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1 Introduction

Portfolio optimization is a common means to construct and investigate portfolios in both theoretical

and empirical asset management, as highlighted in the seminal work by Markowitz (1952) on

portfolio selection and risk diversification. Markowitz’s contributions laid the foundation for modern

portfolio theory, emphasizing the importance of optimizing the trade-off between risk and return in

portfolio construction, see Markowitz (1959). The portfolio optimization setups used in the more

recent literature vary significantly, but usually consist of two parts, one based on expected risk and

return of the underlying assets, and one based on transaction costs. The latter part usually builds on

a model that estimates the expected transaction costs for a given transaction. The simple question

we seek to answer is, what if we include transaction costs for what they are, negative returns, and

include an additional risk penalty for their uncertainty? In other words, if considering expected

transaction costs improves net portfolio performance, would adding a risk term for transaction

costs help too?

In this paper, we broaden the traditional focus on return variance by explicitly considering

the variance of transaction costs, which captures the uncertainty associated with executing trades

under real-world market conditions. In contrast to the broader market-driven risks embedded in

portfolio returns, transaction cost variance is driven by microstructural and liquidity-related factors

such as bid-ask spreads, market depth, price impact, and order book volatility. These elements can

fluctuate substantially over short horizons, especially when trading involves multiple securities

that share liquidity pools or overlapping market participants. Consequently, transaction costs often

exhibit cross-security dependencies, highlighting the relevance of recent insights on cross-impact

effects, see Min, Maglaras, and Moallemi (2022). While the risk of prices moving away from a

target position introduces some degree of correlation between returns and transaction costs, the

relatively short execution window in our setting—where all trades are typically completed within a

few days—mitigates this overlap in practice. By modeling the covariance structure of transaction

costs alongside return variance, our approach aims to better capture the interplay of liquidity

shocks, market microstructure dynamics, and cross-security effects, ultimately providing a more

comprehensive framework for mean-variance portfolio selection.

The first examples of studies incorporating transaction costs into a portfolio optimization go

back to Magill and Constantinides (1976) and Davis and Norman (1990). The key source of develop-

ment in this area is the transaction cost modelling literature, starting with Loeb (1983) specifying
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a proportional transaction cost model, followed by Kyle (1985) introducing linear price impact in

transaction cost modelling, which is further developed in Glosten and Harris (1988). This theoret-

ical work has been further empirically developed in Breen, Hodrick, and Korajczyk (2002), which

allowed DeMiguel, Martín-Utrera, and Nogales (2015) to construct portfolios using linear price

impact and Korajczyk and Sadka (2004) to study the performance of momentum portfolios un-

der different transaction cost measures. Following this, Gabaix, Gopikrishnan, Plerou, and Stanley

(2006) further develop square root price impact, basing their transaction cost model on Torre and

Ferrari (2000). This provides the theoretical framework for Almgren, Thum, Hauptmann, and Li

(2005), who estimate these non-linear price impact models based on real trading data. More re-

cently, Frazzini, Israel, and Moskowitz (2018) use real trading data to estimate a linear transaction

cost model using both linear and square root price impact to investigate how transaction costs vary

across trade types, stock characteristics, trade size, time, and exchanges globally. Their transaction

cost model is the motivation behind the transaction cost model developed in the present paper, as

their model is in agreement with the theoretical and empirical findings to date. The data we use is

also of similar format to what they use, and they show their model to work well with this type of

transaction cost data. The measure we use to measure transaction costs is implementation shortfall

(IS), which is the most common measure used in literature to quantify transaction costs, see Perold

(1988). In more recent work, de Rossi, Hoch, and Steliaros (2022) use implementation shortfall as a

measure for transaction costs estimated using real trading data to compute the net performance of

various factor strategies. The inclusion of transaction costs as an explicit penalty term in portfolio

optimization has become a common practice in both academic research and industry applications.

Commercial portfolio management software, such as Axioma, incorporates transaction costs into

the optimization process to reflect real-world constraints and improve the implementability of op-

timized portfolios.

To showcase the benefits of modelling transaction costs in such a manner, we carry out a multi-

variate simulation study for 123 stocks, which are constituents of the S&P 500 index. Leveraging a

proprietary dataset of real trading data for these 123 stocks from a large institutional asset manager

we estimate a transaction cost model, with the aim of constructing a variance-covariance matrix

of transaction costs and then including it in portfolio optimization. The importance of considering

transaction cost covariance is further highlighted in Min et al. (2022), who show when working with

highly correlated assets, trades in one security can influence the prices of other securities. Their

work extends the understanding of market impact beyond individual securities by analyzing the
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interdependencies between assets, providing insights into how trading activity in one asset affects

the broader portfolio. Specifically, we construct implementation shortfall residuals for every given

trade using the estimated transaction cost. We propose a new transaction cost volatility model

specified as a linear model with squared residuals as the dependent variable, enabling us to es-

timate the variance of transaction costs for a given trade. We obtain the correlation matrix by

constructing weekly residual estimates for 123 stocks considered. Combining the correlation matrix

and the transaction cost volatility model, we construct a variance-covariance matrix of transaction

costs that is entering portfolio optimization as an additional term. The latter is estimated using an

AR(1)-DCC(1,1)-GARCH(1,1) model estimated on return data of the 123 stocks considered. Upon

constructing every element of all the portfolio optimization setups considered, we construct these

portfolios. Portfolios are path dependant and optimized monthly based on simulated stock returns,

the stock return covariance matrix, transaction costs estimates and the transaction cost covariance

matrix estimates. Finally, we calculate the net performance of each portfolio and compare them

across different parameter assumptions.

This paper makes two key contributions. First, since we find transaction costs to be volatile, we

model their covariance. Although volatility of transaction costs has been evidenced in for example

Frazzini et al. (2018) and de Rossi et al. (2022), no attempts were made to model the covariance

matrix of transaction costs in the literature. We show that modelling transaction cost covariance

leads to a better overall fit. Second, we broaden the way of incorporating transaction costs into a

mean-variance portfolio optimization seeing this addition improves portfolio performance in most

cases. More specifically, we show that Sharpe ratios are increased, implying that incorporating

transaction costs in portfolio optimization is more efficient when transaction cost volatility is also

included.

The paper is structured as follows. Section 2 describes the data used for both the transaction

cost modelling and time-series model estimation. Section 3 defines the portfolio optimization setups

we use, and discusses implementation shortfall, transaction cost models, transaction cost variance

and covariance as well as the corresponding estimation procedures. Further, it describes the return

simulation procedure and estimation of expected variance-covariance matrix of the returns. Section

3 concludes with portfolio optimization and evaluation of the performance of the portfolios. Section

4 contains the estimation results for the transaction cost model, transaction cost variance model,

as well as portfolio performance. Our conclusions are presented in Section 5.

3



2 Transaction cost and stock data

For the return data, we use the Center for Research in Security Prices (CRSP) daily data files

ranging from January 2015 to December 2023 for the 123 stocks we consider. All of the stocks

considered are large market capitalization companies and constituents of the S&P 500. We increase

the period compared to the transaction cost data for the purpose of model fitting. Table 1 reports

the summary statistics on returns, trading volume and market capitalization across all 123 stocks.

Table 1: Stock data summary statistics

We present the summary statistics of our stock data. The data consists of 123 stocks’ daily returns, volume traded
and market capitalization covering the period from January 2015 to March 2023. All values reported are averages
across 123 stocks and 2,075 days.

Return (%) Volume (×106 shares) Volume ($ bil) Market Cap ($ bil)
min -14.35 2.29 0.26 54.59
q25 -0.75 8.58 1.08 80.82
Median 0.08 11.30 1.51 114.74
q75 0.92 15.23 1.82 172.77
max 14.62 99.78 11.51 254.64
Mean 0.06 12.94 1.70 128.44
SD 1.77 7.10 0.99 54.52

Our trading data consists of 38,250 trades from a large institutional asset manager, covering

the period from July 2017 to March 2023. The underlying assets of the trades are US equities. The

database is compiled by the trading desk and covers all US trades executed subject to a frequency

requirement. Each of the 123 stocks included in the database has at least one occurrence of being

traded every single week throughout the entire period considered. Every trade is executed by the

trading desk in multiple smaller executions and the relevant information is then aggregated on all

the executions done for the trade. This includes trade identifier, stock identifier, timestamps of

the beginning and the end of the trade, where the beginning of the trade is its arrival time to the

trading desk and the end of the trade timestamp is created once the last trade is executed and the

trade is completed.

The size of the trade is given in number of shares, which is the initially intended number of

shares to be traded; as all of the trades we consider are fully executed, it equates to the number

of shares traded. The total value of the executed position is given as the product of the number

of shares traded and average execution price, quoted in USD. The trading data also includes the

share price at the start of the trade, which we can use to calculate the average price impact exerted
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by the trade. Each trade is executed within 5 days from order creation, with an average execution

time of 1.9 days.

The main parameter used in our transaction cost analysis is the trade size as a percentage of

median daily volume (MDV) which we calculate over the last 25 trading days. Another important

variable is the range volatility, measured as the variance of rHL
t over the last 15 days, where:

rHL
t = ln(Ht) − ln(Lt), (1)

where Ht and Lt are the highest and lowest prices on day t.

Table 2 reports summary statistics of the transaction costs data. As mentioned, the measure

we use for transaction costs is implementation shortfall (IS), which we define in Section 3.1. The

median trade size observed is 0.16% of median daily volume (MDV), similar to what Frazzini

et al. (2018) report. We also observe the volatile nature of implementation shortfall, as the mean

observed is 0.06% and standard deviation is 1.39%. As almost half of our trades are negative in

implementation shortfall, we can expect our transaction cost model, which will (and should) always

estimate transaction costs to be positive, to have a large prediction error. This is why we argue

penalizing the variance of transaction costs will help the risk-adjusted performance of our portfolios.

Table 2: Transaction cost data summary statistics across regions

We present the summary statistics of our trading data. The data consists of 38,250 trades from a large institutional
asset manager, covering the period from July 2017 to March 2023. We include the trade size as a percentage of median
daily volume (MDV), volatility and implementation shortfall. Median daily volume is calculated as the last 25 trading
days median of daily volume. Range volatility is calculated using the past 15 days, and we only consider observations
with range volatility between 5 and 100%. Implementation shortfall is calculated in accordance to Perold (1988), see
Equation 6, and is reported as a fraction of the original trade value and capped at 10%.

% MDV Vola (%) IS (%)
min 0.00 5.17 -9.37
q25 0.05 18.89 -0.79
Median 0.16 24.92 0.06
q75 0.63 33.55 0.69
max 172.19 100.00 9.15
Mean 0.85 28.83 0.06
SD 2.88 13.75 1.39
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3 Portfolio construction and transaction costs

Consider a market with N stocks and no risk-free asset available to trade. Let Rt ∈ RN be the

corresponding return vector at time t. The return of the portfolio at time t + 1 is:

Rp
t+1 = w⊤

t Rt+1, (2)

where wt is the weight vector at time t. We define a mean-variance portfolio as the set of weights

wt that satisfy

max
wt

Et[w⊤
t Rt+1] − γ

2 V art[w⊤
t Rt+1], (3)

where γ > 0 is the risk aversion parameter and ∀t
∑N

i=1 wi,t = 1. Following this procedure, we

can construct monthly mean-variance portfolios at time t using information available to us up to

time t. Now consider the following transaction cost function, TCt(wt, θ) = MI(wt, θ) + εt, where

MI denotes market impact and is a function of the change in weights, ∆wt, and other parameters

contained in θ, and εt is the error term. Assuming an investor constructs a portfolio using mean-

variance optimization, we have:

max
wt

Et[w⊤
t Rt+1] − γ

2 V art[w⊤
t Rt+1] − Et[∆w⊤

t TCt(∆wt, θ)], (4)

where TC(wt) are the corresponding transaction costs.

Assuming transaction costs of a portfolio are a stochastic process {TCt}t∈NT
with an associated

variance-covariance matrix, we can define a new optimization problem by extending (4) to include

a penalty term for the variance of transaction costs

max
wt

Et[w⊤
t Rt+1] − γ

2 V art[w⊤
t Rt+1] − Et[∆w⊤

t TCt(∆wt, θ)] − γ

2 V art[∆w⊤
t TCt(∆wt, θ)], (5)

Note that we will be using the same risk-aversion parameter for returns and transaction costs, as

there is no inherent difference between the two. They are both reflective of returns, with opposing

signs which does not affect the risk considerations.

3.1 Implementation Shortfall and Market Impact

Following Perold (1988), we consider the following simplified scenario. Suppose we have an order to

buy n shares within a period and denote the price of one share at the start (end) of our trade net
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of fixed costs as pstart (pend). Assume we finish trading having bought m < n shares. Furthermore,

assume the m shares were bought in T individual transactions. Let qk denote the amount of shares

bought in transaction k, and let pk be the price of the share during our transaction k. Then we

can define implementation shortfall (IS) as the sum of market impact (MI) and opportunity cost

(OC),

IS = MI + OC =
T∑

k=1
qk(pk − pstart) + (n − m)(pend − pstart), (6)

where

m =
T∑

k=1
qk. (7)

Intuitively, market impact measures the additional cost of trading due to the price drifting

away from its value at the start of the trade, and opportunity cost is the difference in values of the

underlying asset that one failed to obtain by not executing the trade fully. Since our trade data

is constructed using executed trades, we omit opportunity cost and use implementation shortfall

directly as a proxy for market impact.

3.2 Modelling transaction costs

Transaction cost modelling has gained traction in recent times, ranging from (effective) bid-ask

spreads, see de Groot, Huij, and Zhou (2012), to estimating market impact with the purpose of

capturing the impact a given trade has on the market price. For example, Frazzini et al. (2018) and

de Rossi et al. (2022) both estimate a market impact model which they go on to use in portfolio

construction. The most relevant literature suggests market impact, when taken as a function of the

trade size in median daily volume, behaves as a polynomial function with an exponent between 0.5

and 1. We model our transaction costs using the I-Star model of Kissell (2014), which is widely used

in practice. In order to make the optimization problem computationally more feasible, we estimate

a simplified version of the I-Star model of the following form:

TCt(∆wi,t) = a1σi,t
AuM × ∆wi,t

MDVi,t
+ ϵi,t, (8)

where TC is implementation shortfall as a fraction of trade size, σi,t is the range volatility of stock

i at time t, and AuM is the assumption of the assets under management. In other words, AuM

denotes the dollar value of the portfolio we trade with. We will keep this constant across time,
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as we wish for transaction costs to be comparable across the entire period and not be skewed by

portfolio size, and investigate for different values. The product AuM × ∆wi,t gives us the total

amount traded in USD, which we scale by median daily volume (MDV).

The parameter estimation is carried out in a rolling-window step procedure, with a base period

of 2 years adding the next and subtracting the last month every step starting with July 2017,

making the first period July 2017 – June 2019. For each period, we estimate the a1 parameter using

linear regression.

3.3 Variance of transaction costs

Having fitted the transaction cost model, we can compute the IS residuals ε̂i,t for every trade within

a window. We observe that squared residuals are increasing in both trade size and range volatility,

with correlations of 29% and 12%, respectively. This leads us to believe that we can model our

residuals in a similar manner as we modelled implementation shortfall. Specifically, we model the

variance of our transaction costs as:

V art[TCt(∆wi,t)] = b1σi,t
AuM × ∆wi,t

MDVi,t
+ ηi,t. (9)

Equivalently to implementation shortfall, the estimation is done in a rolling-window fashion,

using a base period of 2 years adding the next and subtracting the last month every step.

In our framework, the transaction cost mean and variance function coefficients, a1 and b1, are

used both for simulating transaction costs and in the optimization process. This modeling choice

ensures consistency between the simulation and optimization frameworks, allowing us to isolate the

effects of incorporating transaction costs into portfolio selection. While this approach assumes no

estimation error in the transaction cost parameters, it is appropriate within the scope of this study,

as the primary objective is to evaluate the impact of transaction cost-aware optimization rather

than the estimation accuracy of transaction cost models.

3.4 Covariance of transaction costs

In order to use transaction cost variance in the same manner as we use variance of returns as a

penalty function, we require the computation of a covariance matrix of transaction costs. However,

unlike returns, transaction costs (and trades) are irregular discrete events, where we can observe

many or no trades in a given period. To resolve this, we define a procedure of obtaining standardized
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residuals of transaction costs for each stock in a given window. We construct weekly residuals for

each stock and use those to construct a covariance matrix.

Using the computed residuals ε̂i,t, we estimate an unconditional covariance matrix in the fol-

lowing way: for each window, we split our observations into weeks, yielding on average 105 weekly

groups per window for every stock with an average of 1.3 observations. We calculate a weekly

residual for stock i in week w, ε̂i,w, as the average residual in the corresponding week. Hence, we

obtain a Nstocks × Nweeks matrix of residuals of equal number of observed residuals for every stock.

ε̂i,w =
∑

t∈w ε̂i,t

card({ε̂i,t : t ∈ w}) . (10)

To obtain the standardized residuals, ui,w, we scale the residuals with the standard deviation of

the residuals of the respective company,

ui,w = ε̂i,w√
V ar(ε̂i,w : w ∈ {1, ..., Nw})

. (11)

Denoting the matrix of these standardized residuals Ut, we compute the correlation matrix as

RT C
t = UtU

T
t . (12)

Again, for consistency, this computation is carried out in a rolling-window step procedure, with a

base period of 2 years adding the next and subtracting the last month every step. The reason behind

choosing such a large base period is mainly due to the size of our covariance matrix, and how many

observations needed to be taken into account for a stable estimate with full rank, avoiding any rank

defective matrix issues. Finally, the resulting transaction cost covariance matrix is a product of the

transaction cost variance function and the transaction cost correlation matrix R̂T C
t :

Σ̂T C
t = D̂T C

t R̂T C
t D̂T C

t , (13)

where D̂T C
t is a diagonal matrix of the transaction cost volatility estimates obtained by taking a

square root of the estimated transaction cost variance, given by Equation 9.
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3.5 Simulation study

In order to evaluate and compare the performance of the three portfolio optimizations, we simulate

daily returns and the covariance matrix for the 123 stocks we consider over the given period. Our

base assumption will be that returns follow an AR(1)-DCC(1,1)-GARCH(1,1) process. A detailed

description of all of these models and their estimation procedures is given in the Appendix A. To

ensure the robustness of our results, we employ a fully out-of-sample framework in our analysis.

At each time t, all model parameters are estimated using only the data available up to time t.

These estimates are then used in portfolio optimization for the subsequent period t + 1. We further

clarify that the GARCH parameters are estimated only once using the historical data available up

to that point. Once estimated, we use these parameters and daily simulated return data to simulate

conditional variances and covariances daily. The conditional means and variances are then drawn

daily and are directly used as inputs for the portfolio optimizer. This ensures that the optimizer only

relies on realistic, forward-looking estimates rather than true underlying parameters, maintaining

consistency with an out-of-sample framework.

For our mean process, AR(1) was chosen over a more complex ARMA(p,q) process due to the

quality of the parameters estimated, leading us to the conclusion that adding any moving average

terms did not yield any additional explanatory power. Hence, we simplify to an AR(1) model with

a reasonable ϕ1 parameter.

For the GARCH model, we find the stability of our parameters to be the highest for a

GARCH(1,1) model. For the correlation part, the DCC(1,1) model resulted in the dynamic

parameter being equal to zero, implying a CCC (constant) model, which means our correlation

does not observe a strong dynamic pattern.

To simulate returns, we first use the estimated AR(1) model to compute the daily mean series

µd. Our time series modeling will be done on a daily basis to improve the quality of our estimates,

and we will use the daily predictions to construct monthly ones. The period we consider begins in

June 2017 and ends in April 2023. We calculate the µd series daily, with a burn-in period of one

year used to estimate the AR(1) parameter ϕd. The AR(1) model used for the conditional mean is

given by:

µ̂d = ĉd + ϕ̂drd−1, (14)

where ĉd and ϕ̂d denote the AR(1) model parameters estimated using data up to day d. Upon
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obtaining the estimates of the µd series, we move on to generating the estimates of the σd series.

The estimation of σd is done in the following way for each given day d: we create two series of length

251, σ′
k and ε′

k which will represent the σ and ε series for the GARCH(1,1) process finishing at day

d with parameters ωd, αd, βd. We will set the starting values for σ′
k and ε′

k and use the parameters

to calculate the series. The final observation of σ′
k will be σd.

ε̂′
0 = rd−250 − µ̂d−250, (15)

σ̂′2
0 = ω̂d

1 − α̂d − β̂d

, (16)

ε̂′
k = rd−250+k − µ̂d−250+k, (17)

σ̂′
k =

(
ω̂d + α̂d

(
ε̂′

k−1
)2 + β̂d

(
σ̂′

k−1
)2

) 1
2 , (18)

with k = 1, ..., 250.

Finally,

σ̂d = σ̂′
250. (19)

Now that we have the µd and σd series estimates, we can simulate our cross-section of returns

on a daily basis. Since our DCC(1,1) model resulted in a CCC model, we obtain the correlation

matrix R̂ by simply estimating the sample correlation. We construct the variance covariance matrix

Σ̂d using a diagonal matrix D̂ of the estimated individual volatilities σ̂d and a correlation matrix

R̂ using the following equation:

Σ̂d = D̂R̂D̂, (20)

Assuming a normal distribution, the simulation of returns on day d will be the realisation of a

normal random variable with mean vector µ̂d and variance-covariance matrix Σ̂d,

rd ∼ N
(
µ̂d, Σ̂d

)
. (21)

We use Equation 21 to construct 100 simulations of returns for our cross-section of 123 stocks.

Each simulation consists of 2,075 daily returns of 123 stocks for the period from June 2017 to

April 2023. The results of one such simulation for one stock (Microsoft) are shown in Figure 1.

We plot the simple and cumulative returns for the period starting June 2019, since that will be

the starting point of our optimization. For comparison, in the same figures, we plot the historical
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return series and the cumulative return series denoted with a blue line. Furthermore, we plot the µd

series, historic returns, σd series and 20-day volatility. We see that our mean (volatility) estimates

closely resemble the returns (20-day volatility), suggesting our model fits the data properly. This

means our simulations can be used to ensure the robustness of our results, assuming our results are

consistent across simulations.

Figure 1: Microsoft simulations

We plot the simple returns, 20-day volatility, µ̂d and σ̂d series, simulated simple and cumulative returns of Microsoft
from June 2019 to April 2023. In (e), we plot 5 return simulations alongside the historic returns which are depicted
in blue. We plot the corresponding cumulative returns of both the simulated and historic returns, which are depicted
in blue, in (f).

(a) Microsoft returns (b) Microsoft µ̂d series

(c) Microsoft 20-day volatility (d) Microsoft σ̂d series

(e) Microsoft simulated returns (f) Microsoft simulated cumulative returns

3.6 Expected variance

In order to finalize the optimization procedure, we have to define the return and covariance matrix

estimates. Since the optimization procedure will be carried out monthly, assuming a monthly re-
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balanced portfolio, we have to construct monthly forecasts for the mean and variance. Our mean

estimates will be forecasted using the AR(1) model estimated by simply forecasting the next month

of daily means and summing them. To compute the 1-month forecasted volatility, we use the daily

volatility estimate multiplied by the square root of the number of days in a given month, hence

rescaling the daily volatilities into monthly ones. For the correlation, since we do not observe any

dynamic properties, we simply use the correlation matrix of returns R estimated at the day d of

the rebalance.

3.7 Optimizing portfolios

For notation purposes, let us define a monthly rebalanced portfolio P as a Nmonths ×Nstocks matrix

of weights with each row representing weights for a given month. As previously mentioned, we will

evaluate the performance of three different portfolios, each characterized by the different objective

functions they optimize. There are three key components to constructing our portfolios: 1. expected

variance of returns, which we obtain from the daily estimates of the covariance matrix and rescale

to monthly ones, 2. transaction costs and 3. transaction cost covariance matrices, both of which are

estimated monthly, so every 3 months we update our expectations with the newly fitted models.

We can now define portfolios P 1, P 2 and P 3, as the resulting portfolios of Equations 3, 4 and 5

respectively.

3.8 Optimization

The optimization we perform will be subject to certain initial conditions and constraints. We will

assume that portfolios have a constant number of assets under management (AuM) during the

observed period, but different values will be explored. The portfolios will be long only with a

maximum holding constraint of 5% in a single stock. Turnover constraints will be implemented in

the form of not allowing more than 100% of median daily volume (MDV) to be traded in either

direction in a given rebalancing period. The rebalancing will be performed monthly, over a period

of 47 months resulting in 46 rebalances, starting in June 2019 and ending in April 2023. The AR-

GARCH as well as TC and TC covariance parameters used are based on data up until that month,

avoiding any look-ahead bias. We assume a value-weighted starting portfolio. This bears little to no

importance to our analysis, as our portfolios generate turnovers large enough to trade out of initial

positions within a few months. That being said, we want to start from a liquid position that will

be cheap to trade out of, hence why we set the initial position to be the value-weighted portfolio.
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3.9 Performance evaluation

To compare the performance of our portfolios generated by different optimization problems, see

Equations 3, 4 and 5, we calculate the out-of-sample performance net of transaction costs based

on the transaction cost and the variance of transaction costs models. Returns are obtained from

the return simulation and transaction costs are calculated by a draw from a multivariate normal

random variable:

TCt = N
(
T̂Ct(∆wt, θ), Σ̂T C

t

)
. (22)

The mean will be given by the estimated transaction cost function following Equation 8, whereas

Σ̂T C
t is estimated following Equation 13 using the transaction cost variance function and the esti-

mated transaction cost correlation matrix R̂T C
t . Since it can be done independently of the portfolio

optimization process, we simulate 100 transaction costs per portfolio for every month.

4 The relevance of transaction cost variance

In this section, we showcase the benefits of including the transaction cost variance in portfolio opti-

mization. Starting with the analysis of all parameters obtained and validating the return simulation,

we then look into the net performances of our portfolios.

4.1 Transaction cost function parameters

In Figure 2, we plot the estimated transaction cost model parameter. The parameter is similar

across the entire estimation period which is important for our analysis as we do not wish to penalize

transaction costs differently across different periods. This is important for both the optimization

and net return calculations.

As shown in Table 3, the parameter is highly significant with an average t-stat of 8.24. The

mean R-squared is 3.6% which is expected as transaction cost data is very volatile, see Frazzini

et al. (2018). This further reinforces the importance of considering transaction cost variance.

4.2 Transaction cost variance parameters

In Figure 3, we plot the transaction cost variance function parameters estimated across different

periods. Similar to the transaction cost parameter a1, the transaction cost variance parameter b1
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Figure 2: Transaction cost parameter estimates

We plot the transaction cost model parameter a1 estimated from June 2019 to March 2023. The estimation is done
every month using past two years’ trading data. Every point is plotted with the corresponding 95% confidence interval.

Table 3: Transaction cost estimation results

We show the mean, median, standard deviation minimum and maximum of parameter values, t-statistics and R-
squared estimated from June 2019 to March 2023. The estimation is done every month using past two years’ trading
data.

Mean Median Std Min Max
a1 0.41 0.40 0.032 0.34 0.48

t-statistic 8.24 8.12 0.96 6.48 10.10
R2 (%) 3.62 3.51 0.72 2.10 5.44
p-value <0.001

is stable across time, ensuring consistency of optimization and transaction cost simulations across

periods.

As shown in Table 4, b1 has a mean of 3.55. Since the models we use are identical, we see

that the variance of transaction costs are about an order of magnitude larger than transaction

costs themselves. This ensures that adding a transaction cost variance covariance matrix penalty

in our portfolio optimization setup impacts the weights in a meaningful manner. b1 is also highly

statistically significant with a mean t-statistic of 17.61. The mean R-squared is 72.35 %; this far

above any transaction cost model R-squared estimated on real trading data observed in the recent

literature, see Frazzini et al. (2018), meaning transaction cost variance estimates are more attainable

than transaction costs estimates themselves.
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Figure 3: Transaction cost variance parameter estimates

We plot the transaction cost variance model parameter b1 estimated from June 2019 to March 2023. The estimation
is done every month using past two years’ trading data. Every point is plotted with the corresponding 95% confidence
interval.

Table 4: Transaction cost variance estimation results

We show the mean, median, standard deviation minimum and maximum of parameter values, t-statistics and R-
squared estimated from June 2019 to March 2023. The estimation is done every month using past two years’ trading
data.

Mean Median Std Min Max
b1 3.55 3.55 0.37 2.66 4.45

t-statistic 17.61 17.64 2.65 12.69 25.25
R2 (%) 72.35 71.34 4.23 59.35 84.52
p-value <0.001

4.3 Simulation performances

A key component of our methodology is the return simulation, as we need to ensure our results

are robust to the behaviour of the underlying assets. To strengthen the validity of our return

simulations, we show our time series model to be a good fit by performing a series of Ljung-Box

tests on our residuals. The number of lags used to conduct the tests is 20. Since our model is

estimated in a rolling window (adding and subtracting one day at a time), we will have daily model

fits for the entire period. With all this in mind, we present the results of our Ljung-Box tests in

three plots: one for the AR(1) series residuals, one for the GARCH(1,1) residual series and one

for the AR(1)-DCC(1,1)-GARCH(1,1) residual series in Figure 4. For the AR(1) and GARCH(1,1)

residual series, since we have 123 stocks, meaning 123 tests per period, we only plot the 25th, 50th

and 75th quantiles of the P-value of our Ljung-Box statistic for each period. For the GARCH(1,1)

and AR(1)-DCC(1,1)-GARCH(1,1) series, we standardize residuals using the estimated variances
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and variance-covariance matrices respectively.

Figure 4: Ljung-Box test P-values

Plots for the P-values of the Ljung-Box statistic based on three models’ residuals: AR(1) residual series, GARCH(1,1)
residual series and the AR(1)-DCC(1,1)-GARCH(1,1) residual series. We plot the 25th, 50th and 75th quantiles of
the P-value of our Ljung-Box statistic for each period for the AR(1) and GARCH(1,1) residual series. For the AR(1)-
DCC(1,1)-GARCH(1,1) residual series, as we observe one value daily, we simply plot the P-value over time.

(a) AR(1) (b) GARCH(1,1)

(c) AR(1)-DCC(1,1)-GARCH(1,1)

Figure 4 shows that the P-values for all periods are above the 5% threshold, meaning we can not

reject the null hypothesis of absence of autocorrelation in our residuals. This gives us confirmation

that our model has managed to capture the return data movements successfully.
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4.4 Portfolio performances

In this section, we present the performances of our three portfolios. Let P 1, P 2 and P 3 denote

portfolios that optimize (3), (4) and (5), respectively. P 1 is then the mean-variance optimal portfolio

with no transaction cost consideration, P 2 is the mean-variance optimal portfolio with a transaction

cost penalty, and P 3 is the mean-variance optimal portfolio with a transaction cost penalty and

a transaction cost variance penalty. We construct these portfolios in three AuM assumptions of

$500M, $1B and $2B, as well as three risk aversion parameter values of γ = 1, γ = 5 and γ = 10,

resulting in 9 different cases considered. In each case, we construct 100 different portfolios based on

100 simulations of returns. Additionally, each portfolio’s net performance is calculated 100 times

based on 100 simulations of transaction costs. The summary statistics of our results are reported

in Table 5.

To properly understand the behaviour of our portfolios, let us first look into how AuM and risk

parameter assumptions affect our portfolios. Changes in AuM impact the portfolios via transaction

costs, as larger AuM implies larger transaction costs. Hence, AuM impacts gross performance as

we shift our portfolios away from expensive trades and potentially from taking positions that are

desirable from a purely return-oriented view. In addition, the effects of AuM are also observable

in net performance, where larger AuM assumptions, ceteris paribus, result in higher transaction

costs. As the P 1 portfolio does not consider transaction costs in optimization, increasing AuM

does not impact the gross performance of the portfolio while increasing transaction costs. The

risk aversion parameter γ impacts all the portfolios. Increasing γ results in portfolios with lower

variance at the cost of lower returns. Additionally, it impacts the transaction cost variance penalty

of portfolio P 3 as we observe a slight but consistent reduction in transaction costs as γ increases.

This could be explained by the tendency of portfolios with higher risk aversion parameter to have

less concentrated positions, making them less expensive to trade in and out of.

18



Table 5: Portfolio performances

We show the performance of all three portfolios considered spanning from June 2019 to March 2023. Three AuM
assumptions, $500M, $1B, $2B, and three risk aversion parameters γ = 1, 2, 5 are considered. We report the monthly
gross and net return, net cumulative return, maximum drawdown, volatility, Sharpe ratio as well as turnover and
associated transaction costs. Reported numbers are averages across all simulations of both returns and transaction
costs. Best portfolio denotes the number of times a portfolio had the highest net Sharpe ratio in the 100 return
simulations considered.

AuM $500M γ = 1 γ = 5 γ = 10
P 1 P 2 P 3 P 1 P 2 P 3 P 1 P 2 P 3

Gross return (%) 3.03 2.73 2.66 2.91 2.59 2.54 2.82 2.48 2.46
Volatility (%) 5.45 4.79 4.72 5.15 4.64 4.52 4.85 4.37 4.34

Gross Sharpe ratio 0.556 0.570 0.564 0.565 0.558 0.562 0.581 0.568 0.567
Turnover (%) 62.34 33.24 32.98 59.35 32.25 31.87 56.64 31.19 30.84

Transaction costs (%) 0.77 0.42 0.39 0.75 0.41 0.39 0.72 0.38 0.37
Net return (%) 2.26 2.31 2.27 2.16 2.18 2.15 2.10 2.10 2.09

Net cum. return (%) 176 160 177 178 215 174 146 179 158
Max. drawdown 80 77 77 80 79 76 79 76 75

Net Volatility (%) 5.76 4.93 4.77 5.37 4.87 4.63 5.14 4.55 4.45
Net Sharpe ratio 0.392 0.469 0.476 0.402 0.448 0.464 0.409 0.462 0.470

Best portfolio 2 16 82 1 11 88 0 9 91
AuM $1B γ = 1 γ = 5 γ = 10

P 1 P 2 P 3 P 1 P 2 P 3 P 1 P 2 P 3

Gross return (%) 3.03 2.36 2.30 2.91 2.25 2.21 2.82 2.23 2.19
Volatility (%) 5.45 4.57 4.53 5.15 4.51 4.46 4.85 4.09 4.04

Gross Sharpe ratio 0.556 0.516 0.508 0.565 0.499 0.496 0.581 0.545 0.542
Turnover (%) 62.34 27.71 27.35 59.35 26.67 26.32 56.64 25.04 24.44

Transaction costs (%) 1.54 0.78 0.74 1.49 0.76 0.73 1.44 0.73 0.71
Net return (%) 1.49 1.58 1.56 1.42 1.49 1.48 1.38 1.50 1.48

Net cum. return (%) 88 133 97 94 133 125 77 116 93
Max. drawdown 80 75 75 80 76 74 79 75 73

Net Volatility (%) 5.93 4.82 4.67 5.73 4.91 4.63 5.16 4.41 4.28
Net Sharpe ratio 0.251 0.328 0.334 0.248 0.303 0.320 0.267 0.340 0.346

Best portfolio 0 23 77 0 14 86 0 28 72
AuM $2B γ = 1 γ = 5 γ = 10

P 1 P 2 P 3 P 1 P 2 P 3 P 1 P 2 P 3

Gross return (%) 3.03 1.98 1.91 2.91 1.72 1.69 2.82 1.68 1.65
Volatility (%) 5.45 4.32 4.28 5.15 4.38 4.34 4.85 4.33 4.29

Gross Sharpe ratio 0.556 0.458 0.446 0.565 0.393 0.389 0.581 0.388 0.385
Turnover (%) 62.34 22.49 22.18 59.35 20.14 19.84 56.64 19.27 18.77

Transaction costs (%) 3.08 1.16 1.09 2.99 1.10 1.08 2.88 1.05 1.03
Net return (%) -0.05 0.82 0.82 -0.08 0.62 0.61 -0.06 0.63 0.62

Net cum. return (%) -5 35 56 -13 36 30 4 31 49
Max. drawdown 80 73 72 80 73 73 79 73 72

Net Volatility (%) 6.43 4.73 4.55 6.03 4.87 4.66 5.23 4.64 4.51
Net Sharpe ratio -0.01 0.173 0.180 -0.01 0.127 0.131 -0.01 0.136 0.137

Best portfolio 0 13 87 0 18 82 0 33 67
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Looking at the underlying portfolio optimization setups, portfolio P 1 optimizes the risk-adjusted

return with no considerations to the net performance. This leads to portfolios with high gross

return, Sharpe ratio, turnover and transaction costs and low net returns and net Sharpe ratio.

We see that the P 1 portfolios observe the highest gross performance for each case considered, but

are rarely the "Best portfolio", as it displays the number of times a portfolio has the highest net

Sharpe ratio. This number ranges from 0 to 100, as we have 100 return simulations for which we

construct portfolios P 1, P 2 and P 3. For instance, P 1 is the best portfolio in only two out of 100

simulations when the assumed AuM is $500M and γ is 1. In most other instances it is never the

best performing portfolio. Portfolio P 2 introduces a transaction cost penalty using our transaction

cost model. This results in a reduced gross performance relative to P 1, but decreases turnover

and transaction costs which substantially improves the net portfolio performance in most cases.

Looking at the AuM $1B and γ = 5 case, we see a reduction in gross Sharpe ratio from 0.565

to 0.499. On the other hand, turnover is significantly reduced from 59.35% to 26.67%, resulting

in lower transaction costs from 1.49% to 0.76%. The final result is a large increase in net Sharpe

ratio from 0.248 to 0.303 further evidenced by P 1 never being the best performing portfolio and

P 2 being it 14 times. Portfolio P 3 introduces a transaction cost variance penalty that has a slight

(and directionally inconsistent) impact on the gross performance of the portfolio. Transaction costs

and turnover are slightly reduced as a result of an additional penalty on transaction costs, and the

resulting net returns and net variance are also reduced. However, the resulting net Sharpe ratio is

increased in most instances, best depicted by the "Best portfolio" measure. Looking at maximum

drawdown, we can see it is somewhat stable across all portfolios, keeping within the 75-80 range. As

expected, raising gamma, as well as reducing turnover, which, in our case reduces volatility going

across the three different portfolios, slightly reduces drawdown. In the case where AuM is $1B

and γ = 5, we see a small decrease in gross Sharpe ratio from 0.499 to 0.496. Turnover is slightly

lowered from 26.67% to 26.32% resulting in comparably lower transaction costs from 0.76% to

0.73%. The resulting net returns are slightly lower from 1.49% to 1.48%. Despite this, the resulting

net Sharpe ratio observes a noticeable increase from 0.303 to 0.320 as a consequence of the drop

in net volatility going from 4.91% to 4.63%. Maximum drawdown remains stable, reducing going

from portfolio P 1 to P 3, and with higher gammas. Looking at net cumulative return, we can see

it closely resembles the net return, dropping in magnitude across larger AuM and gammas, and

performing best in portfolio P 2. There are a few subtle conclusions to be drawn from these results.

Going from P 2 to P 3, the additional penalty to transaction cost variance reduces transaction costs
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in an unfavourable manner, which results in lower net returns. However, the resulting portfolio P 3

observes considerably less volatile transaction costs, which in turn reduce the net volatility of P 3.

Finally, this results in an increase in net Sharpe ratio as we see that P 3 is the best performing

portfolio in 86 cases. This means we manage to achieve superior net risk-adjusted performance by

reducing the volatility of our trades, which is exactly what the additional penalty seeks to do.

5 Conclusion

This paper set out to refine mean-variance portfolio optimization by incorporating more realistic

transaction cost considerations. We addressed both the expected level of transaction costs and their

uncertainty across time, ultimately proposing an integrated framework that models the covariance

of transaction costs. Our work was motivated by two main observations in the empirical literature.

First, while the majority of portfolio optimization studies incorporate transaction costs in only a

rudimentary or deterministic manner, real-world data consistently exhibit significant variability in

these costs. Second, by leveraging a proprietary dataset of 38,250 trades from a large institutional

asset manager, we observe that variance of transaction costs can be large enough to meaningfully

alter trading decisions and portfolio allocations.

To evaluate our framework, we compared three portfolios that differ in how they handle transac-

tion costs: a baseline mean-variance portfolio with no explicit transaction cost term, a mean-variance

portfolio that penalizes the expected transaction costs, and a mean-variance portfolio that penalizes

both the expected and variance of transaction costs. We used the proprietary trade dataset to build

models for both the expected transaction costs and their variance-covariance structure. We show

that transaction cost variance is significant and can be estimated accurately. In accordance with

Min et al. (2022), we also constructed transaction cost covariates, finding that they are statistically

significant and exert a meaningful impact on optimal portfolio weight selections.

We then conducted a simulation study based on a multivariate time-series model with parame-

ters estimated using historical data. Through this process, we constructed the three portfolios and

compared their performances out-of-sample. The findings reveal that the portfolios incorporating

transaction cost information, particularly the one that includes the variance-covariance of transac-

tion costs, outperform the basic mean-variance portfolio on a net-risk-adjusted basis in most cases.

In other words, although explicitly penalizing transaction cost variance and covariance might lead

to a moderate reduction in gross returns (due to slightly more constrained trading), this trade-off
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proves beneficial once the volatility of actual trading costs are accounted for. The higher net Sharpe

ratios of these cost-aware portfolios highlight their superiority in balancing returns against overall

risk, which now includes not just the covariance of asset returns but also that of transaction costs.

The main takeaway is twofold. First, transaction costs are clearly volatile, as argued by Frazzini

et al. (2018) and much of the empirical transaction cost literature, and it is therefore a major

simplification to treat them as a static, one-size-fits-all deduction from returns. Second, explicitly

modeling this volatility in the portfolio construction process translates into more realistic and robust

allocation decisions. Including the variance and covariance of transaction costs leads to improved

net risk-adjusted performance, providing a compelling case for portfolio managers who seek to

implement strategies that maintain a competitive edge in real-world settings.
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A Appendix

A.1 ARMA parameter estimation

The general ARMA(p, q) model is given by

rt = c +
p∑

i=1
ϕirt−i +

q∑
j=1

θjεt−j + εt, (A1)

where rt is the return at time t, εt the error term at time t and c a constant. ϕi and θj are

the parameters of the model. The goal here is to estimate the given parameters, including c, using

maximum likelihood methods. We assume the error term to be normally distributed.

A.1.1 Maximum likelihood

Assuming rt can be modelled using an ARMA(p, q) model we have,

rt = c +
p∑

i=1
ϕirt−i +

q∑
j=1

θjεt−j + εt. (A2)

Rearranging gives us:

εt = rt − c −
p∑

i=1
ϕirt−i −

q∑
j=1

θjεt−j . (A3)

Setting r̃t = rt − c̃ where

c̃ = c

1 −
∑p

i=1 ϕi
, (A4)

gives us:

εt = r̃t −
p∑

i=1
ϕir̃t−i −

q∑
j=1

θjεt−j . (A5)

Now we move on to the joint density function and calculating the likelihood function.

Given εt
i.i.d∼ N

(
0, σ2)

, the joint density function for ε is:

p(ε1, . . . , εn) = 1
(2π)n/2σn

exp
{

− 1
2σ2

n∑
t=1

ε2
t

}
. (A6)
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Assuming a natural filtration F contains p observations of rt before the series started, q noises of

εt before the series started and all returns, we have:

L
(
ϕ, θ, c, σ2

)
= p(r1, . . . , rn|F) = 1

(2π)n/2σn
exp

{
− 1

2σ2

n∑
t=1

εt(ϕ, θ, c|F)2
}

, (A7)

which we have to maximize with respect to the given parameters ϕ, θ, c in order to obtain their

values.

A.2 GARCH parameter estimation

The general GARCH(p,q) model is given by

rt = µt + ϵt, (A8)

σ2
t = ω +

p∑
j=1

βjσ2
t−j +

q∑
i=1

αiϵ
2
t−i, (A9)

ϵt = σtet, et ∼ N(0, 1), (A10)

where rt is the return at time t, εt the error term at time t and ω a constant. αi and βj are

the parameters of the model. The goal here is to estimate the given parameters, including ω, using

maximum likelihood methods. We assume the error term to be normally distributed.

A.2.1 Maximum likelihood

Using a similar procedure as in the ARMA process, we obtain the GARCH likelihood to have the

form of

L(α, β, ω) = p(r1, . . . , rn|F) = 1
(2π)n/2 ∏n

t=1 σi
exp

{
−1

2

n∑
t=1

ε2
t

σ2
t

(α, β, ω)
}

, (A11)

which we have to maximize with respect to the given parameters α, β, ω in order to obtain their

values.

A.3 DCC-GARCH parameter estimation

After estimating the individual GARCH(1,1) parameters, we continue by estimating the covariance

matrix. The general DCC(m,n)-GARCH(p,q) model is given by

rt = µt + ϵt, (A12)
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ϵt = H
1
2
t zt, (A13)

Ht = DtRtDt, (A14)

where rt is the n × 1 return vector, µt the n × 1 expected return vector, ϵt the n × 1 residual vector

with a covariance matrix Ht and zt a n×1 vector of standard iid error terms (in our case, standard

normal random variables). Dt is a diagonal matrix of conditional standard deviations of ϵt obtained

using the GARCH(p,q) model and Rt is its correlation matrix.

Dt =



σ1t 0 · · · 0

0 σ2t
. . . ...

... . . . . . . 0

0 · · · 0 σnt


, (A15)

Rt =



1 ρ1,2,t · · · ρ1,n,t

ρ1,2,t 1 . . . ...
... . . . . . . ρn−1,n,t

ρ1,n,t · · · ρn−1,n,t 1


. (A16)

Furthermore, we define

Rt = Q∗−1
t QtQ∗−1

t , (A17)

Qt =

1 −
m∑

i=1
ai −

n∑
j=1

bj

Q̄ +
m∑

i=1
aiut−iu

T
t−i +

n∑
j=1

bjQt−j, (A18)

where

Q̄ = Cov
[
utu

T
t

]
= E

[
utu

T
t

]
= 1

T

T∑
t=1

utu
T
t , (A19)

Q∗
t is a diagonal matrix with the square root of the diagonal elements of Qt at the diagonal

Q∗
t =



√
q11t 0 · · · 0

0 √
q22t

. . . ...
... . . . . . . 0

0 · · · 0 √
qnnt


, (A20)
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and ut are the standardized errors

uit = ϵit

σit
. (A21)

A.3.1 Maximum likelihood

Assuming our error terms zt follow a multivariate Gaussian distribution, the joint distribution of

z1, . . . , zT becomes

f(zt) =
T∏

t=1

1
(2π)

n
2

exp
{

−1
2zT

t zt

}
. (A22)

Using this, we can obtain the likelihood function for ϵt as

L(θ) =
T∏

t=1

1
(2π)n/2|Ht|1/2 exp

{
−1

2ϵt
T H−1

t ϵt

}
. (A23)

where θ is the set of all parameters. Having already estimated the GARCH model parameters, we

are left with estimating the DCC parameters hence θ = {a1, . . . , am, b1, . . . , bn}. We continue with

the expression for the log likelihood.

ln(L(θ)) = −1
2

T∑
t=1

(
nln(2π) + ln(|Ht|) + ϵt

T H−1
t ϵt

)

= −1
2

T∑
t=1

(
mln(2π) + ln(|DtRtDt|) + ϵt

T D−1
t R−1

t D−1
t ϵt

)

= −1
2

T∑
t=1

(
n ln(2π) + 2 ln(|Dt|) + ln(|Rt|) + ϵt

T D−1
t R−1

t D−1
t ϵt

)

= −1
2

T∑
t=1

(
n ln(2π) + 2 ln(|Dt|) + ln(|Rt|) + uT

t R−1
t ut

)
.

(A24)

Since Dt is constant having estimated the GARCH parameters, our problem becomes equivalent

to maximizing

ln(L∗(θ)) = −1
2

T∑
t=1

(
ln(|Rt|) + uT

t R−1
t ut

)
. (A25)

27


	Introduction
	Transaction cost and stock data
	Portfolio construction and transaction costs
	Implementation Shortfall and Market Impact
	Modelling transaction costs
	Variance of transaction costs
	Covariance of transaction costs
	Simulation study
	Expected variance
	Optimizing portfolios
	Optimization
	Performance evaluation

	The relevance of transaction cost variance
	Transaction cost function parameters
	Transaction cost variance parameters
	Simulation performances
	Portfolio performances

	Conclusion
	Appendix
	ARMA parameter estimation
	Maximum likelihood

	GARCH parameter estimation
	Maximum likelihood

	DCC-GARCH parameter estimation
	Maximum likelihood



