
Dimitrios P. Pezaros, David Hutchison
Computing Department

Lancaster University
Lancaster, UK, LA1 4YR

{dp, dh}@comp.lancs.ac.uk

Francisco J. Garcia, Robert D. Gardner
Agilent Laboratories, Scotland

Agilent Technologies
Edinburgh, UK, EH30 9TG

{frankie_garcia, robert_gardner}@agilent.com

Joseph S. Sventek
Department of Computing Science

University of Glasgow
Glasgow, UK, G12 8QQ

joe@dcs.gla.ac.uk

Abstract— Measurement-based performance evaluation of
network traffic is becoming very important, especially for
networks trying to provide differentiated levels of service quality
to the different application flows. The non-identical response of
flows to the different types of network-imposed performance
degradation raises the need for ubiquitous measurement
mechanisms, able to measure numerous performance properties,
and being equally applicable to different applications and
transports. This paper presents a new measurement mechanism,
facilitated by the steady introduction of IPv6 in network nodes
and hosts, which exploits native features of the protocol to
provide support for performance measurements at the network
(IP) layer. IPv6 Extension Headers have been used to carry the
triggers involving the measurement activity and the
measurement data in-line with the payload data itself, providing
a high level of probability that the behaviour of the real user
traffic flows is observed. End-to-end one-way delay, jitter, loss,
and throughput have been measured for applications operating
on top of both reliable and unreliable transports, over different-
capacity IPv6 network configurations. We conclude that this
technique could form the basis for future Internet measurements
that can be dynamically deployed where and when required in a
multi-service IP environment.

Keywords- active/passive measurements, extension headers,
Internet Protocol version 6 (IPv6), performance metrics

I. INTRODUCTION
A major challenge for network operators and service

providers is the ability to provide a stable service with
consistently predictable performance characteristics to include
high network reliability, low delay, low jitter and high
availability [1]. Especially when considering introducing
preferential treatment to some arbitrary amount of network
traffic, as opposed to all traffic being treated as best-effort, then
the necessary mechanisms need to be in place to provide
feedback over the different service quality characteristics
experienced by the different traffic flows.

Current measurement techniques do not provide a
generalised framework for performance evaluation, because
either their focus is on measuring specific properties of certain
types of traffic, or their scope is limited within the boundaries
of single administrative domains. In addition, they are quite
tightly coupled with particular measurement infrastructures and
applications, performing specific measurement tasks.

Recent discussions within IRTF’s Internet Measurement
Research Group [2] have shown a clear interest in defining
another Internet measurement protocol to try and measure
performance and path properties that current deployments do
not address, due to their inherent design or due to the way the
network itself treats the associated measurement traffic.

In this paper, a service-oriented measurement mechanism is
presented, namely in-line, IPv6-based measurements; the
mechanism is using native features of the IPv6 protocol to
provide for accurate, transparent, low-overhead and reliable
traffic flow measurements for any type of traffic. At the same
time it surpasses the associated difficulties and shortcomings of
existing measurement protocols and systems, by not being
coupled to particular applications, transport protocols, or
network topologies.

Due to the evolution of the Internet Protocol as a universal
transport mechanism there is an increasing aggregation of
multi-service traffic onto IP networks carrying various
equivalence classes of network flows. As a consequence, the
different Quality of Service (QoS) requirements and different
sensitivities to potential service degradation of these
equivalence classes of traffic make timely and accurate
measurement of actual network flow QoS essential.
Measurements revealing the real service experienced by user
traffic can prove valuable for long and short term network
design decisions, dynamic traffic engineering, as well as for
Service Level Agreement (SLA) negotiation and policing, and
advanced network and service management.

Service Quality Measurements for IPv6
Inter-networks

Dimitrios Pezaros’ work has been funded by Agilent Technologies
through an industrial fellowship

This paper is organized as follows: Section 2 selectively
discusses measurement-related work, identifying strengths and
weaknesses of existing measurement approaches and
techniques. Section 3 introduces the concept of in-line, IPv6-
based measurements, highlighting the major relevance of this
work to theory and practice. Section 4 describes the
implementation of an In-line measurement prototype, where
measurement functionality has been built into systems’
network protocol stack. Section 5 presents and discusses the
results taken from instrumenting with measurement data
different types of traffic, carried over different-capacity IPv6
configurations. Numerous service quality characteristics in the
form of performance metrics have been documented. Section 6
contains concluding remarks and highlights future directions
for this work.

II. RELATED WORK
Existing measurement techniques and infrastructures fall

into two main categories, namely active and passive. The
primary focus of active and passive measurements has been on
measuring end-to-end path properties, and on characterising
network traffic mainly through backbone link monitoring,
respectively. Both active and passive streams exhibit particular
limitations reflecting the fact that they are independent and
non-native mechanisms (protocols, tools, etc.) operating on top
of or in parallel with the actual network traffic, while trying to
measure and assess its characteristics.

A. Active Measurements
Active techniques are based on the concept of injecting

additional traffic with known characteristics into the network to
test particular attributes of a service [3]. Part of the
measurement process is the generation/injection of this
synthetic traffic into the network. This traffic usually consists
of ICMP packets [4], [5] or variations [6], UDP packets [5],
[7], [8], but also of dedicated measurement protocol traffic like
NLANR’s Internet Performance Measurement Protocol (IPMP)
[9]. Active measurements projects have been focusing on
measuring properties of end-to-end network paths between
instrumented systems by implementing metrics defined within
IETF’s IP Performance Metrics (IPPM) Working Group, such
as delay and loss, and also by defining (and implementing)
higher-level metrics such as unreachability and quiescence [4].

Two major limitations of active measurements are first that
the performance properties measured by the injected traffic do
not necessarily reflect the performance experienced by
operational network traffic; and second, the additional traffic
associated with active measurements obviously impacts the
network and may itself be a factor in measuring a poorer
performance than the network would otherwise deliver. Also,
periodic sampling and packet injection used by some
architecture may fail to observe periodic network events [4].
Therefore, although active techniques are service oriented, their
dependence on certain types of traffic and applications limits
their ability to provide a generalized measurement framework.

B. Passive Measurements
Passive measurements provide for highly accurate results

by observing and analysing real traffic on a link without
disruption to the service. They are usually deployed within
single administrative domains and are mainly concerned with
monitoring link utilisation [10], [11], deriving network traffic
demands [12] and characterising backbone traffic [13]. They
are particularly useful in gathering measurements of user traffic
at a single observation point in the network but may also be
deployed for two-point measurements by employing additional
correlation techniques.

Passive measurements suffer from continuous increases in
network speeds that make the amount of measurement data,
which often needs to be transferred across the monitored links
substantial; there is consequential difficulty in targeting
specific services and identifying packets that belong to the
same flows. Also, correlating samples collected at two distinct
observation points to yield one-way flow measures can be a
challenging task, consuming significant resources and network
bandwidth [11]. Hence passive techniques are more oriented
towards network engineering and investigation of the overall
traffic characteristics of backbone topologies, rather than
measuring the service quality properties of the different
application flows carried over the Internet.

III. IN-LINE, IPV6-BASED MEASUREMENTS
The main motivation behind defining and implementing in-

line, IPv6-based measurements is the lack of a generic service-
quality-oriented measurement mechanism to be equally
applicable to different types of traffic, independent of particular
transport protocols and applications; at the same time the
mechanism should mainly offer accurate, flexible and
transparent performance measurements of the real -rather than
special-purpose- network traffic.

In-line measurements are an intrinsically multi-point
mechanism. It makes use of piggybacked data, containing
measurement-related indicators such as timestamps and packet
counters, carried in a special header within regular user
packets. The presence of such special headers acts as a trigger
that invokes the measurement activity.

Underpinning this functionality is the programmable and
extensible specification of IPv6 [14] and the use of IPv6
extension headers, which allow such a measurement
mechanism to be deployed independently from the applications
and from the intermediate network nodes between the two (or
more) instrumented points.

Hence, the contribution of IPv6-based, in-line
measurements is not only the fact that the measurement data is
carried along within the user packets per se. Studies of carrying
timestamps and tags within packets have been conducted in the
past, targeted at specific traffic (e.g. modified ICMP) [6].

The main novelty of this technique is threefold:

• The user traffic carries the minimal measurement
information, virtually guaranteeing that the
measurements reflect the performance experienced by
the payload data; at the same time

• the underlying network (IPv6) layer provides the space
for measurement extensions to be defined as part of the
protocol itself, hence making the mechanism
applicable to any type of traffic.

• Selective processing of the measurement extensions
only where and when required (at specific
instrumented nodes/hosts) is guaranteed by the IPv6
specification.

Optional functionality in IPv6 has been designed as a set of
Extension Headers. These are inserted between the main IPv6
header and the upper layer (transport) header. The Destination
Options extension header is specified to carry Type-Length-
Value (TLV)-encoded options to be processed only by the
packet’s destination. This can either be the ultimate destination
or a pre-specified intermediate destination. Destination options
are not examined by the nodes along the packet’s route, and
therefore intermediate nodes forward the packets normally,
irrespective of whether they carry such options or not.
Furthermore, the IPv6 specification provides space for
additional TLV-encoded options to be defined as long as they
conform to certain structural and alignment requirements.

The latter two properties of the destination options header
make IPv6 particularly suitable for measurement extensions to
be designed efficiently, cost-effectively, and be a native part of
the protocol’s operation without influencing the core of the
forwarding mechanism.

This also demonstrates an important difference in the
design between IPv4 and IPv6: in IPv4, there is a fixed set of
options defined to be carried within the main IPv4 header.
Moreover, options are processed en route, and all IPv4
modules need to implement all the standardised options. “What
is optional is their transmission in any particular datagram, not
their implementation” (RFC 791). Not only the need for
standardisation would impose immense difficulties in
designing new options for IPv4, but also the need for all IPv4
modules to support them, would make their seamless operation
virtually impossible.

Moreover, the necessity of option processing en route,
would alter the forwarding behaviour of packets, and hence
even if measurement extensions were designed for IPv4, the
measurement results would not reflect the performance
experienced by the rest of the (un-instrumented) traffic.

Indeed, studies on IPv4 option support in the Internet have
shown that IPv4 packets carrying options would either be
discarded en route (high volume routers don't have the power
to process options), or they would be put on different
processing queues (fast/slow path) [15].

The incremental and selective option processing of IPv6
eliminates these concerns, and henceforth makes it feasible for
a native measurement mechanism to be defined and targeted to
any traffic type carried over IPv6.

As part of this work, numerous measurement destination
options TLVs have been defined to carry timestamps, counters
and trace information as well as other associated measurement

system traffic. For a detailed description of the particular
encoding of these options and their insertion between the main
IPv6 header and the upper layer headers, the reader is referred
to [16]. Figure 1 shows two destination options TLVs designed
to measure one-way delay (a) and one-way loss (b). The rest of
the paper will focus on the implementation of and the
experimental results gathered from these particular
measurement options.

The one-way delay TLV has been used to measure delay
between two points along an Internet path, as well as more
synthetic time-related parameters such as jitter and throughput.
Its operation is based on the source and destination hosts
inserting departure and arrival timestamps, respectively, with
microsecond accuracy. The one-way loss TLV provides a
means of IP-based sequencing of packets by having a source
node inserting incremental sequence counters to packets
belonging to the same flows, which are then observed at the
destination. Packet loss as well as out of order delivery can be
measured.

Figure 2 shows the different places along an end-to-end
Internet path where in-line, IPv6-based measurements can be
deployed; measuring properties of the real end-to-end path
between hosts <A> and <D> needs the measurement
functionality (extension header processing) be implemented at
the two end-systems. In this scenario, nodes and <C> will
not process the measurement extension header options, rather
they will forward the packet as if no extensions were present.
An alternative measurement scenario is to have measurements
conducted between host <A> and node <C>. In this case the
encoding of the extension headers itself would explicitly
specify node <C> as an intermediate destination to examine the
optional header along the path from <A> to <D> [14], [16].
Upon arrival at node <C> the packet header would be
inspected and the measurement data observed/amended; the
packet would then be forwarded to the ultimate destination
<D>.

Figure 1. (a) One-way delay and (b) one-way loss TLVs

Figure 2. The different notions of end-to-end

Again, under this scenario, node need not know
anything about the measurements; it forwards packets
normally. Equivalent principles hold true when measuring
performance between host <A> and node , and between
nodes and <C>. This demonstrates the important ability of
the mechanism to enable end-to-end as well as intermediate
path (e.g. between edge nodes of an Autonomous System)
measurements.

In contrast to active measurements that are applied to
certain types of traffic, two-point in-line measurements can be
applied to the majority of traffic flows, with a small additional
systematic delay and marginally larger packet headers.
Moreover, in contrast to two-point passive measurements
correlation of data from path endpoints is not necessary,
reducing the complexity of the measurement system,
potentially reducing the amount of measurement data that must
be shipped across the network and speeding up the availability
of the measurement results.At the same time, it is important to
ensure that the addition of measurement data does not become
intrusive and therefore adversely affect the traffic being
measured. For example, if the addition of measurement data
were to cause packet fragmentation and reassembly, then any
resulting measurements might be highly questionable,
especially in relation to delay. Also, the addition of
measurement data to time- or length-sensitive packets, such as
Voice-over-IP packets, may have detrimental consequences
and, in any case, be difficult because of header compression
techniques.

In-line techniques should thus be considered as another
potentially favourable approach to measurement rather than as
an omnipotent answer appropriate for all situations.

IV. PROTOTYPE IMPLEMENTATION
As was emphasised earlier in the paper, an important

property of in-line measurements is the decoupling between the
measurement mechanism that instruments packets with
measurement data, and the higher-level architecture/tool that is
used to gather and analyse the measurements. In this section
the implementation details of the measurement instrumentation
mechanism and the measurement system prototypes are treated
separately.

A. In-line Measurement Modules
At a system level, the required functionality for

instrumenting traffic with measurement-related information
can be implemented in a variety of different ways, depending
on the other roles of the system in question (e.g. network node,
host), and its available resources and processing capabilities. A
network element might implement separate measurements

modules for different measurements that can be dynamically
loaded onto a line interface as dynamically reconfigurable
hardware, as software, or as a hybrid combination of both
options.

For the purposes of the prototype, measurement modules
are implemented as dynamically Loadable Kernel Modules
(LKMs) running on Linux systems (kernels 2.4.x), that can be
linked with a running Linux kernel at runtime. The modules
provide insertion, manipulation, extraction and removal of
IPv6 measurement destination options TLVs, as an integral
part of the kernel’s implementation of the network protocol
stack. These typically provide better processing performance
compared to external, user-space applications.

Separate modules have been used not only for the different
types of measurement extension headers (e.g. figure 1 (a) and
(b)), but also for the distinguished functionality between the
“source” and the “destination” systems in an experiment.

Each measurement is implemented as a pair of
source/destination modules that -once loaded- attach
themselves to the IP6_output and IP6_input queues,
respectively. The responsibility of the source module is to
select packets to be instrumented before they are forwarded to
the network interface; create the destination options extension
header and the appropriate measurement TLV, and fill the
corresponding fields with local measurement data. Then the
module inserts the extension header between the main IPv6
header and the payload data, and returns the packet under the
control of the IP6_output routine. If a packet to be
instrumented already contains another extension header, then
the source module creates and inserts the measurement TLV
according to the IPv6 extension headers’ processing rules [14].

The destination module observes packets as these come in
from the network interface. If a packet contains a destination
options header carrying the appropriate optional TLV, then the
module, depending on the experiment, stores the measurement
data, and sometimes adds further local measurement indicators
to the TLV fields. Then the measurement header is extracted
and the packet is passed back to the IP6_input routine which
resumes processing control.

Figure 3 shows the operations of source and destination
measurement modules when measurements are taken between
hosts A and B. It can also be seen how the two modules can
simultaneously operate on each system, hence providing for bi-
directional measurements of traffic flows.

Figure 3. Source and destination measurement modules also showing bi-

directional operation

The measurement modules use character devices in order to
read data from and write data to the user space, through the
input/output control (ioctl) system calls. The source module
reads configuration commands from the user space, which
include filtering and sampling parameters, so that traffic
instrumentation can be tuned to be as fine or as coarse-grained
as necessary. Filtering can be based on the source and
destination addresses and ports, on transport protocol, traffic
class, and on flow label values. Sampling can be configured to
determine whether the module should instrument all packets
(that match filtering criteria), 1-in-N packets, or act at a
specific temporal sampling rate. The destination module writes
to the character device the measurement-related information of
packets belonging to instrumented flows. For each packet, this
information contains copies of the main IPv6 header, the
destination options measurement TLV, and the transport layer
header of the packet, all encapsulated in the form of an opaque
test-object. Test-objects can then be accessed from a user space
measurement application for further data analysis.

Referring to the examples of the one-way delay and loss
TLVs (figure 1), the corresponding source and destination
modules perform the following measurement-specific tasks: the
one-way delay source module inserts a 64-bit timestamp to the
TLV marking the departure time from the system, and the
destination module inserts an arrival timestamp to the TLV.
The one-way loss source module builds a database of active
flows (based on the source/destination addresses and ports
tuple) since the time it was loaded. It then starts inserting a 32-
bit incremental sequence number to the TLV of every
departing packet that matches the filtering criteria. After
insertion, the sequence number of each flow is stored in the
corresponding flow record in the database. The module resets
the counters of a flow if it has been inactive for more than a
configurable number of seconds. The one-way loss destination
module simply copies the extension header (together with the
IPv6 and the transport layer header) to the user-space-
accessible character device, without making any amendments
to the loss TLV.

B. Measurement tools
The test-objects created by the destination module for a

particular measurement are then read by a measurement system
that decodes the data and extracts values of interest. Each
object contains encoded information specifying the particular
measurement class it belongs to (e.g. delay, loss, or trace
measurement), and depending on that class, trace-files are
created containing measurement-specific indicators
(timestamps, counters) as well as network and transport layer
values, such as e.g. packet payload length or TCP window size.

Further off-line and computational analysis of the
measurement data is being conducted by protocol-specific
engines that re-build the flows out of the individual packets and
reveal their performance characteristics in the form of first (e.g.
delay, loss) and second order (e.g. throughput, jitter)
performance metrics. The tool also offers the possibility of
combining unidirectional flow traces to build the entire TCP
streams, and examine the relevance in performance between

the forward the reverse paths of the connections. This is
particularly applicable when investigating sessions where the
data characteristics massively differ in each direction (e.g. file
transfers), or when measuring the performance of traffic over
asymmetric paths.

V. EXPERIMENTAL RESULTS
The operation of the in-line measurements prototype has

been initially demonstrated by instrumenting representative
types of traffic end-to-end, over a variety of different-capacity
network configurations. Future experimentation will also
consider conducting measurements between selective
intermediate nodes, transparently to the end-systems,
essentially demonstrating a scenario of measurements being
taken between edge nodes of an ISP.

In this section time-related and loss performance results are
presented for bulk transfers running over TCP, and for
streaming video traffic running over UDP.

Figure 4 shows an overview of the overall connectivity
between the different IPv6 networks at Lancaster University
and the rest of the Internet. Measurements were conducted over
a variety of topologies, including private and public wired 100
Mb/s Ethernet networks, IEEE 802.11b operational topologies,
and 512/256 kb/s ADSL links. Wireless connectivity is
provided at major parts of the University campus and also at a
number of places in the city centre. End-to-end IPv6
connectivity for the residential broadband links is provided
through IPv6-in-IPv4 tunnels to/from the university’s network.

In order to demonstrate the applicability of the technique
and its inter-operation with current protocol stack
implementations and higher level services, we chose to
instrument traffic of existing off-the-shelf applications; a FTP
server [17] generated bulk TCP transfers, and a streaming
video client-server pair [18] was used to create the UDP
streams.

Figure 4. Overall IP connectivity at Lancaster

Measurements were coarse-grained, instrumenting every
packet of the flows of interest with no selective sampling.
Filtering has been based on the transport protocol,
piggybacking with measurement data “all TCP” or “all UDP”
traffic, respectively. For the time-related measurements the
systems synchronised using NTP [19] with a stratum 1 server.
The offset of each system from the NTP server was included in
the timestamp calculation and it was empirically validated that
this was sufficient to always produce positive delays, even over
100 Mb/s delay-free private wired Ethernet topologies. Of
course, for test cases revealing delays at the order of hundreds
of milliseconds, a NTP synchronisation error/offset of a few
milliseconds is not significantly affecting the accuracy of the
measurements.

The remainder of this section focuses on the presentation
and discussion of measurement results taken over the
experimental IPv6 configurations, and demonstrating the
operation of the one-way delay and loss TLVs (figure 1) to
assess a variety of performance metrics.

End-to-end paths over the IEEE 802.11b networks as well
as over the 512/256 kb/s ADSL links have been considered as a
set of more attractive topologies to measure, mainly for two
reasons. First, they are relatively low capacity, operational
configurations where there is a significant amount of cross-
traffic present that creates higher contention along the path, and
influences the performance of the instrumented flows. On the
wireless side, traffic traverses a 4-hop path over university’s
wireless networks into the IPv6 Testbed network, and then
routed within the private IPv6 measurement networks; more
interestingly, IPv6 traffic to/from the residential ADSL links is
tunnelled in IPv4 and traverses a 15-hop path over UK ISPs’
backbone topologies, before it is de-capsulated at the tunnel
end-points and routed within the IPv6 configurations (figure 4).
Second, these topologies provide a better approximation of
access networks and of more complex end-to-end paths, where
there is no administrative access to network nodes and no
control over the path followed by the traffic. Two-point, in-line
measurements are used to provide an insight on the
performance properties experienced by user traffic.

The overhead of the in-line technique was 20 and 8 bytes
per instrumented packet for the time-related and loss
measurements, respectively. For TCP that uses the full space
(indicated by the MSS option) to carry data, this meant that
more packets were needed (and more time) to complete the
data transfer. For UDP, the overhead was mainly the additional
processing delay of adding the extension header to each
measured packet.

A. TCP Measurements
Bulk file transfers were generated over the wireless and

ADSL topologies, and measurements were collected for both
the forward (data) and reverse (ack) path by running
simultaneously the source and destination measurement
modules at the two end-systems of interest, as illustrated in
figure 3. For TCP, the performance properties of interest were
the absolute application goodput and packet loss. In this sense,
goodput is defined as the number of payload bytes received per

unit time in each direction, as opposed to throughput, which
measures the number of packets sent, regardless of their
eventual fate [20]. Measurements show the number of payload
data bytes (excluding all network and transport layer headers)
received at the destination over the end-to-end, one-way transit
delay of each packet. The measurement system had to
guarantee that packet fragmentation due to the addition of
measurement data was strictly avoided, since fragmentation
would not only impact the performance experienced by the
traffic flows, but could also have cause instrumented packets to
be treated differently by the network nodes than the rest of the
traffic.

For TCP traffic this was achieved by decreasing the TCP
Maximum Segment Size (MSS) option to accommodate space
for the extension headers within the MTU boundaries. The in-
line measurement source modules altered the MSS option in
the header of TCP SYN messages and re-calculated the
checksum of the packet. This approach is similar to the one
used within the Netfilter project [21]. Another approach would
have been to inform the applications about the space
requirements of the in-line measurements, but this would be
more tightly-coupled with the systems’ kernel implementation.

Figure 5 is a kernel density plot [22] showing the
estimation of the probability density function (pdf) of the
application goodput (both forward and reverse paths) for three
different bulk transfers over the wireless network. There is a
clear similarity in the goodput of the three different transfers
shown. The upper plot suggests that the application goodput of
the data path mainly takes values between 8 and 15 KB/s; the
lower plot shows the reverse path that has some peaks mainly
around 4, 5 and 6 KB/s. The data paths of the transfers follow a
distribution, such that the goodput tends to get larger values
than the mode (around 10 KB/s). The shape of the lower plot
reflects the more “static nature” of the goodput in the reverse
path, which consists of small-sized acknowledgements that do
not make optimal use of the bandwidth capacity. Reference
[23] explains how TCP throughput, and hence goodput too, is
directly proportional to the packet size.

Figure 5. Density plots of TCP Goodput over the wireless networks

Figure 6 shows the density estimation of the distribution of

application goodput of the data path for the ADSL downlink
(512 kb/s) and uplink (256 kb/s). It can be seen that the data
path of the ADSL line in each direction follows a very similar
distribution, with similar peaks. The fact that the downlink
graph (solid line) is shifted to the right (i.e. larger goodput
values) can among others, also illustrate the difference in
bandwidth capacity in each direction. Again, the distribution
here implies values larger than the mode, but these seem much
smaller and less smooth than what is shown at the upper plot of
figure 5. These spikes at the tails of the distribution can be
attributed to the high contention (50:1) of the path and the
significant presence of competing traffic. Also, the IPv6-in-
IPv4 tunnelling might have influenced the performance
experienced by the flows; native IPv6 mode could have
resulted in more optimistic goodput figures for the ADSL
paths. However the difference of the peak values between the
upper plot of figure 5 and figure 6 does not reflect the
difference neither in capacity nor in utilisation between the two
networks (11 Mb/s vs. 512 kb/s) in addition to the tunnelling
that took place for experiments over the ADSL. Hence, signal
strength of the wireless network might have also been an
influencing factor of performance degradation.

Figure 6. Density plots of TCP Goodput over the ADSL links

Figure 7. TCP Loss over the wireless networks

Figure 7 shows an interesting case of packet loss

experienced by a TCP bulk transfer over the wireless network,
where there were burst occurrences of lost packets, mainly in
the reverse path. Figure 8 shows a more normal case of packet
loss over the ADSL link, where occasionally some packets are
lost/dropped. Packet loss is being measured as the difference in
the sequence numbers in the packet loss TLV (figure 1),
between successive packets received by the destination
measurement module.

Figure 8. TCP Loss over the ADSL link

B. UDP Measurements
UDP traffic consisted of packets adequately-sized (1348

bytes) to accommodate the measurement information. For the
video streaming sessions, measurements of end-to-end one-
way transit delay, inter-packet delay variation (jitter), and
packet loss are presented, as a set of more appealing
performance properties for UDP traffic.

Figure 9 shows the density estimation of the distribution of
the one-way delay experienced over the wireless network and
the ADSL down and up-links, respectively. The video stream
over the higher capacity 11 Mbps wireless link experiences
relatively small delay values having a mean of 19.25
milliseconds and the 3rd quantile of the distribution is 23 ms,
hence 75% of the observations fall below this value.

Over the ADSL link the delays are clearly much larger with
means 679.6 and 1558 ms for the down and up-link
respectively. Between the two asymmetric ADSL channels the
difference in the delays is considerably large, reflecting much
better the difference in bandwidth (512 vs. 256 kb/s) than the
TCP goodput experiments did.

Figure 10 shows UDP Jitter density estimation for the three
different-capacity channels. Over the wireless link, jitter is
mainly concentrated on small positive values, although some
sudden decreases in delay can also be seen. Although the mean
is 0.00172 ms, which is influenced by the large negative
values, and the standard deviation is approximately 6.56, the
plot itself shows that most values are not very widely-spread.

This can imply that the delays experienced by the UDP
flow tend to slightly increase with time, being influenced by
the delays experienced from the previous packets. On the
ADSL side the means are not much larger, but values are
clearly more spread, with standard deviations approximately
36.8 for the downlink, 43.8 for the uplink, respectively.

Figure 9. Density plots of the end-to-end one-way delay for UDP over the
wireless and the ADSL networks

Figure 10. Density plots of Jitter for the UDP streams over the wireless and

ADSL links

A very interesting situation with severe packet loss is
shown in figure 11, where 1.5 Mb/s MPEG video was streamed
over the wireless and ADSL topologies. Frequent bursts of up
to 60 lost packets have been experienced during a video
experiment over the wireless link. It can be implied that packet
loss almost follows a pattern of tens of packets being lost
approximately every 15 hundred packets being streamed, with
only a few occasional losses in the order of 1-5 packets.

An even more severe situation arose during the same video
experiment over the ADSL uplink, where bursts of losses
occasionally reached a few thousands and more frequently a
few hundreds of packets. It is indicative that from the more
than four thousand packets sent from the server, only around
360 packets were received by the client. Needless to say that at
the application front-end there was no video playback,
although the end-system kept receiving packets occasionally.

Figure 11. Packet loss of the UDP stream over the wireless and ADSL links

VI. CONCLUSIONS
This paper presented a novel measurement technique for

assessing the performance properties of any type of traffic
carried over IPv6 networks. Whereas IPv4 is the current
ubiquitously-deployed version of the Internet Protocol, it is
likely that IPv6 will increasingly be adopted as its advantages
of providing scalable, transparent, and manageable services are
revealed. This work investigated one such property of the
protocol that can be exploited by all network users to offer
feedback over the service quality properties of the various
network flows. Among other benefits of this approach, end-
users can verify practically the service that their traffic
experiences, network operators can understand how the
different flows react to specific events and configurations, and
ISPs can evaluate the practical considerations of deploying and
running multi-service networks.

Future work will concentrate on performing enhanced sets
of end-to-end and intermediate path experiments and
identifying particular target areas where in-line techniques can
prove most useful. Filtering and sampling mechanisms will be
investigated to address overhead issues; the systematic
processing overhead, as well as scalability of the technique
with respect to the number of instrumented flows will be
examined.

ACKNOWLEDGMENT
The authors would like to express their very special

gratitude to Theodore Kypraios from the Department of
Mathematics and Statistics, Lancaster University, for his kind
assistance and comments on the presentation of the
measurement results.

REFERENCES
[1] Ferguson, P., Huston, G., Quality of Service on the Internet: Fact,

Fiction, or Compromise?, in Proceedings of the eighth Annual
Conference of the Internet Society (INET'98), Geneva, Switzerland, July
21-24 1998

[2] IRTF IMRG Discussion Group, discussion on the need for defining a
new Internet Measurement Protocol (IMP), available at:
http://login.caida.org/pipermail/imrg-dist/2003-November/000129.html

[3] Paxson, V., Towards a Framework for Defining Internet Performance
Metrics, in Proceedings of the sixth Annual Conference of the Internet
Society (INET'96), Montreal, Canada, June 24-28 1996

[4] Matthews, W., Cottrell, L., The PingER project: Active Internet
Performance Monitoring for the HENP Community, IEEE
Communications Magazine, Volume 38, Issue 5, May 2000, pp. 130-136

[5] Kalidindi, S., Zekauskas, M., J., Surveyor: An Infrastructure for Internet
Performance Measurements, in Proceedings of the ninth Annual
Conference of the Internet Society (INET'99) INET'99, San Jose,
California, June 22-25 1999

[6] Claffy, K., C., Polyzos, G., C., Braun, H., Measurement Considerations
for Assessing Unidirectional Latencies, Internetworking, Research and
Experience, Volume 4, No 2, John Wiley & Sons, 1993, pp. 121 - 132

[7] Georgatos, F., Gruber, F., Karrenberg, D., Santcroos, M., Susanj, A.,
Uijterwaal, H., Wilhelm, R., Providing Active Measurements as a
Regular Service for ISP's, in Proceedings of Passive and Active
Measurement Workshop (PAM2001), Amsterdam, NL, April 23-24
2001

[8] RIPE NCC Test Traffic Measurements Project Homepage:
http://www.ripe.net/ripencc/mem-services/ttm/index.html

[9] NLANR Active Measurement Project (AMP) Homepage,
http://watt.nlanr.net//active/intro.html

[10] Apsidorf, J., Claffy, K., C., Thompson, K., Wilder, R., OC3MON:
Flexible, Affordable, High Performance Statistics Collection, in
Proceedings of the seventh Annual Conference of the Internet Society
(INET'97), Kuala Lumpur, Malaysia, June 24-27 1997

[11] Fraleigh, C., Diot, C., Lyles, B., Moon, S., Owezarski, P., Papagiannaki,
D., Tobagi, F., Design and Deployment of a Passive Monitoring
Infrastructure, in Proceedings of Passive and Active Measurement
Workshop (PAM2001), Amsterdam, NL, April 23-24 2001

[12] Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True,
F., Deriving Traffic Demands For Operational IP Networks:
Methodology And Experience, in Proceedings of ACM SIGCOMM’00,
Stockholm, Sweden, August 28 – September 1 2000

[13] Claffy, K., C., Miller, G., Thompson, K., The Nature Of The Beast:
Recent Traffic Measurements From An Internet Backbone in
Proceedings of the eighth Annual Conference of the Internet Society
(INET'98), Geneva, Switzerland, July 21-24 1998

[14] Deering, S., Hinden, R., Internet Protocol Version 6 (IPv6)
Specification, IETF, IPNG Working Group, RFC 2460, December 1998

[15] IRTF IMRG Discussion Group, discussion on the different treatment of
IPv4 packets containing options at the network nodes, available at:
http://login.caida.org/pipermail/imrg-dist/2003-September/000122.html

[16] Pezaros, D., P., Hutchison, D., Garcia, F., J., Gardner, R., D., Sventek,
J., S., In-line Service Measurements: An IPv6-based Framework for
Traffic Evaluation and Network Operations, in Proceedings of
IEEE/IFIP Network Operations and Managements Symposium (NOMS
2004), Seoul, Korea, April 19-23, 2004

[17] PureFTPd file transfer server, available at: http://www.pureftpd.org/
[18] VideoLAN streaming solution, “STREAMING: Overview of the

VideoLAN streaming solution”, available at:
http://www.videolan.org/streaming, 18th April 2004 [date accessed]

[19] Mills, D., Internet time synchronisation: the Network Time Protocol,
IEEE Transaction on Communications, Volume 39, Issue 1, October
1991, pp. 1482-1493

[20] Padhye, J., Firoiu, V., Towsley, D., Kurose, J., Modeling TCP
Throughput: A Simple Model and its Empirical Validation, in
Proceedings of ACM SIGCOMM’98, Vancouver, British Columbia,
August 31-September 4 1998

[21] Netfilter Project Homepage, http://www.netfilter.org/
[22] Silverman, B., W., Density Estimation for Statistical Data Analysis,

Chapman & Hall/CRC, April 1986, ISBN: 0412246201
[23] Mathis, M., Semske, J., Mahdavi, J., Ott, T., The Macroscopic Behavior

Of The TCP Congestion Avoidance Algorithm, ACM SIGCOMM
Computer Communications Review, volume 27, number 3, July 1997

