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Abstract

This thesis focusses on simulation of weak solutions to nonlinear differential equa-

tions. Methods employed include reformulation into stochastic differential equa-

tions, and transport of measures via pushforward maps and an action principle.

The common thread to approaches discussed is to consider an ensemble of solu-

tions and more generally the distribution that this ensemble will take, rather than

specific solutions themselves. A second focus of the work is to restrict solutions

to the surface of the sphere S2, simplifying the use of Fourier series but posing

difficulties for the long term stability of numerical algorithms. Numerical simula-

tions of random solutions to the nonlinear Schrödinger equation (NLSE) and the

isentropic Euler equations of fluid motion are carried out. For the NLSE, in the

case of β = 0, the empirical distribution is compared with the theoretic distribu-

tion of solutions (the Gibbs measure) statistically. Formulating the problem on

the sphere involves a Lax pair, one of which is the Frenet-Serret matrix and the

second a result of the Hasimoto transform applied to the NLSE. In the case of the

Euler equations, the numerical simulation is compared with evolution of a known

closed form solution in the one dimensional dam break problem. The proposed

algorithm uses optimal transport theory and convexity over a space of absolutely

continuous measures in order to allow weak solutions to the differential equations

that are distributions in the sense of Schwartz. The simulation is found to closely

follow the well established Ritter solutions to the dam break problem.
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List of notation

The following is a list of notation used throughout the thesis.

κ Curvature defined in Definition 1.2.2.

τ Torsion defined in Section 1.2.

κn, κg The normal and geodesic curvatures, defined in Definition 2.1.2.

(θ, ϕ) The first coordinate θ denotes the longitude, the angle from the positive x axis.

The second coordinate ϕ is the colatitude, the angle from the positive z axis. This

is a convention for spherical polar coordinates, see Section 2.2.1.

Cq(A,B) Continuous functions f : A→ B that are q times differentiable.

Ad The adjoint map, defined in Definition 2.3.10.

ad The adjoint representation defined in Definition 2.3.15.

Mn(R) The set of square n× n matrices which have entries within R.

GLn(R) The General Linear group of invertible matrices on R.

SO(n) The Special Orthogonal group of dimension n, see Definition 2.3.8

so(n) The Lie algebra of the Lie group SO(n), see Definition 2.3.9

DA(B) The derivative of the matrix exponential map at A in the direction of B, where

A,B are matrices in the Lie algebra, see Equation (2.23).

EA(B) The inverse to DA(B), as given in Lemma 2.3.22.
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M(Rn) The set of probability measures on Rn, see above Definition 3.1.6.

M2(Rn) The set of probability measures on Rn which have finite second moments, see

Definition 3.1.6.

M2,K(Rn) The set of probability measures on Rn which have second moments bounded by

K, see Definition 3.1.8.

P2(Rn) The subset ofM2(Rn) which are absolutely continuous with respect to Lebesgue

measure, see Definition 3.1.7.

P2,K(Rn) A bounded subset of P2(Rn), with measures having smaller second moments than

K, see Definition 3.1.9.

Pγ(Rn) A set of probability measures which are within Lγ(Rn), see Definition 3.1.10.

Pγ,L(Rn) A bounded subset of Pγ(Rn), in which their Lγ norm does not exceed L, see

Equation (3.5).

Pγ,L2,K(Rn) The intersection Pγ,L(Rn) ∩ P2,K(Rn), in which the notation allows for more

combinations, see Definition 3.1.11.

PG(Rn) A bounded subset of Pγ,L2,K(Rn), in which G(ρ) does not exceed L, see Definition

12.3.4.

Wq(µ, ν) The Wasserstein distance between measures µ and ν as defined in Equation (4.4)

Wq(F,G) The Wasserstein distance between one dimensional measures with cumulative

distribution functions F and G as discussed in Remark 4.1.6.

σ The integral of τ over space, simplifying the Hasimoto transform, see Equation

(5.11).

U(ρ) The internal energy of a fluid as a function of the fluid density ρ.

U(ρ) The internal energy density, related to the internal energy as shown in Equation

(12.1) and often referred to as the internal energy itself. An explicit definition in

the case of Isentropic Euler is given by Definition 6.1.2.
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P (ρ) The pressure of a fluid as a function of fluid density ρ, defined in terms of internal

energy density by Equation (6.4).

W Wiener loop measure, defined in Proposition 8.2.5.

νβ,K The Gibbs measure, see Definition 8.3.1.
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Introduction

This thesis is an exploration of contemporary methods for numerical simulation of

nonlinear differential equations. Specifically, it focusses on two well known dynamic

systems, the nonlinear Schrödinger equation (NLSE) and the Euler equations of fluid

motion.

Smooth solutions to systems of partial differential equations (PDEs), particularly

linear PDEs are well dealt with by standard Runge Kutta methods and finite element

analysis. Nonlinear PDEs can have solutions which involve shocks — solutions which

are discontinuous on sets of zero measure. The isentropic Euler equations are known

to form discontinuities even for smooth initial conditions [16, §5] and as such different

approaches are required to deal with them.

This work is differentiated from the larger canon of methods for numerical integra-

tion of PDEs in two main ways. One is geometric, the space of interest in this work is

the sphere S2. When searching for solutions to a dynamic system on the surface of the

sphere numerical methods designed for an embedding into Euclidean space will produce

compounding errors unless they are adapted to the geometry. Instead, employing the

theory of Lie algebra’s to move from tangent space to base manifold while respecting

the geometry of the the space provides substantial benefits to long term stability of the

methods [32] [55].

The second way the methods developed here are differentiated is by allowing so-

lutions from a broader space of functions than the continuous and twice differentiable

ones required for well known existence theorems. Examples include solutions in the

Sobolev space H1 or stochastic processes for the NLSE, and measures which are abso-

lutely continuous with respect to Lebesgue measure for the isentropic Euler equations.

The weak interpretation of the PDEs that extends solutions to these spaces can allow

recasting the problem as governing the flow of a probability distribution over time.
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This is done via stochastic processes when the dynamical system can be reformulated

into something resembling a stochastic differential equation (SDE). Another direction

taken is inspired by Hamiltonian dynamics, instead of employing calculus of variations

and being left with a set of PDEs, the system is reformulated as a convex optimisation

problem with the use of optimal transportation. Solutions to the system are actually

pushforward maps between measures describing the evolution of the initial distribution.

Chapters 1 and 2 cover the geometric ideas needed in this thesis, from the Frenet-

Serret frame to geodesic and normal curvature. Lie group theory for the sphere is

developed and the construction of exponential based solutions to ordinary differential

equations (ODEs) in this context is discussed by the Magnus expansion. Chapter 3

introduces the background needed on measure theory, as well as the weak compactness

criteria needed for transport of measures in later chapters, and Chapter 4 describes

the basics of optimal transport theory, the Monge-Kantorovich problem and Brenier’s

theorem for quadratic cost. Chapter 5 constructs a matrix Lax pair for the NLSE

thanks to the Hasimoto transform. Attention then turns to the Euler equations and

exact solutions on the sphere and in the case of a dam break are discussed in Chapters

6-7. Bourgain[10] asserts the measure of the function space of solutions to the periodic

NLSE is the Gibbs measure, and this is constructed in Chapter 8. Chapters 9 then

gives further details relating to Bourgain’s assertion, and shows weak solutions to the

Lax pair formulation of the NLSE exist.

Chapter 10 outlines the first numerical method, employing a stochastic differential

equation based on the Lax pair developed in Chapter 5. The numerical method devel-

oped for this SDE on the sphere is implemented in MATLAB and the distribution of

results is compared empirically with the theory. This is done statistically using a large

number (106) of sample paths of the process.

Chapters 12 and 13 explore optimal transport theory in the case of Wasserstein

distance W2 and then construct a convex structure on a space of measures to allow the

theory to be applied in the context of the Euler equations on Euclidean space. Chapter

14 concludes the discussion of the optimal transport based method first developed by

Gangbo [27] by applying the method to the dam break problem and evaluating the

results.

Overall three numerical methods are built,
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• Periodic solutions to the NLSE in three dimensions with initial data on the sphere

are simulated via stochastic process, for β = 0, the distribution of solutions

(sample paths) is found to coincide with surface area measure on the sphere.

• A numerical method for simulation of the dynamics of the Fourier modes of a

solution to the NLSE is conceived of, and with more computing power could be

compared with the Gibbs measure.

• A transport based method for simulating the isentropic Euler equations using

discontinuous densities is shown to exhibit realistic behaviour, matching the Ritter

solutions for the dam break problem under suitable initial conditions.
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Chapter 1

The Frenet-Serret frame

The Frenet-Serret frame is a triplet of orthogonal vectors, and a first order differential

equation which governs the motion of this frame thanks to its curvature and torsion.

This is one approach to describing the motion of a curve in R3, where the position of

the curve is at (0, 0, 0) with respect to the Frenet-Serret frame. This chapter presents

the background needed to formulate the frame and its motion. This formulation will

be used in later chapters for both the isentropic Euler equations and the nonlinear

Schrödinger equation. The mathematics developed in this section is bookwork which

can be found in sources such as Pressley [61].

1.1 Arc length reparametrisation

A curve γ is a smooth function, parameterised by time t,

γ : [0, τ ]→ R3.

t 7→ γ(t).

Unless defined otherwise it will be assumed it is twice differentiable.

Definition 1.1.1. A regular curve is defined as a curve with nowhere zero speed.

Symbolically,

‖γ̇(t)‖ 6= 0, ∀t ∈ [0, τ ].

The derivative of the curve, known as the velocity, is a vector quantity pointing

17



tangentially to (in the direction of) the curve at each point, with magnitude equal to

the speed of the curve.

Definition 1.1.2. A unit-speed curve is a curve with speed 1 everywhere. ‖γ̇(t)‖ =

1,∀t ∈ [0, τ ].

Definition 1.1.3. The arc-length of a curve γ(t) is the distance an observer will have

travelled if following the curve from t = 0 up to the present time, t. It is given by the

function s(t),

s(t) =

∫ t

0

‖γ̇(u)‖du. (1.1)

The derivative of the arc length with respect to time gives the speed of the curve

ds

dt
=

d

dt

∫ t

0

‖γ̇(u)‖du = ‖γ̇(t)‖. (1.2)

Proposition 1.1.4 (Pressley). [60, Cor 1.3.7] Every regular curve γ(t) will have a

unit-speed parametrisation γ̃(f(t)) and the reparametrisation f will be equal to s(t) up

to a constant.

One can express the velocity of a curve with respect to its unit speed parameterisa-

tion like so,

γ̃′(s) =
d

ds
γ̃(s(t)) =

1
ds
dt

d

dt
γ(t) =

1

‖γ̇(t)‖
γ̇(t). (1.3)

This gives a unit vector pointing in the tangential direction to the curve, and acts as

the starting point for the Frenet-Serret frame.

1.2 The Tangent, Normal and Binormal vectors

In this section, the curve γ(t) is assumed to be unit speed.

Definition 1.2.1. The tangent to the curve, denoted t is the unit length vector pointing

tangentially to the curve at each point. As such it can be defined in terms of γ as t = γ̇.

A unit speed curve γ(t) has no acceleration in the tangent direction (otherwise it

would speed up!), this can be verified by taking the derivative of the relation 〈γ̇, γ̇〉 = 1

with respect to t. This gives the relation 〈γ̈, γ̇〉 = 0 and therefore the curves acceleration,

γ̈ lies in the plane perpendicular to t.
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Definition 1.2.2. The direction of the acceleration of the unit speed curve γ(t) is

called the normal to the curve, denoted n. The magnitude of this vector is known as

the curvature, and is denoted κ. To enforce the unit length requirement, n = γ̈/‖γ̈‖,
and the magnitude κ = ‖γ̈‖.

Definition 1.2.3. The orthonormal vectors t and n can be extended to a co-moving

basis of R3 with use of the cross product. A choice of orientation is all that is left to

define the binormal vector b,

b = t× n,

or in terms of the unit speed curve

b =
γ̇ × γ̈
‖γ̈‖

.

Due to the fact both ‖t‖ = 1 and ‖n‖ = 1, b is also unit length and {t,n,b} form an

orthonormal basis of R3.

By the definition, it is clear that the normal is related to the derivative of the tangent

via the expression

n =
ṫ

κ
, (1.4)

and the derivative of n can be calculated using its definition in terms of the unit speed

curve.

d

dt
n =

;γ‖γ̈‖2 − γ̈〈γ̈, ;γ〉
‖γ̈‖3

,

= 〈 ;γ

‖γ̈‖
, t〉t + 〈 ;γ

‖γ̈‖
,b〉b,

= −κt + 〈 ;γ

‖γ̈‖
,b〉b, (1.5)

where the last line follows from taking derivatives of 〈γ̈, γ̇〉 = 0.

d

dt
〈γ̈, γ̇〉 = 0,

〈;γ, γ̇〉+ ‖γ̈‖2 = 0,

〈 γ̈
‖γ̈‖

, γ̇〉 = −‖γ̈‖.
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The final relation needed to build the Frenet-Serret equations for the motion of the

t,n,b frame is the derivative of b.

d

dt
b =

d

dt
t× n + t× d

dt
n,

= t× ṅ.

This shows that ḃ is orthogonal to t, and the fact b is a unit vector implies ḃ is

orthogonal to b. Thus ḃ points in the direction of n, and the magnitude can be defined

as the torsion ḃ = −τn. This can also be calculated explicitly, using Equation (1.5)

= t×
(
−κt + 〈 ;γ

‖γ̈‖
,b〉b

)
,

= −〈 ;γ

‖γ̈‖
,b〉n.

Thus the torsion can be given by the inner product,

τ = 〈 ;γ

‖γ̈‖
,
γ̇ × γ̈
‖γ̈‖

〉.

Combining the results of this section gives the Frenet-Serret frame.

Proposition 1.2.4. Any regular curve γ ∈ C3(R,R3) or smoother can be described by

the evolution of a frame,

d

ds

t

n

b

 =

 0 κ 0

−κ 0 τ

0 −τ 0


t

n

b

 , (1.6)

where κ(s) > 0 and τ(s) are in C3(R,R). The converse is also true, for any κ, τ ∈
C3(R3) there exists a unique (up to isometries of R3) curve γ which is specified by its

frame [t,n,b].

Proof. The forward direction is an application of the definitions specified in this section.

Provided γ is regular and three times differentiable t,n,b, κ, τ are all well defined. The

converse direction is an application of classical ODE existence theorems, for example

Birkhoff [4]. Provided κ and τ are differentiable, then with sufficient initial conditions
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the ODE has a unique solution. The details of the isometry needed on R3 can be found

in [60, Thm 2.3.6], and amount to translating between initial points of the two potential

solutions, and then rotating their frames to match.
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Chapter 2

Spherical geometry

Following on from the previous chapter on Frenet-Serret frames, there are directions

that discussion can be developed further for curves which are constrained to stay on

the unit sphere. Any two dimensional surface embedded in R3 has a vector normal

to the surface within the ambient space, this offers an alternate choice of normal to

the one given in the Frenet-Serret frame. The first section of this chapter discusses

this idea. Also included in the chapter is background material on Lie groups and

algebras which is used to construct solutions to differential equations constrained to

the sphere. The Magnus expansion is the prototypical example, and this is mentioned

subsequently. However to understand what is meant by the Magnus expansion, the

directional derivative of the exponential map within the Lie algebra is carefully defined.

Finally, the chapter covers the Rodriguez formula, a closed form expression for the

exponential of a three dimensional skew symmetric matrix. Many of the proofs given

in this chapter are basic Lie group theory and can be found in sources such as Stillwell

[68].

2.1 Geometry of the sphere

For any two dimensional surface (or smooth Riemannian manifold) embedded in R3

there exists an alternative co-moving frame for curves travelling along this surface.

This comes from the fact that the velocity vector always lies in the tangent space of the

surface, and there exists a unique (up to sign) unit normal to this plane in R3. Thus
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the old tangent vector of a unit speed curve (as defined in Definition 1.2.1) and the

normal to the surface are always orthogonal and one can construct a frame from these

vectors. In this case, no longer does the acceleration of a unit speed curve point in the

direction of the ‘normal’ vector, instead it lies in the plane orthogonal to the tangent.

The component of the acceleration in the direction of the ‘normal’ vector is related to

the curvature of the surface as will be discussed directly.

Definition 2.1.1. The unit sphere Sn−1 is the boundary of the unit ball, ∂B in Rn,

which is defined

∂B(a, r) = {x ∈ Rn | ‖x− a‖ = r}. (2.1)

The unit sphere is ∂B(0, 1), and unless specified, it is assumed n = 3.

For the unit sphere, S2, the normal to the surface is given everywhere by the radial

vector, denoted r̂. Thus if the curve γ(t) is unit speed and constrained to the unit

sphere, then the vectors {γ̇, r̂, γ̇× r̂} form an orthogonal basis for R3 which moves with

the curve.

Definition 2.1.2. The acceleration of a unit speed curve constrained to the surface of

the unit sphere can be expressed as,

γ̈ = κnr̂ + κgγ̇ × r̂, (2.2)

where κn is defined as the normal curvature and κg is the geodesic curvature.

This relation holds for other surfaces too and at its simplest is just expressing γ̈ with

respect to the frame {γ̇, r̂, γ̇ × r̂}. The acceleration has no component tangentially as

it is unit speed (〈γ̈, γ̇〉 = 0). The property that makes the sphere unique is the simple

expression for n̂, a generic normal vector, as r̂ –the radial unit vector.

Lemma 2.1.3. Consider any unit speed curve γ(t) which lies on the sphere. Its normal

curvature is κn = −1.

Proof. Any curve on the sphere has 〈γ, γ̇〉 = 0 otherwise it would move off the sphere.

The derivative of this relation is 〈γ̈, γ〉 = −‖γ̇‖2, and in the case of the unit sphere,

γ(t) = r̂. Then κn = 〈γ̈, r̂〉 = 〈γ̈, γ〉 = −‖γ̇‖2, and recall that γ is unit speed.
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2.2 Frenet-Serret on the sphere

Proposition 2.2.1. For a unit speed curve γ(t) which is on the unit sphere, its curva-

ture and torsion satisfy the relation

τ

κ
=

d

dt

κ̇

κ2τ
, (2.3)

and the converse is also true.

Proof. As γ(t) is in R3 it can be decomposed into its coordinates with respect to the

basis {t,n,b}, γ(t) = a(t)t+b(t)n+c(t)b. Now as γ(t) is on the unit sphere, 〈γ, t〉 = 0,

and so a(t) = 0. Then the derivative of this expression is

〈γ(t), ṫ〉+ 〈t, t〉 = 0,

making use of the relation γ̇(t) = t because γ is unit speed

〈γ(t), κn〉 = −‖t‖2,

〈γ(t),n〉 = −1

κ
.

This implies that b(t) = −1/κ. A further derivative will allow c(t) to be calculated,

d

dt
〈γ(t),n〉 = − κ̇

κ2
,

〈t,n〉 − 〈γ(t), κt〉+ 〈γ(t), τb〉 =
κ̇

κ2
,

〈γ(t),b〉 =
κ̇

κ2τ
.

With reference back to the generic expression for γ(t), c(t) = κ̇/κ2τ and thus γ(t) =

−(1/κ)n + (κ̇/κ2τ)b. To finish the proof, take the derivative a final time,

d

dt
〈γ(t),b〉 =

d

dt

κ̇

κ2τ
,

〈γ(t),n〉 = −1

τ

d

dt

κ̇

κ2τ
,

1

κ
=

1

τ

d

dt

κ̇

κ2τ
.
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The converse can be seen from reversing the steps in the proof.

2.2.1 Local coordinates

One can study the geometry of the sphere as a Riemannian manifold without a general

theory of differential geometry thanks to spherical polar coordinates. The sphere is

embedded into R3 and covered with the two natural surface patches with respect to lat-

itude and longitude. The curvature of the manifold is then dealt with using curvatures

already mentioned in this work.

The spherical polar coordinates of R3 are given by (r, θ, ϕ) where θ denotes co-

latitude - angle from the z axis - and ϕ denotes longitude - angle from the x axis and

r is the radial distance. Any point on the surface of the unit sphere has r = 1 and

so a local set of coordinates (θ, ϕ) ∈ (0, π) × [0, 2π) maps the majority of the sphere

(a second chart is needed to complete the atlas, which can simply be a translation

of this surface patch around the sphere). The embedding map which maps the local

coordinates to points in R3 in which the manifold has been embedded is given by

r̂ =

sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

 . (2.4)

As is natural in differential geometry of a smooth Riemannian manifold, the basis of the

tangent space will be ∂θ and ∂ϕ in which the meaning of both are the partial derivative

operators at a point mapping curves passing through that point into the tangent space.

θ̂ =
∂r̂

∂θ
=

cos(θ) cos(ϕ)

cos(θ) sin(ϕ)

− sin(θ)

 , ϕ̂ =
1

sin(θ)

∂r̂

∂ϕ
=

− sin(ϕ)

cos(ϕ)

0

 .

And the collection (r̂, θ̂, ϕ̂) form an orthogonal basis of R3. For future ease, the partial
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derivatives of the vectors θ̂(θ, ϕ) and ϕ̂(θ, ϕ):

∂ϕ̂

∂ϕ
= −ζ =

− cos(ϕ)

− sin(ϕ)

0

 ,
∂θ̂

∂θ
= −r̂,

∂θ̂

∂ϕ
= cos(θ)ϕ̂,

∂ϕ̂

∂θ
= 0.

The ζ component can be decomposed into its constituent parts by:

〈ζ, r̂〉 = sin(θ)ϕ̂,

〈ζ, ϕ̂〉 = 0,

〈ζ, θ̂〉 = cos(θ),

making the relation ∂ϕ̂
∂ϕ

= − sin(θ)r̂ − cos(θ)θ̂. Thus, when taking the time derivatives

of the vectors (θ̂, ϕ̂, r̂) the resulting vectors are,

d

dt
θ̂ = −θ̇r̂ + ϕ̇ cos(θ),

d

dt
ϕ̂ = −ϕ̇ sin(θ)r̂ − ϕ̇ cos(θ)θ̂,

d

dt
r̂ = θ̇θ̂ + ϕ̇ sin(θ)ϕ̂.

A hypothetical smooth curve on the surface of the sphere can be parameterised in

intrinsic coordinates (θ(t), ϕ(t)), embedding the sphere in R3. With use of r̂ one can

express the curve in Cartesian coordinates by

γ(t) = r̂(θ(t), ϕ(t)) = (sin(θ(t)) cos(ϕ(t)), sin(θ(t)) sin(ϕ(t)), cos(θ(t))).

Taking the derivative twice with respect to time and expressing the result with respect
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to the basis (r̂, θ̂, ϕ̂) equals

d

dt
γ(t) = θ̇θ̂ + ϕ̇ sin(θ)ϕ̂, (2.5)

d2

dt2
γ(t) = θ̈θ̂ + θ̇

d

dt
θ̂ + ϕ̈ sin θϕ̂+ θ̇ϕ̇ cos θϕ̂+ ϕ̇ sin(θ)

d

dt
ϕ̂,

d2

dt2
γ(t) = θ̈θ̂ − θ̇2r̂ + θ̇ϕ̇ cos θϕ̂+ ϕ̈ sin θϕ̂+ θ̇ϕ̇ cos θϕ̂

+ ϕ̇ sin(θ)
(
−ϕ̇ sin(θ)r̂ − ϕ̇ cos(θ)θ̂

)
.

Collecting terms,

d2

dt2
γ(t) =

(
θ̈ − ϕ̇2 sin(θ) cos(θ)

)
θ̂ −

(
θ̇2 + ϕ̇2 sin2(θ)

)
r̂

+
(

2θ̇ϕ̇ cos θ + ϕ̈ sin θ
)
ϕ̂. (2.6)

The component of the acceleration in the direction normal to the surface is −θ̇2 −
ϕ̇2 sin2(θ(t)) = −‖γ̇‖2. This is necessary for the curve to stay on the sphere. The

velocity of a curve on a surface must lie in the tangent space to the surface. The

tangent space to the sphere at the point given by (θ, ϕ) in local coordinates is the

plane perpendicular to the vector r̂(θ, ϕ) as viewed extrinsically in R3. In other words,

for any curve X(t), using the Euclidean inner product on R3, 〈γ, γ̇〉 = 0. Taking

the derivative of said relation implies that 〈γ, γ̈〉 = −‖γ̇‖2. This is a special case

of the covariant derivative, the derivative of a vector field on a manifold is given by

the covariant derivative of the vector field along curves on the manifold. As such

d2/dt2γ = ∇γ γ̇ = γ̈ − 〈γ̇, N〉N , where N is the normal vector to the surface of the

manifold when the manifold is embedded in a higher dimensional Euclidean space (and

the inner product is with respect to that space). In the case of the sphere the normal

vector is simply r̂, and the normal component of γ̈ becomes an additional constraint

for the curve to stay on the sphere.

2.2.2 Geodesic and normal curvature

Returning to the frame outlined in Section 2.1, the normal and geodesic curvatures of

a general curve γ(t) = r̂(θ(t), ϕ(t)) can now be calculated explicitly.
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Proposition 2.2.2. In the case of a unit sphere, any unit speed curve along S2 has

normal curvature κn = −1 and geodesic curvature,

κg = (ϕ̈θ̇ − θ̈ϕ̇) sin(θ) + 2θ̇2ϕ̇2 cos(θ) + ϕ̇3 sin2(θ) cos(θ) (2.7)

where γ(t) = r̂(θ(t), ϕ(t)) is the unit speed curve expressed in local coordinates on the

sphere.

Proof. Consider the curve constructed in the previous section, γ(t) = r̂(θ(t), ϕ(t)), with

its acceleration given in Equation (2.6). Assuming now that this curve is in fact unit

speed, then ‖γ̇‖2 = θ̇2 + ϕ̇2 sin2(θ(t)) = 1, and so from the r̂ component of Equation

(2.6) we can deduce that κn = −1. The vector γ̇ can be expressed in terms of (θ̂, ϕ̂)

as in Equation (2.5), γ̇ = θ̇θ̂ + ϕ̇ sin(θ)ϕ̂. Taking the cross product with r̂ will define

r̂ × γ̇, noting that r̂ × θ̂ = ϕ̂ allows us to calculate

r̂ × γ̇ = θ̇ϕ̂− ϕ̇ sin(θ)θ̂.

Thus all that is left is to calculate κg = 〈γ̈, r̂ × γ̇〉 and verify that 〈γ̈, γ̇〉 = 0.

〈γ̈, r̂ × γ̇〉 = θ̇〈γ̈, ϕ̂〉 − ϕ̇ sin(θ)〈γ̈, θ̂〉

= θ̇
(

2θ̇ϕ̇ cos θ + ϕ̈ sin θ
)
− ϕ̇ sin(θ)

(
θ̈ − ϕ̇2 sin(θ) cos(θ)

)
= (ϕ̈θ̇ − θ̈ϕ̇) sin(θ) + 2θ̇2ϕ̇2 cos(θ) + ϕ̇3 sin2(θ) cos(θ).

This gives the proposition. To verify that our curve remains unit speed and thus all

acceleration inside of the tangent space to the sphere is purely perpendicular to the

motion we must check that 〈γ̈, γ̇〉 = 0.

〈γ̈, γ̇〉 = θ̇〈γ̈, θ̂〉+ ϕ̇ sin(θ)〈γ̈, ϕ̂〉

= θ̇
(
θ̈ − ϕ̇2 sin(θ) cos(θ)

)
+ ϕ̇ sin(θ)

(
2θ̇ϕ̇ cos θ + ϕ̈ sin θ

)
= θ̈θ̇ + θ̇ϕ̇2 sin(θ) cos(θ) + ϕ̈ϕ̇ sin2(θ)

=
1

2

d

dt

(
θ̇2 + ϕ̇2 sin2(θ(t))

)
= 0.
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2.3 Lie group theory for the Magnus expansion

In this section an algebraic analysis of the derivative of the exponential of a matrix

is carried out. The Magnus expansion gives the impetus behind this formalism, to

discuss solutions to matrix differential equations which are given by an exponential of

a function. The context of interest in this section is that of the differential equation

d

dt
X(t) = A(t)X(t), (2.8)

for A(t) ∈ so(n) or more generally A(t) ∈Mn(R) and X(t) : [0, t]→M where M could

be Rn, or a bounded subspace such as the unit sphere Sn−1. In the case of so(n) the

solution can be given by a vector on Sn−1 and in turn this can be represented by an

initial vector and a rotation in SO(n). This rotation matrix can then be expressed as

the exponential of an element of so(n) and the details and validity of this statement

are discussed, as well as worked out explicitly for n = 3. First the subject is motivated

by the method of Picard iteration.

Motivating examples

For an intuition of where the Magnus expansion has been developed from consider the

following examples.

Example 2.3.1. Consider the initial value problem,

d

dt
X(t) = AX(t), X(0) = X0, (2.9)

where X ∈ C([0, t],Rn) and A is a constant matrix A ∈ Mn(R). As an illustrative

exercise we will solve this using successive approximations. In integral form the initial

value problem becomes

X(t) = X0 +

∫ t

0

AX(s)ds := TX(t). (2.10)

30



which can be represented as the operator T . The solution X is the function such that

X = TX, and the approximation can be started with X0

TX0 = (I + tA)X0 := X1,

TX1 = (I + tA+
t2

2
A2)X0 := X2,

From which a clear pattern emerges,

TXn =
n∑
j=0

tjAj

j!
X0, (2.11)

and hence limn→∞ TXn = exp(tA)X0.

The problem becomes more complex if the matrix A is no longer constant.

Example 2.3.2. Consider the initial value problem,

d

dt
X(t) = A(t)X(t), X(0) = X0,

where X ∈ C([0, t],Rn) and A(t) ∈ C([0, t],Mn(R). Also assume that A(t) commutes

with B(t) :=
∫ t

0
A(s)ds for all t.

Again using the idea of successive approximations, it is clear that TX0 = (I +

B(t))X0. Applying the operator to X1,

TX1 = X0 +

∫ t

0

A(u)duX0 +

∫ t

0

A(u)

(∫ t

0

A(s)ds

)
duX0.

This equation can be reduced with use of the assumption that A(t) and B(t) commute,

the third term is simplified using integration by parts,∫ t

0

A(u)B(u)du = B(t)B(t)−
∫ t

0

B(u)A(u)du,∫ t

0

A(u)B(u)du =
1

2
B(t)B(t).

This reduces the expression for X2 to X2 = (I + B(t) + 1
2
B(t)2)X0 and the method of
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integration by parts can be applied again for subsequent terms using the assumption

that A(t) and B(t) commute. This suggests the limit

lim
n→∞

TXn = exp(B(t))X0. (2.12)

The assumption on A(t) and its integral commuting for all t is not realistic. If it

doesn’t hold, then the infinite series will become more complicated, involving nested

commutator brackets. This offers a motivation for the Magnus expansion, the exam-

ples have suggested the form X(t) = exp(Ω(t))X(0) for solutions to the initial value

problems posed, for this function to solve a general ODE on SO(3), what differential

equation will Ω have to satisfy.

These examples also motivate the classical theorems on existence of solutions to

ODEs, the operator T defined in Equation (2.10) is the iterator in Picard’s iteration

theorem [66].

Theorem 2.3.3 (Picard iteration theorem). Consider A(t) : [0, τ ] → Mn(R) continu-

ous and Lipschitz in the sense that for all t ∈ [0, τ ], ‖A(t)X − A(t)Y ‖ ≤ K‖X − Y ‖
for X, Y ∈ R ⊂ Rn and R a closed and bounded subset. Then there exists a solution

X(t) : [0, τ ]→ R to the differential equation

d

dt
X(t) = A(t)X(t), (2.13)

on an interval t ∈ [0, h] where h ≤ τ .

Proof. First constrain our problem to the interval [0, h] where h ∈ [0, t] is chosen so

that Kh < 1. Using the functional T given in equation (2.10), iteratively define

X1 := T (X0) = X0 +

∫ h

0

A(s)X0ds,

X2 := T (X1) = X0 +

∫ h

0

A(s)X1ds,

...

Xn := T (Xn−1) = X0 +

∫ h

0

A(s)Xn−1ds.
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By defining A(t) as a bounded linear function of X on R in the assumptions of the

theorem it is clear that ‖A(t)X‖ ≤ K‖X‖ ≤ K2 for all X ∈ R. Thus ‖X1 −
X0‖ = ‖

∫ h
0
A(s)X0ds‖ ≤ hK2, which in turn implies a smaller limit for ‖X2 −X1‖ =

‖
∫ h

0
A(t)(X1 − X0)ds‖ ≤ hK‖X1 − X0‖ ≤ hKhK2. Seeing the pattern, the distance

‖Xn −Xn−1‖ ≤ (hK)n−1hK2. Next consider the convergence of the series

X = X0 +
∞∑
n=1

(Xn −Xn−1),

in the Euclidean norm on Rn. By applying the triangle inequality, the norm of X is

bounded above by

‖X‖ ≤ ‖X0‖+
∞∑
n=1

‖Xn −Xn−1‖ ≤ ‖X0‖+ hK2

∞∑
n=0

(hK)n,

so the series X converges. Furthermore the series X = X(t) will converge by the same

estimate for any t ∈ [0, h] hence the convergence is uniform. Lastly, the series X is a

solution to the differential equation because

0 = Xn − T (Xn−1),

X − T (X) = X − T (X)−Xn + T (Xn−1),

‖X − T (X)‖ ≤ ‖X −Xn‖+ ‖T (X)− T (Xn−1)‖,

‖X − T (X)‖ ≤ ‖X −Xn‖+ ‖
∫ h

0

A(s)(X −Xn−1)ds‖,

‖X − T (X)‖ ≤ ‖X −Xn‖+ hK‖X −Xn−1‖.

As Xn → X as n → ∞ it is clear that ‖X − T (X)‖ tends to zero hence X is a

solution.

2.3.1 Lie theory

Define M to be a differentiable manifold. That is a Hausdorff space which is second

countable, and has a smooth differentiable atlas. Any function on this space is dif-

ferentiable thanks to the atlas, and thus the tangent space to the manifold can be
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defined.

Definition 2.3.4. A Tangent space to the manifold M at the point p ∈M is denoted

TpM . Let γ(t) : R → M denote all smooth curves on M such that γ(0) = p. The

Tangent space is the set of derivatives of the curves γ̇(0). For each vector a ∈ TpM there

are many curves such that γ̇(0) = a therefore the definition can be reduced to the set

of equivalence classes of derivatives of curves. Consider P = {γ : R → M : γ(0) = p}
then an equivalence relation γ̇1 ∼ γ̇2 if γ̇1(0) = γ̇2(0) will produce the equivalence classes

and the quotient vector space P/ ∼= TpM .

With these concepts the Lie group and Lie algebra can be defined.

Definition 2.3.5. A Lie group, G, is a differentiable manifold M which is also a group

and the group operation and inversion are smooth.

Definition 2.3.6. A Lie algebra is a vector space g with a Lie bracket [·, ·] : g× g→ g

which is linear in both arguments, antisymmetric and satisfies the Jacobi identity,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, ∀A,B,C ∈ g.

For this project only Lie groups which can be represented as matrices (so considered

as subgroups of GLn(R) are needed, which simplifies the definitions). The Lie algebra

of a matrix Lie group can be defined as follows

Definition 2.3.7. The Lie algebra of a matrix Lie group, G, consists of the matrices

X such that exp(tX) ∈ G for all t.

The tangent space of a Lie group is a Lie algebra. We will only consider matrix Lie

groups and matrix Lie algebras, for which the exponential map

exp : g→ G,

which maps the algebra to the group, coincides with the matrix exponential,

exp(A) =
∞∑
n=0

Ak

k!
.
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The Lie groups which are discussed most in this thesis are the special orthogonal

groups SO(n), and specifically SO(3).

Definition 2.3.8. One can define SO(n) via its matrix representation

SO(n) = {A ∈ GLn(R) : AA> = I, det(A) = 1}. (2.14)

This set, with the binary operation of matrix multiplication, forms a Lie group.

Definition 2.3.9. The Lie group SO(n) has accompanying Lie algebra so(n), with

matrix representation

so(n) = {X ∈ GLn(R) : X +X> = 0}. (2.15)

Definition 2.3.10. The adjoint map of a Lie group, if G is a Lie group and g is it’s

algebra, then for all A ∈ G there is a linear automorphism of g, AdA : g→ g given by

AdA(X) = AXA−1. (2.16)

Recall that g is an algebra over a vector space, so linear maps g → g themselves form

a group GL(g). Thus the map Ad : A 7→ AdA is a group homomorphism G→ GL(g).

Remark 2.3.11. For a relevant example, consider the Lie group SO(3). If A ∈ SO(3)

and X ∈ so(3) then AdA(X) = AXA> = −AX>A> = −(AXA>)>, hence AXA> is in

so(3) too.

Lemma 2.3.12. Any matrix A ∈ SO(3) can be decomposed into a triplet A = BCθB
−1

in which B ∈ SO(3), and Cθ ∈ SO(3) is of the specific form which rotates the z axis

by an angle θ,

Cθ =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (2.17)

Proof. One can prove the statement concerning the rotation around a fixed axis, and the

specific decomposition of any matrix A ∈ SO(3) by studying its characteristic equation.

The equation pA(x) = det(xI −A) is a cubic monic polynomial and thus must have at

least one real root by the intermediate value theorem. What is more, the intercept of
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the graph, pA(0) = det(−A) = −1. As the polynomial is monic,pA(x)→∞ as x→∞,

and so the intermediate value theorem again establishes that pA(x) should have at least

one positive real root. For any eigenvalue λ and for v its eigenvector, (Av)>Av = v>v,

but (Av)>Av = |λ|2v>v, so |λ| = 1. Together these statements imply that λ = 1 must

be an eigenvalue of A, and its accompanying (unit) eigenvector v is the Euler axis of

the rotation for Cθ. The rest of the argument resembles diagonalising or the Jordan

normal form. The matrix B can be seen as the change of coordinates from (x, y, z) to

(w1,w2,v) where orthonormal w1 and w2 span the plane orthogonal to v. With this

definition alone B ∈ SO(3) and so by the closure property of the group, Cθ must be in

SO(3) too. Hence, from the currently known information, Cθ must be of the form

Cθ =

 U
0

0

0 0 1

 .

By the condition that CθC
>
θ = I, the smaller U ∈ M2(R) must satisfy UU> = I. The

determinant relation det(Cθ) = 1 directly implies det(U) = 1 and thus U ∈ SO(2).

A generic element of SO(2) can be expressed via one parameter θ by the top right

elements of Cθ in Equation (2.17).

Lemma 2.3.13. The action of SO(3) on itself is by conjugation, or the adjoint map

Ad. This action is isomorphic to the space of rotations SO(2)

Proof. Consider the group action AdU for some matrix U ∈ SO(3). For A ∈ SO(3) the

action of AdU forms an orbit, the orbit of A is the set {AdU(A) : U ∈ SO(3)}. For

each A there is a representative member of the set equal to Cθ by Lemma 2.3.12. The

set {Cθ : θ ∈ (0, 2π]} is isomorphic to SO(2).

Lemma 2.3.14. The exponential map exp : so(3)→ SO(3) is surjective.

Proof. To prove the surjectivity of the exponential map, consider the following relation.

For any value of θ ∈ [0, 2π],

exp

0 −θ 0

θ 0 0

0 0 0

 =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (2.18)
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If Dθ is the matrix specified, so that exp(Dθ) = Cθ then note that exp(BDθB
−1) =

B exp(Dθ)B
−1. This follows from the fact that BB> = I, which follows from the

construction of B where each row is an orthonormal vector. Finally, Dθ ∈ so(3) and

as explained in Remark 2.3.11, so is AdB(Dθ). So exp is surjective, for all A ∈ SO(3)

there exists AdB(Dθ) ∈ so(3) such that exp(AdB(Dθ)) = A.

Definition 2.3.15. The adjoint representation of a Lie algebra is the linear map adY :

g→ g which, for each Y ∈ g is given by

adY (X) = [Y,X] . (2.19)

In the same way as the adjoint map of the group can also be seen as a group homomor-

phism G → GL(g), the adjoint representation of the algebra can be viewed as a map

Y → adY which maps elements of g to linear operators on g.

Theorem 2.3.16. [33, Thm 3.18] For any given Lie group homomorphism φ : G→ H

between matrix Lie groups, there exists a unique real linear map between their algebras

φ̃ : g→ h such that,

φ(eX) = eφ̃(X). (2.20)

This map has the following property,

φ̃(X) =
∂

∂t
φ(exp(tX))|t=0. (2.21)

The Adjoint map Ad is a group homomorphism G→ GL(g) and the adjoint repre-

sentation, ad, is its corresponding map between the algebras, Ãd = ad. This is shown

by, for all Y ∈ g,

∂

∂t
AdetX (Y )

∣∣∣∣
t=0

=

(
∂

∂t
etX
)
Y e−tX

∣∣∣∣
t=0

+ etXY

(
∂

∂t
e−tX

)∣∣∣∣
t=0

= XY − Y X

= adX(Y )

37



and therefore by Theorem 2.3.16,

AdeX = eadX . (2.22)

2.3.2 The derivative of the exponential map

Let g be the Lie algebra to the Lie group G, the derivative of a smooth function lying

in the group (at the identity) lies in the algebra. The Lie algebra is its own tangent

space, therefore the differential of the exponential function at a point X ∈ g will be an

endomorphism,

DX(Y ) = (d exp)|X(Y ) : g→ g. (2.23)

The function,

f : t 7→ exp(−X) exp(X + tY ) (2.24)

is a map from R to G if X, Y ∈ g, and satisfies f(0) = I, therefore ḟ(t) ∈ g. The

function f : Y 7→ ḟ(0) can be identified with (d exp)|X(Y ), they are both functions

g→ g, and this identification

(d exp)|X(Y ) =

(
∂

∂t
exp(−X) exp(X + tY )

)
t=0

(2.25)

is used in Thm 2.14.3, by Varadarajan to establish the definition,

DX(Y ) =
∞∑
k=0

(−1)k

(k + 1)!
adkX(Y ). (2.26)

The expression in Equation (2.26) can be proven using the method given by Tuyn-

man [72]. Though said reference does not expand on the subtleties of the convergence

properties of a certain power series, which are only true thanks to Weierstrass’ Double

Series theorem for complex analytic functions [38, p.35].

Lemma 2.3.17. For a complex matrix X ∈Mn(C), the following limit holds uniformly

on compact sets as n→∞,

exp(X)− 1

n(exp(X
n

)− 1)
→ exp(X)− 1

X
, (2.27)
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where the fraction represents a compact notation for a power series, not division with

respect to a matrix.

Proof. The partial geometric sum gives a starting point, for x ∈ C,

xn − 1

n(x− 1)
=

1

n

n−1∑
k=0

xk.

The association of x
1
n = exp(z) implies the following,

exp(z)− 1

n(exp( z
n
)− 1)

=
1

n

n−1∑
k=0

exp

(
zk

n

)
,

=
1

n

n−1∑
k=0

∞∑
j=0

1

j!

(
zk

n

)j
.

In the case of matrices X ∈Mn(C) the power series is

exp(X)− 1

n(exp(X
n

)− 1)
=

1

n

n−1∑
k=0

∞∑
j=0

1

j!

(
k

n

)j
Xj. (2.28)

The convergence of this series is not taken for granted, and will be established via Weier-

strass’ double series theorem. First the complex variable case, exchange of summands

leaves the power series,

Fn(z) =
∞∑
j=0

(
1

n

n−1∑
k=0

1

j!

(
k

n

)j)
zj. (2.29)

Express Fn =
∑∞

j=0 uj(z), then each uj(z) is analytic on the disc {z ∈ C : |z| < R} as

on said disc, and for all n,∣∣∣∣∣ 1n
n−1∑
k=0

(
k

n

)j
zj

j!

∣∣∣∣∣ ≤
(

1

n

n−1∑
k=0

(
k

n

)j)∣∣∣∣zjj!
∣∣∣∣ ≤ Rj

j!
, (2.30)

where the term in brackets is the mean of k
n

and each k
n
< 1. Hence, thanks to

Weierstrass’ M-test, Fn is absolutely convergent on {z ∈ C : |z| < R} with the
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estimate, ∣∣∣∣∣
n−1∑
k=0

(
k

n

)j
zj

j!

∣∣∣∣∣ ≤
n−1∑
k=0

Rj

j!
≤ exp(R) <∞. (2.31)

Analogously, each term of Fn(X) =
∑∞

j=0 uj(X) is analytic on the disc {X ∈Mn(C)|‖X‖ <
R} because the operator norm is submultiplicative, and hence ‖Xj‖ ≤ ‖X‖j ≤ Rj. This

makes Fn(X) absolutely convergent on {X ∈Mn(C)|‖X‖ < R} with the estimate,∥∥∥∥∥
n−1∑
k=0

(
k

n

)j
Xj

j!

∥∥∥∥∥ ≤
n−1∑
k=0

Rj

j!
≤ exp(R) <∞. (2.32)

As Fn is absolutely convergent on the disc for each n, the sequence (Fn)n∈N converges

to an analytic function denoted F . An analytic function can be represented by its

Maclaurin series, and Weierstrass’ double series theorem says that one can calculate

the derivatives of a function
∑∞

j=0 uj(z) term by term provided each term is analytic

on the same disc, as just established.

Fn(X) =
∞∑
l=0

F (l)(0)

l!
X l,

F (1)(0) =
1

n

n−1∑
k=0

(
k

n

)
, F (l)(0) =

1

n

l!

l!

n−1∑
k=0

(
k

n

)l
.

Finally, let n→∞ and notice the resemblance between F (l)(0) and a Riemann integral,

as
(
k
n

)k=n−1

k=0
are the left limits of the nth partition of the interval [0, 1].

lim
n→∞

1

n

n−1∑
k=0

(
k

n

)l
=

∫ 1

0

xldx =
1

l + 1
. (2.33)

Substituting into the Maclaurin series for Fn and taking the limit as n→∞,

Fn(X)→
∞∑
l=0

zl

(l + 1)!
=

exp(X)− 1

X
(2.34)

where the last equals sign gives a closed form expression for the power series.
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Theorem 2.3.18 (Tuynman [72]). For matrices X, Y ∈ g the directional derivative,

d

dt
eX+tY

∣∣∣∣
t=0

= eX
(
I − e−adX
adX

)
(Y ). (2.35)

Where the expression within the brackets is a formal power series.

Proof. Let us use the expression given in Equation 2.25 to express the derivative of

exp(X
n

+ tY
n

)n. The product rule implies,

d

dt
exp(

X

n
+ t

Y

n
)n =

n−1∑
j=0

exp

(
X

n

)n−1−j (
d

dt
exp(

X

n
+ t

Y

n
)

) ∣∣∣∣
t=0

exp

(
X

n

)j
,

= exp(X)
n−1∑
j=0

exp

(
X

n

)−j
(CX/n)

(
Y

n

)
exp

(
X

n

)j
,

= exp(X)
n−1∑
j=0

Adjexp(−X/n)

(
(CX/n)

(
Y

n

)
,

)

where CX(Y ) = e−X d
dt

exp(X + tY )

∣∣∣∣
t=0

and is a derivative, therefore linear in Y .

d

dt
exp(

X

n
+ t

Y

n
)n =

eX

n

n−1∑
j=0

Adjexp(−X/n)

(
(CX/n) (Y )

)
,

= eX
(

I − Adexp(−X))

n(I − Adexp(−X/n))

)(
(CX/n) (Y )

)
,

the expression within the brackets is an operator on so(3), the geometric sum of the

series Ad up to the nth term. The relationship AdAn(B) = AdnA(B) is also exploited.

The limit of this expression as n→∞,(
I − Adexp(−X))

n(I − Adexp(−X/n))

)
−→ exp(ad−X)− I

ad−X
=
I − exp(−adX)

adX
.

The identification of linear automorphisms given in Equation (2.22) relates the adjoint

map (Ad) to the adjoint representation (ad). Consider the complexification V of so(3),

and the space of bounded linear operators on V , the operator ad−X can be extended

to a linear operator on V by expressing X with respect to a basis of complex matrices.
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Lemma 2.3.17 applies to bounded linear operators on Mn(C) in the same way as it

does for complex matrices. Finally, the limiting argument is applied to the original

approximation for the exponential,

lim
n→∞

d

dt
exp(

X

n
+ t

Y

n
)n = exp(X) lim

n→∞

(
I − Adexp(−X))

n(I − Adexp(−X/n))

)(
CX
n

(Y )
)
,

= exp(X)

(
I − exp(−adX)

adX

)
(Y ).

The phrase ‘formal power series’ is used in the theorem to refer to the linear operator(
I−exp(−adX)

adX

)
. This is because the operator is used as a succinct representation of the

power series

I − exp(−adX)

adX
=
∞∑
l=0

adl−X
(l + 1)!

=
∞∑
l=0

(−1)l adlX
(l + 1)!

= DX(Y ). (2.36)

Corollary 2.3.19. In addition, as outlined by Hall [33, Thm 5.4], an application of

the chain rule on exp and X(t),

d

dt
exp(X(t))|t=0 = exp(X(t))|t=0

(
I − exp(−adX)

adX

)
(Ẋ(t)|t=0). (2.37)

Or as a power series rather than a ambiguous operator,

d

dt
exp(X(t)) = exp(X(t))DX(t)(Ẋ(t)). (2.38)

Lemma 2.3.20. An alternate form for Equation (2.38) is,

d

dt
exp(X(t)) = D−X(t)(Ẋ(t)) exp(X(t)). (2.39)
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Proof. Take the derivative of I = exp(−X(t)) exp(X(t)) to give,

0 =
d

dt
exp(−X(t)) exp(X(t)) + exp(−X(t))

d

dt
exp(X(t))

0 = exp(−X(t))D−X(t)(−Ẋ(t)) exp(X(t)) + exp(−X(t))
d

dt
exp(X(t))

d

dt
exp(X(t)) = D−X(t)(Ẋ(t)) exp(X(t)),

where the linearity of DX(Y ) in Y is used. If this product rule based proof does not

convince, then consider the proof of Theorem 2.3.18, the terms of the product rule

expansion in the proof can be chosen alternatively as,

d

dt
exp(

X

n
+ t

Y

n
)n =

n−1∑
j=0

exp

(
X

n

)j (
d

dt
exp(

X

n
+ t

Y

n
)

) ∣∣∣∣
t=0

exp

(
X

n

)n−1−j

,

=
n−1∑
j=0

exp

(
X

n

)j
(CX/n)

(
Y

n

)
exp

(
X

n

)−j
exp(X),

=
n−1∑
j=0

Adjexp(X/n)

(
(CX/n)

(
Y

n

))
exp(X).

Where CX(Y ) =
(
d
dt

exp(X + tY )
) ∣∣∣∣

t=0

exp(−X) is an alternate valid definition, which

is again linear in Y. Following the proof of the theorem through with this equation and

the operator adX , Equation (2.39) will be recovered.

Definition 2.3.21. Derived from the reciprocal of the exponential power series, for

|x| > 0, the series,

x

ex − 1
=
∞∑
n=0

Bk
xn

n!
, (2.40)

where Bk represents the kth Bernoulli number.

Using this series and the power series of the exponential we obtain a relation for the
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coefficients cn defined below,

1 =
ex − 1

x

x

ex − 1
,

=

(
∞∑
n=0

xn

(n+ 1)!

)(
∞∑
n=0

Bn
xn

n!

)
,

=
∞∑
n=0

cnx
n,

where cn is given by

cn =
∑

l,k : n=l+k

xl

(l + 1)!

Bk

k!
, (2.41)

=
n∑
l=0

Bn−l

(n− l)!
1

(l + 1)!
,

=
1

(n+ 1)!

n∑
l=0

(
n+ 1

n− l

)
Bn−l.

This calculation implies that cn = 0 for all n ≥ 1.

Lemma 2.3.22. The inverse mapping to DX is given by

EX :=
∞∑
n=0

(−1)n
Bn

n!
adnX . (2.42)

Proof. Recall that ad is linear, for all Y ∈ g,

DX (EX(Y )) =
∞∑
k=0

(−1)k

(k + 1)!
adkX(DX(Y )),

=
∞∑
k=0

1

(k + 1)!
adk−X

(
∞∑
j=0

(−1)j
Bj

j!
adjX(Y )

)
,

=
∞∑
k=0

∞∑
j=0

1

(k + 1)!

Bj

j!
adj+k−X (Y ),

=
∞∑
n=0

cnadn−X(Y ) = Y,
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where cn is defined as in Equation (2.41). As cn = 0 for all n ≥ 1, the sum reduces to

the first term. The linearity of the adjoint operator implies the converse is also true.

2.3.3 Magnus Expansion

Let us return to the question of existence of solutions to matrix valued differential

equations on SO(n) from the beginning of this section,

dX

dt
= A(t)X(t), X(0) = X0.

For solutions over a bounded interval t ∈ [0, t] there are classical theorems for the

existence and uniqueness of solutions which require the matrix A(t) to be Lipschitz,

See Theorem 2.3.3.

Under the assumption that there exists a unique solution X to the initial value prob-

lem the question becomes where can that solution be expressed as X(t) = exp(Ω(t))X0

for some unique Ω(t). This is similar to the idea of a monodromy factor, and Birkhoff

factorisation[61, §8.2] gives a condition under which a complex analogue of Equation

(2.8) can be reduced to dX = t−1RX. Consider the complex problem

dv

dz
= A(z)v(z),

for v : C → Cn, and matrix valued function A ∈ Mn(C) which is holomorphic in a

neighbourhood around the origin in C \ {0} and has a simple pole there too. Provided

A(0) has no pair of eigenvalues such that λ1 − λ2 = 2πiZ the differential equation can

be reduced to
dv

dz
=
R

z
v(z),

where R is a constant matrix equal to the residue of A(z) at the simple pole 0 [61, §8.2].

This problem has unique solution up to a monodromy factor, and this solution can be

described by an exponential function. The reparameterisation z = et coupled with the
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chain rule implies,

d

dz
v(z) =

1

et
d

dt
v(et),

d

dt
v(et) = et

R

et
v(et),

v(et) = eRtv0.

If the matrix M = exp(2πiR) then the solution v(et+2πi) = v(et)M when travelling

once around the origin, and M is the monodromy factor. Equally, the function can

then be expressed as v(z) = zRz0 with t = log(z). The monodromy factor arises here

due to function log : C→ C not being injective.

When one returns to the differential equation at the start of the section, Equation

(2.8), if the matrix A(t) is Lipschitz with A(0) having no pair of eigenvalues such that

λ1 − λ2 = 2πiZ, then there exists a local solution to Equation (2.8) on some interval

t ∈ [0, τ ]. This solution can be extended to t ∈ R thanks to a monodromy factor.

Proposition 2.3.23 (Magnus). [49, Thm 5] Consider the initial value problem given

in Equation (2.8), where the matrix A(t) is Lipschitz with A(0) having no pair of eigen-

values such that λ1 − λ2 = 2πiZ. The solution X(t) is equal to exp(Ω(t))X0 on the

bounded interval t ∈ [0, τ ], and Ω(t) satisfies the ODE,

Ω̇(t) = E−Ω(t)(A(t)), (2.43)

where the inverse of the exponential is given by the power series,

E−Ω(t)(A(t)) =
∞∑
n=0

Bk

n!
adkΩ(t)(A(t)). (2.44)

To see the relationship between the differential equations, note that if Ω(t) is a

solution to Equation (2.43) then by applying the operator D−Ω(t) to both sides,

D−Ω(t)(Ω̇(t)) = A(t). (2.45)
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The derivative of the exponential map is given in lemma 2.3.20,

Ẋ(t) = D−Ω(t)(Ω̇(t)) exp(Ω(t))X0 (2.46)

= D−Ω(t)(Ω̇(t))X(t), (2.47)

substitution of Equation (2.45) into this expression leaves us with Equation (2.8)

= A(t)X(t). (2.48)

The direct analogy of the monodromy factor in this case results from the fact the

exponential map is surjective by Lemma 2.3.14, but it is only injective on a neighbour-

hood of the origin. For example on SO(3), exp(tΩ) = exp((2πα + t)Ω) for Ω ∈ so(3)

where α is a constant that depends on Ω and can be seen from Rodriguez’ formula in

the next section.

2.4 Rodriguez’ rotation formula

2.4.1 Rotation along geodesic through vector

By employing the relationship between the Lie algebra so(3) and the cross product, as

well as Rodriguez’ rotation formula we show how to specify the element of SO(3) which

corresponds to the rotation along the velocity vector V of a distance h‖V ‖.

Definition 2.4.1. Take a vector a ∈ R3 and specify it by a = (a1, a2, a3). Let us denote

by Ma the element of so(3) which acts by left multiplication such that, for all x ∈ R3

Max = a× x.

This matrix is specified by,

Ma =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ,

and defines an isomorphism between the two spaces.
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Proposition 2.4.2 (Rodriguez’ formula). The exponential of an element of so(3) can

be given in closed form by

exp(hMa) = I +
sin(h‖a‖)
‖a‖

Ma +
1− cos(h‖a‖)
‖a‖2

M2
a . (2.49)

Proof. This follows from the power series expression for the exponential map,

exp(hMa) =
∞∑
n=0

(hMa)
n

n!
.

The matrix Ma multiplies with itself such that M3
a = −‖a‖2Ma, and thus the power

series reduces to

exp(hMa) = I+

(
h− h3

3!
‖a‖2 +

h5

5!
‖a‖4 − ...

)
Ma

+

(
h2

2!
− h4

4!
‖a‖2 +

h6

6!
‖a‖4 + ...

)
M2

a .

The resultant power series are of sin(h‖a‖) and 1−cos(h‖a‖)
‖a‖2 respectively.

Proposition 2.4.3. Let x denote a unit vector in R3 orthogonal to the aforementioned

vector a. The rotation matrix exp(hMa) applied to x causes a rotation about the axis a

of an angle h‖a‖.

Proof. Due to the orthogonality of x and a, a× (a× x) = −‖a‖2x.

exp(hMa)x = x+
sin(h‖a‖)
‖a‖

Max+
1− cos(h‖a‖)
‖a‖2

M2
ax

= x+
sin(h‖a‖)
‖a‖

a× x+
1− cos(h‖a‖)
‖a‖2

a× (a× x)

=
sin(h‖a‖)
‖a‖

a× x+ cos(h‖a‖)x.

Observe that exp(hMa)x is in the plane perpendicular to a as it lies in the plane spanned

by x and a× x.

Proposition 2.4.4. If the geodesic curve γ(t) passes through the point X ∈ S2 ( γ(0) =
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X) with a velocity V ∈ R3 (γ̇(0) = V ) then the point γ(h) is given by

γ(h) = exp(hMX×V )X. (2.50)

Proof. Expand out the exponential and compare with the geodesic map given by Absil

[1]. As X is unit length and orthogonal to V , ‖X × V ‖ = ‖V ‖,

exp(hMX×V )X =
sin(h‖V ‖)
‖V ‖

(X × V )×X + cos(h‖V ‖)X. (2.51)

Then by properties of the cross product,

(X × V )×X = 〈X,X〉V − 〈V,X〉X,

= ‖X‖2V.
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Chapter 3

Relevant measure theory

Ideas from measure theory in the context of optimal transport are important to un-

derstand later chapters, therefore this chapter outlines these concepts. This includes

establishing notation. The reason for the numerous definitions is that generally optimal

transport deals with probability measures with finite variance. However, for the fluid

problem tackled in this thesis it is not physically realistic for mass to pile onto sets of

measure zero. Therefore an additional constraint on the sets of measures under discus-

sion must be added. Furthermore, in order to establish the existence and uniqueness

of a minimising measure within a prescribed set of measures, the set is required to be

compact. Compact subsets of the sets of measures are thus defined and, in the third

section of the chapter, it is proven that they are compact with respect to the weak

topology specified. The fundamentals explained in this section are developed in more

detail in books on measure theory [41] [3].

3.1 Spaces of measures

To define a measure space, first a σ-algebra is required. As the scope of this work

requires working with Borel σ-algebras, those will be the focus. To this end, the base

space Ω will always be a complete and separable metric space, and for most intents and

purposes, either Rn or S2.

Definition 3.1.1 (σ-algebra). Consider a total space Ω, a σ-algebra on Ω is a collection

of subsets of Ω, denoted F , satisfying:
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(i) Ω ∈ F .

(ii) If A ∈ F then Ac ∈ F .

(iii) F is closed under countable intersections (and unions by de Morgan’s law [41,

p.1]).

Definition 3.1.2 (Borel σ-algebra). Consider a Euclidean space Ω = Rn or a compact

subset. The topology of Ω is defined by the Euclidean metric, and the smallest σ-algebra

that contains all of the open sets on Ω is called the Borel σ-algebra and denoted B(M).

Definition 3.1.3. A measure is a set function µ : F → R+ ∩ {∞}, which is countably

additive on any collection of disjoint elements of the σ-algebra and assigns zero value

to the empty set. The triplet (M,F , µ) is a measure space.

Definition 3.1.4. The set of all bounded measures on Ω is denoted Mb(Ω).

Definition 3.1.5. Consider two measure spaces, (M1,F1, ρ1) and (M2,F2, ρ2). A

F1/F2-measurable function is a function f : M1 → M2 such that the preimage of

any measurable set is measurable, f−1(F2) = F1 where F1 ∈ F1 and F2 ∈ F2.

If both σ-algebras are Borel then any continuous function f : M1 → M2 is measur-

able (though the class of measurable functions includes non-continuous ones too). If

M2 = Rn then it is common to omit this term from the -measurable nomenclature.

From the idea of a measurable function, a general definition of integration with

respect to a measure can be developed [3]. Consider the measure space (Ω,F1, ρ), for

any F1/B(R)-measurable, bounded function f : Ω→ R. The integral∫
A

f(x)ρ(dx), ∀A ∈ F1

is a well defined object taking a value between (−∞,∞). Details of the construction

are common in books on measure theory [3], as is the construction of Lebesgue measure,

µ. Lebesgue measure makes (Ω,B(Ω), µ) a measure space, when Ω is Rn or a compact

subset.

A probability measure is a measure which assigns the measure 1 to the total space

Ω, and non-negative values to every element of F . The set of all Borel probability

measures on Ω is denoted M(Ω).
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Definition 3.1.6. The set M2(Rn) is the set of Borel probability measures on Rn

which have finite variance. In which case ρ ∈M2(Rn) if and only if∫
Rn
|x|2dρ(x) <∞. (3.1)

Definition 3.1.7. The set P(Rn) denotes the set of probability measures which are

absolutely continuous with respect to Lebesgue measure. Thus, P2(Rn) denotes the

measures belonging to P(Rn) with finite variance.

In the case of ρ ∈ P(Rn), the measure ρ has a probability density, which is a positive

function in L1 which we can also denote ρ without ambiguity as∫
Rn
ρ(dx) =

∫
Rn
ρ(x)µ(dx),

in which the former use of ρ is as a measure, and the latter as a density. µ is Lebesgue

measure unless defined otherwise.

Definition 3.1.8. A subset ofM2(Rn) in which each probability measure has a smaller

variance than some K > 0 is denoted,

M2,K(Rn) = {ρ ∈M2(Rn) |
∫
Rn
|x|2ρ(x)dx < K}. (3.2)

Definition 3.1.9. A subset of P2(Rn) in which each probability measure has a smaller

variance than some K > 0 is denoted,

P2,K(Rn) = {ρ ∈ P2(Rn) |
∫
Rn
|x|2ρ(x)dx < K}. (3.3)

Definition 3.1.10. For γ ∈ (1, 2] the set Pγ(Rn) is defined as the set of probabilities

in P(Rn) which also satisfy ∫
Rn
ργ(x)dx <∞. (3.4)

In other words they have finite Lγ norm, where Lp spaces will be defined in the following

section. Analogously to P2,K(Rn), the subset Pγ,L(Rn) is defined

Pγ,L(Rn) = {ρ ∈ Pγ(Rn) |
∫
Rn
ργ(x)dx < L}. (3.5)
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Definition 3.1.11. The set Pγ,L2,K(Rn) is defined as the intersection P2,K(Rn)∩Pγ,L(Rn).

3.2 Function spaces

First, general function spaces used within the thesis are defined, then special attention

is given to the spaces H1 and L2(T), which have particular relevance to Chapter 8 on

constructing the Gibbs measure.

Definition 3.2.1. The Lp(Rn, µ) spaces are Banach spaces for p ∈ [1,∞), and also

measure spaces with the Borel σ-algebra. For a function f : Rn → R to belong to

Lp(Rn, µ),

‖f‖pLp :=

(∫
Rn
|f |pµ(dx)

) 1
p

<∞.

Note that this definition easily extends to Lp(Rn, ρ) where ρ ∈ P2(Rn) by replacing

Lebesgue measure with the new measure ρ: ρ(dx) = ρ(x)µ(dx).

It is well known that the L2 spaces are Hilbert spaces, the principle example dis-

cussed in this work is L2(T) — the space of functions f : [0, 2π) → R which have

finite Lp-norm. In addition, the Lp spaces can be combined very naturally, so a ‘vector’

function f : Rn → Rn can lie in the function space Lp(Rn;Rn, ρ) if each component fi

lies in Lp(Rn, ρ), and the norm on Lp(Rn;Rn, ρ) is defined

‖f‖pLp :=

(∫
Rn
‖f‖ppµ(dx)

) 1
p

, (3.6)

where ‖f‖p = (
∑n

i f
p
i )

1
p denotes the p-norm on Rn.

Definition 3.2.2. The set of bounded continuous functions f : M → R from a

Riemannian manifold (usually Rn) is denoted Cb(M).

Definition 3.2.3. The set of smooth (infinitely differentiable) continuous functions

f : M → R is defined C∞(R).

3.2.1 L2 and Fourier series

The Gibbs measure will be constructed using primarily the space L2(T,C) = L2(T) ×
L2(T), this section first defines L2(T,C) and why Fourier series are useful on this space.
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The Sobolev space H1 and its dual are then defined, followed by a discussion of the

way each of these spaces can be embedded continuously within each other. Solutions

to the NLS exist in H1 but the Gibbs measure is defined on a larger space.

Definition 3.2.4. L2(T,C) will denote the Hilbert space of square, Lebesgue integrable

functions f : T→ C, with finite L2 norm,

‖f‖2
L2 =

1

2π

∫ 2π

0

|f |2dx <∞.

This norm is defined from the inner product on L2(T,C),

〈f(x), g(x)〉L2 =
1

2π

∫ 2π

0

f(x)g(x)dx.

It is worth noting the distinction, L2(T,C) is the set of complex valued functions with

finite L2 norm. The real functions L2(T) ⊂ L2(T,C) and the constructions in this

section are done on L2(T,C) and the structure is inherited by the subset.

Lemma 3.2.5. The sequence (exp(inx))n∈N is orthonormal in L2(T,C).

Proof. Consider two integers n,m ∈ N,

〈einx, eimx〉L2 =
1

2π

∫ 2π

0

ei(n−m)xdx.

If n = m then the integrand is equal to 1, implying each vector exp(inx) is unit length.

If n 6= m then exp(i(n − m)x is a holomorphic function for x ∈ R. Furthermore,

the function is periodic and traces out a closed loop in the complex plane as x ranges

between [0, 2π], as for any n−m ∈ N, exp(i(n−m)2π) = 1. As a result, the integral∮ 2π

0

ei(n−m)xdx = 0,

and the sequence is orthogonal.

Let `2 refer to the space of square summable sequences — (an)n∈N ∈ `2 if and

only if
∑∞

0 |an|2 < ∞. To establish a representation of a function f ∈ L2(T,C) as
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components with respect to the orthonormal functions (exp(inx))n∈N introduce the

truncation function,

SNf(x) =
N∑

n=−N

ane
inx.

Then one can employ the Riesz-Fischer theorem.

Theorem 3.2.1 (Riesz-Fischer). The function f lies in L2(T,C) if and only if there

exists (an)n∈N ∈ `2 such that SNf converges to f in L2-norm as N →∞.

Note that an is the Fourier transform of f , f̂(n) = an,

an =

∫ 2π

0

f(x)e−inxdx.

The Reisz-Fischer theorem can be used to prove Parseval’s identity,

1

2π

∫ 2π

0

|f(x)|2ds =
∞∑

n=−∞

|an|2. (3.7)

Two copies of L2(T) mean a function on L2(T,C) = L2(T)×L2(T) can be represented

by ψ = P + iQ =
∑∞

n=−∞(an + ibn)einx for P,Q ∈ L2(T). More importantly, this

then allows (an)n∈N and (bn)n∈N to be real, which is not the case for a general function

f ∈ L2(T) — it may have complex Fourier coefficients.

3.2.2 The Sobolev space H1

Definition 3.2.6. [26] Recall T = R \ 2πZ, meaning a complex funtion g : T → C
may be identified with a 2π-periodic function from R. Let f ∈ L1(T,C); then f is said

to have weak derivative h ∈ L2(T,C) if∫
T
f(x)g′(x)dx+

∫
T
h(x)g(x) = 0 (3.8)

holds for all g ∈ C∞(T,C). Thus the function h behaves as the derivative of f would

on any Lebesgue measurable set, when integrated against a test function.

For any function in L2(T,C) ∩ L1(T,C) its weak derivative is defined accordingly.
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Also note the definition of a weak derivative implies a way to describe weak solutions

to certain simple differential equations.

Definition 3.2.7. H1 will denote the Sobolev space of functions f ∈ L2(T,C) which

have weak derivatives, and the weak derivatives are also in L2(T,C). As such, the norm

is defined:

‖f‖2
H1 = ‖f‖2

L2 + ‖f ′‖2
L2 . (3.9)

So H1 consists of functions with finite H1 norm.

Lemma 3.2.8. One can define the space H1 in terms of Fourier series by,

H1 = {f(x) =
∞∑

n=−∞

ane
inx ∈ L2(T,C) :

∞∑
n=−∞

(1 + n2)|an|2 <∞}.

Proof. Denote f ∈ L2(T,C)∩L1(T,C) by Fourier series, f =
∑∞

n=−∞ ane
inx and under

the assumption that its weak derivative is also in L2, let h =
∑∞

n=−∞ cne
inx. The test

functions g ∈ C∞(T,C) are in L2(T,C) as T is compact, and thus can be expressed by

Fourier series as well, g =
∑∞

n=−∞ bne
inx. The derivative of g, g′ =

∑∞
n=−∞ inbne

inx and

its complex conjugate is g′ =
∑∞

n=−∞ inbne
inx. Thus if f ∈ H1 and has weak derivative

f ′ = h then by Equation (3.8),

∞∑
n=−∞

cnbn −
∞∑

n=−∞

inanbn = 0.

As this holds for any choice of g, the equation implies that cn = inan. So the weak

derivative of f is given by h =
∑∞

n=−∞ inane
inx. Then h ∈ L2(T,C) if and only if∑∞

n=−∞ n
2|an|2 converges. Hence, f ∈ L2 ∩ L1 has weak derivative in L2 if and only if

the Fourier coefficients of f have

∞∑
n=−∞

(1 + n2)|an|2 <∞,

and this sum is equivalent to the norm on H1, ‖f‖2
H1 .

H−1 will denote the continuous dual space of H1, i.e. Continuous linear functionals

F : H1 → C. Riesz’s representation theorem on L2(T,C) says that for each linear
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functional F : L2(T,C) → C, there exists g ∈ L2(T,C) such that F (f) = 〈f, g〉 for

all f ∈ L2(T,C). Treating H1 as a subset of L2(T,C), the same conditions hold for

F : H1 → C. However, for f ∈ H1 the inner product 〈f, g〉 is finite for any function with

(possibly divergent) Fourier series g =
∑∞

n=−∞ bne
inx such that

∑∞
n=−∞

b2n
n2+1

<∞. Each

of these functions g has an associated element of H−1 therefore H−1 can be represented

by the set

H−1 = {g(x) =
∞∑

n=−∞

bne
inx :

∞∑
n=−∞

1

n2 + 1
|bn|2 <∞}. (3.10)

Thus H−1 will have the dual norm defined,

‖F‖H−1 = sup
g∈H1

{|〈g, f〉| : ‖g‖H1 ≤ 1 }. (3.11)

3.2.3 A chain of continuous embeddings

Definition 3.2.9. A continuous embedding between two normed vector spaces, X ↪→
Y , exists iff the inclusion map i : X → Y ;x 7→ x is continuous, that is if ∃C > 0 such

that ‖x‖Y ≤ C‖x‖X .

Lemma 3.2.10. H1 ↪→ C([0, 2π]).

Proof. Take the Fourier series representation P (s) =
∑∞

n=−∞ ane
ins ∈ H1, the zero-th

Fourier term is finite because the definition of H1 implies |a0|2 <∞. For the non-zero

Fourier terms, P is absolutely convergent by Cauchy-Schwartz:

∞∑
n=−∞

|an| =

〈
∞∑

n=−∞

einθ√
n2 + 1

,
∞∑

n=−∞

√
n2 + 1 |an|einθ

〉
L2

≤

(
∞∑

n=−∞

1

n2 + 1

) 1
2
(

∞∑
n=−∞

(n2 + 1)|an|2
) 1

2

<∞. (3.12)

Then note that ‖P‖∞ = sups(|P (s)|) ≤
∑∞

n=−∞ |an|, and so equation (3.12) implies

that

‖P‖∞ ≤

(
∞∑

n=−∞

1

n2 + 1

) 1
2

‖P‖H1 . (3.13)
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Lemma 3.2.11. C([0, 2π]) ↪→ L2

Proof. For any f ∈ C,

‖f‖2
L2 =

∫ 2π

0

|f |2dx ≤

(
sup

x∈[0,2π]

|f(x)|

)2 ∫ 2π

0

dx = 2π‖f‖2
∞.

Lemma 3.2.12. H1 ↪→ L2

Proof. For any P ∈ H1 with Fourier series P (x) =
∑∞

n=−∞ ane
inx,

‖P‖2
L2 =

∞∑
n=−∞

|an|2 ≤
∞∑

n=−∞

(1 + n2)|an|2 = ‖P‖2
H1

Lemma 3.2.13. C ↪→ H−1

Proof. Let F ∈ H−1, and recall the definition of the norm of H−1, and the function f

both given in Equation (3.10). With use of Cauchy-Schwartz, and both Lemma 3.2.11

and Lemma 3.2.12,

‖F‖H−1 ≤ |〈g, f〉| ≤ ‖g‖L2‖f‖L2 ≤ C‖g‖H1‖f‖∞. (3.14)

Thus ‖F‖H−1 ≤ C‖f‖∞.

Hence, By Lemma 3.2.10 and Lemma 3.2.13 there are continuous linear inclusions

H1 ↪→ C ↪→ H−1.

3.2.4 Clarkson’s inequality

An inequality used in later sections known as Clarkson’s inequality is proven in this

section.

Definition 3.2.14 (Holder Conjugates). The pair (p, p′) of real numbers are said to be

Holder conjugates of each other if

1

p
+

1

p′
= 1.

59



In the case of 0 < p < 1, p′ will be negative. In light of this, note that the space

Lp
′
(Rn, µ), while no longer a Banach space, can be defined as the set of Lebesgue

measurable functions, f , which do not equal zero except on sets of measure zero. As

such,

‖f‖p′ :=

(∫
Rn

1

|f |
p

1−p
µ(dx)

) p−1
p

<∞,

though ‖f‖p′ is symbolic, rather than a norm.

Lemma 3.2.15. If p denotes the index of an Lp space, and 0 < p < 1, then Holder’s

inequality is reversed.

Proof. This proof is based on the proof of Equation 2.8.4 of Ref. [34]. If p is defined

as above, let ` = 1
p

then 1 < ` <∞, and the Holder inequality says

∑
ujvj ≤

(∑
u`j

) 1
`
(∑

v`
′

j

) 1
`′
. (3.15)

If uj = (ajbj)
p and vj = b−pj , then Holder’s equation is now

∑
apj ≤

(∑
ajbj

) 1
`
(∑

bp
′

j

) 1
`′
,∑

apj ≤
(∑

ajbj

)p (∑
bp
′

j

)1−p
,(∑

bp
′

j

)p−1∑
apj ≤

(∑
ajbj

)p
,(∑

apj

) 1
p
(∑

bp
′

j

) 1
p′ ≤

∑
ajbj.

Proving that for 0 < p < 1 we get a reverse Holder’s inequality.

Lemma 3.2.16. For Lp spaces of index 0 < p < 1, the triangle inequality is reversed.

Proof. Let sj = aj + bj, and consider the sum,∑
qjs

p
j =

∑
qjajs

p−1
j +

∑
qjbjs

p−1
j

=
∑

q
1
p

j aj(q
1
p

j sj)
p−1 +

∑
q

1
p

j bj(q
1
p

j sj)
p−1
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Apply the reverse Holder’s inequality to each term,

∑
qjs

p
j ≥

(∑
qja

p
j

) 1
p

(∑
(q

1
p

j sj)
(p−1)p′

) 1
p′

+
(∑

qjb
p
j

) 1
p

(∑
(q

1
p

j sj)
(p−1)p′

) 1
p′

=

[(∑
qja

p
j

) 1
p

+
(∑

qjb
p
j

) 1
p

](∑
qjs

p
j

) 1
p′
,(∑

qjs
p
j

)1− 1
p′ ≥

(∑
qja

p
j

) 1
p

+
(∑

qjb
p
j

) 1
p
.

And the identity 1
p

= 1− 1
p′

finishes the proof.

Lemma 3.2.17 (Clarkson’s inequality). For 1 < γ < 2,

∥∥∥∥f + g

2

∥∥∥∥γ′
γ

+

∥∥∥∥f − g2

∥∥∥∥γ′
γ

≤
(

1

2
‖f‖γγ + ‖g‖γγ

) γ′
γ

. (3.16)

Proof. First note a property of the Lγ and Lγ−1 norms for Holder conjugate indices

(γ, γ′):

‖f‖γ′γ =

(∫
|f |γ

) γ′
γ

=

(∫
|f |γ′(γ−1)

) 1
γ−1

= ‖|f |γ′‖γ−1.

Starting with the left hand side of Clarkson’s inequality, apply this property and then,

as γ − 1 < 1, the reverse triangle inequality can be applied.∥∥∥∥f + g

2

∥∥∥∥γ′
γ

+

∥∥∥∥f − g2

∥∥∥∥γ′
γ

=

∥∥∥∥∥
∣∣∣∣f + g

2

∣∣∣∣γ′
∥∥∥∥∥
γ−1

+

∥∥∥∥∥
∣∣∣∣f − g2

∣∣∣∣γ′
∥∥∥∥∥
γ−1

≤

∥∥∥∥∥
∣∣∣∣f + g

2

∣∣∣∣γ′ + ∣∣∣∣f − g2

∣∣∣∣γ′
∥∥∥∥∥
γ−1

. (3.17)

The following step relies on a pointwise inequality for a convex function. The function
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x 7→ |x|γ is convex for 1 < γ < 2, and thus∣∣∣∣f + g

2

∣∣∣∣γ′ =

∣∣∣∣f + g

2

∣∣∣∣γ(γ′−1)

≤
(

1

2

∣∣∣∣f2
∣∣∣∣γ +

1

2

∣∣∣g
2

∣∣∣γ)γ′−1

.

Therefore, ∣∣∣∣f + g

2

∣∣∣∣γ′ + ∣∣∣∣f − g2

∣∣∣∣γ′ ≤ 2

(
1

2

∣∣∣∣f2
∣∣∣∣γ +

1

2

∣∣∣g
2

∣∣∣γ)γ′−1

=
1

2γ′−1

(
1

2
|f |γ +

1

2
|g|γ
)γ′−1

≤
(

1

2
|f |γ +

1

2
|g|γ
)γ′−1

.

Apply this pointwise inequality to Equation (3.17), and manipulate the norm relation

discussed at the start of the proof using (γ−1)(γ′−1) = 1 to get Clarkson’s inequality.∥∥∥∥∥
∣∣∣∣f + g

2

∣∣∣∣γ′ + ∣∣∣∣f − g2

∣∣∣∣γ′
∥∥∥∥∥
γ−1

≤

∥∥∥∥∥
(

1

2
|f |γ +

1

2
|g|γ
)γ′−1

∥∥∥∥∥
γ−1

(3.18)

=

(∫
(
1

2
|f |γ +

1

2
|g|γ)1 dx

) 1
γ−1

(3.19)

=

(
1

2
‖f‖γγ +

1

2
‖g‖γγ

)γ′−1

. (3.20)

3.3 Weak compactness

Further into the thesis the compactness of certain spaces of probability measures will

be required to achieve convergence of our numerical methods. Ideally we would sim-

ply show the compactness of P2(Rn) and P2(S2), but these spaces are not themselves

compact without extra conditions.

The definition of a Borel probability measure implies that any bounded continuous

function can be integrated with respect to this probability measure and the integral

is bounded. This fact, along with Riesz’ representation theorem on L2, suggests there
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could be a relationship between the dual space of Cb(Ω) and M(Ω).

Definition 3.3.1. The dual space of Cb(Ω) is the space of Bounded Linear operators,

F : Cb(Ω)→ R. It is equipped with the operator norm,

‖F‖op = sup{|F (f)| : ‖f‖∞ ≤ 1}, (3.21)

where ‖ · ‖∞ is the supremum norm.

Theorem 3.3.1 (Riesz’ representation of a measure). [7, Thm 1.1.3] Consider the

dual of Cb(Ω) for some compact metric space Ω, that is, the set of linear functionals

G : Cb(Ω) → R. Then every G ∈ Cb(Ω)∗ has a corresponding unique real valued

measure, ν on Ω, such that there exists an isomorphism between the spaces,

G(f) =

∫
Ω

f(x)ν(dx).

Weak convergence of a sequence of measures in Mb(Ω) is defined by this correspon-

dence, νn → ν as n→∞ weakly if,∫
f νn(dx)→

∫
f ν(dx), ∀f ∈ Cb(Ω).

The weak topology on M(Ω) is induced by the map ν 7→
∫

Ω
f(x)ν(dx). It can

be generated by a sub basic collection of open sets defined, for 0 < b as Cf,b = {ν ∈
M(Ω) :

∫
Ω
f(x)ν(dx) < b} then the collection {Cf,b : b ∈ R+, f ∈ Cb(Ω)} generates

the topology through finite intersections and arbitrary unions. The standard topology

on R has a base formed by the open intervals (with rational endpoints). Analogously,

the base for the weak topology onM(Ω) is the collection of sets, for a, b,∈ (0, 1] defined

by {ν ∈ M(Ω) : a <
∫

Ω
fj(x)ν(dx) < b, j = 1, . . . , n}. As a base, any open set in the

topology is a union of (possibly infinite) sets of this form.

Lemma 3.3.2. If Ω is compact, thenM(Ω) is compact with respect to the weak topology.

Proof. Let B denote the closed unit ball in Cb(Ω), B = {f ∈ Cb(Ω) : ‖f‖∞ ≤
1}, and [−1, 1]B denote an uncountably infinite product space. Consider the map

M(Ω) → [−1, 1]B; ν 7→
(∫

Ω
f(x)ν(dx)

)
f∈B, and the pre-image under this map of the
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space [−1, 1]B. The space M(Ω) is compact with respect to its weak topology by the

compactness of [−1, 1]B, as demonstrated by Tychonoff [67]. This construction is due

to Blower [7].

As a result of this Lemma, the setM(S2) is compact. For spaces such as Rn which

are only locally compact, the concept of tightness is needed to define a metric with

respect to which sets can be considered compact.

Definition 3.3.3 (Tightness). A collection of probability measures A is tight in Ω if

for all ε > 0 there exists a compact subset Kε ⊂ Ω such that for all ρ ∈ A,

ρ(Ω \Kε) < ε. (3.22)

Lemma 3.3.4. The collection M2,L(Rn) is tight for L > 0.

Proof. By the assumptions of M2,L(Rn) given in Definition 3.1.8, the second moment

of all ρ are bounded. If this bound is L > 0 then for all ε > 0 define Kε = {x ∈ Rn :

‖x‖2 ≤ κ(ε)}. Then the estimate

L >

∫
Rn
‖x‖2ρ(dx) >

∫
Rn\Kε

‖x‖2ρ(dx) > κ(ε)ρ(Rn \Kε).

Hence, if κ(ε) = L/ε then ρ(Rn \Kε) < ε and the collection is tight.

Theorem 3.3.2 (Prokhorov). [3, Thm. 5.1] On a separable metric space Ω, a collection

A ⊂ M(Ω) is tight if and only if it is sequentially compact with respect to the weak

topology on M(Ω).

By Prokhorov’s theorem and Lemma 3.3.4 it follows that M2,L(Rn) is sequentially

compact with respect to the weak topology. Thus, having established thatM2(Rn) and

M2(S2) are sequentially compact, the question remains as to what extra conditions are

required for P2(Rn) and P2(S2) to be compact as well. Under the weak topology, P2(Rn)

is not compact due to the existence of Dirac delta measures. These measures are not

themselves in P2(Rn), but are limits of sequences of measures in P2(Rn).

Let ca(R) denote the set of countably additive probability measures defined on the

Borel sets of R.
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Theorem 3.3.5 (Sequential precompactness). [22, p. IV.9.2] A subset P ⊂ ca(R) is

weakly sequentially precompact if and only if it is bounded, tight, and there exists some

µ ∈ ca(R) such that

lim
µ(En)→0

ρ(En) = 0, (3.23)

and this limit is uniform with respect to ρ in P.

Definition 3.3.6. Let Pγ,K2,L (Rn) denote the set of measures ρ ∈ P2,L(Rn) ∩ Pγ,K(Rn),

in other words

(i)
∫
Rn ρ

γdx ≤ K,

(ii)
∫
Rn ‖x‖

2ρ(x)dx ≤ L.

Some properties of Pγ,K2,L (Rn). For any ρ ∈ Pγ,K2,L (Rn), and any M > 0 the

estimate,

M2

∫
‖x‖>M

ρ(x)dx ≤
∫
‖x‖>M

‖x‖2ρ(x)dx ≤ L, (3.24)

shows that the measure of the set {‖x‖ ≤M} is at least L/M2.

Secondly, we have the estimate, for any R > 0

Rγ−1

∫
ρ(x)>R

ρ(x)dx ≤
∫
ρ(x)>R

ρ(x)γdx < K, (3.25)

which implies that ρ(x) is bounded above almost everywhere. If coupled with the

absolute continuity of ρ with respect to Lebesgue measure, this fact asserts ρ is bounded.

Lemma 3.3.7. The set Pγ,K2,L (Rn) is sequentially precompact.

Proof. The set Pγ,K2,L (Rn) ⊂M2,L(Rn) and is therefore tight by the argument of Lemma

3.3.4. On sets of non-zero Lebesgue measure, elements of Pγ,K2,L (Rn) are bounded as

demonstrated by Equation (3.25). Sets of zero Lebesgue measure are evaluated using

the condition in Theorem 3.3.5. Let µ denote Lebesgue measure, µ ∈ ca(R). Then for
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any ρ ∈ Pγ,K2,L (Rn), any set E ∈ B(Rn), and any R > 0,∫
E

ρ(x)dx =

∫
E∩{ρ(x)≤L}

ρ(x)dx+

∫
E∩{ρ(x)>R}

ρ(x)dx, (3.26)

≤ R

∫
E

dx+
K

Rγ−1
, (3.27)

which follows from the fact that Rγ−1ρ(x) ≤ ρ(x)γ on the set {ρ(x) > R} and Equation

(3.25). The inequality holds for any R > 0 thus, taking R =
√
µ(E) will bound the

integral of ρ by a function of µ(E). Therefore, if µ(E) → 0, then
∫
E
ρ(x)dx → 0 for

all ρ uniformly, and thus the conditions for Theorem 3.3.5 hold, and so Pγ,K2,L (Rn) is

sequentially precompact.

3.4 Weak solutions to PDEs

Having introduced the concept of a weak derivative and discussed dual spaces to spaces

of measures, the tools are available now to introduce the general idea of a weak solution

to a differential equation, additional detail on this topic is given in Evans [26]. Let L

denote an operator and Lu = 0 represent a partial differential equation searching for a

solution u : Ω→ C where Ω is compact. Then the function v is a weak solution to the

PDE if ∫
Ω

(Lv)φdx = 0, ∀φ ∈ C∞(Ω,C).

This integral is not necessarily well defined, as a solution v may not be regular enough

to have a second derivative for example. However, as with the definition of a weak

derivative, compactness of Ω implies that any f is zero on the boundary and integration

by parts can be used to define the integral. Furthermore, if L is simple enough to express

the integral in the form ∫
Ω

(Lv)φdx = −
∫

Ω

vL2φdx,

for example if v ∈ L2(Ω,C) then L2 would be the adjoint of L. Then one can see how

the integral condition could be well defined on a space of v such that the integral is

finite. In addition, the integral could be satified by a measure with density v(x) and
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so the concepts of weak solution and measure valued solution to a PDE are in this

sense the same. In general, a weak solution means a solution that is less regular than

the PDE requires — for example a C1 function could be a weak solution to a second

order PDE. But the integral formulation allows for the potential of discontinuous and

nondifferentiable solutions and that is the type of weak solution considered in this piece

of work.
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Chapter 4

Optimal transport

In this chapter, the topic of optimal transport will be introduced. In the subsequent

chapter it will be applied to find weak solutions to PDEs, but this chapter focusses

on the theory. Here, the setting of optimal transport is the space M2(Rn), and its

subspace of absolutely continuous measures P2(Rn).

To establish the context for later chapters, the PDE under consideration will be

Euler’s equations of fluid motion. The absolutely continuous measures are the class of

distributions inside which solutions to the PDE will be sought, where their densities will

represent the distribution of mass of the fluid. The Wasserstein distance will represent a

metric for the kinetic energy needed to move between states. The Wasserstein distance

and optimal transport give structure to the space.

The basic problem of optimal transport is the Kantorovich mass transportation

problem. Optimal transport maps are discussed, and the conditions under which they

are monotone and invertible. The most important result stated in this chapter is

Brenier’s theorem, which establishes the existence of a convex function whose gradient is

the optimal map between two measures in P2(Rn). The chapter ends with a discussion

of the basics of convex functions, which will be extended in the next chapter to convexity

on spaces of probability measures.
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4.1 Wasserstein distance

The natural metric forM2(Rn) is the quadratic Wasserstein distance, this is a standard

example of a cost function used to search for an optimal plan to transport between two

measures. This section covers the basic concepts of optimal transport theory. The

‘principle of least action’ guides us to minimise the change in energy of the system, and

for that we need a measure of the distance between states.

The broadest problem in optimal transportation is the following.

Definition 4.1.1 (The Kantorovich mass transportation problem). Let (X,µ) and

(Y, ν) denote probability spaces, and c(x, y) a cost function between them. The set

of probability measures on the product set X × Y with marginals µ ∈ M2(X) and

ν ∈M2(Y ) is denoted Π(µ, ν) and the Kantorovich mass transportation problem is to

find the infimum,

inf

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
. (4.1)

The product measure, π which minimises this integral is known as the transport plan.

The set Π(µ, ν) is defined equivalently as the set of probability measures π on X×Y
such that for all test functions (ϕ, φ) ∈ L1(dµ)× L1(dν),∫

X×Y
ϕ(x) + φ(y) dπ(x, y) =

∫
X

ϕ(x)dµ(x) +

∫
Y

φ(y)dν(y).

If X, Y are locally compact Polish spaces (such as Rn), then the space of test func-

tions L1(dµ) × L1(dν) can be reduced to Cb(X) × Cb(Y ), bounded functions on the

original spaces.

Definition 4.1.2. The pushforward of a measure is a measurable map ψ between two

measures ρ1, ρ2 ∈M2(Rn) often denoted ρ2 = ψ#ρ1. The map ψ must satisfy∫
Rn
g(y)ρ2(y)dy =

∫
Rn
g(ψ(x))ρ1(x)dx, (4.2)

for any measurable map g ∈ L1(R, ρ2).

This definition invites a slight reformulation of Kantorovich’s problem which is

known as Monge’s formulation.
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Definition 4.1.3. Let (X,µ) and (Y, ν) denote probability spaces, and c(x, y) a cost

function between them. Let T : X → Y denote any transport map which pushes

forward µ to ν, then the Monge problem is to find the transport map which realises the

infimum,

inf
T#µ=ν

{∫
X

c(x, T (x))dµ(x)

}
. (4.3)

Monge’s problem is related to the Kantorovich problem, let S(x) = (x, T (x)) and

then Kantorovich’s joint measure π is defined by the pushforward π = S#µ. This

formulation has a limitation — in the general setting in which Kantorovich’s problem

has a minimiser, Monge’s problem may not.

Definition 4.1.4 (Wasserstein distance). The Kantorovich problem on a compact and

seperable metric space, in which the cost function is the metric on that space is known

as the Wasserstein distance between the two measures considered.

In this work the Wasserstein distance Wq(µ, ν) is defined onM2(Rn) with the metric

given by the q-norm ‖x‖q = (
∑n

i=0 |xi|q)1/q,

Wq(µ, ν)q = inf

{∫
Rn×Rn

‖x− y‖qq dπ(x, y) | π ∈ Π(µ, ν)

}
. (4.4)

The distance W2 is the metric usually considered, thanks to the conclusions of Brenier’s

theorem in the next section. The Euclidean norm ‖x‖2 has the subscript surpressed

due to its frequency of use.

Proposition 4.1.5. Let µ, ν ∈M2(Rn), there exists a transport plan π ∈ Π(µ, ν) which

minimises the Wasserstein distance W2(µ, ν).

Proof. As discussed in Villani [74, p.51], let Mµ denote the bound on the variance of

the measure µ ∈ M2(Rn), and likewise define Mν for µ ∈ M2(Rn). By the triangle

inequality, ∫
Rn×Rn

‖x− y‖2dπ(x, y) ≤
∫
Rn
‖x‖2dπ(x, y) +

∫
Rn
‖y‖2dπ(x, y),

=

∫
Rn
‖x‖2dµ+

∫
Rn
‖y‖2dν,

≤Mµ +Mν .
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The properties of Π(µ, ν) impose the condition that the marginals of π are µ and ν and

hence the above calculation. Then the measure µ satisfies the conditions of tightness

in M2(Rn) on the set Kµ
ε := {x ∈ Rn | ‖x‖2 ≤ Mµ

ε
} as shown in the proof of Lemma

3.3.4. Define Kν
ε in the same way and then,

π[(Rn × Rn) \ (Kµ
ε ×Kν

ε )] ≤ π[(Rn \Kµ
ε )× Rn] + π[Rn × (Rn \Kν

ε )],

≤ µ[Rn \Kµ
ε ] + ν[Rn \Kν

ε ] ≤ 2ε.

Hence the set Π(µ, ν) is tight, and by Prokhorov’s theorem (Theorem 3.3.2) it is com-

pact.

Remark 4.1.6. In one dimension, any Borel measurable probability distribution can

be defined according to its cumulative distibution function, often denoted by a capital

letter. The Wasserstein distance can be expressed in terms of the probability mea-

sure’s cumulative distribution function, and if capital letters are used as arguments of a

Wasserstien distance, Wq(F,G), then the two measures under consideration are defined

by their cumulative distribution functions F and G. Further details are discussed in

the Kantorovich-Rubenstein theorem [21, Thm. 11.8.2]

4.1.1 The dual problem

The Kantorovich problem can be reformulated into a dual problem.

Definition 4.1.7 (Kantorovich Duality). [74, p.19] As in the Kantorovich problem, let

(X,µ) and (Y, ν) denote probability spaces, and c(x, y) a cost function between them.

Introduce the set Φc as the set of all measurable pairs (ϕ, φ) ∈ L1(dµ) × L1(dν) such

that ϕ(x) + φ(y) ≤ c(x, y) for µ-almost all x and ν-almost all y. Then

inf
π∈Π(µ,ν)

{∫
X×Y

c(x, y)dπ(x, y)

}
= sup

(ϕ,φ)∈Φc

{∫
X

ϕ(x)dµ(x) +

∫
Y

φ(y)dν(y)

}
. (4.5)

This introduces the dual problem. In the specific case in which we are working, the

cost function is quadratic and the pairs (ϕ, φ) turn out to be convex conjugates of each

other in the sense of the Legendre dual.

Definition 4.1.8. The Legendre dual of a function ϕ(x) is the convex function denoted
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ϕ∗ which is defined as

ϕ∗(y) := sup
x

(〈x, y〉 − ϕ(x)) , (4.6)

and will be referred to as the convex conjugate of ϕ.

Lemma 4.1.9. For the Kantorovich dual problem with quadratic cost (c(x, y) = ‖x −
y‖2), Equation (4.5) can be expressed alternatively by

sup
π∈Π(µ,ν)

{∫
X×Y
〈x, y〉dπ(x, y)

}
= inf

(ϑ,θ)∈Θc

{∫
X

ϑ(x)dµ(x) +

∫
Y

θ(y)dν(y)

}
, (4.7)

where Θc is defined as the set of all measurable pairs (ϑ, θ) ∈ L1(dµ)×L1(dν) such that

ϑ(x) + θ(y) ≥ 〈x, y〉 for µ-almost all x and ν-almost all y.

Proof. Considering the standard Kantorovich problem for quadratic cost, the set Φc

includes all measurable pairs (ϕ, φ) ∈ L1(dµ)×L1(dν) such that ϕ(x)+φ(y) ≤ ‖x−y‖2

for µ-almost all x and ν-almost all y. This condition is developed by expanding out the

norm,

2〈x, y〉 ≤
(
‖x‖2 − ϕ(x)

)
+
(
‖y‖2 − φ(y)

)
.

Then defining ϑ(x) = (‖x‖2 − ϕ(x))/2 and likewise θ(y) = (‖y‖2 − φ(y))/2, and for

any choice of (ϕ, φ) ∈ L1(dµ) × L1(dν), the pair (ϑ, θ) belong to L1(dµ) × L1(dν) too

because µ, ν ∈M2(Rn) have finite variance. Explicitly, there exists a K ∈ R such that∫
X

‖x‖2dµ(x) +

∫
Y

‖y‖2dν(y) = K.

The right hand side of Equation (4.5) is expanded in this context to

inf
π∈Π(µ,ν)

{∫
X×Y
‖x− y‖2dπ(x, y)

}
= inf

π∈Π(µ,ν)

{ ∫
X
‖x‖2dµ(x) +

∫
Y
‖y‖2dν(y)

−2
∫
X×Y 〈x, y〉dπ(x, y)

}

= K − 2 sup
π∈Π(µ,ν)

{∫
X×Y
〈x, y〉dπ(x, y)

}
. (4.8)
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And the left side of Equation (4.5) is also expanded similarly,

sup
(ϕ,φ)∈Φc

{∫
ϕ(x)dµ(x) +

∫
φ(y)dν(y)

}
=

K − 2 inf
(ϑ,θ)∈Θc

{∫
ϑ(x)dµ(x) +

∫
θ(y)dν(y)

}
. (4.9)

Equating these two expressions provides the desired result.

Lemma 4.1.10 (Double convexification). Assume there exists a pair (ϑ, θ) ∈ Θc which

realise the infimum in Equation (4.7). Then it can also be realised by the pair of convex

conjugate functions (ϑ∗∗, ϑ∗) ∈ L1(dµ)×L1(dν) defined in terms of the original ϑ which

also live in Θc.

Proof. All that is required is to establish the inequality,

inf
(ϑ∗∗,ϑ∗)∈Θc

{∫
X

ϑ(x)∗∗dµ(x) +

∫
Y

ϑ∗(y)dν(y)

}
≤ inf

(ϑ,θ)∈Θc

{∫
X

ϑ(x)dµ(x) +

∫
Y

θ(y)dν(y)

}
.

(4.10)

The definition of Θc implies that ϑ(x) + θ(y) ≥ 〈x, y〉 on sets of non-negligible measure.

The definition of the Legendre dual is for all x [74, Rem. 2.2]. Thus the inequality

θ(y) ≥ supx(〈x, y〉 − ϑ(x)) = ϑ∗(y) holds for ν-almost all y, implying∫
X

ϑ(x)dµ(x) +

∫
Y

ϑ∗(y)dν(y) ≤
∫
X

ϑ(x)dµ(x) +

∫
Y

θ(y)dν(y). (4.11)

Now, purely from the definition of the Legendre dual, ϑ(x) + ϑ∗(y) ≤ 〈x, y〉, and by

the taking the dual of the dual, ϑ∗∗(x) = supy(〈x, y〉 − ϑ∗(y)). Thus, ϑ∗∗(x) ≤ ϑ(x) for

µ–almost all x, thus Equation (4.11) can be extended,∫
X

ϑ∗∗(x)dµ(x) +

∫
Y

ϑ∗(y)dν(y) ≤
∫
X

ϑ(x)dµ(x) +

∫
Y

θ(y)dν(y), (4.12)

and Equation (4.10) holds.

Theorem 4.1.11. [74, Thm. 2.9] If µ, ν ∈ M2(Rn) then the infimum in Equation

(4.7) is realised by a pair of conjugate convex functions (ψ∗∗, ψ∗).
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Theorem 4.1.12 (Brenier’s theorem). [74, Thm 2.12] Let ρ1, ρ2 ∈ M2(Rn), and con-

sider the Monge-Kantorovich problem for a distance between these two measures using

the quadratic cost function ‖x− y‖2
Rn.

1. Knott-Smith optimality criterion As in the formulation of the dual problem

in Definition 4.1.7, π ∈ Π(ρ1, ρ2) is optimal if and only if there exists ψ a convex

function which minimises,

inf
(ψ,ψ∗)∈Θc

{∫
X

ψ(x)dρ1(x) +

∫
Y

ψ∗(y)dρ2(y)

}
.

where Θc is defined as in Lemma 4.1.9. In addition, ψ must have subdifferential

∂ψ(x) in which y is an element of ∂ψ(x) for each point (x, y) ∈ Rn × Rn of the

support of π.

2. Brenier’s theorem Under the additional assumption that ρ1 is absolutely contin-

uous with respect to Lebesgue measure, π is the unique optimal probability measure

in Π(ρ1, ρ2) if

π = (Id×∇ψ)#ρ1, (4.13)

where ∇ψ is the uniquely determined ρ1 almost everywhere gradient of a convex

function, and ∇ψ#ρ1 = ρ2.

3. Following the assumptions of part (2), ∇ψ is the unique solution to the Monge

problem.

4. If ρ2 is also absolutely continuous with respect to Lebesgue, then ∇ψ is invertible

almost everywhere.

4.1.2 Convexity

The idea of convex optimisation is used extensively in many areas of applied mathemat-

ics, including machine learning. In general, convexity is an important property when

trying to determine the minimisers of a function. Hamilton’s principle of least action

for example illustrates the importance of extremals when searching for solutions to a

dynamic system. Convexity is also important in the present context of transport maps
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on spaces of probability functions [2]. Here the basic properties of convex functions are

outlined, in a later section convexity in the context of P2(Rn) is discussed too.

Definition 4.1.13. A convex function is a function f : R→ R which has a graph that

is convex. In other words, for any two points on the graph, a straight line between

them will be above the curve. For all x1, x2 ∈ R and t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (4.14)

The definition can be extended simply to functions f : Rn → R.

Definition 4.1.14. A convex function on Rn, f : Rn → R has equivalent definitions

below.

(i) For each x ∈ Rn at which f(x) is differentiable, for all y ∈ Rn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉.

(ii) For x, y ∈ R at which f is differentiable, 〈∇f(x) − ∇f(y), x − y〉 ≥ 0. In other

words, if its gradient is monotone then it is convex.

Lemma 4.1.15. [30, p.4] If f : R → R is twice differentiable, then f is convex iff

f ′′(x) ≥ 0 for all x ∈ R.

Proof. Take the second definition of convexity in one dimension and define a new func-

tion, g(y) := f(y) + f ′(x)(x − y). The function g(y) is convex because a straight line

is both convex and concave (just not strictly). Take the derivative of g(y), g′(y) =

f ′(y) − f ′(x). Hence x is an extremal of g(y), this makes it a minimiser because g is

convex. A minimiser of a function has positive second derivative, hence g′′(x) ≥ 0, but

by the definition of g, g′′(x) = f ′′(x).

Lemma 4.1.16. For a twice differentiable function f : Rn → R, f is convex if and

only if Hess f � 0, in other words, Hess f is positive semi-definite.

The proof follows from Lemma 4.1.15 and can be found in books on convex optimi-

sation [11, Ex 3.8].
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4.1.3 Jacobian change of variables

This section follows on from the discussion of convexity and is important to mention

for application in later chapters.

Definition 4.1.17 (Monotone function). A function f : Rn → Rn is monotone if and

only if, for all x, y ∈ Rn,

〈f(x)− f(y), x− y〉 ≥ 0. (4.15)

It is strictly monotone if also not equal to zero.

The Jacobian change of variables formula can be extended to measures in P2(Rn).

Lemma 4.1.18. For measures ρ1, ρ2 ∈ P2(Rn), implying they are both absolutely con-

tinuous with respect to Lebesgue measure and ψ a pushforward map, ψ#ρ1 = ρ2 which

is invertible and monotone increasing, the change of variables formula is

ρ2(ψ(x))|Jψ(x)| = ρ1(x). (4.16)

where J is the Jacobian of ψ = (ψ1, ψ2, . . . , ψn),

Jψ(x) =


∂ψ1

∂x1

∂ψ1

∂x2
. . .

∂ψ2

∂x1

∂ψ2

∂x2
. . .

...
...

. . .

 (4.17)

and | | denotes the determinant.

In 1D this is,

ρ2(ψ(x))

∣∣∣∣dψ(x)

dx

∣∣∣∣ = ρ1(x). (4.18)

Proof. The definition of a pushforward measure means, for any f ∈ L1(R, ρ1)∫
Rn
f(y)ρ2(y)dy =

∫
Rn
f(ψ(x))ρ1(x)dx. (4.19)

Then the Jacobian change of variables formula for the change of variables y = ψ(x)

applied to the left hand side∫
Rn
f(y)ρ2(y)dy =

∫
Rn
f(ψ(x))|Jψ(x)|ρ2(ψ(x))dx, (4.20)
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and therefore, this implies

ρ2(ψ(x))|Jψ(x)| = ρ1(x).

4.2 Otto’s interpretation

Otto made the first steps in linking optimal transport to Riemannian geometry in the

context of partial differential equations. He was describing weak solutions to the porous

medium equation and conceptualised the problem geometrically. In fluid dynamics the

system is commonly described by a density ρ : Rn → R+ and an accompanying velocity

field v : Rn → Rn.

This construction works for any smooth Riemannian manifold but Rn is the ap-

plication in mind. A Riemannian metric can be defined in terms of geodesics. Let

γ : [0, 1]→ Rn represent a smooth curve on the manifold, then the infimum,

d(x, y)2 = inf

{∫ 1

0

‖γ̇(s)‖2ds | γ(0) = x, γ(1) = y

}
, (4.21)

defines the Riemannian metric. The Wasserstein metric can be defined on this manifold

[57] by

W2(ρ1, ρ2)2 = inf

{∫
Rn×Rn

d(x, y)2 dπ(ρ1, ρ2) | π ∈ Π(ρ1, ρ2)

}
. (4.22)

The present context for ρ is as a weak solution to a PDE coupled with a velocity field

v which describes the flow of ρ over time, as such they must satisfy the continuity

equation
∂ρ

∂t
= −∇ · (ρv).

Geometrically, v should lie in the tangent space to M2(Rn). Thus the tangent space

at ρ should include probability densities of the form −∇ · (ρv) where v ∈ L2(Rn, ρ),

implying the fluid has finite kinetic energy. Otto defines the norm∥∥∥∥∂ρ∂t
∥∥∥∥2

ρ

= inf

{∫
‖v‖2ρdx | ∂ρ

∂t
+∇ · (ρv) = 0, v ∈ L2(Rn, ρ)

}
(4.23)

ensuring that the velocity chosen to represent the gradient of the curve satisfies the
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continuity equation and minimises the kinetic energy. With a choice of element in the

tangent space at each point defined, take a curve inM2(Rn) given by ρt that is defined

for 1 ≤ t ≤ 2. One can return to the definition of the geodesic distance to measure the

distance between measures as the Wasserstein distance

W2(ρ1, ρ2)2 = inf

{∫ 2

1

∥∥∥∥∂ρt∂t
∥∥∥∥2

ρ

dt | ρ ∈M2(Rn)

}
. (4.24)

The Euler equations of fluid dynamics is another system of PDEs where this con-

struction is relevant. These PDEs are dicsussed in Chapter 13 and an adaptation of his

approach is used to solve the Euler equations in Chapter 13
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Chapter 5

The Lax pair for NLSE via the

Hasimoto transform

In this chapter the nonlinear Schrödinger equation (NLSE) is discussed, one of the

two integrable systems of interest in this thesis. In the first section the Hasimoto

transform is used to show the equivalence between periodic solutions to the NLSE, and

the curvature and torsion of a smooth curve in R3. From this relation, a Lax pair is

formulated for the dynamics of the Frenet-Serret frame of the previously mentioned

curve. The concept of a Lax pair is a powerful tool in recasting a PDE as a coupled

set of ODEs along with a consistency condition. Geometrically it can be understood as

producing a curvature free connection on the solution manifold for the problem.

5.1 The Hamiltonian system of the NLSE

Definition 5.1.1. The nonlinear Schrödinger equation[26] is the nonlinear extension

of Schrödingers well known wave equation. In this work it is defined as,

1

i

∂ψ

∂t
=
∂2ψ

∂x2
+ β|ψ|2ψ. (5.1)

Where β < 0 and β > 0 give the focussing and defocussing versions respectively.

Definition 5.1.2. If P,Q are real functions of period 2π on the space H1(T)×H1(T),
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the Hamiltonian

H(P,Q) =
β

4

∫
T
(P 2 +Q2)2dx+

1

2

∫
T
(P ′)2dx+

1

2

∫
T
(Q′)2dx, (5.2)

gives rise to the nonlinear Schrödinger equation for ψ = P + iQ, through its canonical

equations of motion.

The canonical equations of motion for this Hamiltonian are

−∂P
∂t

=
∂2Q

∂x2
+ β(P 2 +Q2)Q,

∂Q

∂t
=
∂2P

∂x2
+ β(P 2 +Q2)P.

They can be combined into a PDE in terms of ψ,

1

i

∂ψ

∂t
=
∂2ψ

∂x2
+ β|ψ|2ψ,

which is the nonlinear Schrödinger equation as given in Equation (5.1).

5.1.1 Hasimoto’s curve

It has been shown by Hasimoto [35] that the curvature and torsion of an isolated thin

vortex filament in a ideal fluid can be described by the focussing nonlinear Schrödinger

(with β = −1/2). The relation given by Hasimoto is referred to as the Hasimoto

transform.

Definition 5.1.3. Define the Hasimoto transform,

ψ(x, t) = κ(x, t) exp

(
i

∫ x

0

τ(u, t) du

)
.

Hasimoto states that a solution ψ ∈ C2(T) of the NLS is associated with a curve

γ and the curvature and torsion of its Frenet-Serret frame {t,n,b} via the Hasimoto

transform. This statement is established later in Proposition 5.1.7, but the approach

taken by Hasimoto starts with the curve defined below.
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Introduce a twice differentiable vector valued function γ : R × R → R3 where

γ = γ(x, t), which satisfies the differential equation:

γ̇ = κb, (5.3)

where a dot denotes ∂
∂t

and a prime will denote ∂
∂x

throughout. γ is defined to be unit

speed with respect to the variable x, and as discussed in Section 1.2, the derivative with

respect to x can therefore be described by the Frenet-Serret equations,

∂

∂x

t

n

b

 =

 0 κ 0

−κ 0 τ

0 −τ 0


t

n

b

 .
The frame [t,n,b] is defined with respect to the curve γ(x, t) where the t coordinate

has been fixed. The curvature κ(x, t) and torsion τ(x, t) vary smoothly due to the

assumptions on γ as shown in Proposition 1.2.4. From Equation (5.3) and the Frenet-

Serret frame, the evolution of the frame with respect to time can be expressed in terms

of the curvature and torsion.

Proposition 5.1.4. The time derivatives of the tangent, normal and binormal of γ

are,

∂

∂t

t

n

b

 =

 0 −τκ κ′

τκ 0 −µ
−κ′ µ 0


t

n

b

 . (5.4)

Proof. The second order partial derivatives of a function are equal, hence

∂

∂t
t =

∂

∂x
κb

ṫ = κ′b + κb′

ṫ = κ′b− κτn (5.5)

The vectors t, n and b are orthonormal and so the vectors ṅ and ḃ can be expressed
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as a linear combination of them:

ṅ = αt + βn + ηb, ḃ = λt + µn + vb. (5.6)

These coefficients will be found below.

Find µ and η The vectors n and b are orthogonal, hence n · b = 0. This means the

derivative:

∂

∂t
n · b = 0,

ḃ · n + ṅ · b = 0,

λt · n + µn · n + vb · n + αt · b + βn · b + ηb · b = 0,

µ+ η = 0.

So the constraints on µ and η is just that η = −µ.

Find β and v Both n and b are unit length, therefore the same process applies to

each. Unit length implies n · n = 1, hence the derivative:

∂

∂t
n · n = 0,

2ṅ · n = 0,

αt · n + βn · n + ηb · n = 0,

β = 0.

The same calculation holds for ḃ and shows that v = 0.

Find α Equation (5.5) gives ṫ, this can be used with the fact n and t are orthogonal,

to derive α.

∂

∂t
n · t = 0,

ṅ · t + ṫ · n = 0,

ṅ · t = −κ′b · n + κτn · n

ṅ · t = κτ.
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Hence α = κτ .

Find λ Analogously to finding α:

∂

∂t
b · t = 0,

ḃ · t + ṫ · b = 0,

ḃ · t = −κ′b · b + κτn · b

ḃ · t = −κ′.

Hence λ = −κ′

5.1.2 The Lax pair condition

Denote the matrix derived in the last section and the Frenet-Serret Matrix,

∂

∂x

t

n

b

 =

 0 κ 0

−κ 0 τ

0 −τ 0


t

n

b

 , ∂

∂t

t

n

b

 =

 0 −τκ κ′

τκ 0 −µ
−κ′ µ 0


t

n

b

 , (5.7)

by ∂tX = Ω2X and ∂xX = Ω1X respectively.

Proposition 5.1.5 (Consistency condition). The equations ∂tX = Ω2X and ∂xX =

Ω1X are coupled differential equations. To be consistent they must satisfy:

∂Ω2

∂x
− ∂Ω1

∂t
= [Ω1,Ω2] . (5.8)
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Proof. As second order mixed partial derivatives must agree:

∂x∂tX = ∂t∂xX,

∂xΩ2X = ∂tΩ1X,

∂Ω2

∂x
X + Ω2

∂X

∂x
=
∂Ω1

∂t
X + Ω1

∂X

∂t
,

∂Ω2

∂x
X + Ω2Ω1X =

∂Ω1

∂t
X + Ω1Ω2X.

Therefore,
∂Ω2

∂x
− ∂Ω1

∂t
= [Ω1,Ω2] . (5.9)

When the full matrices are substituted into this relation it will return some con-

straints on κ and τ , and will allow the elimination of µ.

∂

∂x

 0 −τκ κ′

τκ 0 −µ
−κ′ µ 0

− ∂

∂t

 0 κ 0

−κ 0 τ

0 −τ 0

 = [Ω1,Ω2] ,

 0 −τ ′κ− τκ′ − κ̇ κ′′

τ ′κ+ τκ′ + κ̇ 0 −µ′ − τ̇
−κ′′ µ′ + τ̇ 0

 = [Ω1,Ω2] .

Then deal with the bracket.

[Ω1,Ω2] =

 0 κ 0

−κ 0 τ

0 −τ 0


 0 −τκ κ′

τκ 0 −µ
−κ′ µ 0

−
 0 −τκ κ′

τκ 0 −µ
−κ′ µ 0


 0 κ 0

−κ 0 τ

0 −τ 0



=

 τκ2 0 −κµ
−τκ′ τκ2 + τµ −κκ′

−τ 2κ 0 τµ

−
 τκ

2 −τκ′ −τ 2κ

0 τκ2 + µτ 0

−κµ −κ′κ τµ



=

 0 τκ′ −κµ+ τ 2κ

−τκ′ 0 −κκ′

−τ 2κ+ κµ κκ′ 0


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This leads to 0 −τ ′κ− τκ′ − κ̇ κ′′

τ ′κ+ τκ′ + κ̇ 0 −µ′ − τ̇
−κ′′ µ′ + τ̇ 0

 =

 0 τκ′ −κµ+ τ 2κ

−τκ′ 0 −κκ′

−τ 2κ+ κµ κκ′ 0


 0 −τ ′κ− 2τκ′ − κ̇ κ′′ + κµ− τ 2κ

τ ′κ+ 2τκ′ + κ̇ 0 µ′ + τ̇ + κκ′

−κ′′ + τ 2κ− κµ −µ′ − τ̇ − κκ′ 0

 = 0 (5.10)

5.1.3 Equivalent representations

In this section the equivalence between the Lax pair representation and the nonlinear

Schrödinger equation will be derived. The function σ will be used to denote the integral

of the torsion τ(x, t) with respect to x:

σ(x, t) :=

∫ x

0

τ(u, t) du. (5.11)

Lemma 5.1.6. The matrix given in Equation (5.10), which represents the consistency

condition of the Lax pair, is equivalent to a pair of coupled differential equations

κσ̇ = −τ 2κ+ κ′′ − 1

2
κ3 + A(t)κ,

κ̇ = −(τ ′κ+ 2τκ′),

where A is a real function of t.

Proof. Let κ, τ and µ satisfy Equation (5.10). Take the differential equation µ′ + τ̇ +

κκ′ = 0 given in Equation (5.10) and integrate with respect to s.∫
µ′ds = −

∫
τ̇ + κκ′ ds,

µ = −σ̇ − 1

2
κ2 + A(t), (5.12)

Where A(t) is a constant of integration with respect to s so can be a real function of t.

This equation can be combined with the second term in the matrix κ′′ + κµ− τ 2κ = 0
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to give:

κσ̇ = −τ 2κ+ κ′′ − 1

2
κ3 + A(t)κ. (5.13)

In addition, this equation is coupled with the third differential equation from the matrix

given in Equation (5.10)

κ̇ = −(τ ′κ+ 2τκ′), (5.14)

giving the desired coupled equations.

The converse is also true, let κ, τ and A satisfy Equation (5.13) and Equation (5.14)

then Equation (5.13) can be rearranged

−κ
′′

κ
+ τ 2 = −σ̇ − 1

2
κ2 + A(t).

A new function can be defined µ := −κ′′

κ
+ τ 2, which will be well defined as κ > 0, and

coincides with one differential equation in Equation (5.10). With the new function µ,

Equation (5.13) becomes

µ = −σ̇ − 1

2
κ2 + A(t).

Then the partial derivative of µ with respect to s must satisfy

µ′ = τ̇ + κκ′.

This forms the 3 differential equations given by Equation (5.10).

Proposition 5.1.7. The Lax pair satisfies the consistency condition given in Proposi-

tion 5.1.5 if and only if the Hasimoto transform ψ satisfies a variant of the nonlinear

Schrödinger equation,

1

i

∂ψ

∂t
=
∂2ψ

∂x2
− (

1

2
|ψ|2 − A)ψ,

where A is a real valued function given in Equation (5.12).

Proof. First note that by Lemma 5.1.6, the Lax pair satisfies the consistency condition

if and only if the functions κ and τ satisfy the coupled differential equations given in

Equation (5.13) and Equation (5.14). To prove the forward implication, take the partial
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derivative of the Hasimoto transform ψ with respect to t,

1

i

∂ψ

∂t
=

1

i
(κ̇+ iκσ̇) exp(iσ).

Substitute in the consistency conditions for κ and τ given in Equation (5.14) and (5.13)

respectively,

1

i

∂ψ

∂t
=

1

i

(
−(τ ′κ+ 2τκ′) + i(−τ 2κ+ κ′′ − 1

2
κ3 + A(t)κ

)
exp(iσ),

=
(
i(τ ′κ+ 2τκ′) + (κ′′ − τ 2κ)

)
exp(iσ)− (

1

2
|ψ|2 − A)ψ.

Lastly, note that the second order partial derivative of ψ is equal to the first term,

=
∂2ψ

∂x2
− (

1

2
|ψ|2 − A)ψ.

This is the required equation.

The converse implication can be proven simply by running the above calculation

backwards. Let the Hasimoto transform satisfy the Schrödinger equation and expand

in terms of κ and τ ,

1

i

∂ψ

∂t
=
∂2ψ

∂x2
− (

1

2
|ψ|2 − A)ψ,

1

i
(κ̇+ iκσ̇)eiσ =

(
i(τ ′κ+ 2τκ′) + (κ′′ − τ 2κ)

)
eiσ − (

1

2
|ψ|2 − A)ψ,

1

i
(κ̇+ iκσ̇)eiσ =

1

i

(
−(τ ′κ+ 2τκ′) + i(−τ 2κ+ κ′′ − 1

2
κ3 + A(t)κ

)
eiσ.

Separate into real and imaginary parts,

κσ̇ = −τ 2κ+ κ′′ − 1

2
κ3 + A(t)κ,

κ̇ = −(τ ′κ+ 2τκ′),

these are Equation (5.13) and Equation (5.14) respectively.

Proposition 5.1.8. If Θ is a solution to the standard defocussing nonlinear Schrödinger
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equation,
1

i

∂Θ

∂t
=
∂2Θ

∂x2
− 1

2
|Θ|2Θ,

then ψ = Θ exp(i
∫
A dt) is a solution to the form of the nonlinear Schrödinger

equation given in Proposition 5.1.7

5.2 Hasimoto transform

To summarise the reformulation of the NLSE into the evolution of a frame this section is

taken from an earlier work [8]. We recall the Hasimoto [35] transform, which associates

with a solution ψ ∈ C2 of the nonlinear Schrödinger equation (Equation 5.1) a space

curve in R3 with moving frame {t,n,b}; Hasimoto considered the case β = −1/2. In

the present context, ψ is associated with the space derivative of a tangent vector t to a

unit speed space curve, so the curvature is κ = ‖ ∂t
∂x
‖. We have a polar decomposition

ψ = κeiσ where σ(x, t) =
∫ x

0
τ(y, t)dy and τ is the torsion. Then the Serret–Frenet

formula is

∂

∂x

t

n

b

 =

 0 κ 0

−κ 0 τ

0 −τ 0


t

n

b

 , (5.15)

so the frame develops along the space curve. Let X = [t; n; b] ∈ SO(3), and Ω1(x, t)

the matrix in Equation (5.15). When Ω1(·, t) ∈ C(T; so(3)), the solution X(·, t) ∈
C([0, 2π];SO(3)) to Equation (5.15) is 2π periodic up to a multiplicative monodromy

factor U(t) ∈ SO(3) such that X(x+ 2π, t) = X(x, t)U(t).

The frame also evolves with respect to time, so that with µ = −∂σ
∂t
− βκ2, we have

∂

∂t

t

n

b

 =

 0 −τκ ∂κ
∂x

τκ 0 −µ
−∂κ
∂x

µ 0


t

n

b

 . (5.16)

Let Ω2 denote the matrix in Equation (5.16). For a pair of coupled ODE dX/dx−Ω1X =

0 and dX/dt− Ω2X = 0, the corresponding Lax pair is

∂Ω1

∂t
− ∂Ω2

∂x
+
[
Ω1,Ω2

]
= 0.
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Lemma 5.2.1. (Hasimoto) If ψ is a C2 function that satisfies the nonlinear Schrödinger

equation, then the coupled pair of differential equations is consistent in the sense that

there exists a local solution of the pair of ODE, and there exists a local solution of Lax

pair.

Thus the frame X ∈ SO(3) evolves along the solution P + iQ ∈ BK of NLS, and

we can regard d/dx− Ω1 and d/dt− Ω2 as connections for this evolution. Both of the

coefficient matrices are real and skew symmetric. One can check that a solution of the

integral equation

X(x, t) = X0(x) + tΩ2(0, 0)X0(0) +

∫ x

0

∫ t

0

(∂Ω1(y, s)

∂t
+ Ω1(y, s)Ω2(y, s)

)
X(y, s)dsdy

(5.17)

satisfies

X(x, 0) = X0(x),
∂X(x, 0)

∂t
= Ω2(x, 0)X0(x),

∂2X(x, t)

∂x∂t
=
(∂Ω1(x, t)

∂t
+ Ω1(x, t)Ω2(x, t)

)
X(x, t),

so smooth solutions are given in terms of an integral equation.

From the Serret–Frenet formulas the components of the acceleration along the space

curve satisfy ∥∥∥t× ∂2t

∂x2

∥∥∥2

=
(∂κ
∂x

)2

+ κ2τ 2 =
(∂Q
∂x

)2

+
(∂P
∂x

)2

,(
t · ∂

2t

∂x2

)2

= κ4 =
(
P 2 +Q2

)2
. (5.18)

The total curvature of the space curve is∫
T
κ(x)2dx =

∫
T
(P 2 +Q2)dx = H1(P,Q), (5.19)

which is an invariant under the flow associated with the NLS.

91



92



Chapter 6

The Euler equations

This chapter focusses on the isentropic Euler equations of fluid motion, which govern

the motion of an compressible inviscid fluid. The dynamics of this motion are governed

by pressure forces as a result of the varying density throughout the fluid. Some of the

assumptions made in deriving these equations, and justifications for their relevance to

fluid motion are outlined in the first section. Following this, an alternative form of

the Euler equations which depend on the internal energy of the fluid instead of the

pressure is derived. Then the coordinate frame for the problem is shifted to Lagrangian

coordinates, and the differential equation for the evolution of the Lagrangian velocity

is defined.

In the second section a standard existence and uniqueness theorem for smooth solu-

tions on a bounded interval is given. This is then applied in the third section to discuss

solutions constrained to the sphere. Some necessary conditions on the potential are

derived so that solutions may exist on the sphere, and the co-moving frame attached to

a given solution curve is discussed in detail. Lastly, solutions to the Lagrangian ODE

are found to be consistent with the linear transport equation (or continuity equation)

and an interval for which this consistency remains is estimated.

The Euler equations are further discussed in Chapter 7, in which they are compared

to the Saint-Venant equations. Then later in Chapter 13 transport-based methods for

numerical solutions to the Euler equations are discussed. This method is capable of

modelling densities of measures absolutely continuous with respect to Lebesgue mea-

sure, which can be non-continuous functions.
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6.1 The Euler equations

The isentropic Euler equations describe the motion of a compressible inviscid fluid due

to the variations in density throughout the fluid. How the variations of the density

produce pressure forces is approximated using the thermodynamic potential . The

word ‘Isentropic’ refers to the system being modelled as a reversible, adiabatic process.

An adiabatic process is one in which no heat or mass is transferred from the system to

its surroundings, and to be adiabatic and reversible is to maintain a constant entropy.

The term ‘Euler equation’ is used for a wide variety of different equations from many

fields of mathematics, in this thesis however we reserve the term specifically for the

isentropic Euler equations presented here.

Definition 6.1.1. Let ρ(x, t) : M × [0, τ ] → R+ denote a density and u(x, t) : M ×
[0, τ ] → TM denote a velocity field on the Riemannian manifold M and its tangent

space TM . The Euler equations are

∂tρ+∇ · (ρu) = 0, (6.1)

∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ) = 0. (6.2)

The function P (ρ) denotes the pressure of the fluid and is related to the internal energy.

The explicit form the internal energy takes differs depending on the fluid modelled, and

the thermodynamic assumptions made, and in this work is given in Definition 6.1.2.

Definition 6.1.2. The internal energy for an adiabatic ideal gas is given by

U(ρ) =
κργ

γ − 1
, (6.3)

where κ is a generic constant and γ denotes the adiabatic index which is equal to the

ratio of the heat capacities, or degrees of freedom. The pressure is related to the internal

energy by [74, p.156],

P (ρ) = U ′(ρ)ρ− U(ρ), (6.4)

and so the pressure forces within an ideal gas undergoing adiabatic dynamics is given

by P (ρ) = κργ.

Definition 6.1.3. The adiabatic index, γ, which is also known as the ratio of specific

94



heats [45, p.20] is

γ =
CP
CV

=
f + 2

f
, (6.5)

where CP is the heat capacity of the gas at constant pressure, and CV the equivalent

at constant volume, and f simply denotes the degrees of freedom of the gas.

A monatomic gas has 3 degrees of freedom f = 3 corresponding to the 3 translations

in R3, it has no rotational degrees of freedom on account of its spherical symmetry. A

diatomic gas is visualised as two spheres linked together, as such it has one axis of

rotation in which the shape remains invariant, the symmetry along this axis of rotation

removes one possible rotational degree of freedom, leaving two out of the possible three

rotations in R3 (think Euler angles) and the original three translations. A monatomic

gas has γ = 5/3 and a diatomic gas has γ = 7/5.

Remark 6.1.4. The Euler equations are constructed to describe the motion of a fluid

and to retain this useful symmetry with an observable physical system, the system must

not deviate outside realistic values. For example, Equation (6.1) is simply derived from

a continuum hypothesis, that is, the fluid - a collection of randomly moving particles

of random velocities distributed according to a Maxwell-Boltzmann distribution - acts

locally like a continuous deformable volume under the collective motion of a phase

velocity u. This is a well founded assumption under which the field of fluid dynamics

is separated from statistical mechanics. But it is only an approximation, and the

approximation only remains valid when the length scale of the problem (L) is large

compared to the molecular mean free path of the fluid in question (l). The molecular

mean free path of a fluid is the average distance a particle travels before it collides with

another. It is a microscopic quality of the gas but it relates to the macroscopically

observed phenomena of momentum diffusion, heat capacity and species (type of gas).

The ratio of mean free path to length scale is known as the Knudsen’s number Kn = L/l,

and the continuum hypothesis is empirically observed to be valid for Kn << 1. For a

gas such as air at room temperature and pressure the mean free path is l = 1× 10−6m,

but for rarefied gases in the upper atmosphere the mean free path is much larger and

this could pose an issue [45, p.6].
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6.1.1 Equivalent definitions of Euler System

Consider the Euler equations as given in Definition 6.1.1. Assume the manifold in

question is R3 or embedded in R3, the highest dimensional space we will be working

within this chapter.

Proposition 6.1.5. The pair of functions (ρ, u) as in Definition 6.1.1 are solutions to

the Euler equations if and only if they are solutions to the following,

∂tρ+∇ · (ρu) = 0, (6.6)

∂tu + (u · ∇)u +∇U ′(ρ) = 0. (6.7)

Proof. The continuity equation is unchanged. Equation (6.7) is equivalent to Equation

(6.2) thanks to the following identities. First,

∇ · (ρu⊗ u) = ρ(u · ∇)u + u∇ · (ρu)

is a vector algebraic identity for a higher order tensor. And secondly, the gradient of

the thermodynamic equation of pressure given in Equation (6.4) is,

∇P (ρ) = ρ∇U ′(ρ) + U ′(ρ)∇ρ− U ′(ρ)∇ρ (6.8)

= ρ∇U ′(ρ). (6.9)

Therefore,

∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ) = 0 ⇐⇒

ρ∂tu + u∂tρ+ ρ(u · ∇)u + u∇ · (ρu) + ρ∇U ′(ρ) = 0 ⇐⇒

u (∂tρ+∇ · (ρu)) + ρ (∂tu + (u · ∇)u +∇U ′(ρ)) = 0,

the first parenthesis of this equation will be zero by the continuity equation, and leaving

aside the trivial edge case of both ρ and u being everywhere zero, the final if and only

if statement is,

∂tu + (u · ∇)u +∇U ′(ρ) = 0.
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6.1.2 The Euler equations in Lagrangian form

The Euler equations expressed in Equation (6.1) are in Eulerian coordinates, a coor-

dinate system which is fixed to the domain of the problem. Sometimes a differential

equation can be simplified by transforming the problem into a new frame of reference .

Lagrangian coordinates are co-moving frames of reference for the particles of the fluid

under motion. Let Ra denote the Eulerian coordinate system, and Rx denote a isomor-

phic space just referred to by the variable x. The function X(x, t) : Rx× [0,∞)→ Ra

maps the particle located at x at time t = 0 to the position in the Eulerian frame

at which it is located at time t. In this case we consider the initial density ρ(x, 0) to

be the initial positions of the particles, in other words ρ(X(a, 0)0) = ρ(x, 0), and so

X(a, 0) = x.

Proposition 6.1.6. If there exists u : R×[0, τ ]→ R such that X 7→ u(X, t) is Lipschitz,

then for x ∈ Rn the differential equation

∂

∂t
X(a, t) = u(X(a, t), t), (6.10)

where u is the Eulerian velocity, has unique solution. We will now define V (a, t) to be

the Lagrangian velocity which is just the composition V (a, t) = (u ◦X)(a, t).

This proposition is fundamental to the concept of a Lagrangian velocity, it will be

proven in conjunction with the rest of the Lagrangian frame in Section 6.2.

Material derivative

Consider the scalar and vector valued functions, f : R3×[0, τ)→ R and F : R3×[0, τ)→
R3. The ‘derivative’ of these functions along the trajectory specified by X(a, t), recalling

that a is just a label, is given by the multivariable chain rule

d

dt
f(X(a, t), t) =

∂

∂t
f(X, t) +

∂X

∂t
· ∇f(x, t), (6.11)

d

dt
F (X(a, t), t) =

∂

∂t
F (X, t) +

(
∂X

∂t
· ∇
)
F (x, t). (6.12)
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Then both equations can written in terms of the Lagrangian velocity ∂tX = V .

Definition 6.1.7. The Euler equations in Lagrangian form are a pair of ordinary

differential equations for X(a, t) : R3× [0, τ)→ R3 and V (a, t) : R3× [0, τ)→ R3 given

by,

d

dt

(
X

V

)
=

(
V

−∇U ′(ρ(X, t))

)
, (6.13)

where a, the labelling of the space at time zero is seen as an initial condition and thus

fixed with respect to time.

A simplifying assumption is made in many of the examples discussed in that the

density ρ(X, t) = ρ(X) produces an autonomous differential equation for X, V . In other

words, the density has no explicit time dependence.

Lemma 6.1.8. Consider the pair (ρ, u), which is a solution to the Euler equations as

outlined in Proposition 6.1.5. Then, the pair (X, V ) solve the Lagrangian form of the

Euler equations as given in Definition 6.1.7.

Proof. The first row of Equation 6.16, ∂tX = V is simply Equation (6.13), the defi-

nition of the Lagrangian velocity. The second row is due to Equation (6.7). Consider

the material derivative of a smooth vector function F (X(a, t), t) with respect to time,

as given in equation Equation (6.12). When this relation is applied to the function

u(X(a, t), t) then the total derivative is,

∂tu(X(a, t), t) + (u(X(a, t), t) · ∇) u(X(a, t), t) +∇U ′(ρ(X(a, t), t)) = 0,

d

dt
u(X(a, t), t) = −∇U ′(ρ(X(a, t), t)),

d

dt
V (a, t) = −∇U ′(ρ(X(a, t), t)).

Remark 6.1.9. The differential equations for X and V (Equation (6.13)) are a refram-

ing of Equation (6.7), but have decoupled this equation from the continuity equation

(Equation (6.6)). Thus it must be established if the density discussed in the following

sections is a solution to the continuity equation as well. This subject will be discussed

in Section 6.6
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Remark 6.1.10. The differential equations (Equation (6.13)) do not describe how the

the density changes over time. For the following section we make the assumption that

the densities are invariant with respect to time.

6.2 Existence theory for solutions on S2

With suitable initial conditions, one can establish the existence and uniqueness of con-

tinuous solutions to the Euler equations via classical theorems based on Picard iteration

in a closed and bounded subset of Euclidean space.

Theorem 6.2.1 (Birkhoff-Rota). [4, p. 113] If g(y, t) : R3× [0, T ]→ R3 is a continu-

ous function on a region R× [0, T ] where R = {y ∈ R3 | ‖y− y0‖ ≤ r} and is Lipschitz

in the y variable, ‖g(y2, t) − g(y1, t)‖ ≤ K‖y2 − y1‖ for all t ∈ [0, τ ] and y1, y2 ∈ R.

Then the differential equation,
dy

dt
= g(y, t) (6.14)

with initial condition y(0) = y0 has a unique solution on the interval [0, τ ] where τ =

min
(
T, r/ supR×[0,T ] |g(y, t)|

)
.

Proposition 6.2.2. Let ρ(x) ∈ C2
b (R3,R+) be a density which is invariant over time

and consider only ρ(x) which have a minimum density ρ0 = infx∈R3 {ρ(x)} > 0. Con-

sider a region, Ω contained within a cuboid R ⊂ R3 such that
∫

Ω
ρ(x)dx = 1. If

U(ρ) = ργ, then ∇U ′(ρ(X)) is continuous and Lipschitz on Ω. Thus the map,[
X

V

]
7→

[
V

∇U ′(ρ(X))

]
(6.15)

is also Lipschitz. Therefore, the system of ODEs given in Lemma 6.1.8 has a solution

on the interval t ∈ [0, τ ] where τ = r/ supx∈R |∇U ′(ρ(x))|, and the solution is unique.

Proof. By Theorem 6.2.1 the ODE has a unique solution provided −∇U ′(ρ(X)) Lips-

chitz continuous. First note U ′(ρ) = γργ−1, and thus ∇U ′(ρ) = γ(γ−1)ργ−2∇ρ. Under

the assumption that ρ ∈ C2
b , then ∇ρ ∈ C1

b .

The function f(x) = xγ−2 is differentiable on R+ provided the exponent is larger

than 1. For γ ∈ (1, 2] however, the exponent will be smaller than 1, meaning f(x) =
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xγ−2 will not be differentiable at 0. By specifying a positive minimum density, the point

of non-differentiability of f(ρ) = ργ−2 is avoided. Hence the additional assumption of

a minimum density ρ0 = infx∈R3 {ρ(x)} > 0 implies that f ◦ ρ ∈ C1
b and therefore

∇U ′(ρ(x)) ∈ C1
b . Finally, a differentiable function is Lipschitz by the intermediate

value theorem, with a Lipschitz constant equal to the maximum of the derivative, thus

the ODE dV
dt

= ∇U ′(ρ(x)) is Lipschitz and has a unique solution. With existence and

uniqueness of V proven, its continuity on a bounded set imply the existence of a solution

to dX
dt

= V by Peano’s existence theorem [4].

6.3 On the sphere

Consider the ODE for X(x, t) : R3× [0, τ)→ R3 and V (x, t) : R3× [0, τ)→ R3 given in

Definition 6.1.7. To adapt this differential equation so that solutions lie on the sphere

one must introduce the lagrange multiplier λ.

∂

∂t

(
X

V

)
=

(
V

λX −∇U ′(ρ).

)
(6.16)

Constraining the solution to the sphere implies that
∫
‖x‖2ρ(x)dx = 1, hence by the

method of Lagrange multipliers one can add a term to the Hamiltonian for the problem,

H(q, ρ) =
1

2

∫
‖∇q‖2ρdx+

∫
U(ρ)dx+ λ

(
1

2

∫
‖x‖2ρdx− 1

)
. (6.17)

The Euler equations on the sphere should be the canonical equations of this Hamilto-

nian.

δH

∂q
=
∂H

∂q
−∇ ∂H

∂∇q
,

= −∇ · (∇qρ),

∂ρ

∂t
= −∇ · (∇qρ),
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Giving the continuity equation, and then the velocity update is

δH

∂ρ
= ‖∇q‖2 + U ′(ρ) +

λ

2
‖x‖2,

−∂q
∂t

=
1

2
‖u‖2 + U ′(ρ) +

λ

2
‖x‖2,

∇∂q
∂t

= −1

2
∇‖u‖2 −∇U ′(ρ)− λx,

∂u

∂t
= −1

2
∇‖u‖2 −∇U ′(ρ)− λx.

Thus the Lagrangian velocity equation becomes

d

dt
V (a, t) =

∂u

∂t
+ 〈u,∇u〉,

∂

∂t
V (a, t) = −1

2
∇‖u‖2 −∇U ′(ρ(X))− λX + 〈u,∇u〉,

= −∇U ′(ρ(X))− λX.

And so the coupled equations in the Lagrangian frame are as expressed in Equation

(6.16), where the sign of λ is not important.

Proposition 6.3.1. Consider the ODE with λ = 1 and initial conditions ‖X0‖ = 1,

〈X0, V0〉 = 0. If the density is constant (and thus the gradient of the internal energy is

zero), then the problem reduces to a geodesic on the sphere.

Proof. The ODE can be reframed as the equation

∂

∂t

(
X

V

)
=

(
0 1

−1 0

)(
X

V

)
,

for which the solution (
X

V

)
= exp

(
t

(
0 1

−1 0

))(
X0

V0

)
,

is evident. The skew symmetric nature of this constant matrix and its inclusion into

su(2) allow for its exponential to be calculated explicitly. As the second Pauli matrix,
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let us represent the matrix by the symbol σ2. Note that σ2
2 = −I, and thus

exp

(
t

(
0 1

−1 0

))
=

∞∑
n=−∞

tnσn2
n!

,

=
∞∑

n=−∞

t2n(−1)n

2n!
I +

∞∑
n=−∞

t2n+1(−1)n

(2n+ 1)!
σ2,

= cos(t)I + sin(t)σ2,

=

(
cos(t) sin(t)

− sin(t) cos(t)

)
.

This matrix is recognisable as a rotation of t radians around a fixed axis, it will clearly

translate the frame [X0, V0, X0 × V0] along a geodesic on S2.

Proposition 6.3.2. Consider the ODE given in Equation (6.16), with a density given

by ρ(r, θ) = C − A2 sinB sin(θ)r and γ = 2 and λ = 0. The problem has solution

X(t) = r̂(B,At) =

sin(B) cos(At)

sin(B) sin(At)

cos(B)

 .

and this solution corresponds to motion around the parallel at co-latitude θ = B at

constant angular velocity A. Provided that A2 < C, the density ρ(r, θ) is positive out

to a radius larger than 1 and the problem has a unique solution. For each valid A ∈ R
there are a family of densities {ρB(r, θ) = C − A2 sinB sin(θ)r | B ∈ (0, π)} each with

their own unique solution curve XB(t).

Before proving the proposition, the intuition behind the choice of density can

be explained. For γ = 2 the acceleration term ∇U ′(ρ) = 2∇ρ. In spherical po-

lar coordinates the gradient operator is ∇ = ( ∂
∂r
, 1
r
∂
∂θ
, 1
r sin θ

∂
∂ϕ

), and so the density

ρ(r, θ) = A2 sinB sin(θ)r gives a gradient

∇ρ = −A2 sinB sin θ r̂ − A2 sinB cos θ θ̂ + 0 ϕ̂. (6.18)

Here we can already note that − sin θ r̂ − cos θ θ̂ is a unit vector pointing inwards

along the radius of the parallel at θ (the word radius being used in light of the parallel
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being a circle embedded in R3, not to be confused with the radial coordinate in spherical

polar coordinates), calling this unit vector R̂θ, ∇ρ = (A2 sinB) R̂θ. Circular motion

is defined as motion in which the acceleration of the body is pointing inwards radially

with magnitude ω2r where ω is the angular velocity of the body, and r the radius of

the orbit. The parallel at θ = B has radius sinB and thus this ODE appears set up for

circular motion along the parallel at θ = B with angular velocity A.

Proof. To prove the curve X(t) is a solution to Equation (6.16) the second derivative

is calculated.

d

dt
X(t) = A

− sin(B) sin(At)

sin(B) cos(At)

0

 , (6.19)

d2

dt2
X(t) = −A2

sin(B) cos(At)

sin(B) sin(At)

0

 .

To compare this vector with the gradient of ρ which we expressed in spherical polar

coordinates we must decompose it into its (r̂, θ̂, ϕ̂) components at the point (B,At)

−A2

sin(B) cos(At)

sin(B) sin(At)

0

 = −A2

(sin3(B) + sin(B) cos2(B)) cos(At)

(sin3(B) + sin(B) cos2(B)) sin(At)

sin2(B) cos(B)− sin2(B) cos(B)

 ,

= −A2 sin2(B)

sin(B) cos(At)

sin(B) sin(At)

cos(B)



− A2 sin(B) cos(B)

cos(B) cos(At)

cos(B) sin(At)

− sin(B)

 ,

= −A2 sin2(B)r̂(B,At)− A2 sin(B) cos(B)θ̂(B,At). (6.20)

Comparing this with ∇ρ as given in Equation (6.18) evaluated at coordinates (B,At)
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shows that,

d2

dt2
X(t) = ∇ρ,

and (X(t), V (t)) where V (t) := d
dt
X(t) is the solution to the ODE.

Remark 6.3.3. It is worth noting that plugging (θ(t), ϕ(t)) = (B,At) into Equation

(2.6) gives Equation (6.20) directly, illustrating the usefulness of the frames based

approach.

Remark 6.3.4. The above proposition is expressed with respect to a local coordinate

system. The base of this coordinate system can be rotated through any element of

SO(3) and thus a curve, XB(t) tracing out any circle on the unit sphere will be a

unique solution to the ODE (Equation (6.16)) with density ρB(t) in some coordinate

system.

6.4 General solutions on the sphere

First to caveat, the method used to evaluate the ODE here have been unable to specify a

general set of simple conditions on ρ such that there exists a unique solution constrained

to the sphere. The most general set of smooth solutions on the sphere are given by

a unit speed parameterisation that satisfies ∇U ′(ρ) = kgr̂ × γ̇, where kg, the geodesic

curvature of the curve, may vary.

The culmination of this avenue of thought is to express what properties the potential

term must possess to constrain the solution to a general curve on the sphere. The

question of whether a density could produce such a potential term is also discussed.

The representation of a general curve on the sphere has been discussed in Section 1.2

and Section 2.1, depending on whether the Frenet-Serret frame is used or not.

6.4.1 Spherical geometric frame

Using the notation of Equation (2.2), let us consider a curve γ(t) which satisfies the

Euler equations in Lagrangian form, Equation (6.16). This curve thus satisfies the
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differential equation,

d

dt

[
γ(t)

γ̇(t)

]
=

[
γ̇(t)

λr̂ −∇U ′

]
. (6.21)

Ideally this pair of ODEs could be expanded into a frame, [γ, γ̇, γ × γ̇]>. The best

approach for a orthonormal frame of a general curve in R3 is to use the Serret-Frenet

vectors [γ′, γ′′/‖γ′′‖, γ′ × γ′′/‖γ′ × γ′′‖]>, but this requires another derivative of the

curve to be calculated. Provided the curve is on the surface of a sphere, one can exploit

the fact that the vector γ(t) will always be orthogonal to the velocity γ̇ and therefore

the frame [γ, γ̇, γ × γ̇]> can be orthogonal. Consequently, the following arguments are

slightly contrived — the only way the matrix differential equations actually define the

evolution of a frame is if the curve lies on the sphere. Nevertheless, the first step in

constructing a matrix version of the differential equations is through the construction

of orthonormal vectors to express ∇U ′ with respect to, and this can be done by the

Gram-Schmidt process.

Lemma 6.4.1. The following vectors form an orthonormal basis for R3,

e1 =
γ

‖γ‖
, e2 =

γ × γ̇
‖γ × γ̇‖

,

e3 =

(
γ̇ − 〈γ, γ̇〉

‖γ‖2
γ

)
‖γ̇ − 〈γ, γ̇〉

‖γ‖2
γ‖−1.

Where the notation σ = ‖γ̇ − 〈γ,γ̇〉‖γ‖2 γ‖ will be used in future applications.

Proof. Apply the Gram-Schmidt process to orthogonal γ and γ × γ̇.

Let us expand the differential equations in to an equation for the evolution of the

frame [γ, γ̇, γ × γ̇]>.

Proposition 6.4.2. The pair of ordinary differential equations in Equation (6.21) can

be extended to the evolution of a non-orthogonal frame as

d

dt

 γ

γ̇

γ × γ̇

 =

 0 1 0

Ξ Υ −Λ

−Λ〈γ, γ̇〉 Λ‖γ‖2 Υ


 γ

γ̇

γ × γ̇

 (6.22)
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Where

Λ = −〈∇U
′, γ × γ̇〉

‖γ × γ̇‖2

Ξ =
λ

‖γ‖
− 〈∇U

′, γ〉
‖γ‖2

+
〈∇U ′, γ̇〉

σ2

〈γ̇, γ〉
‖γ‖2

− 〈∇U
′, γ〉

σ2

〈γ̇, γ〉
‖γ‖2

2

,

Υ = −〈∇U
′, γ̇〉

σ2
+
〈∇U ′, γ〉

σ2

〈γ, γ̇〉
‖γ‖2

.

Proof. Express the vector field ∇U ′ with respect to the basis e1, e2, e3 and then using

Equation (6.21) and vector identities express the resulting mess of inner products in

terms of γ, γ̇, γ × γ̇.

Now if [γ, γ̇, γ × γ̇]> was a frame, and the matrix in Proposition 6.4.2 was skew

symmetric then the curve would stay on the surface of the sphere. Of course, neither

seem likely. Nevertheless, making the matrix more skew symmetric might illuminate

things, and one way to do that is to make Υ = 0.

If our curve γ(t) is regular – if ‖γ̇(t)‖ 6= 0 for all t – then there exists a second curve

γ̃(s) which is parametrised by arc length (Definition 1.1.3). It agrees with γ(t) at all

points t, γ̃(s(t)) = γ(t), but is unit speed [60, Cor.1.3.7]. The derivative of γ̃(s) can be

expressed in terms of γ̇(t),

γ̃′(s) =
d

ds
γ̃(s(t)) =

1
ds
dt

d

dt
γ(t) =

1

‖γ̇(t)‖
γ̇(t), (6.23)

And the second derivative can be calculated similarly.

Lemma 6.4.3. The second derivative of γ̃(s) with respect to s can be expressed in terms

of the second derivative of γ(t) with respect to t by,

γ̃′′ =
γ̈ − 〈γ̈, γ̃′〉γ̃′

‖γ̇‖2
, (6.24)

Where ′ denotes differentiation with respect to s and ˙ denotes differentiation with

respect to t.
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Proof. Apply the quotient rule to the differentiation,

d

ds
γ̃′ =

1
ds
dt

d

dt

γ̇(t)

‖γ̇(t)‖

=
1

‖γ̇‖
γ̈‖γ̇‖ − γ̇ d

dt
‖γ̇‖

‖γ̇‖2
.

The derivative of the norm can be dealt with using the standard inner product on R3

and its compatibility with the product rule, along with the chain rule,

d

dt
‖γ̇‖2 = 2〈γ̇, γ̈〉,

d

dt
‖γ̇‖2 = 2‖γ̇‖ d

dt
‖γ̇‖,

d

dt
‖γ̇‖ =

〈γ̇, γ̈〉
‖γ̇‖

.

In conclusion, with use of the identity γ̃′ = γ̇
‖γ̇‖ , the second derivative can be expressed

as in Equation (6.23).

Proposition 6.4.4. The frame in Proposition 6.4.2 can be replaced with another one

along the same curve, only reparametrised to be unit speed. The new frame obeys the

differential equation,

d

ds

 γ̃

γ̃′

γ̃ × γ̃′

 =
1

‖γ̇‖2

 0 ‖γ̇‖2 0

Ξ̃ 0 −Λ̃

−Λ̃〈γ̃, γ̃′〉 Λ̃‖γ̃‖2 0


 γ̃

γ̃′

γ̃ × γ̃′

 (6.25)

Where

Λ̃ = −〈∇U
′, γ̃ × γ̃′〉

‖γ̃ × γ̃′‖2
,

Ξ̃ =
λ

‖γ̃‖
− 〈∇U

′, γ̃〉
‖γ̃‖2

+
〈∇U ′, γ̃′〉

σ2

〈γ̃′, γ̃〉
‖γ̃‖2

− 〈∇U
′, γ̃〉

σ2

(
〈γ̃′, γ̃〉
‖γ̃‖2

)2

.

Proposition 6.4.5. The following are equivalent,

(i) There exists a unique solution, γ(t), to Euler’s equations (Equation (6.16)) for a

given ρ(x) which lies on the unit sphere.
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(ii) This curve γ(t) has a unit speed reparametrisation, γ̃(s), which evolves according

to the matrix ODE,

d

ds

 γ̃

γ̃′

γ̃ × γ̃′

 =
1

‖γ̇‖2

 0 ‖γ̇‖2 0

λ+ 〈∇U ′, γ̃〉 0 〈∇U ′, γ̃ × γ̃′〉
0 −〈∇U ′, γ̃ × γ̃′〉 0


 γ̃

γ̃′

γ̃ × γ̃′

 ,
(6.26)

and this matrix is skew symmetric.

Corollary 6.4.6. The unit speed parametrisation above has

κn =
λ− 〈∇U ′, γ〉
‖γ̇‖2

, (6.27)

κg =
〈∇U ′, γ × γ′〉
‖γ̇‖2

. (6.28)

In the case of a sphere, κn = −1.

For a curve parametrised by (θ(t), φ(t)) on the sphere, its geodesic curvature is given

explicitly by Equation (2.7).

6.4.2 Using Frenet-Serret frame

If instead the general frame for a curve in R3 is used, then to calculate the curvature

and torsion of this curve a further derivative is required. Under the assumption of this

section that the density ρ(x) is time invariant, the impulse of the curve is given by

;γ = J(∇U ′(ρ))t, (6.29)

where J represents the Jacobian matrix.

Proposition 6.4.7. The curvature and torsion of the frame which flows along the

solution to the Euler equations (Equation (6.16)) is given by

κ = ‖λr̂ − 〈∇U ′,n〉n− 〈∇U ′, b〉b‖,

τ = 〈J(∇U ′)t, b〉.
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6.4.3 Integral conditions on the solution

In this section, necessary conditions for curves which both solve the Euler equations

(Equation (6.21)), and are constrained to the sphere are determined. These restrict

the form that ∇U ′ can take. The hairy ball theorem says that there does not exist any

smooth vector field lying in the tangent space of S2 which is non-zero at each point

[13, Thm 2.2.2]. Thus for the following analysis, the surface S which is a region of the

surface of the sphere is assumed not to contain any point for which ∇U ′ vanishes. In

addition, a curve γ with velocity ∇U ′ will not be regular if it passes through a point at

which ∇U ′ vanishes.

The Gauss’-Bonnet Theorem relates the integral of the Gaussian curvature of a

surface to the geodesic curvature of its boundary.

Theorem 6.4.8 (Gauss’-Bonnet Theorem). If K denotes the Gaussian curvature of

the surface S which has boundary equal to the curve γ with geodesic curvature κg then∫
S

K dS +

∫
γ

κg dγ − 2π χ(S) = 0, (6.30)

where χ(S) denotes the Euler characteristic of the surface in question, which is calcu-

lated using χ = V −E+F , where V , E and F are vertices, edges and faces respectively.

Example 6.4.9. For the class of solutions outlined in Proposition 6.3.2, in which

solutions follow parallels, these values can be calculated explicitly. Equation (6.20)

shows that 〈γ̈, γ̇〉 = 0, and therefore the unit speed parametrisation γ′′ = γ̈/‖γ̇‖2. Note

that ‖γ̇‖2 = A2 sin2B by Equation (6.19), then with reference to Equation (2.2) for the

definition of κg and Equation (2.7) for the explicit value of γ̈,

κg =
A2 sinB cosB

A2 sin2B
=

cosB

sinB
. (6.31)

The integral of this quantity around the parallel at co-latitude θ = B is∫
γ

κg dγ =

∫ 2π

0

cosB

sinB
sinB dϕ,

= 2π cosB.
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On the unit sphere, the Gaussian curvature is 1, making the integral of the Gaussian

curvature simply equal to the area of the surface. The surface area of the polar cap

with a boundary equal to the parallel at colatitude B is∫ 2π

0

∫ B

0

sin θ dθ dϕ = 2π(1− cosB).

Finally the Euler characteristic of a polar cap is equal to χ = 1, so each term in the

Gauss’-Bonnet equation has been calculated and

2π(1− cosB) + 2π cosB − 2π = 0.

This theorem can be employed in the present context, in combination with Stokes’

theorem. Embedding the unit sphere in Euclidean space R3 allows Stokes’ Theorem to

be stated using just the language of vector calculus.

Definition 6.4.10 (Stokes’ Theorem). The integral of the divergence of a smooth

vector field over a surface is equal to the flux of that vector field through the boundary

of the surface. Consider a smooth vector field F defined on a compact subset of R3

enclosing the simply connected surface S on the unit sphere, where the boundary of S

is the path of a unit speed curve γ(s),∫
S

r̂ · (∇× F ) dS =

∮
γ

F · t ds. (6.32)

The vector r̂ is everywhere normal to S and t denotes the tangent to the curve γ as

employed in the Frenet-Serret frame.

Direct application of this theorem to F = ∇U ′ is not enlightening, as ∇ × ∇ρ is

zero for any density ρ. However, as it applies to any vector field F , one can consider

F = r̂ ×∇U ′, then (r̂ ×∇U ′) · t = ∇U ′ · (t× r̂). As γ is on the sphere, γ = r̂ and so

110



t× r̂ = γ′ × γ, thus by Equation (6.32),∫
S

r̂ · (∇× (r̂ ×∇U ′)) dS =

∮
γ

(r̂ ×∇U ′) · t ds,

=

∮
γ

∇U ′ · (γ′ × γ) ds.

The cross product ∇× (r̂ ×∇U ′) is equal to

∇× (r̂ ×∇U ′) = (∇ · ∇U ′)r̂ − (∇ · r̂)∇U ′ + (∇U ′ · ∇)r̂ − (r̂ · ∇)∇U ′.

Where the use of the inner product is a small abuse of notation, as neither of∇·r̂ or r̂·∇
are scalar quantities, they are instead a vector and a differential operator respectively.

The inner product with r̂ is

r̂ · (∇× (r̂ ×∇U ′)) = (∇ · ∇U ′)− (∇ · r̂)(r̂ · ∇U ′) + r̂ · (∇U ′ · ∇)r̂

− r̂ · (r̂ · ∇)∇U ′.

The first and last terms together are equal to the projection onto the tangent space of

the gradient of the field, they remove any radial component of the gradient, and shall

be denoted ∇S2F = ∇·F −
(
r̂ · ∂F

∂r

)
r̂. If we denote the spherical components of ∇U ′ by

(Ur, Uθ, Uϕ), then (∇U ′ · ∇)r̂ = Uθ
r
θ̂ + Uϕ

r
ϕ̂ so it has no radial component. In addition,

the divergence of the radial unit vector is ∇ · r̂ = 2/r and thus,

r̂ · (∇× (r̂ ×∇U ′)) = ∇S2∇U ′ − 2
(r̂ · ∇U ′)

r
.

Therefore Stokes theorem implies that,∫
S

∇S2∇U ′ − 2
(r̂ · ∇U ′)

r
dS =

∮
γ

∇U ′ · (γ′ × γ) ds. (6.33)

Proposition 6.4.11. Consider the coupled differential equations given in Equation 6.21

for a unit speed γ, and the class Γ of curves which,

(i) Lie on the surface of the sphere,
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(ii) Form the boundary of a simply connected surface patch S.

Then if γ ∈ Γ is a solution to Equation (6.21), the potential ∇U ′ − λ must satisfy,∫
S

∇S2∇U ′ − 2λ− 1 dS = 2π. (6.34)

The region S is the patch enclosed by γ.

Proof. From Stokes theorem, and specifically Equation (6.33), a necessary condition on

the existence of certain solutions to Equation (6.21) can be constructed. Consider a

curve which solves Equation (6.21) and belongs to Γ. By Proposition 6.4.5 the curve

has a unit speed reparametrisation, γ, which satisfies Equation (6.26). The integral

along γ of its geodesic curvature, κg can be calculated by the Gauss’ Bonnet theorem.

But in addition, by Equation (6.28),∮
γ

κg ds =

∮
γ

∇U ′ · (γ′ × γ)

‖γ̇‖2
ds. (6.35)

Assuming the solution was originally unit speed, making ‖γ̇‖2 = 1, then∫
S

∇S2∇U ′ − 2(r̂ · ∇U ′) dS = 2π −
∫
S

dS.

As a result, the vector field ∇U ′ will only lead to a solution of Equation (6.16) on the

sphere (of unit speed) if ∫
S

∇S2∇U ′ − 2(r̂ · ∇U ′) + 1 dS = 2π.

Which can be further reduced by using κn = 1 and Equation (6.27), which imply

r̂ · ∇U ′ = 1 + λ. ∫
S

∇S2∇U ′ − 2λ− 1 dS = 2π.
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6.5 Solutions of a specific case

Having considered conditions on potential internal energies and initial densities which

lead to solutions of the Euler equations which lie on the sphere, let us explore a specific

problem in detail. Here we postulate a simple model of air pressure on earth, mostly

uniform in density, with the cooler poles having denser air and the warmer equator

less dense. Real weather data gives realistic values for atmospheric pressure of around

1010hPa (hectoPascals), with reasonable deviations for high and low pressure fronts of

roughly ±20hPa [56]. The Legendre polynomials P 0
0 and P 0

2 can be used to produce

a density of this form. Let the positive constant A be two orders of magnitude larger

than the constant B, then the density may be well approximated by

ρ(θ) = A+
B

2
(3 cos2(θ)− 1). (6.36)

This density leads to a gradient of the internal energy of

−∇U ′(ρ(θ)) = −γ(γ − 1)3B cos(θ) sin(θ)

(
A+

B

2
(3 cos2(θ)− 1)

)γ−2

θ̂. (6.37)

With γ = 2, it reduces to ∇U ′(ρ(θ)) = 3B sin(θ) cos(θ)θ̂. Thus the acceleration of

the curve is given by the vector space (−λ,−3B sin(θ) cos(θ), 0). This vector field is

differentiable and thus Lipshitz on an open subset of R3 containing the unit sphere, and

so the system has a unique solution. What is more, if λ = ‖V0‖2 and 〈V0,∇U ′〉 = 0 then

the only solution to the system of equations which stays on the sphere is a constant

speed curve with ‖V ‖2 = −〈r̂,∇U ′〉 = λ.

Splitting the differential equation (Equation (6.16)) into orthogonal components

[r̂, θ̂, ϕ̂] using Equation (2.6),

−λ = −
(
θ̇2 + ϕ̇2 sin2(θ)

)
(6.38)

−3B sin(θ) cos(θ) = θ̈ − ϕ̇2 sin(θ) cos(θ) (6.39)

0 = 2θ̇ϕ̇ cos θ + ϕ̈ sin θ (6.40)

And solutions, X(x, t) = r̂(θ(t), ϕ(t)) in local coordinates must satisfy these three

equations. This can be solved by direct integration in some cases, and in those cases it
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is likely that elliptic integrals will arise.

Definition 6.5.1. An incomplete elliptic integral of the first kind [53, p.57] with com-

plimentary modulus k is denoted,

F(x|k) =

∫ x

0

1√
(1− y2)(1− k2y2)

dy.

The substitution of x = sinϕ and y = sin θ gives the variation in trigonometric

form,

F(sin(ϕ)|k) =

∫ sinϕ

0

1√
1− k2 sin2(θ)

dθ. (6.41)

Definition 6.5.2. The Weierstrass ℘-function defined in the theory of elliptic curves

[53, p.87], it inverts the incomplete elliptic integral,

℘−1(x) =
1

2

∫ x

∞

dy√
(y − e1)(y − e2)(y − e3)

. (6.42)

Case 1

The simplest case is in which ϕ̇ is the trivial solution to Equation (6.40), that is ϕ̇ = 0

and so ϕ = a ∈ [0, 2π] a constant and the curve oscillates along one line of longitude.

In this case Equation (6.39) reduces to a rescaled simple harmonic oscillator,

θ̈ = −3

2
B sin(2θ),

where θ would represent the angle of the pendulum. The equation can be solved by an

elliptic integral using separation of variables,

θ̈θ̇ = −3Bθ̇ sin(θ) cos(θ),

1

2
θ̇2 = −3

2
B sin2(θ) + E,∫

dθ√
2E − 3B sin2(θ)

=

∫
dt,

1√
2E
F

(
θ |
√

3B

2E

)
= t+G.
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Where F(x| k) denotes the incomplete elliptic integral of the first kind with modulus

k.

Case 2

Equation (6.40) has a solution when ϕ(t) is wholly dependent on θ(t), when ϕ(t) =
C2

sin2(θ(t))
for some constant C ∈ R. In this case, Equation (6.39) would reduce to the

one variable problem,

θ̈ =
C2 cos(θ)

sin3(θ)
− 6B sin(2θ)θ̇. (6.43)

Consider the case of B = 0 first. This corresponds to a uniform density, and so

should give solutions which simply flow along geodesics. When B = 0 Equation (6.43)

can be approached by separation of variables, multiply the equation by θ̇ and integrate

to get
1

2
θ̇2 = − C2

2 sin2(θ)
+D, (6.44)

where D is a constant of integration. Rearrange, square root and separate,

1

2
θ̇2 sin2(θ) = −C

2

2
+D sin2(θ),

1

2

θ̇2 sin2(θ)

D sin2(θ)− 1
2
C2

= 1,

1√
2

sin(θ)√
D sin2(θ)− 1

2
C2

θ̇ = 1,

∫
−du√

Du2 + (D − 1
2
C2)

=
√

2

∫
dt,

1√
D − 1

2
C2

∫
du√

Du2

D− 1
2
C2 + 1

= −
√

2

∫
dt,

where the substitution u = cos(θ) used. This is a rescaled standard integral, if D >
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C2/2 then the substitution is u =

√
D− 1

2
C2

D
sin(v),∫

1√
D

cos(v)dv√
sin2(v) + 1

= −
√

2

∫
dt,

1√
D
v = −

√
2t+ E,

cos(θ) =

√
D − 1

2
C2

D
sin(−

√
2Dt+ E). (6.45)

By solving the system of ODEs knowing the initial position and velocity, valid values

of each of the constants can be derived from the initial condition. The constant C can

be determined by an initial condition (C = ϕ̇(0) sin2(θ(0))) the other constants should

then be expressed as functions of C. From Equation (6.44), and Equation (6.45),

D(C) =
1

2
θ̇(0)2 +

C2

2 sin2(θ(0))
, (6.46)

E(D,C) = sin−1

(√
D

D − 1
2
C2

cos(θ(0))

)
. (6.47)

Case 3

The final case to consider is a non-zero B. If ϕ(t) = C2

sin2(θ(t))
then Equation (6.40) is

satisfied and Equation (6.39) reduces to

θ̈ =
C2 cos(θ)

sin3(θ)
− 3B sin(θ) cos(θ). (6.48)

This equation can be integrated (though the method will depend on the values the
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constants take) so that separation of variables gives

1

2
θ̇2 = −1

2

C2

sin2(θ)
− 3B

2
sin2(θ) + F,∫

dt =

∫
dθ√

− C2

sin2(θ)
− 3B sin2(θ) + 2F

,

∫
dt =

∫
sin(θ)dθ√

−C2 + 2D sin2(θ)− 3B sin4(θ)
,∫

dt =

∫
−dw√

2D − C2 − 3B + (6B + 2D)w2 − 3Bw4
. (6.49)

The substitution w = cos(θ) was taken. The denominator resembles a quadratic for

w2 and thus the quadratic formula will yield the roots. In the case in which the

constants combine to make the denominator a perfect square (repeated roots require

the discriminant to be zero) the constants satisfy 4D2 − 12BC2 = 0, and the integral

can be solved via a trigonometric substitution,∫
dt =

∫
−dw

w2 + 6B+2D
6B

,∫
dt =

∫
−dw

6B+2D
6B

tan2(v) + 6B+2D
6B

,∫
dt =

6B

6B + 2D

∫
−dw

sec2(v)
,∫

dt =

√
6B

6B + 2D

∫
−dv,

t+G = −
√

6B

6B + 2D
v,

where the substitution tan(v) =
√

6B+2D
6B

w was used leaving

tan

(
−(t+G)

√
6B + 2D

6B

)
=

√
6B + 2D

6B
cos(θ). (6.50)

This equation will only be valid for a small duration depending on the value of the
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constants.

The general case of Equation (6.49) in which the constants do not imply a perfect

quartic leads to a elliptic integral of the third kind. The denominator can be reduced

in order using a birational substitution [64] of Legendre [53, §2.2].

Theorem 6.5.3. Birational Substitution is a method of manipulating the degree of a

rational polynomial integrand using the substitution (x, y)→ (u, v), it converts a quartic

polynomial in x into a cubic polynomial of u,∫
1√
f(x)

dx = −
∫

1√
f1(u)

du.

This is done via the substitutions (x − α) = 1
u

where α is a root of f , and y
(x−α)2

= v

where y2 = f(x). The expression for v allows for a function purely of u and v2 = f1(u)

completes the substitution.

Proof. Let α denote a root of f(x) and let f(x) = g(x)(x − α). The function g(x) is

a cubic polynomial and therefore has roots α1, α2, α3. Factorise g(x) with respect to

these roots and divide by (x− α)3, for A ∈ R,

g(x)

(x− α)3
= A

(
x− α1

x− α

)(
x− α2

x− α

)(
x− α3

x− α

)
= A

(
x− α + α− α1

x− α

)(
x− α + α− α2

x− α

)(
x− α + α− α3

x− α

)
,

= A(1 + (α− α1)u)(1 + (α− α2)u)(1 + (α− α3)u)

= f1(u).

This cubic polynomial in u is defined as f1(u) because f1(u) = v2 = y2

(x−α)4
= g(x)

(x−α)3
=

f(x)
(x−α)4

. Lastly the change of variables is given by dx = − 1
u2
du, and so the integral,∫

1√
f(x)

dx = −
∫

1√
f1(u)/u4

du

u2
,

= −
∫

1√
f1(u)

du.
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Returning to the problem at hand, the roots of the polynomial in Equation (6.49)

can be found using the quadratic formula,

w2 =
6B − 2D

6B
±
√

4D2 − 12BC2

−6B
= α±.

This means f(x) = −3B(x+
√
α+)(x−√α+)(x+

√
α−)(x−√α−), from which we can

use the first root
√
α+ and the birational substitution to rewrite the integral as∫

du√
−3B(1 + 2

√
α+u)(1 + (

√
α+ +

√
α−)u)(1− (

√
α+ +

√
α−)u)

, (6.51)

for u = 1
cos θ−√α+

. This integral takes the form of the inverted incomplete elliptic integral

of Weierstrass’ ℘ function with some scaling involved.

6.6 Consistent solutions on the sphere

From here on, the assumption is made that the density U satisfies the conditions neces-

sary for the existence of solutions to the ODE, given in Proposition 6.2.2. Furthermore,

U is also assumed to to be constrained to the sphere.

The discussion turns to whether the solution of the Lagrangian form of the Euler

equations determines a pushforward for the initial density which satisfies the continuity

equation. Then the solution is considered under a different light — for what duration

of time can one be sure that this pushforward map produces Lebesgue measurable

probability distributions. This question is explored in Section 6.6.2.

6.6.1 Consistency with the continuity equation

Chapter 4 introduces optimal transport as an approach to solve ODEs such as the

Euler system without requiring as strict assumptions on the smoothness of the density

as have been made in this chapter. The analysis in this section can be done without

much measure theoretic analysis, aside from the definition of the pushforward of a

measure.

Lemma 6.6.1. Consider the divergence operator on the surface of the sphere. For

f ∈ Cb(S2), ρ ∈ P2(S2) and V taken as the vector field solving Equation (6.16) in which
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the solution is constrained to the sphere,∫
S2
∇f · (V ρ)µ(dx) = −

∫
S2
f∇ · (V ρ)µ(dx), (6.52)

where µ is area measure on the sphere.

Proof. This is a specific statement of a wider dual relationship between the gradient and

divergence operators. In this case, the statement follows from Stokes’ theorem. First

note the product rule for the divergence operator, ∇ · (fV ρ) = ∇f · (V ρ) + f∇ · (V ρ).

Stokes’ theorem states that if dη is an exact 2-form, then on an orientable manifold Ω∫
Ω

dη =

∫
∂Ω

η. (6.53)

The sphere is a compact 2 dimensional manifold, area measure is given by µ(dθ dϕ) =

sin(θ)dθdϕ on the charts specified by longitude and latitude (θ, ϕ). Thus, if ∇ ·
(fV ρ) sin(θ)dθdϕ is an exact 2-form, then it satisfies Stokes’ theorem on the sphere,

and the sphere has no boundary. Let V = (Vθ, Vϕ) in (θ̂, ϕ̂) coordinates and then the

divergence operator is

∇S2 · V =

[
∂(Vθ sin θ)

∂θ
+
∂Vϕ
∂ϕ

]
1

sin θ
. (6.54)

If η = fVϕρdθ − fVθρdϕ then it’s differential dη =
[
∂(fVθρ sin θ)

∂θ
+ ∂(fVϕρ)

∂ϕ

]
dθdϕ is exact

and so ∫
S2
∇S2 · (fV ρ)µ(dθ dϕ) =

∫
S2
dη = 0. (6.55)

Therefore, the expansion of the divergence operator using the product rule implies,∫
S2
∇S2f · (V ρ)µ(dx) = −

∫
S2
f∇S2 · (V ρ)µ(dx). (6.56)

Proposition 6.6.2. Consider the triplet (X, V, ρ) being a valid solution to the Euler

system in Lagrangian form (Equation (6.16)). Then the probability measure defined by

the pushforward, σ(x, t) = X(x, t)#ρ(·, 0), is the unique solution to the linear transport
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equation,
∂

∂t
σ(X(x, t), t) +∇S2 · (V (x, t)σ(x, t)) = 0 (6.57)

with initial condition σ(x, 0) = ρ(x, 0).

Proof. Let µ(dx) denote Lebesgue measure on the surface of the sphere S2. By Defini-

tion 4.1.2, of a pushforward measure,∫
S2
f(X(x, t))ρ(x, 0)µ(dx) =

∫
S2
f(y)σ(y, t)µ(dy).

Taking the derivatve of this equation with respect to time, the derivative commutes

with the integral due to the definition of ρ as a bounded Lebesgue measurable function.∫
∇S2f(X(x, t)) · V (x, t)ρ(x, 0)µ(dx) =

∫
f(y)

∂

∂t
σ(y, t)µ(dy),

Recall the definition of the Lagrangian velocity V = u ◦X and thus one can take the

pushforward of the left hand side of the equation,∫
∇S2f(y, t) · u(y, t)σ(y, t)µ(dy) =

∫
f(y)

∂

∂t
σ(y, t)µ(dy).

Lemma 6.6.1 then implies that,

−
∫
f(y, t) ∇S2 · (u(y, t)σ(y, t))µ(dy) =

∫
f(y)

∂

∂t
σ(y, t)µ(dy).

This holds for any f ∈ Cb(Rn) and therefore, the following ODE is satisfied weakly by

σ(y, t)

− ∂

∂t
σ(y, t) +∇S2 · (u(y, t)σ(y, t)) = 0.

6.6.2 Estimates for the interval of validity

Theorem 6.2.1 establishes the existence of solutions solving the Lagrangian form of

the ODE for time invariant ρ(x, t), and so there exists a unique pair X(x, t), V (x, t)
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for which σ = X#ρ(x, 0) gives a weak solution to the continuity equation. The ques-

tion remaining is, for how long is X invertible? When X is no longer invertible the

assumption that the pushforward measure is in P2(Rn) is in jeopardy.

Lemma 6.6.3. [38] A square matrix A ∈ Mn(Rn) defines an invertible linear map

A : Rn → Rn if and only if Ker(A) = 0.

Proof. For the contrapositive, consider b 6= 0 a solution to Ax = 0. Then the equation

Ax = c will not have a unique solution for each c ∈ Rn, as if Ad = c for some d ∈ Rn,

then A(d + b) = c as well, and this implies the inverse map A−1(c) of c is not well

defined, thus A isn’t invertible.

An invertible map is injective and surjective. By the first Isomorphism theorem

(dimRn = Ker(A) + Im(A)), for the linear map to be surjective the kernel must have

dimension 0, so it must be a singular point, and zero is never not inside the kernel of a

linear map.

Remark 6.6.4. Consider the sequence
∑∞

n=0(A− I)x where A ∈ Mn(R) and x ∈ Rn.

This sequence converges if ‖A − I‖op < 1. Furthermore the sequence is the geometric

sum of (I − (A− I))−1 = A−1, implying that where the series converges the inverse to

A exists [37, Thm. 2.6.2]. Hence A is invertible if ‖A− I‖op < 1.

Lemma 6.6.5. If the Jacobian Jx(X) is invertible, and ρ ∈ P2 then X#ρ ∈ P2.

Proof. By the inverse function theorem, an invertible Jacobian implies that X is bi-

jective in a neighbourhood. We can specify the measure using the definition of a

pushforward, as if X is invertible then the preimage X−1(A) = {X−1(x) : x ∈ A}.
Then as ρ ∈ P2 it can be represented by its density ρ(A) =

∫
A
ρ(x)dx and so can

X#ρ(A) =
∫
A
ρ(X−1(x))dx.

Proposition 6.6.6. An estimate for the length of time for which X(x, t) is invertible

is,

t <
1

2L
(6.58)

where L is the Lipschitz constant for u(X, t).

Proof. By definition,

X(x, t) =

∫ t

0

V (x, s)ds+X(x, 0),
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where we take X(x, 0) = x without loss of generality. Consider now the Jacobian matrix

of X, recalling that x ∈ R3.

∂

∂x
X(x, t) =

∫ t

0

∂u(X(x, s), s)

∂X

∂X(x, s)

∂x
ds+ I

∂

∂x
X(x, t)− I =

∫ t

0

∂u(X(x, s), s)

∂X

(
∂X(x, s)

∂x
− I
)
ds

+

∫ t

0

∂u(X(x, s), s)

∂X

∂X(x, s)

∂x
ds

The Lipschitz constant for u(X(x, t), t) is L,∥∥∥∥∫ t

0

∂u(X(x, s), s)

∂X

∂X(x, s)

∂x
ds

∥∥∥∥ ≤ Lt

and if f(t) = supx

∥∥∥∂X(x,t)
∂x
− I
∥∥∥ then by Gronwall’s inequality and the above estimate,

f(t) ≤ Lt+

∫ t

0

Lf(s)ds

f(t) ≤ Lt+

∫ t

0

L exp

(∫ t

0

Lds

)
Lsds

= Lt+

∫ t

0

L2seLsds

= Lt+
[
LseLs

]t
0
−
∫
LeLsds

= Lt+ (Lt− 1)eLt + 1.

Then, the Jacobian Jx(X) = ∂X(x,t)
∂x

is invertible if f(t) = ‖Jx(X)−I‖op < 1 by Remark

6.6.4. This condition is satisfied when,

Lt+ (Lt− 1)eLt + 1 < 1

Lt

1− Lt
< eLt

which computationally comes out as 0 < Lt < 0.659 to three significant figures, which

is larger than one half.
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Chapter 7

The dam break problem

The dam break problem is a fluid mechanics problem in which the initial data is rem-

iniscent of a dam on a river. The Saint-Venant equations model the leading edge of

a reservoir of still water on a flat surface under the effect of gravity, when the barrier

holding the water in is removed. Closed form solutions to this problem are known,

making this a useful example to explore numerically.

7.1 One dimensional Euler equations

The Euler equations in one dimension are given by

∂tρ+ ∂x(ρu) = 0, (7.1)

∂t(ρu) + ∂x(ρu
2) + ∂xP (ρ) = 0. (7.2)

As derived in Section 6.1.1, the second Euler equation can be expressed in terms of

internal energy by,

∂tu+ u∂xu+ ∂xU
′(ρ) = 0.

As discussed in n dimensions in Equation (6.7). In one dimension, the Euler equations

form the canonical equations of motion for the Hamiltonian

H(ρ, q) =
1

2

∫
ρ

(
∂q

∂x

)2

dx+
κ

γ(γ − 1)

∫
ργdx, (7.3)
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in which the potential energy has the form U(ρ) = κ
γ(γ−1)

ργ.

Lemma 7.1.1. The Euler equations (Equations (7.1) and (7.2)) are the extremals of

the Hamiltonian functional given in Equation (7.3), also known as Hamilton’s canonical

equations of motion.

Proof. The canonical equations of motion govern the dynamics of the Hamiltonian

system, therefore recall the canonical equations of motion are:

δH

∂q
=
∂ρ

∂t
, and

δH

∂ρ
= −∂q

∂t
. (7.4)

The integrand of a variation is the functional derivative, take the variation of H around

q using a perturbation δq,

δH = lim
h→0

1

h
(H(ρ, q + hδq)−H(ρ, q))

= lim
h→0

1

2h

∫
ρ

(
∂

∂x
(q + hδq))2 −

(
∂q

∂x

)2
)
dx

=
1

h

∫
ρh
∂q

∂x

∂δq

∂x
dx

= −1

2

∫
∂

∂x

(
ρ
∂q

∂x

)
δqdx.

The pertubation f is assumed to be zero at the boundary conditions, hence the first

term of the integration by parts is zero. Hence,

δH

∂q
= −1

2

∂

∂x

(
ρ
∂q

∂x

)
.

By the canonical equation of motion, and u = ∂xq this establishes Equation (7.1). More

simply than the first Equation, the functional derivative with respect to ρ is,

δH

∂ρ
=

1

2

(
∂q

∂x

)2

+
κ

γ
ργ−1.
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Let u = ∂xq and take the partial derivative of the above with respect to x,

− ∂

∂x

∂q

∂t
=
∂q

∂x

∂2q

∂x2
+
κ

γ

∂

∂x
ργ−1,

−∂tu = u∂xu+ ∂xU
′(ρ).

This establishes Equation (7.2) by its alternate form.

7.2 The dam break problem

The dam break problem is a well known fluid mechanics problem in one dimension.

The problem envisions a motionless lake of water behind a dam. The dam is assumed

to have symmetry in the lateral direction to the original flow of the water, allowing

that dimension to be ignored. The vertical height of the water is modelled not as a

dimension but as a graph, of which the solution (x, h(x, t)) maps, the function h(x, t)

being the height of the water relative to x = 0 the position of the dam. The dynamics

of the problem are as follows, at t = 0 the dam is removed, the water then flows under

the effect of its internal gravitational potential energy. The motion of the fluid is given

by the Saint-Venant equations [20].

Definition 7.2.1 (Dressler’s form). The Saint Venant equations as given by Dressler

are,

∂u

∂t
+ u

∂u

∂x
+ 2c

∂c

∂x
= 0, (7.5)

c
∂u

∂x
+ 2

∂c

∂t
+ 2u

∂c

∂x
= 0. (7.6)

where c =
√
gh and g is the gravitational constant, while h is the height of the water.

It is convenient to work with two forms of the Saint–Venant equations, one -taken

from fluid mechanics- which illuminates the relationship with the Euler equations more

clearly, and Dressler’s form, which better produces the Riemann invariants.

Lemma 7.2.2. The fluid mechanic’s formulation of the Saint-Venant equations, given
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by Ref [15],

∂th+ ∂x(hu) = 0, (7.7)

∂tu+ u∂xu+ g∂xh = 0. (7.8)

are equivalent to Dressler’s form in Definition 7.2.1.

Proof. Using the change of variables c2 = hg one can verify,

∂th+ ∂x(hu) = 0,

∂tc
2 + ∂x(c

2u) = 0,

2c∂tc+ 2cu∂xc+ c2∂xu = 0,

2∂tc+ 2u∂xc+ c∂xu = 0.

And

∂tu+ u∂xu+ g∂xh = 0,

∂tu+ u∂xu+ 2c∂xc = 0.

The Euler equations in one dimension can describe the motion of the fluid in the

dam break problem, with an internal energy of U(ρ) = 1
2
gρ2. In one dimension, the

density of the fluid is the “mass of water within a unit interval of length”. For a fixed

density of fluid, the idea of the “mass of fluid within a unit interval” can be described by

an equivalent variable, the height of the fluid in that interval. Hence the relation ρ = h

allows the 1 dimensional Euler equations to describe the motion of a 2 dimensional

incompressible fluid in the same way that the Saint-Venant equations do.

Lemma 7.2.3. The Euler equations are equivalent to the Saint-Venant equations when

γ = 2 and the constant κ = g.

Proof. As mentioned previously the change of variable ρ = h is justified, with that

change of variables the momentum conservation (Equation (7.1) and Equation (7.7))
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are the same for Saint Venant and one dimensional Euler. Substituting U(ρ) = 1
2
gρ2

into the second Euler equation,

∂tu+ u∂xu+ ∂xU
′(ρ) = 0,

∂tu+ u∂xu+ g∂xρ = 0,

gives the second Saint-Venant equation (Equation (7.8)) again with ρ = h.

The Euler equations are also equivalent to the alternate form of the Saint Venant

equations due to Dressler via the substitution c =
√
gρ.

Proof. To show equivalency between the two continuity equations substitute c =
√
gρ

into Equation (7.1) and apply the product rule,

1

g

∂

∂t
c2 +

1

g

∂

∂x
(c2u) = 0,

2

g
c
∂c

∂t
+

1

g
uc
∂c

∂x
+

1

g
c
∂

∂x
(uc) = 0,

2
∂c

∂t
+ 2u

∂c

∂x
+
∂u

∂x
= 0.

Which is Equation (7.5).

To prove the equivalency of the momentum conservation equations the same ap-

proach is applied to Equation (7.2), in which Equation (7.5) is used to cancel some

terms,

1

g

∂

∂t
(c2u) +

1

g

∂

∂t
(c2u2) +

∂

∂x
P (ρ) = 0,

2cu∂tc+ c2∂tu+ 2c2u∂xu+ 2cu2∂xc+ g∂xP (ρ) = 0,

cu (u∂tc+ c∂xu+ 2u∂xc) + c2∂tu+ c2u∂xu+
1

2
∂xc

4 = 0,

∂tu+ u∂xu+ 2c∂xc = 0.

with the assumption that we want solutions on the support of c.
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Euler equations Saint Venant equations

for compressible gas for water in a reservoir

ρ - pressure of the gas h - height of the water

(ρ, u) (h, u)

∂tρ+ ∂x(ρu) = 0 ∂th+ ∂x(hu) = 0

∂tu+ u∂xu+ g∂xρ = 0 ∂tu+ u∂xu+ g∂xh = 0

7.3 Characteristic curves, Riemann Invariants and

the Ritter solution

Further examination of the Saint-Venant equations (and by extension the Euler equa-

tions) can be done by looking at the characteristic curves of the systems of PDEs, and

using this formulation to find the Riemann Invariants. The Riemann Invariants are

functions which are constant along the characteristic curves of the system. If γ(x(t), t)

is a characteristic curve (a parameterised curve which is a solution to the system) then

it has derivative,

d

dt
γ(x(t), t) =

∂

∂t
γ(x(t), t) +

dx

dt

∂

∂x
γ(x(t), t). (7.9)

Translating the Saint-Venant equations into this form gives

∂

∂t

(
h(x(t), t)

u(x(t), t)

)
+

(
u h

g u

)
∂

∂x

(
h(x(t), t)

u(x(t), t)

)
= 0, (7.10)

and thus for γ(x(t), t) to be a characteristic curve of this system it must satisfy,

∂tγ(x(t), t) + λ∂xγ(x(t), t) = 0, (7.11)

where λ is an eigenvalue of the matrix given in Equation (7.10). In addition to this

constraint, γ must also be an eigenvector. The eigenvalues are λ = u ±
√
gh = u ± c.

However the eigenvectors are (
± c
g

1

)
(7.12)
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and due to the fact these are not constant, finding the Riemann invariants is more

difficult. It may be possible to express the equations in a simpler form, namely in

terms of exclusively c not h.

∂

∂t

(
c(x(t), t)2/g

u(x(t), t)

)
+

(
u h

g u

)
∂

∂x

(
c(x(t), t)2/g

u(x(t), t)

)
= 0,(

2c/g 0

0 1

)
∂

∂t

(
c(x(t), t)

u(x(t), t)

)
+

(
u c2/g

c2/h u

)(
2c/g 0

0 1

)
∂

∂x

(
c(x(t), t)

u(x(t), t)

)
= 0,

∂

∂t

(
c(x(t), t)

u(x(t), t)

)
+

(
u 2c

c/2 u

)
∂

∂x

(
c(x(t), t)

u(x(t), t)

)
= 0.

This new form of the equation has the same eigenvalues but the eigenvectors are

now [±1, 2]>. To find the Riemann invariants in this case, the search is for a function

R(x(t), t) such that ∂tR+ λ∂xR = 0. When λ = u± c the functions R(x(t), t) = u± 2c

satisfy the equation, simply add Equation (7.5) and Equation (7.6) or subtract them

depending on the eigenvalue. Thus the Riemann invariants are (u± 2c), and

d

dx
(u± 2c) = 0. (7.13)

7.3.1 The Ritter solution

The Ritter solution to the Saint Venant equations is

u =
2

3

(x
t

+ c0

)
, (7.14)

h =
1

9g

(
2c0 −

x

t

)2

. (7.15)

The constant c0 is defined to be c0 =
√
gh0 where h0 is the initial height of the reservoir,

and again g is the gravitational constant.
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7.3.2 The characteristic curves

The system of PDEs known as the Saint–Venant equations has been reduced to the

ODEs

d

dx
(u± 2c) = 0,

d

dt
x(t) = u± c, (7.16)

for the Riemann invariants and eigenvalues respectively.

Lemma 7.3.1. The characteristic curves of the system are,

γ+ : x = mt, γ− : x = 2t− 3αt1/3. (7.17)

Proof. The first characteristic curve γ+ is known from the form of the equations, it can

also be seen from the Ritter solution. If u = 2(x/t+ 1)/3 and c = (2− x/t)/3 then the

Riemann invariants are

u+ 2c = 2, and u− 2c =
4

3

x

t
− 2

3
. (7.18)

the latter of which can only be constant if there exists a constant m such that x/t =

m. The second characteristic curve, γ−, is deduced from the first curve, γ+, and the

Riemann invariant condition in Equation (7.16).

dx

dt
= u+ c,

d

dt
mt =

4

3
+

1

3

x

t
,

t
dm

dt
=

4

3
− 2m

3
,∫

1

(4
3
− 2

3
m)

dm =

∫
1

t
dt,

−3

2
log

(
2

3
m− 4

3

)
= log(t) + log(α),

2m− 4 = 3αt
2
3 ,

x = 2t+
3α

2
t
1
3 .
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Chapter 8

Gibbs measure

In the following three chapters, the periodic nonlinear Schrödinger equation is discussed

from the viewpoint of statistical mechanics. Instead discussing classical solutions for

certain types of initial condition, the theory in this field is interested in weak solutions,

or the distribution of typical solutions.

Why is this important? For nonlinear PDE, existence theorems for classical solutions

to initial value problems may introduce hypothesis on the initial data that are very

stringent or unrealistic. Further, even when the intial data is smooth, the solution to

the intial value problem may not be smooth. Systems such as the Euler equations can

form shocks (nondifferentiable, discontinuous solutions) in finite time [26]. To allow for

functions which are discontinuous and nondifferentiable to solve the PDE one needs to

deal with weak solutions.

One philosophy for understanding weak solutions is to instead conceptualise them

as a random process. If a Cauchy problem is well posed on a set of initial data, then

instead of working on classes of initial data and accompanying closed form solutions, one

can discuss a typical solution. The set of all initial data forms a probability space, and

at each time the random process documents how the distribution of the solutions (at

said time) changes. This is especially useful in real systems where the intial conditions

observed will not be exact. A density measurement of the atmosphere will return a

range of values specified by the precision of the instrument. In a paper on the evolution

of a measure on L2(T) under the dynamics of the NLSE, Lebowitz, Rose and Speer

outline the philosophy. “Instead of trying to solve the initial value problem for a system
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containing a very large (say 1023) number of particles, which is clearly an impossible

task even in principle, we obtain information about values of macroscopic observables by

taking averages over Gibbs probability distributions containing only a few parameters

(particle density, temperature, etc.). While the rigorous justification of the theory is

still not fully understood, its success leaves no doubt about its utility. In fact, the

results obtained from a suitable probability measure, which includes information about

both typical behavior and fluctuations, are generally more relevant than the solution

of a specific initial value problem for understanding the behavior of real systems.”

– Lebowitz, Rose or Speer [48]

In the case of the the nonlinear Schrödinger equation, the Cauchy problem,

1

i

∂ψ

∂t
=
∂2ψ

∂x2
+ β|ψ|2ψ

ψ0 = φ(x) ∈ H1(T,C),

is well posed [9, Thm. 1] for any initial data in H1. Any solution is continuous in t

and at each t is a function of x in H1(R,C). To discuss typical solutions a measure

is needed and there exists a measure describing this system which is invariant with

respect to time. Within statistical mechanics the Hamiltonian describes the energy of

a system. Louiville’s theorem then says that on the phase space, L2(T)× L2(T), there

exists a measure which is invariant under the Hamiltonian flow. The Gibbs measure is

this measure in the context of infinite dimensional phase space, and this chapter centres

on defining the Gibbs measure.

8.1 Gaussian measure on the cylinder sets

Consider L2(T), and a finite dimensional linear subspace C ⊂ L2(T), where C is spanned

by the collection {(exp(injx) : nj ∈ N ⊂ Z \ {0}} and N is ordered and contains m

elements. The subspace C can be identified with the orthogonal projection onto Rm

by the function ψC . If (exp(injx)mj=1 is an orthonormal basis for C then ψC : L2(T)→
Rm; f 7→ (〈f, en〉L2(T))

m
j=1 is a projection of f onto Rm.

Definition 8.1.1. For ψC as defined above, let A = ×mj=1Aj ⊂ Rm be a Borel set in
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Rm, (so Aj ∈ B(R),∀j). A cylinder set of L2(T) is the pre-image of A by ψC , [46],

ψ−1
C (A) = {f ∈ L2(T) : ψC(f) ∈ A}.

Lemma 8.1.2. The collection of cylinder sets form an algebra.

Proof. L2(T) is a cylinder set For any C of dimension m, take A = Rm. ψ−1
C (A) =

L2(T).

Compliments of cylinder sets are cylinder sets Consider the cylinder ψ−1
C (A), it

has a compliment (ψ−1
C (A))c = L2(T) \ ψ−1

C (A).

L2(T) \ ψ−1
C (A) = {f ∈ L2(T) : ψC(f) /∈ A},

= {f ∈ L2(T) : ψC(f) ∈ Ac},

And as A ∈ B(R)m, so is Ac and therefore (ψ−1
C (A))c is a cylinder set.

Closed under finite intersections Take C1, C2 to be n andm dimensional subspaces

with basis (fi)
n
i=1 and (li)

m
i=1 respectively. And likewise A1, A2 are rectangles in

Rn and Rm.

ψ−1
C1

(A1) ∩ ψ−1
C2

(A2) = {f ∈ L2(T) : (〈f, f1〉, ..., 〈f, fn〉, 〈f, l1〉, ..., 〈f, lm〉) ∈ A1 × A2}.

This looks like a cylinder, however, unless C1 and C2 have only intersect at 0, this

formula can be reduced. Let (ei)
r
i=1 be a basis of C1 ∩C2, (gi)

p
i=1 of C1 ∩C⊥2 and

(hi)
q
i=1 of C⊥1 ∩ C2 and then n + m = 2r + p + q. Then span{fi} = span{ej, gk :

j = 1, ..., r. k = 1, ..., p.} and span{li} = span{ej, hk : j = 1, ..., r. k = 1, ..., q.},
therefore A1 and A2 can be expressed in coordinates with respect to bases {ej, gk :

j = 1, ..., r. k = 1, ..., p.} and {ej, hk : j = 1, ..., r. k = 1, ..., q.} respectively. One

can consider them to be subspaces of Rr+p+q and let B be their intersection. The

intersection of two rectangles is a rectangle and thus,

ψ−1
C1

(A1) ∩ ψ−1
C2

(A2) =

{f ∈ L2(T) : (〈f, e1〉, ..., 〈f, er〉, 〈f, g1〉, ..., 〈f, gp〉, 〈f, h1〉, ..., 〈f, hq〉) ∈ B},
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is a cylinder set.

Before defining a cylindrical measure, the domain of the function ψC can be defined

as the quotient space L2(T)/C1, where the equivalence class is given by f ∼ y ⇐⇒
〈f, ei〉 = 〈g, ei〉∀i. Then, for n = dim(C1) < dim(C2) = m the projection,

πC2,C1 : L2/C2 → L2/C1, (8.1)

:
m∑
i=1

〈f, ei〉ei 7→
n∑
i=1

〈f, ei〉ei. (8.2)

Now note that, ifA is again Borel and defined asA = ×nj=1Aj ⊂ Rn, then π−1
C2,C1

(ψ−1
C1

(A)) =

ψ−1
C2

((×Ai)ni=1 × Rm−n−1).

Definition 8.1.3 ([63] p.172 ). A cylindrical measure is a finitely additive measure ν

on the cylinders S of a Hilbert space H, formed by a family of measures µCi on the

subspaces spanned by finitely many basis vectors. Let Si denote a cylinder Si = ψ−1
Ci

(A)

for some A ∈ B(Rm), assume m = dim(C1) < dim(C2). The cylindrical measure is then

defined ν(S1) = µC1(ψ
−1
C1

(A)), and the projection map πC2,C1 must compose with ψC1

so that µC2(π
−1
C2,C1

(ψ−1
C1

(A))) = µC1(ψ
−1
C1

(A)) implying that the measure of a cylinder

ν(Si) = ψCi(A) does not depend on the choice of base A or generator subset Ci (as

there are many base and generator set combinations which produce the same cylinder).

Definition 8.1.4. Gaussian measure on Rm is a well known probability measure on

the Borel sets A ∈ B(Rm) given by,

µm(A) =
1√
2π

m

∫
A1

...

∫
Am

exp

(
−1

2

m∑
j=1

x2
j

)
m∏
j=1

dxj. (8.3)

Proposition 8.1.5. The cylindrical measure V on L2(T) is defined by the family of

Gaussian measures µC on the cylinder sets. Let C be m dimensional and spanned by

the basis {ein1x, ein2x, ..., einmx}, a subset of {einx : n ∈ N} which is a basis of L2(T). The

function f =
∑∞

n=−∞ ane
inx is in the cylinder set ψ−1

C (A) if ank ∈ Ak for k = 1, ...,m.

The pushforward of the measure of this cylinder set by the map ψC is simply Gaussian
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measure on Rm,

(µC#ψC)(A) = µC(ψ−1
C (A)) = µm(A) =

1√
2π

m

∫
A1

...

∫
Am

exp

(
−1

2

m∑
j=1

x2
j

)
m∏
j=1

dxj.

(8.4)

Proof. Let C1 be a linear subspace of L2(T) spanned by a collection of Fourier modes

(ek)
n
k=1 where k is a subindex of j ∈ Z \ {0} and ek = eijkx. One can expand the

collection of basis vectors (ek)
n
k=1 so that the new collection (ek)

m
k=1 spans the second

linear subspace C2 of dimension m > n. Next consider a base space A = ×nj=1Aj ⊂ Rn

where each Aj ∈ B(R). Now consider ψCi as functions from the quotient space L2/Ci

and the projection map πC1,C2 as defined in Equation (8.1). To prove µC is cylindrical,

it must be established that µC1(ψ
−1
C1

(A)) = µC2(π
−1
C2,C1

(ψ−1
C1

(A))), to this end,

µC2(π
−1
C2,C1

(ψ−1
C1

(A))) = µC2

(
ψ−1
C2

((×Ai)ni=1 × Rm−n−1)
)

= µm(×Ai)ni=1 × Rm−n−1)

= µn(A),

= µC1(ψ
−1
C1

(A))

Remark 8.1.6. The cylindrical measure is only finitely additive.

Proof. The cylinder sets form an algebra but not a σ-algebra. Assume that the cylin-

drical measure is σ-additive and consider the set [46, p.55],

Bn := {f ∈ L2(T) : |〈f, eijx〉 ≤ n, j = 1, .., an}. (8.5)

The countable union ∪∞n=1Bn is equal to L2(T). The measure of V(L2(T)) = µC(ψ−1
C (R)) =

µ1(R) = 1 where C1 is the span of any basis vector exp(ijx), j ∈ Z \ {0}. However, the

measure of Bn is

V(Bn) =
1√

2π
an

∫ n

−n
...

∫ n

−n
exp

(
−1

2

an∑
j=1

x2
j

)
an∏
j=1

dxj,

=

(
1√
2π

∫ n

−n
exp

(
−x

2

2

)
dx

)an
.
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Each integral is smaller than 1 and so the value of an can be chosen so that the value

of V(Bn) < 1
2n+1 . Choose this an to be the sequence in the definition of Bn for each n

as n→∞. Then the sequence

∞∑
n=1

V(Bn) <
1

2
,

thus, on the non-disjoint sequence of cylinders Bn, if V was σ-additive then it would be

subadditive. Instead, on this sequence the measure is superadditive in the sense that,

∞∑
n=1

V(Bn) < V (∪∞n=1Bn) .

8.2 Radonification and Wiener loop measure

Having established the Gaussian measure as a finitely additive measure on the cylinder

sets of L2(T), we can look to apply Radonification by the following theorem of Sazonov.

Definition 8.2.1 (Hilbert Schmidt operator). The operator T : H → H is Hilbert-

Schmidt if and only if
∞∑
n=1

‖T (en)‖2 <∞.

Theorem 8.2.1 (Sazonov). [63, p.215] Let H be a Hilbert space, T : H → H be a

Hilbert-Schmidt operator, and µ be a cylindrical measure concentrated on the balls of

H. Then the pushforward of µ by T is a Radon measure on H.

Lemma 8.2.2. The linear operator u : L2(T)→ L2(T); einx 7→ 1
n
einx is Hilbert-Schmidt.

Proof. The norm,

‖u(einx)‖2 =
1

2π

∫ 2π

0

1

n2
|einx|2dx =

1

n2
.

Then the series,
∞∑
n=1

‖u(einx)‖2 =
∞∑
n=1

1

n2
<∞.
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Definition 8.2.3. A cylindrical measure µC on the Hilbert space H is scalarly concen-

trated up to δ on the subsets B ⊂ H if, given a δ ∈ [0, 1], for every one dimensional

linear subspace C of H µC({ψC(f)|f ∈ B}) ≥ 1− δ.

Proposition 8.2.4. The Cylindrical measure µC given in Equation (8.4) is scalarly

concentrated on the balls of L2(T).

Proof. The ball of radius r in L2(T) which is centred at zero is denoted Br(0). The

preimage of the projection of this ball on to the 1 dimensional subspace spanned by ei

gives {f ∈ L2(T) : |〈f, ei〉| ≤ r}. The measure of this ball is

µC(ψ−1
C (Br(0)) =

1√
2π

∫ r

−r
e−

x2

2 dx,

for any one dimensional subspace C. This is just one dimensional Gaussian measure.

If we take the definition of erf(r) := 1√
2π

∫ r
−r e

−x
2

2 dx then note that the function is

monotone increasing with codomain [0, 1]. For any δ ∈ (0, 1), there exists a R ∈ R such

that erf(R) = 1− δ and then for all r > R, µC(ψ−1
C (Br(0)) ≥ 1− δ and so the measure

is scalarly concentrated on the balls of L2(T).

Proposition 8.2.5. The pushforward of the cylindrical measure µC by the Hilbert-

Schmidt operator u is the measure W = u#µC on L2(T) is a Radon measure, which is

denoted W for Wiener loop.

Proof. This follows from an application of Theorem 8.2.1. The definition of the new

measure is best explained by looking at the Fourier series of the relevant functions

f =
∑∞
−∞ ane

inx. Let us consider the projection to a one dimensional linear subspace

Cn = span(einx), the pushforward measure on the cylinder set ψ−1
Cn

(A)

u#µCn(ψ−1
Cn

(A)) = µCn
(
u−1

(
{f ∈ L2(T) : 〈f, einx〉 = an ∈ A}

))
= µCn

(
{f ∈ L2(T) : 〈u(f), einx〉 =

an
n
∈ A}

)
.
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For the measure µC on the cylinder sets, an is distributed like a standard normal dis-

tribution N(0, 1), therefore when it is scaled by 1
n

the new distibution will be N(0, 1
n

2
).

The measure is given by,

u#µCn(ψ−1
Cn

(A)) =
1√
2π

∫
A

exp

(
−n

2x2

2

)
ndx.

This concludes the method of constructing the Gibbs measure developed by Schwartz.

This example is somewhat of a canonical measure on a periodic function space, and

as such was informative in developing the wider theory of translation invariant Radon

measures on infinite dimensional Hilbert spaces (See the Cameron-Martin Theorem[14]).

The construction by Weiner

This specific example was discovered earlier thanks to Wiener, hence the name Wiener

loop measure. It can be enlightening to follow his construction. His development of

the measure made use of an abstract space Ω of infinitely many independent standard

normal distributions N(0, 1).

Consider a measurable function φ : Ω → L2(T), denote each independent standard

normal distribution by γn(ω), then the measurable function is φ : ω 7→
∑∞

n=−∞ γn(ω)einx.

The pushforward of the measure on Ω by φ gives the cylindrical measure µC from

Proposition 8.1.5. For a cylinder set ψ−1
C (A) in L2(T) spanned by {ein1x, ..., einmx} the

preimage of that set φ−1(ψ−1
C (A)) = {ω : γnk(ω) ∈ Ak, k = 1, ...,m}. The measure of

this set is that of Gaussian measure of A in Rm.

Radonification can be applied by composing φ with u to get u◦φ : ω 7→
∑∞

n=−∞
γn(ω)
n
einx.

The pushforward of the measure on Ω by u ◦ φ gives the Wiener loop measure W . For

a cylinder set ψ−1
C (A) in L2(T) spanned by {ein1x, ..., einmx} the preimage of that set

under u is

u−1(ψ−1
C (A)) =

{
∞∑

n=−∞

ane
inx :

∞∑
n=−∞

an
n
einx ∈ ψ−1

C (A) ⊂ L2(T)

}
.

The preimage of this set under φ is φ−1(u−1(ψ−1
C (A))) = {ω :

γnk (ω)

n
∈ Ak, k = 1, ...,m}.
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Each random variable γnk(ω)/n is distributed as N(0, 1/n2), and so the probability

P({ω :
γnk(ω)

n
∈ Ak, k = 1, ...,m}) =

1√
2π

m

∫
A1

...

∫
Am

exp

(
−1

2

m∑
n=1

n2x2
n

)
m∏
n=1

ndxn.

This is the pushforward of the cylindrical measure µC by u and is therefore the Wiener

loop measure W .

Finally consider this measure on the subspace H1 ⊂ L2(T) as defined in Definition

3.2.7. So here ψ̃−1
C (A) = {f ∈ H1 : ψC(f) ∈ A}.

∫
ψ̃−1
C (A)

dW =
1√
2π

m

∫
A1

...

∫
Am

exp

(
−1

2

m∑
j=1

j2x2
j

)
m∏
j=1

jdxj, (8.6)

Now moving the expression back into the function space using the definition of the

pushforward ψ, one can write down a expression for the measure on subsets of H1. The

expression only derives any meaning from its equality to the line above however.

=
1√
2π

m

∫
ψ̃−1
C (A)

exp

(
−1

2
‖ψC(f ′(x))‖L2

) m∏
j=1

jdxj, (8.7)

=
1√
2π

m

∫
ψ̃−1
C (A)

exp

(
−1

2

∫ 2π

0

(ψC(f ′(x)))2dx

) m∏
j=1

jdxj. (8.8)

Thanks to Sazonov’s theorem, after radonification the measure now countably ad-

ditive so Equation (8.6) can extend to limits as dim(C) → ∞. Note however that

although the measure is built on the compact subsets of L2 in H1, the measure is zero

on any of these subsets, (for example {f ∈ H1 : ‖f‖H1 ≤ K}).

8.3 Defining the Gibbs measure

Definition 8.3.1. If P,Q ∈ L2(T) then the modified canonical ensemble of the Gibbs

measure on L2(T)× L2(T) is defined as,

νβ,K(dP, dQ) =
1

ZK
IBK exp (−H(P,Q))

∏
dPdQ, (8.9)
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where ZK is a normalisation constant, BK = {f ∈ L2(T) : ‖f‖L2(T) < K} and H(P,Q)

is the Hamiltonian for the NLS given in Equation (5.2).

To interpret Equation (8.9), note that the second and third terms of the Hamilto-

nian resemble the density terms for Wiener loop measure given in Equation (8.8). In

addition, the preimage of the ball BK under the map φ defined in the last section is

the set ΩK = {ω ∈ Ω :
∑∞

i=−∞ γi(ω)2/i2 ≤ K}.

Thus the measure νβ,K on L2(T) × L2(T) can be defined with two copies of Wiener

loop measure W , a density exp(β
4

∫
(P 2 +Q2)2ds), and a cutoff on the set BK by

νβ,K(dP, dQ) =
1

ZK
IBK exp

(∫ 2π

0

β

4
(P 2 +Q2)2ds

)
W(dP )W(dQ). (8.10)

However, exp
(
β
4

∫
(P 2 +Q2)2ds

)
may not be integrable with respect toW(dP )W(dQ).

Lemma 8.3.2 (Leborowitz, Rose and Speer). [48, Thm 2.2] The modified canonical

ensemble of the Gibbs measure is finite, and so normalizable, for any β ∈ R and N > 0.

In other words,∫
L2(T)×L2(T)

IBK exp

(
β

4

∫ 2π

0

(P 2 +Q2)2dx

)
W(dP )W(dQ) <∞ (8.11)

for all β > 0. This integral is denoted ZK.

Remark 8.3.3. The focussing case, in which β < 0, poses less of a problem. The expo-

nential exp
(
β
4

∫ 2π

0
(P 2 +Q2)2dx

)
will always be finite because the integral is positive.

8.3.1 Finite dimensional subspaces

The specific construction of the Gibbs measure using Fourier modes of functions in

H1 lead conveniently to a family of finite dimensional subspaces, M (n) and their ac-

companying Gibbs measures ν
(n)
β,K . The following is taken from earlier work in Ref.

[8].

LetDn be the Dirichlet projection taking
∑∞

k=−∞(ak+ibk)e
ikθ to

∑n
k=−n(ak+ibk)e

ikθ.

Following [10], we truncate the random Fourier series of u = P + iQ =
∑∞

k=−∞(ak +
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ibk)e
ikθ to un = Pn + iQn =

∑n
k=−n(ak + ibk)e

ikθ and correspondingly modify the

Hamiltonian to

H
(n)
3 ((ak), (bk)) =

1

2

n∑
k=−n

k2(a2
k + b2

k) +
β

4

∫ ∣∣∣ n∑
k=−n

(ak + ibk)e
ikθ
∣∣∣4 dθ

2π
(8.12)

for the real canonical variables ((ak, bk))
n
k=−n. Then the canonical equations become a

coupled system of ordinary differential differential equations in the Fourier coefficients.

We introduce the polar decomposition Pn + iQn = κne
iσn , and observe that in terms of

these noncanonical variables, the Hamiltonians H
(n)
1 =

∫
T κ

2
ndθ and

H
(n)
3 =

1

2

∫
T

((∂κn
∂θ

)2

+ κ2
n

(∂σn
∂θ

)2)dθ
2π

+
β

4

∫
T
κ4
n

dθ

2π
(8.13)

are invariants under the flow.

The corresponding Gibbs measure is

dν
(n)
β,K = Z(K, β, n)−1IBK (un) exp

(−β
4

∫
T
|un(θ)|4 dθ

2π

)
W (dun) (8.14)

in which W (dun) is the finite dimensional projection of Wiener loop measure and is

defined in terms of the Fourier modes as

W (dun) =
n∏

j=−n;j 6=0

exp
(
−j

2

2
(a2
j + b2

j)
)j2dajdbj

2π
. (8.15)

Consider the map u(x, t) 7→ u(x + h, t) of translation in the space variable. This

commutes with Dn, and the Gibbs measures ν
(n)
β,K are all invariant under this translation.

In terms of Fourier components, we have M∞ = BK and

Mn =
{

(aj, bj)
n
j=−n : aj, bj ∈ R :

n∑
j=−n

(a2
j + b2

j) ≤ K
}

(8.16)

with the canonical inclusions of metric spaces (M1, `
2) ⊂ (M2, `

2) ⊂ · · · ⊂ (M∞, `
2)

defined by adding zeros at the start and end of the sequences, which gives a sequence

of isometric embeddings for the `2 metric on sequences. When we identify (aj, bj)
n
j=−n

with
∑n

j=−n(aj + ibj)e
ijθ, then we have a corresponding embedding for the L2 metric.
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Here (Mn, L
2, ν

(n)
β,K) is a finite-dimensional manifold and a metric probability space.

We now show that these spaces converge to (M∞, L
2, µK,β) as n→∞.

Definition 8.3.4. (Convergence of metric measure spaces)

(i) For M a nonempty set, a pseudometric is a function δ : M → [0,∞] such that

δ(x, y) = δ(y, x), δ(x, x) = 0, δ(x, z) ≤ δ(x, y) + δ(y, z) (x, y, z ∈M); (8.17)

then (M, δ) is a pseudometric space.

(ii) Given pseudo metric spaces (M1, δ1) and (M, δ2), a coupling is a pseudo metric

δ : M → [0,∞] where M = M1tM2 such that δ |M1×M1 = δ1 and δ |M2×M2 = δ2.

(iii) Suppose that M̂1 = (M1, δ1, µ1) and M̂2 = (M2, δ2, µ2) are complete separable

metric spaces endowed with probability measures. Consider a coupling (M, δ) and a

probability measure π on M1 ×M2 with marginals π1 = µ1 and π2 = µ2. Then the L2

distance between M̂1 and M̂2 is

DL2(M̂1, M̂2) = inf
δ,π

(∫
M×M

δ(x, y)2π(dxdy)
)1/2

(8.18)

Lemma 8.3.5. (i) Suppose that 0 < −βK < 3/(14π2). Then M̂n = (Mn, L
2, ν

(n)
β,K) has

DL2(M̂n, M̂∞)→ 0 (n→∞). (8.19)

(ii) The measures ν
(n)
β,K converge in total variation norm to νK,β as n→∞.

Proof. (i) This is proved in Theorem 3.2 of Ref. [6]; see also Example 3.8 of Ref. [69].

Let W2(ν(n), ν) be the Wasserstein transportation distance between free Brownian loop

measure µ and the pushforward of µ under the Dirichlet projection, ν(n) = Dn]ν, for

the cost function ‖u− v‖2
L2 .

The key point is

W2(µ(n), µ)2 ≤
∫
‖Dnu− u‖2

L2µ(du)

= E
∑
k:|k|>n

|γk|2

k2
= O

( 1

n

)
(n→∞). (8.20)
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(ii) The measures ν
(n)
β,K converge in total variation norm to µK , by an observation

of McKean[51] in his step 7. By M. Riesz’s theorem, there exists c4 > 0 such that∫
T |Dnu|4dθ ≤ c4

∫
T |u|

4dθ, and by [48] the integral∫
BK

exp
(
λc4

∫
T
|u(θ)|4dθ

)
W (du) (8.21)

is finite, so we can use the integrand as a dominating function to show∫
BK

∣∣∣exp
(
λ

∫
T
|Dnu(θ)|4dθ

)
− exp

(
λ

∫
T
|u(θ)|4dθ

)∣∣∣W (du)→ 0 (n→∞). (8.22)
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Chapter 9

Weak convergence of solutions to

the NLSE

This chapter is Section IV of [8] in collaboration with G. Blower. It discusses the Lax

pair for the NLSE as derived in Chapter 5, and uses facts about Lie algebra’s from

Section 2.3.1. The main impetus of the chapter is to deduce under what conditions

weak solutions to the Lax pair formulation exist. As discussed when introducing the

previous chapter, weak solutions allow for discussion of the evolution of an ensemble of

typical solutions given typical initial conditions — for example in Chapter 10 this takes

the form of a stochastic process.

In the case of the the nonlinear Schrödinger equation, consider the Cauchy problem,

1

i

∂ψ

∂t
=
∂2ψ

∂x2
+ β|ψ|2ψ

ψ0 = φ(x) ∈ H1(T,C).

Bourgain proves that this problem is well posed [9, Thm. 1], and Lebowitz, Rose and

Speer [48] prove the Gibbs measure is invariant under the flow of the NLSE, as discussed

in Chapter 8. This means the distribution of the random process at each time point is

given by the Gibbs measure.

As discussed in Chapter 5, if ψ = P + iQ = κeiσ according to the Hasimoto trans-

form, then the partial differential equation for the NLS is transformed into the Lax pair
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of equations (5.15) and (5.16),

∂

∂x

t

n

b

 =

 0 κ 0

−κ 0 τ

0 −τ 0


t

n

b

 , (9.1)

∂

∂t

t

n

b

 =

 0 −τκ ∂κ
∂x

τκ 0 −µ
−∂κ
∂x

µ 0


t

n

b

 . (9.2)

and this chapter discusses whether weak solutions to this pair of ODEs exist given

initial data as in the above Cauchy problem. Later a stochastic differential equation is

constructed for the same pair of ODEs.

9.1 Gibbs measure transported to the frames

The compact Lie group SO(3) of real orthogonal matrices with determinant one is a

subset of M3×3(R), which has the scalar product 〈X, Y 〉 = trace(XY >) and associated

metric d(X, Y ) = 〈X − Y,X − Y 〉1/2 such that 〈XU, Y U〉 = 〈X, Y 〉 and d(XU, Y U) =

d(X, Y ) for all U ∈ SO(3) and X, Y ∈ M3×3(R). The Lie group SO(3) has tangent

space at the identity element give by the skew symmetric matrices so(3), so the tangent

space TXSO(3) at X ∈ SO(3) consists of {ΩX : Ω ∈ so(3)}, where so(3) is a Lie algebra

for [x, y] = xy− yx, x, y ∈ so(3), and the exponential map is surjective so(3)→ SO(3).

Consider the differential equation

dX

dt
= Ω(t)X; X(0) = X0 (9.3)

where t ∈ [0, 1] is the evolving time, and X ∈ SO(3). We consider a column vector

x ∈ R3, satisfying dx
dt

= Ωx which gives a velocity, and ‖x‖ = 1 because Ω ∈ so(3).

Following Otto’s interpretation[74] of optimal transport in the setting of partial differ-

ential equations, one constructs a weakly continuous family of probability measures, ν̃t

on S2 for t ∈ [0, 1], which satisfy the weak continuity equation,

∂ν̃t
∂t

+∇ ·
(

Ωxν̃t

)
= 0. (9.4)
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Likewise the differential equation (9.3) gives a weakly continuous family of probability

measures, νt on SO(3). If the integral∫ 1

0

∫
SO(3)

‖ΩX‖2
M3×3(R)νt(dX)dt <∞, (9.5)

and ΩX is locally bounded, then ΩX is locally Lipschitz and νt is the unique solution

to the weak continuity equation by Thm 5.34 of Ref.[74]. Recall that for the operator

norm on M3×3(R), ‖A‖ = sup{‖Ay‖ : y ∈ R3}, where ‖X‖ = 1 for all X ∈ SO(3) so

‖ΩX‖ ≤ ‖Ω‖.
The weak continuity equation is equivalent to∫

SO(3)

f(X)νt(dX) =

∫
SO(3)

f(Xt(X0))ν0(dX0) (9.6)

for all f ∈ C(SO(3);R), where X0 7→ Xt(X0) gives the dependence of the solution of

(9.3) on the initial condition. The velocity field ΩX is associated with a transportation

plan taking νt1 to νt2 which is possibly not optimal, but does give an upper bound on

the Wasserstein distance for the cost d(X, Y )2 on SO(3) of

W2(νt2 , νt1)
2

tt − t1
≤
∫ t2

t1

∫
SO(3)

‖Ω‖2
M3×3(R)νt(dX)dt (0 < t1 < t2 < 1). (9.7)

Then by Theorem 23.9 of Ref. [73], the path (νt) of probability measures is absolutely

continuous, so there exists ` ∈ L1[0, 1] such that W2(νt2 , νt1) ≤
∫ t2
t1
`(t)dt and 1/2-Hölder

continuous, so there exists C > 0 such that W2(νt2 , νt1) ≤ C|t2 − t1|1/2.

Example 9.1.1. (i) If Ωt ∈M3×3(R) is skew, and Xt, Yt give solutions of the differential

equation
dX

dt
= ΩtX,X(0) = X0;

dY

dt
= ΩtY, Y (0) = Y0 (9.8)

then d(Xt, Yt) = d(X0, Y0). We deduce that if X0 is distributed according to Haar

measure on SO(3), then Xt is also distributed according to Haar measure since the

measure, the metric and solutions are all preserved via X 7→ XU . Haar measure on

SO(3) was derived by Hurwitz [18, §3.2] and can be expressed explicitly in terms of

Euler angles as µ = 2
3
2 sin(φ)dθdφdψ where 0 ≤ θ ≤ π, 0 ≤ φ, ψ < 2π are the Euler

angles and the measure is invariant up to a multiplicative constant.
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(ii) As an alternative, we can consider X0 to have first column [0; 0; 1] and observe

the evolution of the first column T of X under the (9.3) where T evolves on S2.

We now consider the case in which Ω as in (9.2) is a so(3)-valued random variable

over (M∞, µK,β, L
2).

Proposition 9.1.2. Suppose that Ω = Ω(u(·, t)) where u(x, t) is a solution of NLS and

that ∫
BK

‖Ω(u(·, 0))‖2
M3×3(R)µK,β(du) (9.9)

converges. Then for almost all u with respect to µK,β, there exists a flow (νt(dX;u)) of

probability measures on SO(3).

Proof. Each solution u of NLS determines Ω so that the associated ODE (9.3) transports

the initial distribution of X0 ∈ SO(3) to a probability measure on SO(3); then we

average over the u with respect to µK(du). This Gibbs measure is invariant under the

NLS flow, so by Fubini’s theorem∫
BK

∫ 1

0

∫
SO(3)

‖Ω(u(·, t))‖2
M3×3(R)νt(dX)dtµK(du) (9.10)

converges. Hence the condition (9.5) is satisfied, for almost all u, and we can invoke

Theorem 23.9 of Ref.[73].

For the finite-dimensional Mn of (8.16) and solutions un = κne
iσn , the modified

Hasimoto differential equations are

∂

∂x
X(n)(x, t) =

 0 κn 0

−κn 0 τn

0 −τn 0

X(n)(x, t), (9.11)

and

∂

∂t
X(n)(x, t) =

 0 −τnκn ∂κn
∂x

τnκn 0 ∂σn
∂t

+ βκ2
n

−∂κn
∂x
−∂σn

∂t
− βκ2

n 0

X(n)(x, t) (9.12)

involves τn = ∂σn
∂x

and (∂κn
∂x

)2 + τ 2
nκ

2
n = (∂Pn

∂x
)2 + (∂Qn

∂x
)2 which is continuous, so there

exists a solution X(n)(x, t) ∈ SO(3). We can interpret the solutions as elements of a

fibre bundle over (Mn, µ
(n)
K , L2) with fibres that are isomorphic to SO(3).
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Let P + iQ = κeiσ be a solution of NLS and let

Ω1 =

 0 κ 0

−κ 0 τ

0 −τ 0

 . (9.13)

Proposition 9.1.3. (i) Let P + iQ = κeiσ be a solution of NLS with initial data in

P (x, 0) + iQ(x, 0) ∈ BK ∩H1. Then Ω1 in (9.13) gives an so(3)-valued vector field in

L2(κ2(x, t)dx).

(ii) Let P + iQ = κeiσ be a solution of NLS with initial data P (x, 0) + iQ(x, 0) ∈
H1∩BK, and let Pn + iQn = κne

iσn be the corresponding solution of the NLS truncated

in Fourier space, giving matrix Ω
(n)
1 . Let X

(n)
t (x) be a solution of (9.11) and suppose

that X(n) converges weakly in L2 to Xt(x). Then Xt gives a weak solution of Equation

(9.1).

Proof. (i) With ω =
√
κ2 + τ 2, we have

exp(hΩ1) = I +
sinhω

ω
Ω1 +

1− coshω

ω2
Ω2

1

where the entries of Ω2
1 are bounded by κ2 + τ 2, hence∫

T
‖Ω1(x, t)‖2

M3×3(R)κ(x, t)2dx <∞ (9.14)

for u ∈ H1; however, there is no reason to suppose that τ itself is integrable with respect

to dx.

(ii) By (5.18) and (5.19), we have κΩ1 ∈ L2
x for all u ∈ H1. Moreover, Bourgain [9]

has shown that for initial data P (x, 0) + iQ(x, 0) = κ(x, 0)eiσ(x,0) in H1 ∩BK , the map

κ(x, 0)eiσ(x,0) 7→ κ(x, t)Ω1(x, t) ∈ L2 (9.15)

is Lipschitz continuous for 0 ≤ t ≤ t0 with Lipschitz constant depending upon t0, K > 0.
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We have

‖κ(x+ h, t)X(x+ h, t)− κ(x, t)X(x, t)‖2

h2
≤ 2
(1

h

∫ x+h

x

∣∣∂κ
∂y

(y, t)
∣∣dy)2

+ 2
(1

h

∫ x+h

x

κ(y, t)‖Ω1(y, t)‖dy
)2

(9.16)

where the right-hand side is integrable with respect to x by the Hardy–Littlewood

maximal inequality and (9.14). Suppose that X(n) is a solution of Equation (9.11). We

take τn to be locally bounded. Then by applying Cauchy–Schwarz inequality to the

integral

X(n)(x+ h, t)−X(n)(x, t) =

∫ h

0

Ω
(n)
1 (x+ s, t)X(n)(x+ s, t)ds,

we deduce that ∫
[0,2π]

‖X(n)(x+ s, t)−X(n)(x, t)‖2
M3×3(R)κn(x, t)2dx

≤ h

∫ h

0

∫
[0,2π]

‖Ω(n)
1 (x+ s, t)‖2

M3×3(R)κn(x, t)2dxds (9.17)

where the integral is finite by (9.14). Also

N∑
j=1

‖X(n)(xj, t)−X(n)(xj−1, t)‖2
M3×3(R)

xj − xj−1

≤
∫ xN

x0

‖Ω(n)
1 (x, t)‖2dx

for 0 < x1 < x2 < · · · < xN < 2π. We have

∂

∂x

(
κnX

(n)
)

=
∂κn
∂x

X(n) + κ(n)Ω
(n)
1 X(n) (9.18)

so for Z ∈ C∞([0, 2π];M3×3(R)) and the inner product on M3×3(R), we have

〈κn(2π)X(n)(2π), Z(2π)〉 − 〈κn(0)X(n)(0), Z(0)〉 −
∫ 2π

0

κn(x)〈X(n)(x), Z(x)〉 dx

=

∫ 2π

0

∂κn
∂x
〈X(n)(x), Z(x)〉 dx+

∫ 2π

0

〈X(n), κn(x)Ω
(n)
1 (x)>Z(x)〉dx (9.19)

where κn → κ in H1, so with norm convergence, we have ∂κn
∂x
→ ∂κ

∂x
in L2, and κnΩ(n) →
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κΩ1 as n→∞, and with weak convergence in L2, we have X(n) → X, so

〈κ(2π)X(2π), Z(2π)〉 − 〈κ(0)X(0), Z(0)〉 −
∫ 2π

0

κ(x)〈X(x), Z(x)〉 dx (9.20)

=

∫ 2π

0

∂κ

∂x
〈X(x), Z(x)〉 dx+

∫ 2π

0

〈X, κ(x)Ω1(x)>Z(x)〉dx.

The simulation of this differential equation computes Xx ∈ S2 starting with X0 =

[0; 0; 1] and produces a frame {Xx,ΩxXx, Xx×ΩxXx} of orthogonal vectors. Geodesics

on S2 are the curves such that the principal normal is parallel to the position vector,

namely the great circles. For a geodesic, Xx×ΩxXx is perpendicular to the plane that

contains the great circle.

Let P + iQ = κeiσ be a solution of NLS and let

Ω2 =

 0 −κτ ∂κ
∂x

κτ 0 0

−∂κ
∂x

0 0

 . (9.21)

Proposition 9.1.4. (i) Let P + iQ = κeiσ be a solution of NLS with initial data

P (x, 0) + iQ(x, 0) ∈ BK. Then x 7→
∫ x

0
Ω2(y, t)dy gives a so(3)-valued stochastic of

finite quadratic variation on [0, 2π] almost surely with respect to µK(dPdQ).

(ii) Let P + iQ = κeiσ be a solution of NLS with initial data P (x, 0) + iQ(x, 0) ∈
H1∩BK, and let Pn + iQn = κne

iσn be the corresponding solution of the NLS truncated

in Fourier space, giving matrix Ω
(n)
2 . Let X

(n)
t be a solution of (9.12). Then X

(n)
t

converges in L2
x norm to Xt as n→∞ where Xt gives a weak solution of (9.2).
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Proof. (i) The essential estimate is∫
BK

∑
j

|κ(xj+1, t)− κ(xj, t)|2µK(du)

≤
∑
j

(∫
BK

|u(xj+1, t)− u(xj, t)|2µK(du)
)

≤
∑
j

(∫
BK

|u(xj+1, t)− u(xj, t)|4WK(du)
)1/2(∫

BK

(dµK
dW

)2

dW
)1/2

≤ C
∑
j

(∫
BK

|u(xj+1, t)− u(xj, t)|2W (du)
)1/2

≤ C
∑
j

(xj+1 − xj) ≤ 2πC. (9.22)

The function σ is a progressively measurable stochastic process adapted with respect

to a suitable filtration, and with differential satisfying an Ito integral equation[24].

Therefore, we can control the κτ term via

∫ x

0

(κdσ − 2−1κ2〈dσ, dσ〉) =

∫ x

0

κ∇σ ·

[
dP

dQ

]
=

∫ x

0

−QdP + PdQ√
P 2 +Q2

(9.23)

which is a bounded martingale transform of Wiener loop. As dP and dQ are martingale

differences, the integral is a martingale transform [12].

(ii) By (5.18) and (5.19), we have Ω2 ∈ L2
x for all u ∈ H1. Bourgain [9] has shown

that for initial data P (x, 0) + iQ(x, 0) = κ(x, 0)eiσ(x,0) in H1 ∩BK , the map

κ(x, 0)eiσ(x,0) 7→ Ω2(x, t) ∈ L2
x (9.24)

is Lipschitz continuous for 0 ≤ t ≤ t0 with Lipschitz constant depending upon t0, K > 0.

We have ∫ 2π

0

‖Ω2(x)‖2dx ≤ 2

∫ 2π

0

((∂κ
∂x

)2

+ κ(x)2τ(x)2 + κ(x)4
)
dx,

where the final integral is part of the Hamiltonian. With Z ∈ C∞(T;M3×3(R)), we
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have the integral equation for the pairing 〈·, ·〉 on L2([0, 2π],M3×3(R))

〈X(n)
t , Z〉 = 〈X(n)

0 , Z〉+

∫ t

0

〈X(n)
s , (Ω(n)

s )>Z〉 ds. (9.25)

Consider the variational differential equation in L2([0, 2π],M3×3(R))

d

dt
(X(m)(x, t)−X(n)(x, t)) = Ω

(n)
2 (x, t)(X(m)(x, t)−X(n)(x, t))

+ (Ω
(m)
2 (x, t)− Ω

(n)
2 (x, t))X(m)(x, t) (9.26)

where Ω
(n)
2 (x, t) and Ω

(m)
2 (x, t)− Ω

(n)
2 (x, t) are skew.

We introduce a family of matrices U (n)(x; t, s) such that U (n)(x; t, r)U (n)(x; r, s) =

U (n)(x; t, s) for t > r > s and U (n)(x; t, t) = I such that

∂

∂t
U (n)(x; t, s) = Ω

(n)
2 (x; t)U (n)(x; t, s). (9.27)

Then the variational equation has solution

X(m)(x, t)−X(n)(x, t) = U (n)(x; t, 0)(X(m)(x, 0)−X(n)(x, 0))

+

∫ t

0

U (n)(x; t, r)(Ω
(m)
2 (x; r)− Ω

(n)
2 (x; r))X(m)(x, r)dr.

Then

d

dt

〈
X(m)(t)−X(n)(t), X(m)(t)−X(n)(t)〉L2

x

= 2<
〈
(Ω

(m)
2 (t)− Ω

(n)
2 (t))X(m)(t), X(m)(t)−X(n)(t)

〉
L2
x

≤ ‖Ω(m)
2 (t)− Ω

(n)
2 (t)‖2

L2
x
‖X(m)(t)‖2

L2
x

+ ‖X(m)(t)−X(n)(t)‖2
L2
x

(9.28)

so from this differential inequality we have

‖X(m)(t)−X(n)(t)‖2
L2
x
≤ et‖X(m)(0)−X(n)(0)‖2

L2
x

+

∫ t

0

et−s‖Ω(m)
2 (s)− Ω

(n)
2 (s)‖2

L2
x
ds.

(9.29)

Now X(m)(0) − X(n)(0) → 0 and Ω
(m)
2 (s) − Ω

(n)
2 (s) → 0 in L2

x norm as n,m → ∞, so

there exists X(x, t) ∈ L2
x such that X(x, t)−X(n)(x, t)→ 0 in L2

x norm as n→∞.
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We deduce that

〈X(t), Z〉L2
x

= 〈X0, Z〉L2
x

+

∫ t

0

〈Xu, (Ω2(u))>Z〉L2
x
du, (9.30)

so we have a weak solution of the ODE.
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Chapter 10

Numerics of the Hasimoto frame

equation

The objective of this chapter is to build on the analysis of the nonlinear Schrödinger

equation carried out in Chapters 5 and 9. Simulating a random numerical approxi-

mation to the solution of the first differential equation of the Lax pair for the NLSE,

Equation (5.15). This equation is the evolution of the Frenet-Serret frame with the

torsion and curvature specified by the NLSE. The evolution of the frame is modelled as

a stochastic process and the stochastic differential equation it satisfies will be discussed

in the following section. Solutions to the NLSE are Gibbs measurable functions [9].

The differential equations discussed provide a way to push this measure forward onto

the sphere. We consider the case where the parameter β in (5.1) is equal to 0. In this

case, the Gibbs measure is reduced to Wiener loop measure and stochastic processes

with the Wiener loop measure as their law are by definition Brownian loop.

After producing the SDE, a numerical method for solving it can be implemented.

The empirical measure of many sample paths of the process is then compared with the

theoretical distribution statistically.

There exists stumbling blocks in applying this methodology more broadly, for ex-

ample in the second differential equation of the Lax pair (Equation (5.16)) the function

µ(x, t) includes a term equal to the derivative ∂τ
∂t

and if this is interpreted as I have

done in this chapter, then the function µ is too rough to construct a SDE.
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10.1 Background on stochastic calculus

Before applying stochastic calculus to the problem, an explanation of the theory behind

the stochastic integral is introduced, starting with the definition of a stochastic process.

Definition 10.1.1. [42] A stochastic process is a collection of random variables, each

on the same probability space, indexed by time.

Xt(ω) := X(ω, t) : (Ω,B(Ω))× ([0, T ),B([0, T )))→ (Rn,B(Rn)). (10.1)

We take the state space to be Rn with its Borel sets and the sample space Ω has on it

an unknown measure ν. For a fixed event ωi in the probability space Ω the measurable

function Xt(ωi) is known as a sample path. For each given time t the random variable

Xti(ω) has a distribution or law, which is the pushforward of the measure ν to the state

space, P(Xti ∈ A) = ν(X−1
ti (A)).

Definition 10.1.2. A continuous stochastic process is a stochastic process in which

the sample paths are continuous functions.

Left and right continuous processes are defined analogously, and the concept of cad-

lag processes (continuous from the left with limits from the right) capture the broadest

class of discontinuous processes considered.

Definition 10.1.3. [42] A filtration, {Ft | t ∈ [0,∞)}, is a collection of σ-algebras

which are increasing: if t1 < t2 then Ft1 ⊆ Ft2 . A stochastic process can generate a

filtration, simply take Ft to be the smallest σ-algebra generated by the random variables

{Xs | s ∈ [0, t]}.

Definition 10.1.4. [42] An adapted process (Xt,Ft) is a stochastic process and a

filtration that the process is measurable with respect to.

A progressively measurable stochastic process is such that (ω, t) 7→ Xt(ω) : (Ω ×
[0, s],Fs ⊗ B([0, s]))→ (Rn,B(Rn)) is measurable for each 0 ≤ s [42, Def 1.1.11]. This

is equivalent to being right continuous and adapted to the filtration [42, Prop. 1.1.13].

Definition 10.1.5. [42, Def 2.1.1] Brownian motion can be defined as a continuous

stochastic process. The continuous stochastic process and filtration to which it is

adapted, (Wt,Ft), are Brownian motion if they satisfy the following conditions.
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(i) W0 = 0 with probability 1.

(ii) Let 0 ≤ s < t, then the increment Wt −Ws is independent of Fs and distributed

as N(0,
√
t− s).

Let I denote the set of partitions of an interval L, and let (ηn)n∈N ∈ I denote a

sequence of partitions, which are refinements (η2 has added some subintervals between

the partition defined by η1). The Riemann integral over L is defined by approximating

a function over any sequence of partitions ηn such that supxi∈ηn |xi+1 − xi| → 0 as

n→∞. The same notion is used to calculate the variation of a function. The variation

of f is defined,

sup
η∈I

∑
xi∈ηn

|f(xi)− f(xi−1)|.

The Riemann-Stieltjes integral is defined for integrators of bounded variation. If f is a

real valued function on the interval L and g is of bounded variation, then the integral∫
L

f(x)dg(x) = lim
∑
xi∈ηn

f(xi−1)|g(xi)− g(xi−1)|,

is the Riemann-Stieltjes integral of f . The limit is taken over any sequence of partitions

ηn which supxi∈ηn |xi+1 − xi| → 0 as n → ∞. This integral is applied to the sample

paths of stochastic processes which are of bounded variation. However, for stochastic

processes which are not of bounded variation such as Brownian motion, this concept

of an integral is not defined. Processes such as Brownian motion do not have bounded

variation however they do have bounded quadratic variation:

sup
η∈I

∑
xi∈ηn

|f(xi)− f(xi−1)|2. (10.2)

To develop Ito’s concept of a stochastic integral the idea of a martingale and the Doob-

Meyer decomposition need to be introduced. This is a technical subject complicated

enough to warrant a long exposition. Here the basic concepts behind the stochastic

integral will be explained, and details can be found in Shreve [42].

Definition 10.1.6. A martingale is a filtration and an adapted stochastic process

(Mt,Ft) which satisfies E(Mt|Fs) = Ms for any 0 < s < t in the range of definition of
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Mt. A submartingale satisfies E(Mt|Fs) ≥ Ms instead, and a supermartingale satisfies

E(Mt|Fs) ≤Ms.

The space of continuous martingales, Mt, with finite second moments (or quadratic

variation) EM2
t <∞ is denoted L2

E.

Definition 10.1.7 (Doob-Meyer decomposition). [42, Thm. 1.4.10] If Xt,Ft is a right

continuous submartingale with left limits, X0 = 0 almost everywhere and Xt is of

class D (a definition regarding stopping times [42, Def. 1.4.8]). Then Xt permits a

decomposition

Xt = At +Mt, (10.3)

where At is a natural [42, Def. 1.4.5] increasing process and Mt is a martingale.

By construction, a natural increasing stochastic process At can act as an integrator

for pathwise Riemann-Stieltjes integrals,

I(X) =

∫
XtdAt (10.4)

for measurable Xt. If Xt is right continuous with left limits (càdlàg) and adapted to

the filtration of At, then I(X) is also right continuous with left limits and adapted —

provided it is finite [42, Rem. 1.4.6]

Definition 10.1.8. The quadratic variation of a process Xt ∈ L2
E is denoted 〈X〉t.

Take the Doob-Meyer decomposition of X2 and then the natural increasing process At

from the decomposition is the variation of Xt, 〈X〉t = At.

The function At is called the quadratic variation because the quadratic variation

(as given in Equation 10.2) of Xt will converge to At in probability [42, Thm. 5.8].

The stochastic integral of Xt ∈ L2
E with respect to a continuous martingale Mt ∈ L2

E

I(X) =

∫ T

0

Xt(ω)dMt(ω) (10.5)

is not defined as a pathwise Riemann-Stieltjes integral because Mt does not have

bounded variation. However, it can be defined for simple processes.
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10.1.1 The stochastic integral

This subsection defines the stochastic integral. To start, the integrator is specified by

a martingale Yt ∈ L2
E and its filtration Ft. With respect to this integrator, a measure

is introduced,

µY (A) = E
∫ T

0

IA(t, ω)d〈Y 〉t (10.6)

where A ∈ B([0, T ]) ⊗ B(Ω)). This measure is used to construct an L2 space of the

appropriate Xt using the norm,

[X]T =

∫ T

0

X2
t d〈Y 〉t (10.7)

and this norm gives a equivalence relation upon which we build a representative space of

processes. The subtleties of using equivalence classes rather than processes themselves

does not matter in this work.

Definition 10.1.9. The space of valid integrands is denoted L∗ and includes all càdlàg

(right continuous with left limits) Ft-measurable adapted processes, Xt such that

[X]T <∞.

Definition 10.1.10. A simple process is a stochastic process made up of a finite number

of random variables, ζk, and indicator functions,

St(ω) =
n∑
k=1

ζk(ω) I(tk+1,tk](t) (10.8)

where 0 < t1 < ... < T partition the inteval. The random variables ζk must satisfy the

condition supk |ζk(ω)| < C for some constant C and almost every ω. The process is

intentionally defined to stick out into the future [52, p.29].

The simple process can be integrated with respect to Yt provided each ζk is Ftk-
measurable. The resulting sum is a martingale transform of Yt,

IT (S) =

∫ T

0

StdYt =
n∑
k=1

ζk(Ytk+1
− Ytk) (10.9)

where for simplicity it is assumed tn = T . The sum is a martingale transform, meaning
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the integral itself is a martingale. This is straightforward to prove, for the term in the

sum k = n, E(ζk(Ytk+1
− Ytk)|Fn) = ζk

(
E(Ytk+1

|Fn)− E(Ytk |Fn)
)

= ζk(Ytk − Ytk) = 0.

For earlier terms, note that E(Yn−1|Fn) = Yn−1 because the conditioning is on a larger

σ-algebra than σ(Yn−1), hence the sum is a martingale.

The collection of simple processes in which each ζk is Ftk-measurable is dense in L
with respect to the [ ]T norm [42, Lem. 3.2.7]. Thus the stochastic integral of X ∈ L
with respect to the martingale Yt ∈ L2

E is defined.

Definition 10.1.11. [42, Def. 3.2.9] The integral of Xt ∈ L∗ with respect to the square

integrable continuous martingale integrator Yt ∈ L2
E is the martingale (It(Xt),Ft) which

satisfies limi→∞ ‖I(Sit)− I(Xt)‖ = 0 for any sequence S(i) of simple processes such that

limi→∞[S(i) −Xt]T = 0.

In this thesis the only martingale considered is Brownian motion, Itô’s Lemma

is defined for any continuous semi-martingale though I restrict the theorem to con-

tinuous submartingales to avoid further definitions. There exists decompositions for

semi-martingales analogous to the Doob-Meyer decomposition [42, Def. 3.3.1].

Lemma 10.1.12 (Itô’s Lemma). For any continuous submartingale Xt with Doob-

Meyer decomposition Xt = Mt + At, and any f ∈ C2([0, T ]) with bounded second

derivative, the fundamental theorem of calculus is replaced with Itô’s Lemma:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)dAs +
1

2

∫ t

0

f ′′(Xs)d〈M〉s.

When integrating with respect to a brownian motion Wt the quadratic variation of

Wt is equal to t, thus 〈W 〉t = t. Therefore, in the case of Brownian motion Xt = Wt

and f(x) = x2, Itô’s Lemma implies that

W 2
t =

∫ t

0

2WsdWs + t. (10.10)

10.2 A stochastic differential equation

The differential equation for the evolution of the Frenet-Serret frame discussed in Chap-

ter 5 can be found in Equation (9.11).
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Equation (9.11) is a PDE with respect to the space variable x, while the parameter

of a stochastic process in a stochastic differential equation (SDE) is colloquially referred

to as ‘time’. To avoid confusion, in this section we refer to x as s; whereas the time

variable t is suppressed. Thus the differential equation (Equation 5.15) is reinterpreted

stochastically. The rate of change of Xs is governed by the stochastic processes P and

Q. Recall the polar decomposition P + iQ = κeiσ where, κ =
√
P 2 +Q2 and σ is such

that τ = ∂σ
∂s

. This implies σ = tan−1
(
Q
P

)
and the rate of change of τ is a function of

Wiener loop and therefore will be represented as a drift term in the stochastic differential

equation

dXs =

 0 κ 0

−κ 0 0

0 0 0

Xsds+

0 0 0

0 0 1

0 −1 0

Xs ◦ dσ. (10.11)

The ◦ denotes the Stratonovich form of stochastic differential equation (SDE). When

passing from ordinary differential equations to stochastic ones there is a choice of inter-

pretation. In the literature [58, Remark 3] it is purported that the interpretation should

be as a Stratonovich type SDE [42]. Numerical methods based of Euler-Maruyama re-

quire Itô type SDEs [50], so a conversion is necessary.

Let Fs denote the joint filtration of the independent Brownian processes P and Q.

An existence theorem for solutions to the SDE will be stated later in the section, it

requires all coefficients of the SDE to be adapted to the filtration Fs, and then solution

Xs will necessarily be adapted to Fs. Lie group based SDE’s are well posed under these

assumptions [65].

Definition 10.2.1. The differential form of Itô’s Lemma says that for independent

Brownian processes P and Q, if f is bounded, twice differentiable and has continuous

second derivatives:

df(P,Q) =
∂f

∂P
dP +

∂f

∂Q
dQ+

1

2

(
∂2f

∂P 2
+
∂2f

∂Q2

)
ds. (10.12)

Implicit in the definition is the understanding that f is adapted to the joint filtration

Fs of Ps and Qs as it only depends on s through P and Q.

Lemma 10.2.2. Define σε(P,Q) := tan−1( PQ
P 2+ε2

) as the regularised Itô integral of τ .
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The Itô differential can be written as

dσε = f1(P,Q)dP + f2(P,Q)dQ+ f3(P,Q)ds, (10.13)

where

f1(P,Q) :=
(ε2 − P 2)Q

(ε2 + P 2)2 + P 2Q2
,

f2(P,Q) :=
P (ε2 + P 2)

(ε2 + P 2)2 + P 2Q2
,

f3(P,Q) := − 2P 3Q(ε2 + P 2)

((ε2 + P 2)2 + P 2Q2)2
− 2PQ ((ε2 + P 2)2 + P 2Q2)

((ε2 + P 2)2 + P 2Q2)2

− (ε2 − P 2)Q (2PQ2 + 4P (ε2 + P 2))

((ε2 + P 2)2 + P 2Q2)2

The stochastic differential equation for Xs given in Equation (10.12) can be updated

using Lemma 10.2.2,

dXs = DXsds+ BXs ◦ dP + CXs ◦ dQ. (10.14)

Where,

D =

 0
√
P 2 +Q2 0

−
√
P 2 +Q2 0 f3(P,Q)

0 −f3(P,Q) 0

 ,

B =

0 0 0

0 0 f1(P,Q)

0 −f1(P,Q) 0

 , C =

0 0 0

0 0 f2(P,Q)

0 −f2(P,Q) 0

 . (10.15)

This differential equation is in the form of a Stratonovich SDE and not an Itô SDE. To

convert from a Stratonovich SDE to a Itô SDE a correction term is introduced.

Theorem 10.2.1. [43, p.159] If Xs is a strong solution to the Stratonovich SDE,

dXs = f(Xs)ds+ g(Xs) ◦ dWs
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where g and f are linear in X, and adapted to the filtration of Ws. Then Xs is also the

solution to the equivalent Itô SDE,

dXs =

(
f(X) +

1

2

∂g(X)

∂X
g(X)

)
ds+ g(X)dW.

The requirements for a stochastic differential equation to have a strong solution

are outlined in Theorem 10.3.1. See Ref. [42, Prop. 2.21] for the precise meaning

of equivalent in this case. More generally the functions f and g can be taken to be

Lipschitz and twice bounded differentiable respectively. Applying the theorem one can

convert Equation (10.12) from a Stranovich SDE into an Itô SDE as follows:

dXs =AXsds+ BXsdP + CXsdQ (10.16)

where,

A =

 0
√
P 2 +Q2 0

−
√
P 2 +Q2 1

2
f 2

1 (P,Q) + 1
2
f 2

2 (P,Q) f3(P,Q)

0 −f3(P,Q) 1
2
f 2

1 (P,Q) + 1
2
f 2

2 (P,Q)

 ,

B =

0 0 0

0 0 f1(P,Q)

0 −f1(P,Q) 0

 , C =

0 0 0

0 0 f2(P,Q)

0 −f2(P,Q) 0

 . (10.17)

As justified in the discussion about the Gibbs measure, when β = 0 the stochastic

processes P and Q are each a Brownian bridge with period T = 2π, thus they can be

expressed in terms of Brownian motions W1 and W2; that is,

P (s) = W1(s)− s W1(2π)

2π
. Q(s) = W2(s)− s W2(2π)

2π
(10.18)

The differentials can then be expressed as dP = dW1 −W1(2π)/2π ds and equivalently

for Q. Equation (10.16) is now written as a standard Itô SDE,

dXs =
(
A +

W1(2π)

2π
B +

W2(2π)

2π
C
)
Xsds+ BXsdW1 + CXsdW2 (10.19)
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where A, B and C are defined as in Equation (10.17). This is the SDE of interest in

this chapter.

10.3 The Magnus expansion for SDEs

The genesis of the SDE (Equation (10.19)) was the Frenet-Serret frame, a matrix in

the Lie algebra so(3), and thus if X0 ∈ SO(3), then so did Xs for all s. This should be

true of the SDE too. In Section 2.3.3 we discuss dealing with multivariable differential

equations which have a solution in terms of a Magnus expansion. Section 2.3.2 shows the

difficulty in calculating the derivative of the exponential map between the Lie algebra

and its Lie group. Lemma 2.3.23 gives an expression for conversion of the matrix

differential equation for Xs into one for Ωs, where

Xs = exp(Ω(s))X0,

for some initial condition X0. The added complexity is product of working with a SDE

rather than an ODE. That said, the problem is significantly more straight forward than

for solutions within a general Lie group, as the exponential map from so(3) → SO(3)

is surjective. This means the consistency problem between the evolution of Brownian

processes on different coordinate charts does not need to be addressed.

The intricacies of Itô calculus are beyond the breadth of this thesis, but a simplified

rule for working with differentials of Brownian motions Wi,Wj is,

dWidWj = δijdt,

dWidt = 0, dtdt = 0.

Using these rules, along with Itôs lemma, we can establish the differential equation

Ω would have to follow if X satisfied a general SDE in just one dimension.

A standard existence and uniqueness theorem for solutions to a stochastic differential

equation of the form,

dXs = a(s,Xs)ds+ b(s,Xs)dW1, (10.20)

with initial value X0 can be commonly found [43, 42]. A weak solution to an SDE

is a process which satisfies the ODE for a specific choice of Wiener process W1, a
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second solution for a different Wiener process would have the same finite dimensional

probability distributions (they are equivalent) but different sample paths. A strong

solution to an SDE, X, is a process which for an equivalent Y ,

P( sup
0≤t≤T

|Xt − Yt| > 0) = 0.

that is solutions are pathwise unique given a suitable initial condition. The conditions

under which a weak solution exists for Equation (10.20) can be found in books on SDEs

[43, Thm. 4.7.1].

Theorem 10.3.1. [43, Thm 4.5.3] A strong solution to Equation (10.20) exists if,

• The functions a(s, x) and b(s, x) are jointly measurable as functions ([0, T ] ,B([0, T ]))×
(R,B(R))→ (R,B(R)).

• The functions a(s, x) and b(s, x) are both Lipschitz in x.

• The functions a(s, x) and b(s, x) satisfy a growth inequality, for some K > 0

‖a(s, x)‖2 ≤ K2(1 + ‖x‖2)

‖b(s, x)‖2 ≤ K2(1 + ‖x‖2)

for all (s, x) ∈ [0, T ]× R.

• The initial value, X0 = Z, is a random variable which is F0 measurable and finite

second moment.

The existence and uniqueness of higher dimensional problems, when x ∈ Rn or a

Riemannian manifold hold when the relevant adaptations are made to the norms.

In addition, an SDE of the form,

dXs = a(s,X,W 1
s ,W

2
s , . . . ,W

m
s )ds+

m∑
i=1

bi(s,X,W
1
s ,W

2
s , . . . ,W

m
s )dW i

s (10.21)
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can be reduced to a vector valued SDE of the form of Equation (10.20), simply let

X̃s = [Xs,W
1
s , . . . ,W

m
s ] and then

dX̃s =


a(s, X̃)

0
...

0

 ds+
m∑
i=1

[
bi(s, X̃)

ei

]
dW i

s , (10.22)

where ei is a m dimensional unit vector with 1 in the ith position. Redefining new ã

and b̃ will give an equation of the form of Equation (10.20).

Lemma 10.3.1. If the one dimensional function X(s) = exp(Ω(s))X0 is a solution to

dXs = g(s)Xsds+ h(s)XsdW1 + k(s)XsdW2

for independent Brownian’s W1 and W2, where g(s), h(s), k(s) are adapted to their joint

filtration. Then Ω satisfies the SDE,

dΩs =

(
g(s)− 1

2
(h(s)2 + k(s)2)

)
ds+ h(s)dW1 + k(s)dW2 (10.23)

Proof. Consider a function of Ω, f(Ω) = exp(Ω(s)), so Xs = f(Ωs)X0. Then assume

Xs satisfies the assumption of the lemma, and let dΩ = l(s)ds+h(s)dW1 +k(s)dW2 for

some yet undefined functions l(s), h(s), k(s). The differential of f in the sense of Itô is,

df(Ω) = f ′(Ω(s))dΩ +
1

2
f ′′(Ω(s))(dΩ)2,

= f ′ (l(s)ds+ h(s)dW1 + k(s)dW2) +

+
1

2
f ′′
(
h(s)2ds+ k(s)2ds

)
,

The derivatives with respect to Ω do not change the function f(Ω),

=

(
l(s) +

1

2
(h(s)2 + k(s)2)

)
fds+ h(s)fdW1 + k(s)fdW2.

Finally, matching up coefficients for dXs = df(Ωs) one shows that the function l(s)

must be l(s) = g(s) + 1
2
(h(s)2 + k(s)2).
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For matrix valued coefficients the problem is more involved. It is advised to view

the matrix as a multivariable problem. Let Xs denote a real matrix valued stochastic

process, which is measurable and adapted to the joint filtration Ft of Brownian loops

P and Q. In addition let Xs be the solution to

dXs = AXsds+ BXsdW1 + CXsdW2

for independent Brownian’s W1 and W2. The matrices A,B,C are given in Equation

(10.17). They have had their dependencies suppressed for visual clarity, but depend on

both P and Q, which vary over time.

Lemma 10.3.2. If Xs satisfies the assumptions of the previous paragraph, the Magnus

expansion Xs = exp(Ωs)X0 implies the exponent Ωs satisfies the SDE,

dΩs = Lds+ MdW1 + NdW2 (10.24)

where the matrices L,M,N again have had their dependencies suppressed, but are given

by

M = E−Ω(B) N = E−Ω(C)

L = E−Ω

(
A− 1

2
(B2 + C2 + F (M) + F (N))

)
.

The inverse of the partial derivative of the exponential map is defined explicitly in

terms of its power series in Lemma (2.3.22). Although E−Ω is only well defined as an

inverse if the argument is in so(3), one can still interpret it as a formal power series for

other matrices. The function F (M) is defined within the proof.

Proof. Consider the function f(Ω) = exp(Ω(s))X0 and assume that the SDE for Ωs

takes the form dΩs = Lds + MdW1 + NdW2 for some matrices L,M,N. Consider

the differential of f in the sense of Itô by taking the Taylor expansion about each

component.

df(Ω) =
∑
ij

∂f

∂Ωij

dΩij +
1

2

∑
ij

∑
kl

∂

∂Ωkl

∂f

∂Ωij

dΩkldΩij. (10.25)

The derivative of the exponential of a matrix is expressed in Equation (2.26). Denote
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the matrix of zeros with a unit i, j component by Eij and note that

∂ exp(Ω)

∂Ωij

= D−Ω

(
∂Ω

∂Ωij

)
exp(Ω) = D−Ω(Eij) exp(Ω). (10.26)

By the assumption on the form of dΩ, the components of the SDE are dΩij = Lijds+

MijdW1 + NijdW2. The directional derivative of the exponential D−Ω(Eij), discussed

explicitly in Section 2.3.2, is linear in its second argument so for any matrix M,∑
ij MijD−Ω(Eij) = D−Ω(M). Thus the first term of Equation (10.25) is,

∑
ij

∂f

∂Ωij

dΩij =
∑
ij

D−Ω(Eij) (Lijds+ MijdW1 + NijdW2) exp(Ω)

= D−Ω(L)f(Ω)ds+D−Ω(M)f(Ω)dW1 +D−Ω(N)f(Ω)dW2.

Taking into consideration the rules of Itô calculus, the product dΩijdΩkl = (BijBkl +

CijCkl) ds. The second order partial derivatives of the exponential of the matrix Ω are,

∂

∂Ωkl

∂f

∂Ωij

= D−Ω(Ekl)D−Ω(Eij) exp(Ω) +
∂

∂Ωkl

(D−Ω(Eij)) exp(Ω). (10.27)

Details of the derivative of D can be found in the Appendix of [50], and uses the power

series expansion given in Equation (2.26). The second term of Equation (10.25) is given

by,

∑
ij

∑
kl

∂

∂Ωkl

∂f

∂Ωij

dΩkldΩij =
[
(D−Ω(M))2 + (E−Ω(N))2 + F (M) + F (N)

]
f(Ω)ds.

Where the function F is given by,

F (M) =
∞∑
p=0

∞∑
q=0

1

p+ q + 2

(−1)p

(p!(q + 1)!
adpΩ(adM(adqΩ(M))).
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The stochastic differential equation for f(Ω) can now be stated as,

df(Ω) =

[
D−Ω(L) +

1

2

(
(D−Ω(M))2 + (D−Ω(N))2 + F (M) + F (N)

)]
f(Ω)ds

+D−Ω(M)f(Ω)dW1 +D−Ω(N)f(Ω)dW2.

Equating f(Ω) = X the coefficients of dXs = AXsds + BXsdW1 + CXsdW2 can be

compared with that of df(Ω). The expression DΩ has a well defined inverse EΩ, and so,

M = E−Ω(B),

N = E−Ω(C),

L = E−Ω

(
A− 1

2
(B2 + C2 + F (M) + F (N))

)
.

10.4 The proposed numerical algorithm

The numerical method of choice for solving Equation (10.19) was developed by Pigott,

Solo et al. [58], [50], and will be motivated and justified below. The method is a one

step Euler Maruyama approximation done in the Lie algebra. It uses the derivative of

the exponential map discussed in Section 2.3.2, though the power series for EX (Lemma

2.3.22) is truncated heavily.

The stochastic differential equation for the first Frenet-Serret matrix with β = 0 is

given in Equation (10.11). This is converted into an SDE in the Lie algebra by Lemma

10.3.2. As a result, the differential equation simulated in the Lie algebra is,

dΩs = Lds+ E−Ω(B)dP + E−Ω(C)dQ, (10.28)

Where A,B,C are the matrices as defined in Equation (10.17), and L is defined in

terms of those matrices as

L = E−Ω

(
A− 1

2
(B2 + C2 + F (E−Ω(B)) + F (E−Ω(C)))

)
. (10.29)
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Figure 10.1: The figure demonstrates a sample path of the stochastic process Xs, which
is a solution to Equation (10.19). As Xs ∈ SO(3) the path is visualised as the action
of Xs applied to a unit vector in R3. The numerical solution shown is for s ∈ [0, 10],
and has a step size of h = 10−5.

The one step method takes Ω
(0)
s = 0 the zero matrix at each timestep s, and calcu-

lates Ω
(1)
s by

Ω(1)
s = Ω(0)

s + hL +
√
hδE−Ω0(B) +

√
hηE−Ω0(C), (10.30)

where ε and η are distributed N(0, 1). Therefore Pt+h − Pt ∼
√
hδ and equivalently

for Q. For any matrix M, D0(M) = M by definition. The same holds for F (M) =
1
2

[M,M] = 0 for the first step as Ω0 := 0. Thus the one step algorithm further reduces

to

Ω(1)
s = hA− 1

2
(B2 + C2) +

√
hδB +

√
hηC, (10.31)

= hD +
√
hδB +

√
hηC, (10.32)

where the matrix D is given in Equation (10.14) and each matrix D,B,C belong to

so(3) and depend on s. The final stage of the algorithm is to use the update in the Lie

algebra to update the original function X. That is, Xn+1 = exp(Ω1)Xn.

Note that in Algorithm 10.1 it is assumed that 2π < T < 4π for the construction of

periodic Brownian motion.

The resulting stochastic process Xs ∈ SO(3) is then used to rotate the unit vector

y0 = [0, 0, 1]> on S2 to ys = Xsy0, the third column of Xs. The sample paths of

this process can be described by construction of a frame {ys, y′s, ys × y′s}. Figure 10.1
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Algorithm 10.1 Algorithm for one sample path

1: Define h a constant timestep increment, and T the period to solve for
2: no_timesteps ← T/h
3: Define ε, a small regularisation constant.
4: X0 ← I initial condition.
5: Sample γi ∼ N(0, 1) and γ̃i ∼ N(0, 1) for i = 1, ..., no_timesteps.
6: η ←

[
γ1, γ2, ..., γT/h

]
7: δ ←

[
γ̃1, γ̃2, ..., γ̃T/h

]
8: W1 ← [W1(h),W1(2h), ...,W1(T )] where W1(nh) =

√
h
∑n

j=1 γj.

9: W2 ← [W2(h),W2(2h), ...,W1(T )] where W2(nh) =
√
h
∑n

j=1 γ̃j.

10: Pj ←
[
Pj(h), Pj(2h), ..., Pj(

2π
h

)
]

where for j = 1, 2

Pj(nh) = W1(nh+ 2π(j − 1))− W1(2πj) nh

2π

11: Qj ←
[
Qj(h), Qj(2h), ..., Qj(

2π
h

)
]

where for j = 1, 2

Qj(nh) = W2(nh+ 2π(j − 1))− W2(2πj) nh

2π

12: Concatenate P1 with P2 so the array has T/h elements. Repeat for Q.
13: The following operations are vectorised, each object is an array of T/h components.
14: κ←

√
P 2 +Q2 . κ will be a 1× T/h array

15: fi ← fi(P,Q) for i = 1, 2, 3 and fi given in Eq. (10.13)
16: D,B,C defined as in Equation (10.14) using fi above . They are 3× 3× T/h

arrays
17: Ω← hD +

√
hδB +

√
hηC

18: ‖ω‖ ←
√

Ω2
21 + Ω2

31 + Ω2
32

19: exp(Ω)← I + sin(h‖ω‖)
‖ω‖ Ω + 1−cos(h‖ω‖)

‖ω‖2 Ω2

20: Xi ←
∏i

j=1 exp(Ω)jX0 . exp(Ω)j represents the j’th element of the array.
21: The

∏
operator here acts as:

i∏
j=1

exp(Ω)j = exp(Ω)i... exp(Ω)2 exp(Ω)1
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demonstrates a sample-path of ys generated via Algorithm 10.1. The code used to

simulate a sample path is available [44].

The sample paths start off on the great circle perpendicular to the y-axis, and so

have constant binormal ys × y′s. As a sample path extends past the great circle, the

binormal vector at each point deviates slowly; as a consequence a sample path can be

thought of as a precessing orbit.

10.5 Computational complexity

The purpose of this simulation is to observe the distribution of the stochastic process

which solves the nonlinear Schrödinger equation. Many sample paths are required

to approximate the distribution, hence the choice of a first order numerical scheme is

needed to limit the computational complexity. Even the scheme outlined in Section 10.4

requires an order ofO(T/h) matrix multiplications. For further insight into the constant

on the T/h term, each matrix multiplication of M ∈ M3(R) involves 32(3 + 2) = 45

individual operations, not to mention the additional operations involved in calculating

each matrix using Rodriguez’ formula. The algorithm scales with number of sample

paths simulated, N , as O(N). As such, the limits of the computing power on hand

meant, for T = 10, a timestep of h = 10−5 and N = 106 sample paths.

The algorithm can be parallelised easily —using a machine equipped with an 8-core

Intel Xeon Gold 6248R CPU with a clock speed of 2993 Mhz; with h = 10−5 and

N = 106 the run time of the simulation was 1 week.

10.6 Error estimation

The following is taken from Piggott [59], and establishes the almost linear convergence

of error in expectation of the L2 norm. The numerical method produces a step function

ŷh(s) =

j=maxn{nh≤s}∏
j=1

exp(Ωj)X0y0 (10.33)

The step function ŷh(s) converges to the solution y(s) in the L2 space of Itô processes
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as the step size h→ 0,

E
[

sup
0≤s<T

‖ys − ŷs,h‖2
R3

]
= O(h1−ε), (10.34)

for some small ε > 0 (See Piggott [59]). The derivation of this estimate is given in [59,

Thm 3.1], and here the scale of the constants involved are investigated to determine

if they can be controlled for feasible step sizes h. Let ε = 1
r
, the dominating term

in the O(h1− 1
r ) expansion is given in [59, Equation (25)] by (12 + 4T )TDre

4T (2+T ).

Naturally, the size of the interval, T plays a large role in the estimate. The constant

Dr = 1 + 3rT
r−1

Cr and the constant Cr has the most effect controlling the O(h1−ε) term,

it is of the form

Cr =
2rΓ(r + 1

2
)h1− 1

r

√
π

. (10.35)

Take the logarithm of the function and apply Stirling’s approximation [71, p.151] to

approximate the logarithm of the gamma function,

log

(
2rΓ(r + 1

2
)h1− 1

r

√
π

)
= r log 2− 1

2
log π +

(
1− 1

r

)
log h+ log Γ

(
r +

1

2

)
= r log 2− 1

2
log π +

(
1− 1

r

)
log h

+ r log r − r +
1

2
log 2π + C,

for some constant C. The derivative of this expression will give the location of a minima,

∂

∂r
log

(
2rΓ(r − 1

2
)h1− 1

r

√
π

)
= log 2 +

1

r2
log h+ log r.

Due to computational constraints, a value of h = 10−5 is the smallest step size feasible

to take (See Section 10.5). Therefore, this expression changes sign between 4 and

5. Further the second derivative is − 1
r3

log h + 1
r
> 0 for all positive r implying the

stationary point is a minima. Taking r = 4 gives an upper bound on the constant

of C4 < 0.05 showing it is possible to control the constants on the interval under

consideration.
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10.7 Hypothesis testing

The algorithm laid out in Algorithm 10.1 was run N = 106 times. The resulting

stochastic process Xs ∈ SO(3) was then used to rotate the unit vector y0 = [0, 0, 1]> on

S2 to ys = Xsy0, the third column of Xs. For each sample path of the new stochastic

process ys(ωi) ∈ S2 the position at times s = 0.3, 0.6, . . . , 6.0 were recorded by their

spherical coordinates of longitude θs ∈ [−π, π) and colatitude φs ∈ [0, π]. The data

was collected for the purpose of verifying that the joint distribution of (θs, φs) becomes

independent and uniform over the sphere, a plausible suggestion from looking at the

histogram in Figure 10.2. To this end the following hypotheses are made, for s =

0.3, 0.6, . . . , 6.0.

Hs
0 : The distribution of θs(ωi) and φs(ωi) are statistically independent at timestep s.

Hs
1 : The distribution of θs(ωi) and φs(ωi) are dependent at time s.

The symbol H0 denotes the null hypothesis, and H1 is the alternative hypothesis. We

perform a nonparametric independence test based on the Hilbert Schmidt Independence

criterion (HSIC) measure of dependence [31]. In addition, under the assumption that

the distribution of the marginals are independent at the later time s = 10, we make

the following hypotheses,

Hθ
0 : The longitude θs is distributed as a uniform distribution, against Hθ

1 that θs

follows a different distribution.

Hφ
0 : The latitude φs follows a sine distribution (See Equation (10.40)), against the

alternative Hφ
1 that φs follows a different distribution.

The significance level of a statistical test is denoted α and represents a bound for

the acceptable probability of a type I error. A type I error is if the statistical test was to

reject the null hypothesis out of hand (incorrectly). One can quantify this probability

using simple set theory and an index function,

I(Hs
0) =

1 if H0 is rejected incorrectly,

0 if H0 is rejected correctly.
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The probability of a type I error can then be defined as P(I(Hs
0) = 1). For multiple

tests the concept is extended to the probability of a nonzero family error rate. In other

words, the chance that for at least one test a type I error occurred. A family consists

of “obviously related group of observations collected from the same experiment whose

statistical analysis falls into a singe mathematical framework” [54, p.34]. As such the

hypotheses under consideration fall into two families split by the type of null hypothesis.

To evaluate the family-wide probability of a type I error consider the index set

for our problem N = {0.3, 0.6, . . . , 6} consisting of 20 elements. The probability of a

nonzero family error rate is P
(⋃

s∈N(I(Hs
0) > 0)

)
and a bound on this probability,

P

(⋃
s∈N

(I(Hs
0) = 1)

)
≤
∑
s∈N

P(I(Hs
0) = 1), (10.36)

follows from Boole’s inequality (subadditivity). This inequality is known as the Bon-

ferroni inequality [54, p.8] and provides a useful bound to ensure a specific acceptable

α. Let αs denote the significance level for each test Hs for s ∈ N, P(I(Hs
0) = 1) = αs.

Then Equation (10.36) implies that for N tests, setting αs = α/N will produce an

overall significance level of α.

To be 99% sure that the statistical tests carried out do not give a false positive

— rejecting the null hypotheses out of hand — the overall significance level is set to

α = 0.01 for each family of tests. To achieve this it is required that each of the 20 tests

for {Hs
0 : s ∈ N} have a significance level of αs = 0.01/20, and so each test has a far

stricter significance level than αs = 0.01. And for the second family {Hθ
0 , H

φ
0 } the α

values are each 0.005.

10.7.1 Independence of latitude and longitude marginals.

The statistical test chosen to study the interdependence of the two distributions θs and

φs over time is based on the Hilbert-Schmidt Independence Criterion [31], a well known

nonparametric independence test. The implementation used is thanks to Jitkittum [40].

The results are displayed in the following chart,
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Figure 10.2: Histograms of the joint distribution of the third column of Xs at two
timesteps, s = 1 (left) and s = 10 (right). The distribution lies on the sphere S2 and
thus the axes are chosen as the longitude θs and colatitude φs. With respect to these
axes the marginals of the distribution become more independent over time.
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timestep (s) 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

rejects Hs
0 T T T T T T T T

timestep (s) 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8

rejects Hs
0 F F F F F F F F

timestep (s) 5.1 5.4 5.7 6.0

rejects Hs
0 F F F F

With significance level 0.01 it is observed that from s = 2.7 the test is able to reject

the null hypothesis Hs
0 and support the claim that θs and φs evolve to be independent.

Although the significance levels for the test were defined stringently apriori, it is

worth noting the relevance of this value after running the experiment. The chance

of incorrectly rejecting the null hypothesis is in other words the chance that the test

identified dependence between the distributions where there is in fact none. Looking at

the result of the test this gives a method of quantifying the chance that before s = 2.7

the distributions were already independent, we can be 99% certain that they were not.

It doesnt give any indication of the chance that no type II error occured in the interval

2.7−6 (that the test failed to identify that the distributions were dependent here). The

HSIC test as implemented has a maximum chance of type II error, β depending on the

choice of α made. The probability that each timestep between 2.7 and 6 suffered from

a type II error is β11, the HSIC authors estimate [40] a value of β = 0.2 which would

make β11 around 4 × 10−9. This supports the claim that the θs and φs distributions

start off dependent and become independent within the interval 2.7 to 6.

10.7.2 Wasserstein distance between measures

By reference to previous work [8], the Wasserstein distance between two measures

ν1, ν2 ∈ P2(S2) can be bound by terms involving their cumulative distribution func-

tions.

We start by calculating the Wasserstein distance W1(ν1, ν2) between probability

measures ν1 and ν2 on S2, which are absolutely continuous with respect to area and

have disintegrations

dνj = fj(θ)gj(φ | θ) sinφ dφdθ (θ ∈ [−π, π], φ ∈ [0, π], j = 1, 2)
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where fj (j = 1, 2) are probability density functions on [−π, π] that give the marginal

distributions of νj in the longitude θ variable, and gj in the colatitude variable. Let

Fj be the cumulative distribution function of fj(θ)dθ and Gj be the cumulative distri-

bution function of gj(φ) sinφ dφ. We measure W1(ν1, ν2) in terms of one-dimensional

distributions. Given distributions on R with cumulative distribution functions F1 and

F2, we write W1(F1, F2) for the Wasserstein distance between the distributions for cost

function |x − y|. Let ψ : [−π, π] → [−π, π] be an increasing function that induces

f2(θ)dθ from f1(θ)dθ; then

W1(ν1, ν2) ≤ W1

(
F1, F2) +

∫ π

−π
W1

(
G2(· | ψ(θ)), G1(· | θ)

)
f1(θ)dθ.

In particular, for f1(θ) = 1/(2π) and g1(φ) = 1/2, we have a product measure ν1(dθdφ) =

(4π)−1 sinφ dφdθ giving normalized surface area on the sphere. Then F1(θ) = (θ +

π)/(2π) and F2(ψ(θ)) = (θ + π)/(2π), so ψ(2π(τ − 1/2)) for τ ∈ [0, 1] gives the inverse

function of F2. We deduce that

W1(F1, F2) =

∫ π

−π

∣∣∣θ + π

2π
− F2(θ)

∣∣∣dθ (10.37)

and

W1

(
G2(· | ψ(θ)), G1(· | θ)

)
=

∫ π

0

∣∣∣∫ φ

0

(
g2(φ′ | ψ(θ))− (1/2)

)
sinφ′dφ′

∣∣∣dφ (10.38)

Hence the Wasserstein distance can be bounded in terms of the cumulative distri-

bution functions by

W1(ν1, ν2) ≤ W1(F2, F1) +W1(G2, G1) +

∫ π

−π
W1(G2(· | θ), G2)dF1(θ)

=

∫ π

−π

∣∣∣θ + π

2π
− F2(θ)

∣∣∣dθ +

∫ π

0

∣∣∣G2(φ)− 1− cosφ

2

∣∣∣dφ
+

∫ π

−π

∫ π

0

∣∣G2(φ | θ)−G2(φ)
∣∣dF1(θ)dφ. (10.39)

The triangle inequality has been used to obtain a more symmetrical expression in-

volving the Wasserstein distances for the marginal distributions and the G conditional
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Figure 10.3: The plots involve the difference between the CDFs of two marginals. For
θs, the predicted CDF F1(θ) = (θ+ π)/(2π) is compared with the empirical CDF, F θs

N .
The Wasserstein distance between F1(θ) and F θs

N is displayed on the left. For φs, the
predicted CDF G1(φ) = (1− cos(φ))/2 is compared with the empirical CDF Gφs

N . The
Wasserstein distance between G1(φ) and Gφs

N is displayed on the right. The empirical
measures considered are created using N = 105 samples and evaluated at each of the
datapoints indicated on the graphs (s = 0.3, 0.6, ..., 6.0).

distributions, namely the dependence of the colatitude distribution on longitude.

Uniform distribution

As discussed in the previous section, the uniform measure on the sphere S2 is given by

ν(A) =
∫
A

sinφ dθdφ, this gives marginal densities ρ(θ) = 1/2π and ρ(φ) = sin(φ)/2.

For each density there is a cumulative distribution function,

F1(θ) =
θ + π

2π
, and G1(φ) =

1− cos(φ)

2
, (10.40)

as shown in Equation (10.39). The empirical cumulative distribution functions for

N ∈ N samples are given by

F θs
N (θ) =

1

N

N∑
i=1

I[0,θs(ωi)](θ), and Gφs
N (φ) =

1

N

N∑
i=1

I[0,φs(ωi)](φ). (10.41)

For N = 106 these empirical marginals are generated using the previously mentioned

data at timesteps s = 0.3, 0.6, 0.9, . . . , 6.0. Using these distributions the Wasserstein
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distances W1(F1, F
θs
N ) and W1(G1, G

φs
N ) can be estimated.

For s = 10 the final two hypotheses were tested using a Kolmogorov-Smirnov test

in MATLAB [39, kstest]. The hypothesis of Hθ
0 was that at s = 10 the θs coordinate

is distributed with CDF F1, and with a significance of 0.005 the Kolmogorov-Smirnov

test was unable to reject the null hypothesis. The final hypothesis test needed was Hθ
0 ,

that at s = 10 the φs coordinate is distributed with CDF G1, and with a significance

of 0.005 the Kolmogorov-Smirnov test was also unable to reject this null hypothesis.

10.7.3 Concentration inequality

Estimates for the convergence of the empirical measure to its true measure in Wasser-

stein distance are given by Blower [8, Thm IV.3]. As a result of our hypothesis testing,

it is significantly likely (99%) that the distribution of (θs, φs) at s = 6 is the uniform

measure on the sphere. With the empirical data of N = 106 points used in the hypoth-

esis testing, the expectation, EW1(F θs
N , F1) and EW1(Gφs

N , G1) are close to zero by the

estimates ,

EW1(F θs
N , F1) ≤ 1√

N

∫ ∞
−∞

√
F (t)(1− F (t)) dt, (10.42)

given in Proposition IV.4 of [8] and similarly for G. The Wasserstein distance can

be calculated directly for the N = 106 samples, giving W1(F θs
N , F1) ≤ 0.010 and

W1(W1(Gφs
N , G1) ≤ 0.011. The choice of ε = 0.02 and N = 106 and reasonable α

in the estimate [8, Thm IV.3],

P(
(
W1((F θs

N , F1)) > ε
)
< 2 exp(−Nαε2/2) < 0.01, (10.43)

shows that with at least 0.99 probability it holds that W1((F θs
N , F1)) ≤ 0.02. This in-

equality and the implications equally holds for G. The calculated Wasserstein distances

are well within the predicted range with a significance level of α = 0.01.
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Chapter 11

Numerics of the NLSE by Fourier

series

An alternate construction of the periodic nonlinear Schrödinger equation involves em-

ploying the Fourier coefficients of functions in L2(T). The Hamiltonian for the NLSE

can be recast in terms of Fourier coefficients and then a new ODE can be constructed on

the space truncated at the N th Fourier coefficient. The invariants of the Hamiltonian

system ensure the Fourier coefficients are constrained to a high dimensional sphere,

and the ODE turns out to be of the appropriate form to consider evolution in the Lie

algebra again. A numerical method is constructed to model the evolution of this sys-

tem and its complexity is discussed. The large matrices hampered the ability to run

significant numbers of simulations and perform statistical tests on the empirical distri-

bution. However, this avenue of thought might be possible with access to substantial

computational power.
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11.1 The Schrödinger equation in Fourier space

Once again the focus is to solve the periodic NLSE with initial condition φ within the

support of the Gibbs measure. Let u ∈ H1(T,C) denote the solution. Truncate the

Fourier series of u = P + iQ ∈ H1(T,C) to the N th term giving:

uN(θ) =
N∑

k=−N

(ak + ibk)e
ikθ.

The finite dimensional Hamiltonian for the NLS can be expressed in terms of canonical

variables (ak, bk)
N
k=−N by

H
(N)
3 ((ak), (bk)) =

1

2

N∑
k=−N

k2(a2
k + b2

k) +
β

4

∫ ∣∣∣ N∑
k=−N

(ak + ibk)e
ikθ
∣∣∣4 dθ

2π
. (11.1)

This truncated Hamiltonian incurs an approximation error between u, a solution

to the Hamiltonian H in Definition 5.2 and uN a solution to the Hamiltonian system

H
(N)
3 . If K represents the radius of the ball on which the Gibbs measure is normalised,

and N the number of Fourier modes considered, then the head of the series is bounded

by estimates such as [5, Eq. 2.19],∣∣∣∣∫
T
(u(θ)3 − (u(θ)− uN(θ))3)

dθ√
2π

∣∣∣∣ ≤ 7α(2N + 1)
3
2K

3
2 ,

where α is a constant which can be derived from the Hamiltonian. This is related to

the choice of initial condition, φ, such that ‖φ‖L2 ≤ K, and the invarance of the L2

norm of the solution to the NLSE integrable system [9, Eq. 1.8].

The tail of the Fourier truncation can be bound in supremum norm using the fact

that u, uN ∈ H1. This follows the same argument as Lemma 3.2.10 and can be found

in the discussion in [6, Prop 3.1]. Let {|n| ≥ N} denote the set of n ∈ Z \ (−N,N),

and invoke Cauchy-Schwartz,
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‖u− uN‖∞ ≤
∑
{|n|≥N}

|an| =

〈
∞∑

n=−∞

einθ,
∑
{|n|≥N}

|an|einθ
〉

=

〈
∞∑

n=−∞

einθ√
n2 + 1

,
∑
{|n|≥N}

|an|
√
n2 + 1 einθ

〉

≤

(
∞∑

n=−∞

1

n2 + 1

) 1
2

 ∑
{|n|≥N}

(n2 + 1) |an|2
 1

2

.

The series
∑∞

n=−∞
1

n2+1
converges, and the second summation tends to zero as N →

∞, therefore ‖u− uN‖∞ tends to zero as N → ∞. In addition the second summation

is equal to ‖u− uN‖H1 .

The distance between H (Definition 5.2) and HN can be bound as will be shown.

The first term in the definition is known as the kinetic energy,

i∑
n=−∞

nftyk2(a2
k + b2

k)−
∑
|n|≥N

k2(a2
k + b2

k) = ‖u′ − u′N‖2
L2 . (11.2)

which is bounded by the H1 norm. The second term is called the potential energy,

U(u) =
∫
|u|4dθ/2π = ‖u‖4

L4 . By M. Riesz’ theorem there exists a constant C4 > 0 such

that ‖uN‖4
L4 ≤ C4‖u‖4

L4 , which implies that U(uN) ≤ C4U(u). Note that the potential

energy functional is always positive and by virtue of its place within a Hamiltonian of an

integrable system there exists K such that ‖u‖2
L2 ≤ K and by extension ‖uN‖2

L2 ≤ K.

The functional U is convex, and Blower [6, Eq. 3.10] gives a bound on the distance

between U and its chord between u and uN for 0 ≤ t ≤ 1,

0 ≤ tU(u) + (1− t)U(uN)− U(tu+ (1− t)uN) ≤ 28Nt(1− t)‖u′ − u′N‖2
L2 . (11.3)
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Combining this analysis, one can evaluate the full Hamiltonian,

∣∣H(u)−HN
3 (uN)

∣∣ ≤1

2

∣∣∣∣∣
∞∑

k=−∞

k2(a2
k + b2

k)−
N∑

k=−N

k2(a2
k + b2

k)

∣∣∣∣∣
+
β

4

∣∣∣∣∫ |u|4 dθ2π
−
∫
|uN |4

dθ

2π

∣∣∣∣→ 0,

as N →∞.

11.1.1 The differential equations for Fourier modes

Returning to the derivation of the numerical method, the canonical equations of motion

of this Hamiltonian are

δH
(N)
3

δaj
=
dbj
dt
,

δH
(N)
3

δbj
= −daj

dt
.

Recall that the functions eikθ are orthogonal polynomials in L2(T), and |z|2 = z̄z.

Therefore the canonical equations of motion can be expressed as:

daj
dt

= −j2bj +
iβ

2

∑
−j+k−l+m=0

(ak + ibk)(al + ibl)(am + ibm)

− iβ

2

∑
−k+j−l+m=0

(ak + ibk)(al + ibl)(am + ibm), (11.4)

and

dbj
dt

= j2aj +
β

2

∑
−j+k−l+m=0

(ak + ibk)(al + ibl)(am + ibm)

+
iβ

2

∑
−k+j−l+m=0

(ak + ibk)(al + ibl)(am + ibm). (11.5)

If these equations can be expressed as a vector differential equation of the form dX/dt =

MX where M belongs to so(4N+2) then SO(4N+2) based methods for solving ODEs

can be employed. Considering just the linear terms, the canonical equations of motion
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can be written in compact form,

d

dt

[
aj

bj

]
=

(
0 −j2

j2 0

)[
aj

bj

]
. (11.6)

The whole 2N of these coupled equations can be expressed as

d

dt



aN
...

a−N

bN
...

b−N


=



−N2 0 0

0
. . . 0

0 0 −(−N)2

N2 0 0

0
. . . 0

0 0 (−N)2





aN
...

a−N

bN
...

b−N


. (11.7)

So the linear term is definitely skew symmetric, now consider the nonlinear terms in

Equations (11.4) and (11.5). Define the N ×N matrix A by

Ajk =
∑

l,m, m−l=j−k

(al + ibl)(am + ibm). (11.8)

From this definition it is evident that Ajk = Akj, and so A = AT making A Hermitian.

In addition A is a Toeplitz matrix. Then the nonlinear term for Equation (11.7) can

be written as 

iA− iA −A− A

A+ A iA− iA





aN
...

a−N

bN
...

b−N


(11.9)

and this matrix is skew symmetric. It is skew symmetric not skew-Hermitian — one

can check that it equals its complex conjugate, and hence must be a real matrix. Let

X := (aN , ..., a−N , bN , ..., b−N)T , and denote the linear matrix of Equation (11.7) by

L and the nonlinear matrix in Equation (11.9) by N (X). Both matrices are skew
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symmetric and so is their sum, therefore

dX

dt
= (L+N (X))X (11.10)

evolves in SO(4N + 2).

11.2 Algorithm employing Trotters product formula

As a result of X evolving in SO(N) which is implied by Equation (11.11),
∑N

i=−N(a2
i +

b2
i ) = k where k is constant. As this holds for the interval t ∈ [0, τ ] for which the

differential equation is being solved, one can restrict the initial conditions so that k = 1

and one is left with a problem on the unit sphere Sn−1. This means for a numerical

method to be viable it should conform to the geometry of the sphere.

In addition to this constraint, Equation (11.11) has an exploitable linear term.

The structure of the matrix L as given in Equation (11.7) means its exponential can

be calculated in terms of trigonometric functions exactly analogous to the derivation

of Rodriguez’ formula. For further motivation to explore approaches which separate

the exponential, the process used by MATLAB to calculate exponentials of general

matrices is by the scaling and squaring method. The matrix is scaled so that for some

l, ‖L‖/l ≤ 1. Details are covered in the next section but it suffices to say that a

matrix with a large norm (such as L where ‖L‖∞ = 106) is particularly ill suited to

this method. Yet, the nonlinear term, which cannot be dealt with using closed form

expressions, has norm ‖N (X)‖∞ = maxj,k∈[−N,N ]{2(ak + ibk)(aj + ibj)} ≤ 1, making it

ideal for the scaling and squaring method.

Splitting methods [32, p.47] are commonly used to split one step of a method into

two ‘parts’ such as motion due to a linear and nonlinear term. When dealing with non-

commuting matrix differential equations, splitting methods will introduce additional

errors. The Baker-Campbell-Hausdorff formula [68] shows that eA+B 6= eAeB unless

[A,B] = 0. A work around is to use Trotters product formula, and this is the method

used.

Considering the linear and non-linear parts of the differential equation separately,

dX

dt
= (L+N (X))X. (11.11)
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Employing a first order Euler method within the Lie algebra [32, Eq.8.10], results in

an update Xn+1 = exp(h(L+N (Xn))Xn. Then the Trotters formula [28, Thm 8.12] is

used to split this exponential into a linear and nonlinear part:

exp(hL+ hN ) ≈
(

exp(L
h

k
) exp(N h

k
)

)k
. (11.12)

The exponential of the linear part can be done algebraically with trigonometric expres-

sions. The algorithm follows.

Algorithm 11.1 Trotters product formula algorithm

1: N ← number of Fourier modes,
2: h← timestep length,
3: timesteps ← number of timesteps,
4: k ← approximation constant for trotters algorithm
5: sample γi and γ̃i from a N(0, 1) distribution.
6: ai ← γi/i
7: bi ← γ̃i/i
8: X ← [aN , . . . a−N , bN . . . b−N ] note both a0 = 0 and b0 = 0.
9: X ← X/‖X‖,

10: A← diag([−N : N ].2)
11:

L←
(

cos(hA/k) − sin(hA/k)
sin(hA/k) cos(hA/k)

)
12: for i = 1 : timesteps do
13: X ← (L ∗ exp(N (X)h/k))kX . N (X) is given in Algorithm 11.2
14: end for

The error incurred in this algorithm will depend on k and h. In terms of h the

symplectic Euler algorithm is a first order numerical scheme so the error will be linear

with respect to h. The trotters formula incurs an error of the order h√
k
. So in total the

method has linear order with respect to step size h and is also proportional to 1/
√
k.

11.2.1 Computational complexity

The complexity of the algorithm is linearly dependent on the number of steps required

to simulate the solution over the interval required; for a solution on [0, 1] it requires
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Algorithm 11.2 Function N (X)

1: function N (X)
2: Y ← (aj + ibj)

N
j=−N where each aj, bj are taken from X.

3: Let Ti(Y ) denote the right shift operator i positions, for example

T1([a, b, c]) = [0, a, b] .

4: for i = 1 : (2N + 1) do
5: Bi ← Y Ti(Y )>

6: end for
7: A ∈M2N+1(C) is given by Ajk ← Bk−j. Note B−i = Bi. . See Eq. (11.8)

A =

 B0 B1 . . .
B−1 B0 . . .

...
...

. . .


8: Define N from combining A with itself, . See Eq. (11.9)

N ←


iA− iA −A− A

A+ A iA− iA


9: return N

10: end function
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1/h timesteps. It is also depends additively on the number of sample paths required to

build up an empirical measure.

Casting focus to one step of the algorithm, the number of Fourier modes considered is

the most expensive parameter of the algorithm as it determines the size of the matrices.

A matrix multiplication of two square N dimensional matrices requires N2(N + (N −
1)) ≈ N3 operations, which is N multiplications and N − 1 additions for each entry

of the N by N matrix. That said, there is a routine that MATLAB uses called BLAS

[19] which minimizes the time required to calculate vector/matrix multiplications, so

that for large matrices it performs faster than the naive N3 approach. In addition the

calculation of a matrix to the power of k can be done in far fewer operations than k

multiplications, for instance if k = 2j then the matrix multiplication can be done with

j squarings.

Nevertheless, the number of matrix multiplications is the largest factor in the com-

plexity of the algorithm. The number needed per step depends on the method used

to calculate the exponential of a matrix. The exponential map used in the Algorithm

0 is the MATLAB function expm; this function uses the scaling and squaring method.

For an arbitrary matrix M it aims to use exp(M/l)l = exp(M) so that ‖M/l‖ ≤ 1

and then use Padé approximants to find exp(M/l) [36]. The intricacies of the Padé

approximation is discussed in Section 11.2.2. In terms of computational complexity, it

is attractive to choose l = 2s as then the l matrix multiplications can instead be carried

out by s squarings. Then the approximation of exp(M/l) is done by the Padé approxi-

mation Rmm(M/l) which is a rational function with both numerator and denominator

having degree m, implying a(a + 1) multiplications. That said, estimates of just m

multiplications are found in the literature [29, p.573]. The choice for s and m depend

on the norm of M . Higham [36] provides values of θm so that if ‖2−sM‖ ≤ θm then the

error incurred by expm is smaller than 2−53. The dominant term in the computational

complexity is thus

N3 (s+m(m+ 1)) .

As an example, if one was to set a 8 term truncation, θ8 = 1.5, which implies acceptable

error rates if ‖M‖ ≤ 2s+1, thus the best complexity in this case would be

N3

(
log ‖N (X)‖

log 2
+ log 2 + 72

)
.
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11.2.2 Constrained to the sphere

In Section 11.2 we mentioned that the method was first order dependent on a suitable

choice of k. In this section we discuss how the algorithm preserves the invariance of

the L2 norm of the solution u, which is equivalent to the euclidean norm of X. And

this invariance is preserved despite using an approximation for the exponential function.

The one-step ahead for the first order method proposed is

Xn+1 =

(
exp(L

h

k
) exp(N (Xn)

h

k
)

)k
Xn.

Recall the initial data u is sampled from the space of Gibbs measurable functions with

L2 norm bounded by K, that is u ∈ H1 ∩ BK . Now truncate its Fourier series up to

the N th mode

uN(θ) =
N∑

k=−N

(ak + ibk)e
ikθ

and denote X0 = (aN , ..., a−N , bN , ..., b−N)T ∈ R4N+2. Now ‖X0‖2 ≤ K and the L2

norm of each sample path/solution is invariant because of the skew symmetric form of

the differential equation, hence (Xn)n∈N all lie on the same 4N + 2 dimensional sphere

in R4N+2. Thus each curve can be thought of as the action of the group SO(4N + 2)

on the point X0 and for convenience we will simply consider X0 to be the first column

of a matrix in SO(4N + 2).

A detailed discussion of the spaces involved mapping the space SO(4N + 2) to itself

by the numerical algorithm needs to take place.

The map N (X) : SO(4N + 2)→ G1 ⊂ so(4N + 2) has a bound,

‖N‖∞ =
|β|
4

∫
|u|4 ≤ |β|

4
N

∫
|u|2 ≤ |β|

4
NK.

So G1 := so(4N + 2) ∩ {‖M‖∞ ≤ |β|
4
NK}.

The exponential map used in the algorithm is the MATLAB function expm, this

function uses the scaling and squaring method. For an arbitrary matrix M it aims to

use exp(M/k)k = exp(M) so that ‖M/k‖ ≤ 1 and then to use Padé approximants to

find exp(M/k) [36]. For computational efficiency, it is attractive to choose k = 2s as
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then the k matrix multiplications can instead be carried out by s squarings.

The Padé approximants are rational functions with integer coefficients and are given

by Rab(x) = Pab(x)/Qab(x) where Pab(x) = Qba(−x). The diagonal Padé approximants

are the most efficient to calculate as the algorithm requires s + max(a, b) matrix mul-

tiplications [29], in other words setting a = b gives the highest order approximation

for the complexity. Considering this, the diagonal Padé approximants are given by

Raa(x) = Paa(x)/Paa(−x) where

Paa(x) =
a∑
j=0

(2a− j)!a!

(2a)!j!(a− j)!
xj. (11.13)

Proposition 11.2.1. The Padé approximant of a skew symmetric matrix is unitary.

That is, if M ∈ so(N), then Raa(M) ∈ SO(N) for any a ∈ N.

Proof. Ehle and Van Rossun have shown [62, Thm 1.1] that the diagonal Padé approx-

imants have all of their zeros in the set {z ∈ C | <(z) > 0} and therefore their poles

in the set {z ∈ C | <(z) < 0}. A skew symmetric matrix has only purely imaginary

eigenvalues and thus Raa(M) is a function defined on the spectrum of M .

Thus we can discuss the eigenvalues of Raa(M), which, if iαj represent the eigen-

values of M , are given by Raa(iαj)[47, Thm 5.3.4]. In addition to this, the eigenvalues

Raa(iαj) lie on the unit circle, as

|Raa(iαj)|2 = Raa(iαj)Raa(−iαj) = 1, (11.14)

due to the form Raa(x) takes. Then the spectral theorem says that a normal matrix is

unitary iff all of its eigenvalues are on the unit circle. So, provided Raa(M) is normal,

it is unitary, and a real unitary matrix is orthogonal. Raa(M) is normal because M is

skew, and therefore normal and

Raa(M)Raa(M)T = Raa(M)Raa(−M) =
Paa(M)

Paa(−M)

Paa(−M)

Paa(M)
, (11.15)

and polynomials in M commute because M commutes with itself.
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11.2.3 Implementation

I was unable to implement the algorithm in a form that permitted the number of

samples required for statistical tests to be carried out on the empirical distribution.

This is a result of how the complexity of the algorithm scales with the dimension of

the problem. The challenge may be surmountable with more computing power, and

if so I think there may be scope to compare the empirical distribution produced by

the algorithm with a distribution created using a Markov Chain Monte Carlo (MCMC)

method for the Gibbs [25]. Statistical methods such as the Kolmogorov-Smirnov test

could then be applied in this setting to deduce if the two collections of samples are

drawn from the same distribution.
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Chapter 12

Numerics of the Euler equations via

Transport

As discussed in Section 3.4, measures can be weak solutions to PDEs. In this chapter

the intent is to consider the Euler equations in a manner in which measure valued

solutions can be found. Hamiltonian systems provide a template for this. A smooth

solution to a PDE that forms the canonical equations of motion for a Hamiltonian is

an extremal of said Hamiltonian — constructed by calculus of variations. Interpreting

the Hamiltonian of the system instead by an action functional applied to a measure,

an analogous method is developed for measure valued or weak solutions to the system.

The Hamiltonian is a measure of the change in energy when moving between points

in phase space. In the language of optimal transport, it is similar to a cost function.

The evolution of the system between states — probability densities — in a way that

minimises the change in energy — minimises the cost function — is an optimal transport

map. In this case however, the dynamics of a solution to the isentropic Euler equations is

also governed by an internal energy U , which restricts the mass from moving optimally.

This chapter is adapted from the work of Gangbo et al [27]. In an effort to un-

derstand and explain the theory behind his numerical methods we have expanded on

his paper with a discussion of the convexity of the operator under discussion and the

existence and uniqueness of a minimiser of this operator on the appropriate space. In

the next chapter his method is applied to the dam break problem, giving a comparison

within a dynamic system with an exact solution.
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12.1 Setting up the problem

The density function ρ represents the distribution of the mass of the fluid. Normalising

so that the entire mass is 1, the density can instead be treated as a probability measure

in P2(Rn). To give some evidence as to why, note that the function ρ represents

the location of the mass, as no fluid will concentrate mass into areas of zero volume ρ

should be absolutely continuous with respect to Lebesgue measure. Thus the probability

measure ρ will have a Radon Nikodym derivative - its density - and this density will be

ρ(x). Using identical notation for the probability measure and its density could cause

confusion, but in this case reference to the measure or the density should be clear from

context.

Consider the Hamiltonian for the isentropic Euler equations,

H(ρ, u) =
1

2

∫
‖u‖2ρ(x)dx+

∫
U(ρ)dx, (12.1)

where one can denote the integral
∫
U(ρ)dx = U(ρ). The solution to the Euler equations

will be the pair (ρ, u) which minimise the change in this Hamiltonian over a short

timeframe τ . Instead of taking the variation of the Hamiltonian to be left with a set

of PDEs we leave the Hamiltonian as an energy functional and implement ideas from

the theory of gradient flows [2]. Following the work of Gangbo [27] the problem is

equivalent to searching for the measure, ρ which, for ρ1 ∈ P2(Rn) minimises

1

2τ
W2(ρ1, ρ)2 + U(ρ). (12.2)

In addition, to control the internal energy, U(ρ) < ∞ one must impose that ρ ∈
P2(Rn) ∩ Lγ. Finally, note that this construction offers no method to calculate the

update in velocity of the fluid, and so the problem on the manifold P2(Rn) could be

extended to its tangent space.
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12.2 The tangent space

Understanding how the velocity will update between steps requires a measure on the

tangent bundle, TRn = Rn × TRn.

TRn := {(x, u) | x ∈ Rn, u ∈ TxRn}. (12.3)

Curves on the manifold can be lifted to a graph on the tangent bundle with use

of the function g : x 7→ (x, u(x));Rn → TRn. This function can thus also act as a

pushforward for measures from P(Rn) to the tangent bundle. The set of measures

which lie on the tangent bundle and have a marginal with respect to the base manifold

(in this case Rn) which is in P(Rn) will be denoted by P(TRn).

Definition 12.2.1. The set P(TRn) is defined by the statement, µ ∈ P(TRn) if and

only if there exists ρ ∈ P(Rn) and u ∈ L1(Rn;Rnρ), such that the measure g#ρ = µ.

Equivalently, for all test functions f ∈ L1(TRn, µ)∫
TRn

f(y)µ(dy) =

∫
Rn
f(g(x))ρ(x)dx. (12.4)

The measure µ ∈ P(TRn) has disintegration µ = σρ, in other words, for any

continuous and bounded test function f ,∫
TRn

f(x, u)µ(dx, du) =

∫
Rn

(∫
TRn

f(x, u)σx(du)

)
ρ(x)dx. (12.5)

The simplest example would be when σx(du) allows ∪xTxRn to be treated as one vector

field on Rn, this is when σx(du) = δx(u), where δ denotes the Dirac measure.

12.2.1 Acceleration cost

For the Riemannian manifold on which P(Rn) live there is a clear metric, the Wasser-

stein distance. For the measures on the tangent bundle we would also like a metric. One

measure of distance between points in phase space would be the minimum acceleration

required to move from point to point, this is known as the average acceleration cost

and is the initial cost function proposed by Gangbo and Westdickenberg. The average

acceleration cost can be calculated from a calculus of variation argument.
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Proposition 12.2.2. Let γ, parametrised by time, represent any curve with γ(0) = x1,

γ(τ) = x2, γ̇(0) = u1 and γ̇(τ) = u2. The curve with the minimum average acceleration

has an acceleration of

1

τ

∫ τ

0

|γ̈(s)|2ds =
12

τ 2

∣∣∣∣x2 − x1

τ
− u2 + u1

2

∣∣∣∣2 + |u2 − u1

τ
|2. (12.6)

Proof. The proposition is proven by applying calculus of variations to the action

S[γ] =
1

τ

∫ τ

0

|γ̈(s)|2ds,

in order to find its minima. Consider a variation of the acceleration along the curve γ.

That is a perturbation of the curve γ, by a second curve, denoted f , which has zero

initial and final positions and velocities, such that γ + f satisfies the same initial and

final conditions as γ. I will use superscript numbers in parenthesis to denote derivatives

higher than one, so γ(2) denotes the acceleration and γ(3) the impulse of the curve.

Then the limit gives the variation of the action,

δS = lim
ε→0

S[γ + εf ]− S[γ]

ε
,

= lim
ε→0

1

ετ

∫ τ

0

|γ(2)(s) + εf (2)(s)|2 + |γ(2)(s)|2ds,

= lim
ε→0

1

τ

∫ τ

0

2γ(2)(s)f (2)(s) + ε|f (2)(s)|2ds,

=
1

τ

∫ τ

0

2γ(2)(s)f (2)(s)ds. (12.7)

Then by definition, f(0) = 0, f(τ) = 0, ḟ(0) = 0 and ḟ(τ) = 0. Thus, applying

integration by parts to Equation (12.7) so that the h(2)(s) term is differentiated twice

the functional is simplified:

1

τ

∫ τ

0

2γ(2)(s)f (2)(s)ds =
2

τ

∫ τ

0

γ(3)(s)ḟ(s)ds− 2

τ

[
γ(2)(s)ḟ(s)

]τ
0
, (12.8)

=
2

τ

∫ τ

0

γ(4)(s)f(s)ds− 2

τ

[
γ(3)(s)f(s)

]τ
0
. (12.9)
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And thus the Euler-Lagrange equation to find the extremal of this functional is

γ(4)(s) =
d4γ(s)

ds4
= 0, (12.10)

implying that the minimising curve is a cubic polynomial. Next let γ(s) = As3 +Bs2 +

Cs + D, and calculate the coefficients which minimise S[γ] subject to the initial and

final conditions.

Definition 12.2.3. The expression for average acceleration leads to a definition of a

cost function Aτ between points in the tangent bundle at time t = 0 and at time t = τ ,

Aτ :TRn
0 × TRn

τ → [0,∞)

:((x1, u1), (x2, u2)) 7→ 3

∣∣∣∣x2 − x1

τ
− u2 + u1

2

∣∣∣∣2 +
1

4
|u2 − u1|2 ,

which is equal to the minimum acceleration cost up to a scale factor of 1/4τ 2.

This cost function Aτ can be extended to act on the space of measures P(TRn),

treating Aτ as the cost function for an optimal transport condition between two mea-

sures:

Aτ (µ1, µ2) := inf{
∫ ∫

TRn×TRn
Aτ (x,y)π(dx, dy) : π ∈ Π(µ1, µ2)}. (12.11)

where Π(µ1, µ2) is the set of all product measures with marginals µ1 and µ2. Then

the optimal transport map, π̂, minimises the acceleration cost for the entire tangent

bundle.

12.2.2 The functional Wτ

The issue with Equation (12.11) is that Aτ is not a well defined metric. This distance

function, Aτ , fits with our intuition about free motion, if a particle is at position x1

with velocity u1 and ends up at position x2 = x1 + τu1 with the same velocity u1 = u2,

then the acceleration cost should be zero - the particle hasn’t accelerated. This is

true, A((x1, u1), (x1 + τu1, u1)) = 0. However, as a metric, this makes Aτ non-positive

definite. In addition to this, it is also not symmetric. A metric must be positive definite
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and symmetric and so Aτ is not suitable to consider optimal transport problems with

respect to.

The distance function Aτ can be manipulated so that it measures the distance

between the unaffected trajectory of a point from t = 0 to t = τ and its perturbed

location under a minimal acceleration. This is achieved by exchanging the space TRn
0

with the tangent bundle at time t = τ if there was no acceleration after time t = 0,

denoted T̃Rn

τ . This space is mapped to from TRn
0 via the map

Xτ : TRn
0 → T̃Rn

τ (12.12)

(x, u) 7→ (x+ τu, u). (12.13)

Using this map we can define the new distance function, the function Wτ is defined

in terms of Aτ by Wτ (Xτ (x),y) = Aτ (x,y) for all x ∈ TRn
0 ,y ∈ TRn

τ . Both arguments

of Wτ are on tangent bundles at time t = τ and it is given explicitly by

Wτ ((x1, u1), (x2, u2)) 7→ 3

τ 2

∣∣∣∣x2 − x1

τ
− u2 − u1

2

∣∣∣∣2 +
1

4

∣∣∣∣u2 − u1

τ

∣∣∣∣2 . (12.14)

Mirroring Aτ , this metric can be extended to a distance between measures on

P(TRn) by an optimal transport condition,

Wτ (µ1, µ2) := inf{
∫ ∫

TRn×TRn
Wτ (x,y)π(dx, dy) : π ∈ Π(µ1, µ2)}. (12.15)

where Π(µ1, µ2) is the set of all product measures with marginals µ1 and µ2.

Remark 12.2.4. This framing of the problem relies on the assumption that the trans-

port map Xτ pushes forward an original ρ0 ∈ P2(Rn) to ρ1 which also lies in P2(Rn).

For this to be the case the velocity field has to satisfy a non-degeneracy condition such

as, for A ∈ B(Rn) if ρ0(A) = 0 then ρ0(X−1
τ (A)) = 0 too [27, Eq. 2.5]. This is Brenier’s

polar factorisation theorem [74, p.112].

To see the importance of this condition, consider an initial velocity field u(x) = −x
τ
,

the map Xτ would collapse the whole measure onto the point x = 0 and a pushforward

via this map would therefore give the Dirac delta δ0.
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12.2.3 On the independence of the velocity distribution marginal

A result due to Gangbo and Westdickenberg [27, Prop. 4.5] establishes that, given

µ1 ∈ P(TRn) with marginal µ1|1 = ρ1 and a second marginal ρ2 ∈ P(Rn) then the

minimiser

inf{Wτ (µ1, µ)2 : µ ∈ P(TRn), µ|1 = ρ2} =
3

4τ 2
W2(ρ1, ρ2)2, (12.16)

where W2(ρ1, ρ2) is the Wasserstein distance. This condition is essentially saying that

the minimisation process is independent of the initial velocity distribution.

Lemma 12.2.5. [27, Prop. 4.5] If γ is the transport plan which minimises Wτ (µ1, µ),

let γ′ ∈ P(TR×R) be the marginal of the (x1, u1, x2) coordinates. Then γ has a disinte-

gration γ = γ′σ2 and Equation (12.16) implies that the minimisation has no u2 depen-

dence. Thus σ2 is a Dirac measure and the minimising velocity is u2 = β(x1, u1, x2),

where

β(x1, u1, x2) = u1 +
3

2

x2 − x1

τ
. (12.17)

Proof. For any test function φ∫
TRn×TRn

φ(x1, u1, x2, u2)γ(dx1, du1, dx2, du2) =∫
TRn×Rn

(∫
Tx2R

φ(x1, u1, x2, u2)σ2(du2|x1, u1, x2)

)
γ′(dx1, du1, dx2)

The fact minimising Wτ (µ1, µ)is independent of u2 implies that,∫
Tx2R

Wτ (x1, u1, x2, u2)σ2(du2|x1, u1, x2) =

inf{
∫
Tx2R

Wτ (x1, u1, x2, u2)σ(du2) | σ ∈ P(R)}. (12.18)

Then the map u2 7→ Wτ (x1, u1, x2, u2) is convex and thus Jensen’s inequality implies
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that ∫
Tx2R

Wτ (x1, u1, x2, u2)σ(du2) ≥ (12.19)

Wτ

(
x1, u1, x2,

∫
Tx2R

y σ(dy)

)
. (12.20)

If the measure σ is a Dirac distribution, then the inequality becomes an equality, and in

some sense the Dirac distribution has a variance which is the smallest limit of variances

of any distribution which is absolutely continuous with respect to Lebesgue. (though

Dirac delta itself is not actually abs cont with respect to Lebesgue right)

Therefore a choice of σ(dy) = δa(dy) will minimise the infimum in Equation (12.18),

and convert the problem of finding σ2 into finding the location, a, of the delta function.

In other words, simply minimising Wτ (x1, u1, x2, a)

12.3 Minimising the functional, existence and unique-

ness.

The intuition behind this method is that of a Hamiltonian action functional, the min-

imiser of the action functional is the solution under the principle of least action. We

have constructed a functional resembling the action of the Euler dynamical system

based on minimising the acceleration cost plus the potential energy within the system.

The minimisation problem is to minimise the functional Aτ (µ, µ
∗)2 + U(µ∗) : µ∗ ∈

P(TRn), and the solution is given in the Proposition by Gangbo:

Proposition 12.3.1. [27, Prop. 4.5] Consider a measure µ ∈ P(TRn), defined by a

density and velocity field (ρ, u), ρ is the density of an absolutely continuous measure

with respect to Lebesgue, and u satisfies the non-degeneracy condition of Remark 12.2.4.

As part of the definition µ|1 = ρ(x)dx and µ|2 = u#(ρ(x)dx). If µτ is given by

µτ = arg min
µ∗
{Aτ (µ, µ

∗)2 + U(µ∗) : µ∗ ∈ P(TRn)}. (12.21)
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Then the pushforward map for the density, ρτ ∈ P2(Rn), is given implicitly by

ρτdx =

(
(Id+

2τ 2

3
∇U ′(ρτ ))−1 ◦ (Id+ τu)

)
#ρdx, (12.22)

and the velocity is given by uτ ∈ L2(Rn, ρτ )

uτ = u ◦ (Id+ τu)−1 ◦
(
Id+

2τ 2

3
∇U ′(ρτ )

)
− τ∇U ′(ρτ ) (12.23)

Before proving this proposition, the convexity of the functional needs to be evalu-

ated, and the crucial subproblem is discussed in the following section. For consistent

notation, the initial measure µ will be referred to as µ1 with marginals (ρ1, u1#ρ1)

and then the free transport of this measure is µ2 with marginals (ρ2, u2#ρ2) where

ρ2 = (Id+ τu1)#ρ1 and u2#ρ2 = u1#ρ1.

12.3.1 Existence and uniqueness

In this section we aim to establish the existence and uniqueness of a minimiser of the

functional

G(ρ) :=
1

2τ
W2(ρ, ρ0)2 + U(ρ), (12.24)

on the set P2(Rn)∩Lγ(Rn). Proving these statements generally relies on the functional

being convex over some sort of compact set. In this situation there are a few choices

of structure upon which the set P2(Rn) can be convex. This idea will be delved into

in the next section. For this section, classical convexity of the functional is all that is

needed.

For any two measures ρ1, ρ2 ∈ P2(Rn) the linear interpolant of the measures is

defined ρt := tρ1 + (1− t)ρ2.

Definition 12.3.2 (Linear Convexity). (i) A set of measures P ⊂ P2(R) is convex if

the linear interpolant between any two measures in the set, denoted ρt, produces

another measure in the set (for all t ∈ [0, 1]).

(ii) A functional, G, defined on a convex subset of P2(Rn) is convex if the map t 7→
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G(ρt(x)) is convex for all ρ1, ρ2 ∈ P2(Rn). Explicitly,

G(tρ1 + (1− t)ρ2) ≤ tG(ρ1) + (1− t)G(ρ2) (12.25)

As a direct consequence the set P2(Rn) ∩ Lγ(Rn) is clearly convex.

Lemma 12.3.3. The functional G(ρ) given by Equation (12.24) is convex on P2(Rn)

according to the definition of linear convexity.

Proof. Consider the internal energy term, U(ρt) and express it using the general form

of the internal energy U(ρ) = ργ. Then the internal energy is related to the Lγ norm

as,

‖ρt‖γ =

(∫
Rn
ργt dx

) 1
γ

= (U(ρt))
1
γ . (12.26)

The coefficient γ ∈ (1, 2] and so f(x) = xγ is convex, and the Lγ norm is convex

by Minkowski’s inequality. The composition of these two functions gives U and the

composition of convex functions is convex.

Regarding the Wasserstein distance term, let the optimal map between ρ̃ and ρ1 be

denoted π1 and likewise, the optimal map between ρ̃ and ρ2 is denoted π2. Then the

density ρt can be expressed as a pushforward of ρ̃ by ρt = (tπ1 +(1− t)π2)#ρ̃. A simple

application of the triangle inequality gives the convexity of the Wasserstein distance,

W2(ρt, ρ̃) ≤
(∫

Rn
‖x− tπ1(x)− (1− t)π2(x)‖2ρ̃dx

) 1
2

, (12.27)

≤
(∫

Rn
‖tx− tπ1(x)‖2ρ̃dx

) 1
2

+

(∫
Rn
‖(1− t)x− (1− t)π2(x)‖2ρ̃dx

) 1
2

(12.28)

= tW2(ρ1, ρ̃) + (1− t)W2(ρ2, ρ̃). (12.29)

Definition 12.3.4. Define the set PG(Rn) ⊂ Pγ,K0

2,K2
(Rn) where Pγ,K0

2,K2
(Rn) is defined in

Definition 3.1.11. For any ρ ∈ PG(Rn),
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(i)

G(ρ) ≤ K0

(ii) ∫
‖x‖2ρ(x)dx ≤ K2

.

The set PG(Rn) is sequentially compact by Lemma 3.3.7, by virtue of being a subset

of Pγ,K0

2,K2
(Rn).

Lemma 12.3.5 (Fatou’s Lemma). For non-negative functions fn on a measure space

with measure µ, ∫
A

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
A

fndµ (12.30)

for any measurable set A.

Lemma 12.3.6. There exists a minimiser to the functional G(ρ) on the set PG(Rn).

In other words, the density ρ̃ such that

G(ρ̃) := inf{G(ρ) : ρ ∈ PG(Rn)} (12.31)

exists and lies within PG(Rn).

Proof. The functional is finite so let K0 denote its upper bound, then 0 ≤ G(ρ) ≤ K0 for

all ρ ∈ PG(Rn). All limit points of PG(Rn) are probability density functions in P(R),

this follows from condition (ii) in the definition of the set PG(Rn) in combination with

Fatou’s Lemma. Thus there exists a sequence ρn(x) ∈ PG(Rn) such that G(ρn) tends

to the infimum,

lim
n→∞

G(ρn(x)) = inf{G(ρ) : ρ ∈ PG(Rn)}. (12.32)

By the weak compactness of PG(Rn) the sequence ρn has a subsequence which weakly

converges to the limit ρ∞ ∈ PG(Rn). Fatou’s lemma again establishes that U(ρn) →
U(ρ∞). Lastly, if ρn → ρ∞ weakly and

lim
R→∞

lim sup
n→∞

∫
‖x‖>R

‖x‖2ρn(x)dx = 0, (12.33)
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then by Villani [74, Thm. 7.12] the Wasserstein distance W (ρn, ρ2) → W (ρ∞, ρ2)

weakly for any reference measure ρ2 ∈ P(Rn). And the above condition clearly holds

in the case at hand due to the fact that Equation (3.24) holds for all ρ ∈ PG(Rn) and

letting R→∞.

Lemma 12.3.7. The minimiser to the functional G(ρ) on the set PG(Rn) is unique.

Proof. Consider two weakly convergent sequences ρn → ρ∞ and qn → q∞, both tend to

minimisers of G(ρ). Let M denote this minimal value, M := inf{G(ρ) : ρ ∈ PG(Rn)}.
By the definition of the set PG(Rn), for all ρ ∈ PG(Rn),

∫
R ρ(x)γdx < K0, and so

PG(Rn) is a subset of Lγ(Rn). The Clarkson inequality (Equation (3.16)) implies

(∥∥∥∥ρ∞ + q∞
2

∥∥∥∥γ′
γ

+

∥∥∥∥ρ∞ − q∞2

∥∥∥∥γ′
γ

) γ
γ′

≤ 1

2
‖ρ∞‖γ

′

γ +
1

2
‖q∞‖γ

′

γ . (12.34)

Add the terms 1
2
W (ρ∞, ρ2)2 + 1

2
W (q∞, ρ2)2 on both sides. The right hand side is

1

2
‖ρ∞‖γ

′

γ +
1

2
‖q∞‖γ

′

γ +
1

2
W (ρ∞, ρ2)2 +

1

2
W (q∞, ρ2)2 =

1

2
G(ρ∞) +

1

2
G(q∞) = M.

The Wasserstein distance is convex with respect to the linear structure on P(Rn),

therefore

W (
ρ∞ + q∞

2
, ρ2)2 ≤ 1

2
W (ρ∞, ρ2)2 +

1

2
W (q∞, ρ2)2

and because norms are non-negative, then somewhat trivially

∥∥∥∥ρ∞ + q∞
2

∥∥∥∥γ
γ

≤

(∥∥∥∥ρ∞ + q∞
2

∥∥∥∥γ′
γ

+

∥∥∥∥ρ∞ − q∞2

∥∥∥∥γ′
γ

) γ
γ′

.

Combining the last two inequalities

G

(
ρ∞ + q∞

2

)
≤

(∥∥∥∥ρ∞ + q∞
2

∥∥∥∥γ′
γ

+

∥∥∥∥ρ∞ − q∞2

∥∥∥∥γ′
γ

) γ
γ′

+
1

2
W (ρ∞, ρ2)2 +

1

2
W (q∞, ρ2)2

and applying to Equation (12.34) with the Wasserstein terms added impliesG
(
ρ∞+q∞

2

)
≤

M . Due to the convexity of PG(Rn), ρ∞+q∞
2
∈ PG(Rn), and so as M is the infimum
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the inequality becomes an equality, and implies that∥∥∥∥ρ∞ − q∞2

∥∥∥∥γ
γ

= 0,

in other words ρ∞ = q∞ a.e. and the minimiser is unique.

12.3.2 Minimise the Wasserstein plus potential functional

The previous section established that there exists a minimiser to Equation (12.24). This

section aims to provide a pushforward map that makes calculation of the minimising

density possible. For this the idea of a differential of the functional G(ρ) is required,

and this needs the functional to be convex.

Displacement Convexity

The functional G(ρ) must be displacement convex to define a subdifferential and at-

tempt to produce a weak Euler–Lagrange equation for the transport map. The term

displacement convex shifts the space under consideration from the density functions

ρ ∈ P2(Rn) themselves to the space of transport maps between them. The linear inter-

polant is replaced with the interpolation function, and before proving the displacement

convexity of G(ρ) some features of the interpolation function are established.

Let ψ(x) be the pushforward map between measures ρ1, ρ2 ∈ P2(Rn), so that

ψ(x)#ρ1(x)dx = ρ2(x)dx. From this, the interpolation function between measures

ρ1 and ρ2 is defined,

ψt(x) :[0, 1]→ {pushforward maps g | g : P2(Rn)→ P2(Rn)}

t 7→ (1− t)x+ tψ(x).

In addition to this, introduce the probability density ρt := ψt#ρ1 which is the pushfor-

ward of ρ1 by ψt.

Lemma 12.3.8. If ψ(x) is the optimal map between two measures in P2(R), then the

function ψt(x) : Rn → Rn is monotone.

Proof. By Brenier’s theorem (Thm 4.1.12), the optimal map between measures in
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P2(Rn) is the gradient of a convex function. Consider said convex function Φ : Rn → Rn,

where ∇Φ(x) = ψ(x). Then the function

1

2
(1− t)‖x‖2 + tΦ(x)

is also convex. Take its gradient, (1− t)x + t∇Φ(x), which is monotone by properties

of convex functions (Definition 4.1.14) and compare it with the definition of ψt(x) =

(1 − t)x + tψ(x). By the condition that ∇Φ(x) = ψ(x), it is established that ψt(x) is

monotone.

Lemma 12.3.9. The determinant of the Jacobian of the interpolation function ψt is

always positive.

Proof. Recall Φ as defined in Lemma 12.3.8, the Jacobian of ψt(x) can be expressed

as Jψt(x) = (1− t)I + tHess Φ where Hess denotes the Hessian matrix of second order

partial derivatives. Then the identity matrix is positive definite, and the Hessian of a

convex function is positive semi-definite, that makes Jψt(x) positive definite. A positive

definite matrix has a positive determinant.

Lemma 12.3.10. Let ψt be the interpolation function defined in Lemma 12.3.8 and let

∆(x, t) = det(Jψt(x)) denote the determinant of the Jacobian of ψt. Then for γ ∈ (1, 2],

the function t 7→ 1
∆(x,t)γ−1 is convex, and specifically

γ
∆̇2

∆2
− ∆̈

∆
≥ 0. (12.35)

Proof. This proof is adapted from a preprint by Blower. The second derivative of
1

∆(x,t)γ−1 with respect to time is

d2

dt2
1

∆(x, t)γ−1
=
γ − 1

∆γ−1

(
γ

∆̇2

∆2
− ∆̈

∆

)
. (12.36)

The aim is to show this is positive, to that goal, the constant (γ − 1) is positive, as

is the determinant of a monotone function. The function ψt is monotone by Lemma

12.3.8 so ∆ is positive. All that remains is the term in brackets.

Recall ψ(x) is the gradient of the convex function Φ, so the Jacobian of ψt(x) can

be expressed as Jψt(x) = (1 − t)I + tHessΦ where Hess denotes the Hessian matrix
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of second order partial derivatives. To take the derivative of ∆ consider the relation

between the trace and determinant of the logarithm of a matrix [23, p.1029],

log detA = log

(∏
i

λi

)
=
∑
i

log(λi) = trace(logA)

where A ∈Mn(R) with eigenvalues λi. Employing this relation for A = ∆,

log(∆) = trace log ((1− t)I + tHessΦ) ,

∆̇

∆
= trace

(
((1− t)I + tHessΦ)−1 (HessΦ− I)

)
.

One can take the second derivative similarly, where the notation Jψt(x) is again em-

ployed for visual clarity,

∆̈

∆
− ∆̇2

∆2
= − trace

(
J−1
ψt

(x)
dJψt(x)

dt
J−1
ψt

(x)
dJψt(x)

dt

)
.

The relation trace(ABAB) = trace(A
1
2BABA

1
2 ) = trace

(
A

1
2BA

1
2

)2

is predicated on

the postive semidefinite-ness of the matrix A, by Lemma 12.3.9 ∆ is positive definite,

∆̈

∆
− ∆̇2

∆2
= − trace

(
J−1
ψt

(x)
1
2
dJψt(x)

dt
J−1
ψt

(x)
1
2

)2

.

The term is squared and thus the trace is positive. The relation,(
γ

∆̇2

∆2
− ∆̈

∆

)
= (γ − 1)

∆̇2

∆2
−

(
∆̈

∆
− ∆̇2

∆2

)

= (γ − 1)
∆̇2

∆2
+ trace

(
J−1
ψt

(x)
1
2
dJψt(x)

dt
J−1
ψt

(x)
1
2

)2

≥ 0,

establishes the positivity of the term in brackets in (12.36) and concludes the proof.

Definition 12.3.11 (Displacement convex). (i) A set of measures P ⊂ P2(Rn) is

displacement convex if the interpolation function between any two measures in

the set, denoted ψt, produces another measure in the set (for all t ∈ [0, 1]) when

acting as a pushforward.
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(ii) A functional, G, defined on a displacement convex subset of P2(Rn) is displacement

convex if the map t 7→ G(ρt(x)) is convex for all ρ1, ρ2 ∈ P2(Rn). The measure

ρt(x) = ψt#ρ1(x) where ψt interpolates between ρ1 and ρ2.

Lemma 12.3.12. The set P2(Rn) is displacement convex.

Proof. The pushforward measure ψt#ρ1 where ρ1 ∈ P2(Rn) is in P2(Rn). Consider

any A ∈ B(Rn), then (ψt#ρ1)(A) = ρ1(ψ−1
t (A)), the preimage of A under ψt is the set

{x ∈ R : (1−t)x+tψ(x) ∈ A} and this set is a translation of the preimage of A under ψ

which is in B(Rn) by the definition of ρ2 ∈ P2(Rn). The sigma algebra B(Rn) is closed

under translations.

Lemma 12.3.13. Consider the function U(ρ) = ργ with γ ∈ (1, 2]. If ψt(x) is the

interpolation function as defined in Lemma 12.3.8 and ρt = ψt#ρ1 for ρ0 ∈ P2(Rn)

then the functional U(ρ) =
∫
U(ρ)µ(dx) is displacement convex on P2(Rn).

Proof. Establish the displacement convexity of U by showing t 7→ U(ρt) is convex, or
d2U(ρt)
dt2

≥ 0 as discussed in Lemma 4.1.15. Consider ρ ∈ P2(Rn) and let this represent the

initial probability density for U , Consider ψt(x) : Rn → Rn, the interpolation function

between ρ and ρ1. Introduce a new function Θ, a rescaling of the derivative of U(x),

xΘ(x) = U(x), making Θ(x) = xγ−1, and so Θ : [0,∞) → [0,∞) is increasing. This

allows U to be expressed as an integral with respect to the measure ρt and therefore

one can apply a pushforward to the measures,

U(ρt) =

∫
Θ(ρt(x))ρt(x)dx,

=

∫
Θ(ρt(ϕt(x)))ρ1(x)dx,

=

∫
Θ

(
ρ0(x)

∆(x, t)

)
ρ1(dx).

The second step was a Jacobian change of variables which was applied under the caveats

of Lemma 4.1.18. Calculate the first order derivative,

d

dt
U(ρt) =

∫
−Θ′

(
ρ1(x)

∆(x, t)

)
ρ1(x)∆̇(x, t)

∆(x, t)2
ρ1(dx).
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For the second order derivative the arguments are supressed.

d2

dt2
U(ρt) =

∫
Θ′′
(ρ1

∆

)(ρ1∆̇

∆2

)2

ρ1(dx) +

∫
Θ′
(ρ1

∆

)(2ρ1∆̇2

∆3
− ρ1∆̈

∆2

)
ρ1(dx),

=

∫ (
Θ′′
(ρ1

∆

) ρ1

∆
+ Θ′

(ρ1

∆

)) ρ1∆̇2

∆3
+ Θ′

(ρ1

∆

) ρ1

∆

(
∆̇2

∆2
− ρ1∆̈

∆2

)
ρ1(dx).

The rest of the proof is to establish the positivity of this integral. The function Θ(er)

is convex with respect to r, as d2

dr2
Θ(er) = (γ − 1)2er(γ−1) ≥ 0. If Θ(er) is convex, then

d2

dr2
Θ(er) = Θ′′(er)er − θ′(er) ≥ 0 and this holds for all r in R. Furthermore, as ρ is a

density function of a probability measure, ρ : Rn → [0,∞) and so for all values of ρ,

Θ′′(ρ)ρ−Θ′(ρ) ≥ 0.

The determinant of the Jacobian of a monotone function is positive, see Lemma

12.3.8. Thus, ρ1
∆

is positive. The map t 7→ 1
∆(x,t)γ−1 is convex by Lemma 12.3.10, and

this implies (
γ

∆̇2

∆2
− ∆̈

∆2

)
≥ 0,

and so is the term in brackets. This makes each term in the integral positive, implying

the second order derivative of U(ρt) is positive and so U(ρt) is displacement convex.

The variational derivative of G(ρ)

With the convexity of the functional U(ρ) now established, under suitable assumptions

the variational derivative of G(ρ) can be calculated. The Wasserstein distance can be

differentiated by the following theorem.

Theorem 12.3.14 (Differentiability of W 2). Villani [74, p268]. Given ρ2 ∈ P2(Rn)

and the path ρt : [0, 1]→ P2(Rn) which is absolutely continuous and twice differentiable

with respect to t and is a weak solution to

∂ρt
∂t

+∇ · (ρtut) = 0, (12.37)

where ut(x) is C1 in x and t. Then if ρ0 ∈ P2(Rn), the variational derivative of the
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functional F (ρ) = W (ρ, ρ2)2 is given by

δF (ρ;u) = 2

∫
〈∇ϕ(x)− x, ut ◦ ∇ϕ(x)〉dρ2,

= 2

∫
〈y −∇ϕ∗(y), ut(y)〉dρ0

where ∇ϕ is the optimal map between ρ2 and ρ0, and ϕ∗ denotes the conjugate ϕ in the

sense of the Legendre transform.

As established in in Section 12.3.1, there exists a minima to G(ρ). Defining G(ρ) in

terms of ρ2 ∈ K,

G(ρ) :=
1

2τ
W2(ρ, ρ2)2 + U(ρ). (12.38)

Then this minima is denoted ρτ ,

ρτ = arg min
ρ
{G(ρ) : ρ ∈ K} . (12.39)

If we take a variation around ρτ of G(ρ) then we can determine some conditions on the

transportation map.

Proposition 12.3.15. Let ∇ϕ denote the optimal transport map between ρ2 and ρτ .

Take the variation of G(ρ) along the path ρt : [0, 1]→ P2(Rn) as specified in Theorem

12.3.14 starting at the minimiser, ρt|t=0 = ρτ . The condition that δG(ρ) = 0 produces

the Euler–Lagrange equation,

1

τ
(Id−∇ϕ∗)(x) +∇δU(ρ)

δρ
= 0 (12.40)

where the second term is interpreted weakly.

To explain, notationally, to calculate the variational derivative of U along the path

ρt, essentially a variation along ρ+ ε∂ρt
∂t

will give you

δU(ρ) =

∫
δU
δρ

∂ρt
∂t

∣∣∣
t=0
dx =

∫
δU
δρ
∇ · (ρtut)

∣∣∣
t=0
dx =

∫
〈∇δU

δρ
, ut〉dρ0 (12.41)
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So formally,

δG(ρ, u) =
1

τ

∫
〈y −∇ϕ∗(y), ut(y)〉dρ0 +

∫
〈∇δU

δρ
, ut〉dρ0 (12.42)

The Euler Lagrange equations for this functional give conditions for which the value of

ρ will minimise G(ρ), and come about by setting δG(ρ, u) = 0. Thus Equation (12.40)

holds in a weak sense.

Therefore, everywhere except on sets of zero measure, the map, denoted ∇ϕ∗, which

pushes ρτ forward to ρ2 can be defined by Equation (12.40). Rearranging that equation

gives ∇ϕ∗ = Id+ τ∇δU/δρ, an implicit map for this pushforward. Note however that

it is the dual map, the map which pushes the optimal ρ forward to ρ2. Therefore the

optimal ρ is given by:

ρτ = (∇ϕ)#ρ2 =

(
Id+ τ∇δU

δρ

)−1

#ρ2 (12.43)

In the case of interest, we seek to minimise the functional with a scale factor.

Lemma 12.3.16. Let the constant τ be rescaled to 2τ 2/3, then consider the new func-

tional
3

4τ 2
W2(ρ, ρ2)2 + U(ρ) (12.44)

with a potential U(ρ) = ργ for some power of γ ∈ (1, 2]. The density which minimises

this functional is

ρτ = (∇ϕ)#ρ2 =

(
Id+

2τ 2

3
∇U ′

)−1

#ρ2 (12.45)

The proof of the lemma follows from the discussion of the functional in this and

the preceding section. Rescaling the constant changes none of the analysis, and the

functional derivative is treated in the following lemma.

Lemma 12.3.17. The functional U(ρ) with the potential U(ρ) = ργ,

U(ρ) =

∫
ργdx, (12.46)

has a functional derivative, δU
δρ

= U ′(ρ) = γρ(γ−1).
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Proof. The Gateaux derivative of U in the direction of an arbitrary test function h is

δU = lim
ε→0

U(ρ+ εh)− U(ρ)

ε

= lim
ε→0

1

ε

∫
((ρ+ εh)γ − ργ) dx

= lim
ε→0

∫ (
γρ(γ−1)h+ o(ε)

)
dx

=

∫
γρ(γ−1)hdx.

From which the functional derivative is γρ(γ−1) = U ′(ρ).

12.3.3 The velocity update

Here we will prove proposition 12.3.1, which seeks to minimise the functional:

µτ = arg min
µ∗
{Aτ (µ, µ

∗)2 + U(µ∗) : µ∗ ∈ P(TRn)}. (12.47)

Lemma 12.3.18. Under the assumptions of Proposition (12.3.1), the density ρτ which

is the marginal of

µτ = arg min
µ∗
{Aτ (µ, µ

∗)2 + U(µ∗) : µ∗ ∈ P(TRn)}. (12.48)

is given by

uτ = u ◦ (Id+ τu)−1 ◦
(
Id+

2τ 2

3
∇U ′(ρτ )

)
− τ∇U ′(ρτ ). (12.49)

Proof. The first step in the proof is to change the functional Aτ into Wτ by use

of the transport map Xτ given in Equation (12.12). Define µ2 = Xτ#µ and then

Wτ ((Xτ#µ), µ∗) = Wτ (µ2, µ
∗) = Aτ (µ, µ

∗). By definition, µ2 has marginal µ2|1 =

(Id + τu)#ρ := ρ2. An application of Equation (12.16) allows the minimisation prob-
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lem to be expressed in terms of densities only,

arg min
ρ∗
{ 3

2τ 2
Wτ (ρ2, ρ

∗)2 + U(ρ∗) : ρ∗ ∈ P(Rn)}. (12.50)

Note that U(µ) has no dependence on a velocity coordinate, so it can be expressed as

U(ρ) without any loss of generality.

The functional given in Equation 12.50 has a unique minimiser, ρτ as established in

Section 12.3.1, and thus the use of an arg min is a defined mathematical operation. An

application of Lemma 12.3.13 to this problem gives the pushforward of the measure ρ2

to ρτ , the measure that minimises Equation (12.50),

ρτ =

(
Id+

2τ 2

3
∇U ′(ρτ )

)−1

#ρ2. (12.51)

The proof of Equation (13.5) finishes with a composition of this pushforward with the

pushforward of ρ to ρ2 given earlier in the proof (Id+ τu)#ρ = ρ2.

The updated velocity requires Proposition 12.2.5, which shows that the minimising

velocity is a function β of the original density and velocity and the new density. Having

now developed an analysis of the pushforward maps (in some cases optimal) to map

between the spaces referred to in Proposition 12.2.5 by the coordinates (x1, u1, x2)

the function β(x1, u1, x2) must be expressed as a function of coordinates in the same

measure space. As in said Proposition, assume γ(dx1, du1, dx2, du2) is a transport plan

which minimises Wτ (µ2, µ
∗). By Lemma 12.3.16, the first marginal of the minimising µτ

is ρτ . Therefore, Wτ (µ, µ
τ ) can be expressed in terms of the transport maps. Consider

Wτ as in the Proposition,

Wτ (µ2, µ
τ ) =

∫
TRn×TRn

Wτ (x1, u1, x2, u2)γ(dx1, du1, dx2, du2)

Wτ (µ2, µ
τ ) =

∫
TRn×TRn

Wτ (∇ϕ∗(x), (u ◦ ∇ϕ∗)(x), x, β(∇ϕ∗(x), (u ◦ ∇ϕ∗)(x), x))ρτ (x)dx.

where∇ϕ∗ is the optimal pushforward map∇ϕ∗#ρτ = ρ2. As such, the velocity update

β needs to be understood in composition with each of the pushforward maps. Further-

more, as the final velocity marginal should be a transport map uτ#ρτ the integral
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should be in terms of ρτ , and then the optimal pushforward of ρτ to the x2 coordinate

is given by,

uτ (x) = β ((∇ϕ∗)(x), (u2 ◦ ∇ϕ∗)(x), (Id)(x)) (12.52)

= (u2 ◦ ∇ϕ∗)(x) +
3

2τ
(Id−∇ϕ∗)(x) (12.53)

Thus, the definition of ∇ϕ∗ is applied from Lemma 12.3.16.

uτ = (u2 ◦
(
Id+

2τ 2

3
∇U ′(ρτ )

)
) +

3

2τ
(Id−

(
Id+

2τ 2

3
∇U ′(ρτ )

)
) (12.54)

uτ = (u2 ◦
(
Id+

2τ 2

3
∇U ′(ρτ )

)
)− τ∇U ′(ρτ ). (12.55)

The final correction needed is for the initial distribution µ2 to be recognised as

the free transportation of the original distribution µ1, in other words moving from the

functional Wτ to Aτ . Defined in terms of densities, mu2 = (Id × u2)#ρ2 whereas

µ1 = (Id × u1)#ρ1. Now, u2 and u1 are the exact same function, just acting as

pushforwards on different measures.

The final correction needed is for the velocity u2 to be defined in terms of the

initial velocity of the original distribution ρ1, denoted u1. The velocity field remains

unchanged, it is just evaluated at different positions, u1#ρ1 = u2#ρ2. Therefore,

(u2)#ρ2 = (u2 ◦ (Id+ τu1))#ρ1 = (u1)#ρ1, so that u2 ◦ (Id+ τu1) = u1 or equivalently

u2 = u1 ◦ (Id+ τu1)−1 which holds ρ1 a.e.

12.4 Limitations

The largest limitation of the method is in the assumption that the free flow of the fluid

will produce a second measure in P2(Rn). See Remark 12.2.4, but this free flow can

allow the fluid to pass through itself in non physical ways without penalty. Whereas

as soon as a trajectory crosses, the transport map between measures can no longer

be invertible. There is an interesting work-around discussed by Westdickenberg and

Wilkening [75] in which the velocity is replaced by a different velocity distribution

which transports the measure to the same locations, only optimally.
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Remark 12.4.1. A limitation of the transport method is around the support of the

measure. A requirement for Brenier’s theorem is that the measures be absolutely con-

tinuous with respect to Lebesgue measure on the same domain, so if the domain expands

or bifurcates this is lost. To get around this problem, and others, a minimum density is

sometimes defined over the whole domain of interest, so while the majority of the fluid is

lying on a smaller subsection of the domain the density is non-zero almost everywhere.

This is not a huge limitation for rarefied gas dynamics, though modelling shock waves

due to explosions for instance there are moments of extremely low densities.

Remark 12.4.2. Another physically realistic problem which cannot be modelled by

this simulation is Cavitation [70]. Cavitation occurs when fluid is moving at sufficiently

high velocities to produce gas pockets of low density, for example when ship propellers

are given too much torque relative to the area of displaced water. In simulation this

implies high velocities may change the nature of the internal energy of the fluid (when

it becomes gas from liquid), and then also changes the support of the measure as in the

previous remark.

Despite the limitations, the method described expands on the class of solution that

can be modelled compared to classical numerical methods, and the approach of min-

imising an energy functional has had much success as an analytic framework to view

the dynamics of systems in Physics.

217



218



Chapter 13

A one dimensional transport

algorithm

In this chapter I describe an implementation I have made of the numerical method

introduced by Gangbo [27] and discussed in the previous chapter. The dam break

problem is chosen for its analytical solutions, as discussed in Chapter 7, and so com-

parison between the numerical solution and a known analytical solution to a system of

PDEs can be made.

13.1 Numerical method to solve Euler equations

One step of the algorithm proposed by Westdickenburg and Wilkening [75] is given

below. The accompanying theory is supplied in the preceding chapter.

(1) Begin with the data from the last step (ρn,un) and choose a timestep τ ∈ [h/2, h]

which allows the update of the density according to the motion induced by the

velocity field,

(Id + τun)#(ρndx) = ρ̂ndx, (13.1)

such that ρ̂ndx is absolutely continuous with respect to Lebesgue measure.

(2) Update the velocity so that the new velocity, ûn induces an optimal transport map
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(Id + τ ûn) between ρ and ρ̂. In other words, find ûn ∈ L2(Rn, ρn) such that

(Id + τ ûn)#(ρndx) = ρ̂ndx and (13.2)∫
Rn
|τ ûn|2ρdx = W (ρn, ρ̂n)2. (13.3)

Equation (13.3) is the condition for which (Id + τ ûn) is the optimal map between

ρn and ρ̂n. Existence and uniqueness of this map follows from Brenier’s theorem

[74] (Theorem 4.1.12).

(3) Update the density by solving

ρn+1 = argminρ{
3

4τ 2
W (ρ, ρ̂n)2 + U(ρ)} (13.4)

as a convex optimisation problem. ρn+1 is uniquely determined, and can be ex-

pressed implicitly as a pushforward of ρn by,

ρn+1dx =

(
(Id+

2τ 2

3
∇U ′(ρn+1))−1 ◦ (Id+ τu)

)
#ρndx. (13.5)

(4) The velocity is updated analogously,

un+1 = un ◦ (Id+ τun)−1 ◦
(
Id+

2τ 2

3
∇U ′(ρn+1)

)
− τ∇U ′(ρn+1). (13.6)

(5) The previous steps are repeated with ρn+1 and un+1 as initial data.

Step (2) of this proposed algorithm is additional to the theory discussed in the previous

chapter. In the step, the initial velocity field is adapted according to Dafermos’ entropy

rate admissibility criterion [17]. This condition essentially says that the total energy

of the system should be dissipated as quickly as possible. In this step, the velocity

field which produces the fluid density ρ2 is replaced with the velocity field that would

induce the optimal transport of the density ρ to the new ρ2. The new velocity field will

minimise the kinetic energy of the fluid, as shown in Equation (13.3).

This extra condition on the choice of admissible solutions to the problem circum-

vents a theoretical issue with the choice of acceleration cost metric. Namely, that the
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Figure 13.1: The plot shows the height of the water at timesteps 100 to 700 given by the
numerical approximation (Blue) and the predicted height given by the Ritter solution
(Red).

acceleration cost metric does not penalise fluid travelling directly through itself (with no

simulated collision). This is in contrast with the Wasserstein metric with the 2−norm,

in which, provided the two densities in question are absolutely continuous with respect

to Lebesgue measure, the optimal map between them is monotone (Theorem 4.1.12).

Implementation

The implementation of this method in one dimension carried out for this analysis is

described by the following steps.

The first step is to define the probability density function. Let the vector xn =

(x0, x1, x2, ..., xN) denote the positions of the edges of each of the intervals. Let the

total mass be normalised and distributed equally over each interval. The number of

intervals is one less than the number of edges of intervals and thus,

1

N
=

∫ xi

xi−1

ρ(x)dx (13.7)
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over each interval. The density can therefore be approximated by a step function,

ρ(x) =
1

N

N∑
i=1

1

xi − xi−1

I(xi−1,xi] (13.8)

The initial velocities are also approximated as a step function with N + 1 steps and

thus expressed as a vector un = (u0, ...uN).

The algorithm is as follows:

(1) Starting with positions x0
n = (x0

1, x
0
2, ..., x

0
N) which define a piecewise constant den-

sity of the fluid ρ(x), and an initial velocity field u0
n = (u0

1, u
0
2, ..., u

0
N).

(2) Free transport the density according to the pushforward map (Id+hu0
n) by defining

a new set of endpoints to intervals, yi = xi + hui. Then calculate û as defined in

Equation (13.3), n one dimension this amounts to sorting the yi into ascending

order; if σ(i) is the permutation of indices for which yi is ascending then x̂i := yσ(i)

and ûi := (x̂i − xi)/h.

(3) Next the positions zi (that define ρ̂) which minimise the energy functional given in

Equation (13.4) are found via convex optimisation. Given the piecewise constant

nature of ρ and ρ̂ in this case, the functional reduces to the function

F (z) =
3

4h2

N∑
i=1

‖zi − x̂i‖2 +
N∑
i=1

U(
1

zi − zi−1

)(zi − zi−1). (13.9)

This equation further reduces when U(ρ) = ργ. The paper advises solving this

equation by a trust region newton method.

(4) Then the minimiser z = (z1, z2, ..., zN) defines the new positions x1
n and the subse-

quent velocity is also updated by

uk+1 = uk +
3

2h
(xk+1 − x̂k), (13.10)

and the previous steps are thus repeated with x1
n and u1 to increment the solution.

Details of the implemented algorithm for one dimension with γ = 2 can be found in

Algorithm 13.1.
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Algorithm 13.1 One dimensional Transport

1: N ← number of intervals to discretise to.
2: h← length of a timestep.
3: Ts ← number of timesteps.
4: x← (x0

1, x
0
2, ..., x

0
N), the initial density.

5: u← (u0
1, u

0
2, ..., u

0
N) the initial velocity field.

6: Fx(z) a function of z ∈ Rn,

F (z) =
3

4h2

N∑
i=1

‖zi − xi‖2 +
N∑
i=1

1

zi − zi−1

. (13.11)

7: for condition k = 1 : Ts do
8: y ← x+ h ∗ u as a vector operation.
9: y ← sort(y) where the sort function sorts y into ascending order.

10: v ← y−x
h

.
11: x← minz(Fy(z)) using trust region method.
12: u← v + 3

2h
(x− y).

13: end for

13.2 Comparison with the dam break problem

A useful method to check the accuracy of a numerical method is to compare the method

with some sort of known solution. The dam break problem offers a problem for which

there is a known solution, see Chapter 7.

It is well known that the Ritter solution to the Saint-Venant equations is

u =
2

3

(x
t

+ c0

)
(13.12)

h =
1

9g

(
2c0 −

x

t

)2

, (13.13)

with the constant c0 defined to be c0 =
√
gh0, where h0 is the initial height of the

reservoir, and again g is the gravitational constant.

Equation (13.13) gives the profile of the water in the immediacy of the dam at each

point in time. Our numerical solution to the problem (as outlined in section 13.1) relies

on a step function which is characterised by the end points of each interval. At t = 0

the water is all behind the dam, Equation (13.13) is only defined for t > 0. As such, to

compare the Ritter solution with our numeric simulation, a minimum number of steps
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Figure 13.2: The plot shows the height of the water over a relevant section of the
domain, with x = 0 being the former location of the dam. The flow profile is given
for a number of timesteps, with a timestep of 10−3 this means timesteps have units of
milliseconds (ms).

have to pass the dam before any inferences about the shape of the curve can be made.

One notable attribute of the Ritter solution to the dam break problem is the constant

height of the water at the location of the dam. The height at x = 0 is equal to h = 4
9
h0

at all times, which can be seen from Equation (13.13). Figure 13.1 shows how the height

of water at the dam in the numerical simulation compares to the theoretical value. The

resemblance to a sawtooth function comes from the evaluation of a step function at

x = 0 as time increases and the steps get wider; the jumps are when a step passes the

x = 0 mark. The reducing amplitude is a product of the flow profile flattening. The

fact that the numerical data is always close to the theoretical value does suggest that

the numerical value may converge to 4
9
h0 if one was to increase the number of steps ad

infinitum.

Another attribute of the Ritter solution is how at each fixed time, the profile of

the water is a parabola on the x interval [0, 2c0t]. The numerical method used seems

to distort the spacial scale of the problem, but this relationship persists. Figure 13.2

shows the profile of the water at 8 timesteps chosen so that the sawtooth (blue) and

constant (red) line intersect in Figure 13.1.
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Figure 13.3: The graph shows the trajectories of a one dimensional flow, the x axis
being time. The flow starts at uniform density and stationary apart from two equally
sized steps. The velocity of the fluid on these two steps is equal and pointing outwards.

13.2.1 Numerical solutions for varying initial conditions

The figures in this section include lines which are the pathlines of the fluid. Pathlines

show the trajectory of a particle located at the origin of said pathline. The previous sec-

tion established that the algorithm proposed for solving the isentropic Euler equations

behaves correctly on the initial data given by the dam break problem. Therefore an

exploration of other similar initial conditions which do not have closed form solutions

is motivated. I have run the algorithm on initial data resembling a dam break at two

ends of an interval, and explored subintervals of non zero initial velocity.

The figures of this section show that if the timestep is chosen appropriately, then

pathlines of the fluid do not cross even when the free transport of fluid parcels along their

current trajectories would imply they should. Though this is done simply by reallocating

velocities for these fluid parcels so that they end up in same final configuration without

crossing. The internal energy is not used in this step of the algorithm even though it

is precisely the mechanism by which the fluid is restricted from piling up on sets of

measure zero. This is established in Section 12.3.1; the probability measure lives in the

compact space K, but this requires initial velocity fields which are non-degenerate as

in Remark 12.2.4.
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Figure 13.4: The graph shows the trajectories of a one dimensional flow, the x axis
being time. The flow starts at uniform density and stationary apart from two equally
sized steps. The velocity of the fluid on these two steps is equal and pointing inwards.

Figure 13.5: The graph shows the trajectories of a one dimensional flow, the x axis
being time. The flow starts at uniform density and stationary apart from two equally
sized steps. The velocity of the fluid on these two steps is pointing outwards and the
step starting at higher y values is travelling faster than the lower one.
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If the timestep is not chosen so that (Id+τu0)#ρ0 is absolutely continuous then the

density will immediately degenerate, to circumvent this a new timestep τ1 < τ can be

chosen so that (Id+τ1u0)#ρ0 is absolutely continuous. This adaptive timestep condition

can lead to the numerical algorithm incrementing by smaller and smaller timesteps each

iteration. A method to circumvent this problem could be attempting to find a τ1 > τ

for which the new measure is absolutely continuous. This would imply that between

timesteps the system degenerated, however it is possible to run the numerical algorithm

in this way. Comparison of these two approaches for a dynamic system in which the

physically observed solution is known would make for an interesting direction of further

research.
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