This paper presented a novel measurement technique for 

assessing the performance properties of any type of traffic 
carried over IPv6 networks. Whereas IPv4 is the current 
ubiquitously-deployed version of the Internet Protocol, it is 
likely that IPv6 will increasingly be adopted as its advantages 
of providing scalable, transparent, and manageable services are 
revealed. This work investigated one such property of the 
protocol that can be exploited by all network users to offer 
feedback over the service quality properties of the various 
network flows. Among other benefits of this approach, end-
users can verify practically the service that their traffic 
experiences, network operators can understand how the 
different flows react to specific events and configurations, and 
ISPs can evaluate the practical considerations of deploying and 
running multi-service networks. 

Future work will concentrate on performing enhanced sets 
of end-to-end and intermediate path experiments and 
identifying particular target areas where in-line techniques can 
prove most useful. Filtering and sampling mechanisms will be 
investigated to address overhead issues; the systematic 
processing overhead, as well as scalability of the technique 
with respect to the number of instrumented flows will be 
examined. 
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