
Journal of Scheduling (2025) 28:269–287
https://doi.org/10.1007/s10951-024-00828-7

Recoverable robust single machine scheduling with polyhedral
uncertainty

Matthew Bold1 ·Marc Goerigk2

Accepted: 1 October 2024 / Published online: 19 December 2024
© The Author(s) 2024

Abstract
This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective
ofminimising the total flow time. In this setting, a decision-makermust determine a first-stage schedule subject to the uncertain
job processing times. Then following the realisation of these processing times, they have the option to swap the positions of
up to � disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general
recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result
for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully
characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the
full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation.
Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.

Keywords Scheduling · Robust optimization · Recoverable robustness · Polyhedral uncertainty · Budgeted uncertainty

1 Introduction

We consider a scheduling problem where n jobs must be
scheduled on a single machine without preemption, such that
the total flow time, i.e. the sum of completion times, is min-
imised. This problem is denoted as 1||∑Ci under the α|β|γ
scheduling problem notation introduced by Graham et al.
(1979). In practice, job processing times are often subject
to uncertainty, and when this is the case it is important to
find robust solutions that account for this uncertainty. In this
paper, we propose a recoverable robust approach (Liebchen
et al., 2009) to this uncertain singlemachine scheduling prob-
lem. In this recoverable robust setting, we determine a full
solution in a first-stage, before an adversarial player chooses
aworst-case scenario of processing times fromanuncertainty

B Matthew Bold
boldmatthew@gmail.com

Marc Goerigk
marc.goerigk@uni-passau.de

1 STOR-i Centre for Doctoral Training, Lancaster University,
Lancaster, UK

2 Business Decisions and Data Science, University of Passau,
Passau, Germany

set, and then in response to this, we allow the first-stage solu-
tion to be adjusted in a limited way.

The deterministic single machine scheduling problem
(SMSP) is one of the simplest and most studied schedul-
ing problems, and can be solved easily in O(n log n) time
by ordering the jobs according to non-decreasing processing
times, i.e. by using the shortest processing time (SPT) rule.
However, despite the simplicity of the nominal problem, the
robust problem has been shown to be NP-hard for even the
most basic uncertainty sets (Daniels & Kouvelis, 1995).

In fact, the majority of research to date regarding robust
single machine scheduling has been concerned with the pre-
sentation of complexity results for a number of different
SMSPs. First discussed by Daniels and Kouvelis (1995),
Kouvelis andYu (1997) andYang andYu (2002), these papers
study the problemwith the total flow timeobjective, and show
that it is NP-hard even in the case of two discrete scenarios,
for min-max, regret and relative regret robustness. Robust
single machine scheduling for discrete uncertain scenarios
has been examined extensively. Aloulou and Della Croce
(2008) present algorithmic and complexity results for a num-
ber of different SMSPs under min-max robustness. Aissi et
al. (2011) show that the problemofminimising the number of
late jobs in the worst-case scenario, where processing times
are known, but due dates are uncertain is NP-hard. Zhao

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-024-00828-7&domain=pdf
http://orcid.org/0000-0003-2200-796X

270 Journal of Scheduling (2025) 28:269–287

and Zhao (2010) consider the objective of minimising the
weighted sumof completion times in theworst-case scenario,
and propose a cutting-plane algorithm to solve the problem.
Mastrolilli et al. (2013) study this same problem and show
that no polynomial-time approximation scheme exist for the
unweighted version. Kasperski and Zieliński (2016) apply
the ordered weighted averaging (OWA) criterion, of which
classical robustness is a special case, to a number of differ-
ent SMSPs under discrete uncertainty. The consideration of
SMSPs under novel optimality criteria has been continued
most recently by Kasperski and Zieliński (2019), where a
number of complexity results are presented for the SMSP
with the value at risk (VaR) and conditional value at risk
(CVaR) criteria.

Robust single machine scheduling in the context of inter-
val uncertainty has also received considerable attention.
Daniels and Kouvelis (1995) address interval uncertainty,
and describe some dominance relations between the jobs in
an optimal schedule based on their processing time inter-
vals. Kasperski (2005) considers an SMSP with precedence
constraints, and where the regret of the maximum lateness
of a job is to be minimised. A polynomial-time algorithm
is presented. Lebedev and Averbakh (2006) show that the
SMSPwith the total flow timeobjective isNP-hard in the case
of regret robustness. Montemanni (2007) presents a mixed-
integer program (MIP) for this same problem, and uses it
to solve instances involving up to 45 jobs. Kasperski and
Zieliński (2008) also consider this problem, and show that
it is 2-approximable when the corresponding deterministic
problem is polynomially solvable. Lu et al. (2012) present an
SMSP with uncertain job processing and setup times, show
this problem is NP-hard, and design a simulated annealing-
based algorithm to solve larger instances. Chang et al. (2017)
apply distributional robustness to an SMSP, and make use
of information about the mean and covariance of the job
processing times to minimise the worst-case CVaR. Most
recently, Fridman et al. (2020) consider an SMSPwith uncer-
tain job processing times and develop polynomial algorithms
for solving the min-max regret problem under certain classes
of cost functions. For a survey of robust single-machine
scheduling in the context of both discrete and interval uncer-
tainty, see Kasperski and Zielinski (2014).

A criticism of classical robustness is that the solutions it
provides are overly conservative and hedge against extreme
worst-case scenarios that are very unlikely to occur in prac-
tice. To reduce the level of conservatism, a restriction to
interval uncertainty was introduced by Bertsimas and Sim
(2004), known as budgeted uncertainty, in which the num-
ber of jobs that can simultaneously achieve their worst-case
processing times is restricted. Budgeted uncertainty is a spe-
cial case of the general compact polyhedral uncertainty that
is considered in this paper. Robust single machine schedul-
ing under budgeted uncertainty was first considered by Lu

et al. (2014), who present an MIP and heuristic to solve the
problem. Following this, Tadayon and Smith (2015) study
different versions of the min-max robust SMSP under three
different uncertainty sets, including a budgeted uncertainty
set. Recently, Bougeret et al. (2019) present complexity
results and approximation algorithms for a number of dif-
ferent min-max robust scheduling problems under budgeted
uncertainty.

To the best of our knowledge, this paper is the first to
solve a single-machine scheduling problem in a recover-
able robust setting. However, recoverable robustness has had
recent application to a number of closely related matching,
assignment and scheduling problems. Fischer et al. (2021)
consider a recoverable robust assignment problem, in which
two perfect matchings of minimum costs must be chosen,
subject to these matchings having at least k edges in com-
mon. If the cost of the second matching is evaluated in the
worst-case scenario, we arrive in the setting of recoverable
robustness with interval uncertainty. Hardness results are
presented, and a polynomial-time algorithm is developed
for the restricted case in which one cost function is Monge.
Recently, Bold and Goerigk (2022) also considered recover-
able robust scheduling problems under interval uncertainty,
deriving a 2-approximation algorithm for their setting.

Regarding project scheduling, Bendotti et al. (2022) intro-
duce the so-called anchor-robust project scheduling problem
in which a baseline schedule is designed under the problem
uncertainty, with the objective of maximising the size of the
subset of jobs that have their starting times unchanged fol-
lowing the realisation of the activity processing times. This
problem is shown to be NP-hard even for budgeted uncer-
tainty. In a series of papersBruni et al. (2017, 2018);Bold and
Goerigk (2021), a two-stage resource-constrained project
scheduling problem with budgeted uncertainty is introduced
and solved.

The contributions of this paper are as follows. In Sect. 2
we formally define the recoverable robust scheduling prob-
lem that we consider in this paper. In Sect. 3 we present a
general result that enables the construction of compact for-
mulations for a wide range of recoverable robust problems,
and apply this in the context of the scheduling problem at
hand. We then analyse the stages of the recoverable robust
scheduling problem in detail and show that the incremental
problem can be solved using a simple linear programming
formulation in Sect. 4. To this end, we prove a general result
for max-weight matching problems, arguing that odd-cycle
constraints are not required in problems with weights of a
specific form. This formulation of the incremental problem
then leads to an alternativematching-based compact problem
formulation. Additionally, we transfer the matching result to
an assignment-based formulation for the incremental prob-
lem, which results in a third compact model. These three
formulations are theoretically compared in Sect. 5 and it is

123

Journal of Scheduling (2025) 28:269–287 271

shown that no one formulation is dominant. In Sect. 6, com-
putational experiments are presented, showing the benefits
of a recourse action, the effects of the uncertainty on the
model, and the strength of the assignment-based formulation.
Finally, some concluding remarks and potential directions for
future research are given in Sect. 7.

2 Problem definition

We consider a single machine scheduling problem with the
objective of minimising the sum of completion times. Given
a set of jobs N = {1, . . . , n} with processing times p =
(p1, . . . , pn), we aim tofind a schedule, i.e. an ordering of the
jobs i ∈ N , thatminimises the sumof completion times. This
nominal problem is denoted by 1||∑Ci under the α|β|γ
scheduling problem notation introduced by Graham et al.
(1979). Recall that this problem is easy to solve; the shortest
processing time (SPT) rule of sorting jobs by non-decreasing
processing times results in an optimal schedule. This problem
can be modelled as the following assignment problem with
non-general costs:

min
∑

i∈N

∑

j∈N
pi (n + 1 − j)xi j (1)

s.t.
∑

i∈N
xi j = 1 ∀ j ∈ N (2)

∑

j∈N
xi j = 1 ∀i ∈ N (3)

xi j ∈ {0, 1} ∀i, j ∈ N , (4)

where xi j = 1 if job i is scheduled in position j , and xi j = 0
otherwise.

We assume the job processing times pi , i ∈ N are uncer-
tain, but are known to lie within a given uncertainty set U . In
this paper, we consider a general polyhedral uncertainty set
given by

U = {
p ∈ R

n+ : Ap ≤ b
}
,

where A ∈ R
M×n and b ∈ R

M , consisting of M linear
constraints am1 p1 + am2 p2 + · · · + amn pn ≤ bm for m ∈
M = {1, . . . , M} on the set of possible processing times p.
Throughout this paper, we assumeU to be compact. It is also
possible to include auxiliary variables in the definition of U ;
for ease of presentation, such variables have been omitted.

We consider this uncertain single machine scheduling
problem in the context of a two-stage decision process,
where, having decided on a first-stage schedule x under the
problem uncertainty, the decision-maker is given the oppor-
tunity to react to the realisation of the uncertain data by
choosing up to � distinct pairs of jobs and swapping their
positions, to obtain a second-stage schedule y.

This recoverable robust problem can bewritten as follows:

min
x∈X

max
p∈U

min
y∈X (x)

∑

i∈N

∑

j∈N
pi (n + 1 − j)yi j , (RRS)

where X = {x ∈ {0, 1}n×n : (2), (3)} is the set of feasible
schedules, and X (x) ⊆ X is the set of feasible second-stage
assignments given x. That is,

X (x) = { y ∈ X : d(x, y) ≤ �},

where d(x, y) is some measure of the distance between the
first and second-stage schedules.

In this paper, we restrict our attention to the case where
the recourse action consists of disjoint pairwise swaps to
the first-stage positions of the jobs. Such a recourse action
is attractive for its explainability and simple implementation.
For example, rearrangingworkplace rotas ismademuch sim-
pler if staff members are only made to swap with one other
staff member since this allows for direct exchanges of brief-
ings, notes, etc. In addition to its conceptual simplicity, the
restriction to disjoint pairwise swaps improves the tractabil-
ity of the problem and leads to the results that we present and
analyse in this paper.

Hence, in this case we define d(x, y) to be the minimum
number of pairwise distinct swaps required to transform x
into y, if this number exists; otherwise, we set it to ∞.
Observe that the value d(x, y) can be calculated using the
following approach. Let Ex be the edges chosen by x in the
corresponding bipartite graph, oriented towards the right, and
let E y be the edges chosen by y, oriented towards the left,
i.e. (j, i) ∈ E y corresponds to assigning job i to position j .
If and only if the edges Ex ∪E y decompose into 2-cycles and
4-cycles, we have d(x, y) < ∞, in which case d(x, y) is
equal to the number of 4-cycles. This is because a 2-cycle
corresponds to a job with an unchanged position, whilst a 4-
cycle represents a swap of positions of two jobs. An example
is given in Fig. 1.

We define the adversarial and incremental problems of
(RRS) as follows. Given both a first-stage solution x ∈ X
and a scenario p ∈ U , the incremental problem consists of
finding the best possible second-stage solution y ∈ X (x).
That is,

Inc(x, p) = min
y∈X (x)

∑

i∈N

∑

j∈N
pi (n + 1 − j)yi j .

The adversarial problem is to find a worst-case scenario p ∈
U for a given first-stage schedule x ∈ X . That is,

Adv(x) = max
p∈U

min
y∈X (x)

∑

i∈N

∑

j∈N
pi (n + 1 − j)yi j

= max
p∈U

Inc(x, p).

123

272 Journal of Scheduling (2025) 28:269–287

Fig. 1 An example first and second-stage solution. The first-stage
assignment is given by the solid arcs oriented towards the right, and
corresponds to the schedule (1,2,4,5,3). The second-stage assignment
is given by the dashed arcs oriented towards the left, and corresponds
to the schedule (1,4,2,3,5). There are two 4-cycles corresponding to the
switching of positions of jobs 2 and 4, and 3 and 5. Hence d(x, y) = 2

Observe that for the case of general polyhedral uncer-
tainty that we consider here, (RSS) is NP-hard. To see this,
suppose that � = 0, i.e. there is no recovery option and the
second-stage variables are fixed to the corresponding first-
stage values. Then the problem reduces to a standard robust
single machine scheduling problem of the form

min
x∈X

max
p∈U

∑

i∈N

∑

j∈N
pi (n + 1 − j)xi j .

Now consider a specific polyhedral uncertainty set defined
by the linear combination of two discrete points. Since the
worst-case scenario must lie at a vertex of the polyhedron,
this polyhedral uncertainty set is equivalent to a discrete
uncertainty set containing the two extreme points. Since the
robust scheduling problemwith two scenarios is already NP-
hard (see Kouvelis and Yu (1997)), this hardness result also
extends to the problem we consider here.

Finally, note that in problem (RRS) we aim to minimise
the worst-case costs of the resulting recovery solutions. If the
first-stage costs are also relevant, all the results presented in
this paper can be adjusted trivially by including these costs
in the objective function.

3 A general model for recoverable
robustness

In this section we present a general model for recoverable
robust optimisation problems, and apply this method to the

uncertain single machine scheduling problem (RRS). Our
approach is to determine a first-stage solution x ∈ X as well
as a finite set of candidate recovery solutions y1, . . . , yK ∈
X (x).

The following result shows that using K = n+1 recovery
solutions is sufficient to guarantee that this approach provides
an exact solution to the problem.

Theorem 1 Let a recoverable robust problem of the form

min
x∈X

max
c∈U

min
y∈X (x)

f (y, c)

be given, where X ,X (x) ⊆ {0, 1}n, U is a compact convex
set, f is linear in y, and concave in c. Then this problem is
equivalent to

min
x∈X ,

y(1),..., y(n+1)∈X (x)

max
c∈U

min
i=1,...,n+1

f (y(i), c).

Proof The idea of the proof is similar to models developed
for K -adaptability (see Hanasusanto et al. (2015, Theo-
rem 1) and Buchheim and Kurtz (2017, Corollary 1)). Recall
both Carathéodory’s theorem and the minimax theorem.
Carathéodory’s theorem states that any point x ∈ R

n lying
in conv(X) can be written as a convex combination of n + 1
points from X . The minimax theorem states that if X and Y
are two compact, convex sets, and f : X × Y → R is a con-
tinuous compact-concave function (i.e. f (·, y) is concave for
fixed values of y and f (x, ·) is convex for fixed values of x),
then

max
x

min
y

f (x, y) = min
y

max
x

f (x, y).

We make use of both of these results in the following:

min
x∈X

max
c∈U

min
y∈X (x)

f (y, c)

= min
x∈X

max
c∈U

min
y∈conv(X (x))

f (y, c)

= min
x∈X

min
y∈conv(X (x))

max
c∈U

f (y, c)

(by the minimax theorem)

= min
x∈X

min
y(1),..., y(n+1)∈X (x)

min
λ1,...,λn+1≥0∑n+1

i=1 λi=1

max
c∈U

f (
n+1∑

i=1

λi y(i), c)

(by Caratheodory’s theorem)

= min
x∈X

min
y(1),..., y(n+1)∈X (x)

max
c∈U

min
λ1,...,λn+1≥0∑n+1

i=1 λi=1

f (
n+1∑

i=1

λi y(i), c)

(by the minimax theorem)

123

Journal of Scheduling (2025) 28:269–287 273

= min
x∈X

min
y(1),..., y(n+1)∈X (x)

max
c∈U

min
λ1,...,λn+1≥0∑n+1

i=1 λi=1

n+1∑

i=1

λi f (y(i), c)

= min
x∈X ,

y(1),..., y(n+1)∈X (x)

max
c∈U

min
i=1,...,n+1

f (y(i), c).

�
This approach can be used to derive a compact formulation

to the uncertain single machine scheduling problem (RRS).
To this end, we first consider the inner selection problem,
given a first-stage solution x and set of recovery solutions
y1, . . . , yK , and a scenario p. This is given by

min
∑

k∈K

⎛

⎝
∑

i∈N

∑

j∈N
pi (n + 1 − j)yki j

⎞

⎠ λk

s.t.
∑

k∈K
λk = 1

λk ≥ 0 ∀k ∈ K,

whereK = {1, . . . , K }. The problem of finding aworst-case
scenario p ∈ U for the choice of first-stage solution x and
recovery solutions y1, . . . , yK is therefore:

max t

s.t. t ≤
∑

i∈N

∑

j∈N
pi (n + 1 − j)yki j ∀k ∈ K

∑

i∈N
ami pi ≤ bm ∀m ∈ M

pi ≥ 0 ∀i ∈ N .

Here, t is an unbounded variable to represent theminimumof
the corresonding right-hand sides for all k ∈ K (an epigraph
reformulation, which can also be seen as the dual of the inner
minimization problem). Dualising this problem then gives
the following formulation for (RRS):

min
∑

m∈M
bmqm (5)

s.t.
∑

k∈K
μk = 1 (6)

∑

m∈M
amiqm ≥

∑

k∈K

⎛

⎝
∑

j∈N
(n + 1 − j)yki j

⎞

⎠ μk

∀i ∈ N (7)

d(x, yk) ≤ �

∀k ∈ K (8)

x ∈ X (9)

yk ∈ X ∀k ∈ K (10)

μk ≥ 0 ∀k ∈ K (11)

qm ≥ 0 ∀m ∈ M, (12)

whered(x, yk) is somemeasure of distance between thefirst-
stage solution and the k-th recovery solution. Note that this
model is not restricted to any particular choice of distance
measure d(x, yk).

However, if we opt to calculate the distance between two
schedules as theminimumnumber of disjoint pairwise swaps
required to transform one schedule into the other, this can be
modelled as follows. Let zk

ii ′ be a binary variable that is set

to 1 when jobs i and i
′
have swapped positions in recovery

solution yk , relative to the first-stage schedule x. In this case,
we have that

yki j =
∑

i ′ ∈N
zkii ′xi ′ j .

Hence, yk can be removed from the model, and replaced by
zk with the inclusion of the following constraints:

∑

i ′ ∈N
zk
ii ′ = 1 ∀i ∈ N , k ∈ K (13)

∑

i∈N
zk
ii ′ = 1 ∀i ′ ∈ N , k ∈ K (14)

zk
ii ′ = zk

i ′ i ∀i, i ′ ∈ N , k ∈ K (15)
∑

i∈N
zkii ≥ n − 2� ∀k ∈ K. (16)

Note that although one set of assignment constraints in com-
binationwith the symmetry constraints implicitly enforce the
other set of assignment constraints (e.g. (13) and (15) implies
(14)), we opt to explicitly include the full set of assignment
constraints since doing so provides a modest benefit to the
computational performance of the model.

To arrive at a mixed-integer linear program, the products
zkii ′ · xi ′ j ·μk need to be linearised using standard techniques.
The full linearised formulation contains O(n3K) constraints
and variables and is shown in Appendix B.1.

4 Complexity of subproblems and compact
formulations

In this section, we examine the incremental and adversarial
problems of (RRS) in more detail and subsequently derive
two additional compact formulations.

4.1 Matching-based formulation

Wefirst consider a matching-based formulation for the incre-
mental problem. For the ease of presentation, we assume for

123

274 Journal of Scheduling (2025) 28:269–287

now that xii = 1 for all i ∈ N , i.e. the first-stage solution
is a horizontal matching. Note a change in notation for this
section where now the indices i and j are both used to refer
to jobs, and � denotes a position in the schedule. Supposing
that the positions of jobs i and j are switched in the recovery
schedule, the reduction in cost of making this switch is given
by

pi (n + 1 − i) + p j (n + 1 − j) − pi (n + 1 − j)

−p j (n + 1 − i) = (pi − p j)(j − i).

Letting zi j indicate whether or not jobs i and j swap
positions in the schedule, the incremental problem can be
formulated as:

min
∑

i∈N
pi (n + 1 − i) −

∑

e={i, j}∈E
(pi − p j)(j − i)ze

(17)

s.t.
∑

e∈δ(i)

ze ≤ 1 ∀ i ∈ N (18)

∑

e∈E
ze ≤ � (19)

ze ∈ {0, 1} ∀e ∈ E, (20)

where E = {{i, j} : i, j ∈ N , i
= j} is the set of unique
swaps, and δ(i) is the set of edges incident to vertex i . This
is a cardinality-constrained matching problem on a complete
graph with one node for each job i ∈ N .

We examine this matching-based formulation in further
detail. First, consider the maximum weight matching prob-
lem on a general graph G = (V, E). This problem can be
formulated as the following linear program:

max
∑

e∈E
wexe (21)

s.t.
∑

e∈δ(i)

xe ≤ 1 ∀i ∈ V (22)

∑

e∈E(W)

xe ≤ |W| − 1

2
∀W ⊆ V, |W| odd (23)

xe ≥ 0 ∀e ∈ E, (24)

where E(W) is the set of edges in the subgraph induced on
W . Edmonds (1965) showed that constraints (23), known as
odd-cycle constraints or blossom constraints, are required to
fully characterise the matching polytope.

In the following theorem, we show that for a matching
problem with the same cost structure as (17), odd-cycle con-
straints are not required.

Theorem 2 For any a, b ∈ R
|V |
+ , the problem

max
∑

e={i, j}∈E
(ai − a j)(bi − b j)xe (25)

s.t.
∑

e∈δ(i)

xe ≤ 1 ∀i ∈ V (26)

xe ≥ 0 ∀e ∈ E (27)

has an optimal solution with xe ∈ {0, 1} for all e ∈ E .

Proof Schrijver (2003, Theorem 30.2, page 522) states that
each vertex of the matching polytope described by (26) and
(27) is half-integer, i.e. xe ∈ {0, 1

2 , 1} for all e ∈ E in an opti-
mal solution. Additionally, as observed by Balinski (1965),
the vertices of the matching polytope can be partitioned into
a matching P , where xe = 1 for each e ∈ P , and a set of
1/2-fractional cycles of odd length, where xe = 1

2 for each e
in the odd cycles. Hence, we can restrict our attention only to
1/2-fractional odd cycles, and show that there is an optimal
solution where such cycles do not exist.

Suppose we are given an optimal solution contain-
ing a 1/2-fractional odd cycle, consisting of edges C =
{ei1,i2 , ei2,i3 , . . . , eiq−1,iq , eiq ,i1}, with weights given by
wi j = (ai − a j)(bi − b j). Without loss of generality, we
assume an orientation in the cycle, where edges are directed
as (i j , i j+1) for j = 1, . . . , q, where iq+1 = i1.

Note that if we ≤ 0 for some edge e, it can be removed
from E , as such an edge will never be selected in an optimal
matching. Hence, we may assume that we > 0 for all e ∈ C.
Since wi j = (ai −a j)(bi −b j) > 0 for all ei j ∈ C, (ai −a j)

and (bi −b j)must have the same sign. That is, either ai > a j

and bi > b j , in which case we refer to ei j as a decreasing
edge, or ai < a j and bi < b j , in which case we refer to ei j
as an increasing edge.

We show that there is an optimal 1/2-fractional cycle that
alternates between increasing and decreasing edges. Suppose
that there are p < q consecutive decreasing edges in C,
e j1, j2 , e j2, j3 , . . . , e jp−1, jp , i.e. a j1 > a j2 > · · · > a jp and
b j1 > b j2 > · · · > b jp . In this case

w j1, jp = (a j1 − a jp)(b j1 − b jp)

=
(
(a j1 − a j2) + (a j2 − a j3) + · · · + (a jp−1 − a jp)

)

·
(
(b j1 − b j2) + (b j2 − b j3) + · · · + (b jp−1 − b jp)

)

= w j1, j2 + w j2, j3 + · · · + w jp−1, jp

+ (a j1 − a j2)
(
(b j2 − b j3) + · · · + (b jp−1 − b jp)

)

+ (a j2 − a j3)
(
(b j1 − b j2) + · · · + (b jp−1 − b jp)

)

+ . . .

+ (a jp−1 − a jp)
(
(b j1 − b j2) + · · · + (b jp−2 − b jp−1)

)

> w j1, j2 + w j2, j3 + · · · + w jp−1, jp ,

123

Journal of Scheduling (2025) 28:269–287 275

Fig. 2 An example of a 1/2-fractional cycle involving q = 5 nodes. Up
and down arrows indicate increasing and decreasing edges respectively.
It is optimal to replace the two consecutive decreasing edges (3, 4) and
(4, 5) with the dashed edge (3, 5), i.e. w35 > w34 + w45

which means that replacing the p consecutive decreasing
edges in C by the edge e j1, jp would lead to an even bet-
ter objective value (see Fig. 2 for an illustration). The same
argument can be used to show that there also cannot be p con-
secutive increasing edges in an optimal 1/2-fractional cycle.

We have therefore constructed an optimal 1/2-fractional
cycle that strictly alternates between increasing and decreas-
ing edges. Clearly, this is only possible if q is even. Since a
1/2-fractional even cycle can be written as a convex combi-
nation of two feasible matchings, this proves that exists an
optimal solution without any 1/2-fractional cycles.
�

The following result, presented inSchrijver (2003) (Corol-
lary 18.10a, page 331), states that the integrality of the
vertices of the matching polytope is unaffected by the addi-
tion of a cardinality constraint.

Theorem 3 Let G = (V, E) be an undirected graph and let
k, l ∈ Z+ with k ≤ l. Then the convex hull of the incidence
vectors of matchingsP satisfying k ≤ |P| ≤ l is equal to the
set of those vectors x in thematching polytope of G satisfying
k ≤ 1�x ≤ l.

This result, in combination with Theorem 2, provides us
with the following corollary:

Corollary 4 For any a, b ∈ R
|V |
+ , the problem

max
∑

e={i, j}∈E
(ai − a j)(bi − b j)xe (28)

s.t.
∑

e∈δ(i)

xe ≤ 1 ∀i ∈ V (29)

∑

e∈E
xe ≤ � (30)

xe ≥ 0 ∀e ∈ E (31)

has an optimal solution with xe ∈ {0, 1} for all e ∈ E .

Hence, given a first-stage solution x and scenario p, we
can formulate the incremental problem as a linear program
with polynomially many constraints. We use this result to
derive a compact formulation for the full uncertain single
machine scheduling problem (RRS).

Webeginby formulating the incremental problem Inc(x, p)
according to Corollary 4. Note that we now consider a
general first-stage assignment that is not necessarily hori-
zontal, and therefore introduce terms

∑
�∈N � · xi� to track

the position in which job i is scheduled in the first-stage
schedule. We fix an arbitrary orientation of edges, using
E = {(i, j) ∈ N × N : i < j} in the following.

min
z

∑

i∈N
pi

(

n + 1 −
∑

�∈N
� · xi�

)

−
∑

(i, j)∈E
(pi − p j)

(∑

�∈N
� · x j� −

∑

�∈N
� · xi�

)

zi j

s.t.
∑

(i, j)∈E
zi j +

∑

(j,i)∈E
z ji ≤ 1 ∀i ∈ N

∑

(i, j)∈E
zi j ≤ �

zi j ≥ 0 ∀(i, j) ∈ E .

Taking the dual of this, we get the following formulation for
the adversarial problem Adv(x):

max
p, α, γ

∑

i∈N
pi

(

n + 1 −
∑

�∈N
� · xi�

)

−
∑

i∈N
αi − γ�

s.t. αi + α j + γ ≥ (pi − p j)

(∑

�∈N
� · x j� −

∑

�∈N
� · xi�

)

∀(i, j) ∈ E
∑

i∈N
ami pi ≤ bm ∀m ∈ M

pi ≥ 0 ∀i ∈ N
αi ≥ 0 ∀i ∈ N
γ ≥ 0.

Since this is a linear program, we immediately obtain fol-
lowing result:

Corollary 5 The adversarial problem can be solved in poly-
nomial time.

Finally, dualising the above adversarial formulation, we
get the following compact formulation for problem (RRS):

min
x, z, q

∑

m∈M
bmqm (32)

123

276 Journal of Scheduling (2025) 28:269–287

s.t.
∑

m∈M
amiqm +

∑

(i, j)∈E

(∑

�∈N
� · x j� −

∑

�∈N
� · xi�

)

zi j

−
∑

(j,i)∈E

(∑

�∈N
� · xi� −

∑

�∈N
� · x j�

)

z ji

≥ (n + 1 −
∑

�∈N
� · xi�) ∀i ∈ N (33)

∑

(i, j)∈E
zi j +

∑

(j,i)∈E
z ji ≤ 1 ∀i ∈ N (34)

∑

(i, j)∈E
zi j ≤ � (35)

x ∈ X (36)

qm ≥ 0 ∀m ∈ M (37)

zi j ≥ 0 ∀(i, j) ∈ E . (38)

Upon linearising the quadratic xi� ·zi j and x j� ·zi j terms, this
model becomes a mixed-integer linear program. The fully
linearised model contains O(n3) constraints and variables
and is presented in full in Appendix 2.2.

4.2 Assignment-based formulation

We now consider an alternative formulation for the incre-
mental problem. Again, for the purposes of examining the
incremental problem, we initially consider the first-stage
schedule to be a horizontal assignment, i.e. xii = 1 for all
i ∈ N . By letting variables yi j represent a second-stage
assignment (we now return to the conventionwhere the index
i is used to denote a job and the index j is used to denote a
position in the schedule), we can formulate the incremental
problem as follows:

min
∑

i∈N

∑

j∈N
pi (n + 1 − j)yi j (39)

s.t.
∑

i∈N
yi j = 1 ∀ j ∈ N (40)

∑

j∈N
yi j = 1 ∀i ∈ N (41)

yi j = y ji ∀i, j ∈ N (42)
∑

i∈N
yii ≥ n − 2� (43)

yi j ∈ {0, 1} ∀i, j ∈ N . (44)

Constraints (42) and (43) ensure that the second-stage assign-
ment is a feasible recovery to the first-stage solution, that is,
the second-stage assignment is constructed by swapping the
first-stage positions of up to � disjoint pairs of jobs. Note
that this is a level-constrained symmetric perfect matching

problem, which can be solved in polynomial time (Thomas,
2015, Theorem 2.28).

We show that problem (39)-(44) can be solved as a linear
program as a result of its non-general cost structure. As the
proof is technical and based on a reduction to the correspond-
ing maximum weight matching problem, it is omitted here
and can be found in Appendix A.

Theorem 6 For any a, b ∈ R
n+, the problem

min
∑

i∈N

∑

j∈N
aib j yi j (45)

s.t. (40) − (43) (46)

yi j ≥ 0 (47)

has an optimal solution with yi j ∈ {0, 1} for all i, j ∈ N .

We now use this result to find an assignment-based formu-
lation for (RRS). We first write the incremental problem in
the form given by (45)-(47). Since we are now considering
the case where x is not necessarily a horizontal matching, we
rearrange the indices accordingly.

min
∑

i∈N

∑

j∈N
pi (n + 1 −

∑

�∈N
� · x j�)yi j

s.t.
∑

i∈N
yi j = 1 ∀ j ∈ N

∑

j∈N
yi j = 1 ∀i ∈ N

yi j = y ji ∀i, j ∈ N
∑

i∈N
yii ≥ n − 2�

yi j ≥ 0 ∀i, j ∈ N .

Taking the dual of this, the adversarial problem can be for-
mulated in the following way:

max
α, β, γ ,τ, p

∑

i∈N
(αi + βi) + (n − 2�)τ

s.t. α j +βi +γi j ≤ (n + 1 −
∑

�∈N
� · x j�)pi

∀i, j ∈ N : i < j

α j + βi − γ j i ≤ (n + 1 −
∑

�∈N
� · x j�)pi

∀i, j ∈ N : i > j

αi + βi + τ ≤ (n + 1 −
∑

�∈N
� · x j�)pi

∀i ∈ N
∑

i∈N
ami pi ≤ bm ∀m ∈ M

pi ≥ 0 ∀i ∈ N
τ ≥ 0.

123

Journal of Scheduling (2025) 28:269–287 277

Finally, we dualise this adversarial formulation to derive the
following formulation for the recoverable problem:

min
x, y, q

∑

m∈M
bmqm (48)

s.t.
∑

i∈N
yi j = 1 ∀ j ∈ N (49)

∑

j∈N
yi j = 1 ∀i ∈ N (50)

∑

i∈N
yii ≥ n − 2� (51)

yi j = y ji ∀i, j ∈ N (52)
∑

m∈M
amiqm ≥

∑

j∈N
(n + 1 −

∑

�∈N
� · x j�)yi j ∀i ∈ N (53)

x ∈ X (54)
qm ≥ 0 ∀m ∈ M (55)
yi j ≥ 0 ∀i, j ∈ N (56)

As before, products x j� · yi j can be linearised using standard
techniques. The resulting mixed-integer linear program con-
tains O(n3) constraints and variables and can be found in
Appendix 2.3.

5 Comparison of formulations

This section presents a brief investigation into the linear
relaxations of the three formulations derived above in order
to compare their relative theoretical strengths. We begin by
showing that no comparisons can be made between the gen-
eral formulation and the other two formulations.

In preparation of the proof of this result we introduce bud-
geted uncertainty as a special case of polyhedral uncertainty.
A budgeted uncertainty set can be defined as

UB =
{

p ∈ R
n+ :

∑

i∈N

pi − p̂i
p̄i

≤
, pi ∈ [p̂i , p̂i + p̄i], i ∈ N
}

,

where p̂i is the nominal processing time of job i and p̄i is
the worst-case delay to the processing time of job i . Intro-
duced by Bertsimas and Sim (2004), its motivation is to
exclude unrealistically pessimisticworst-case scenarios from
the uncertainty set and thereby avoid overly conservative and
highly-expensive solutions. This is achieved by assuming
that at most
 jobs can simultaneously reach their maximum
delays. Note that when
 = 0, each job assumes its nomi-
nal processing time and the UB reduces to a single scenario.
Additionally, observe that as
 → n, this budgeted uncer-
tainty set becomes an interval. When
 = n the worst-case
scenario is known a priori to be when all jobs achieve their
worst-case processing times p̂i + p̄i . In this case the problem

can be solved by simply ordering the jobs accoring to their
worst-case processing times, and no recourse action will be
required. The proof of the following proposition makes use
of an instance involving a bugdeted uncertainty set.

Theorem 7 The general formulation (61)-(81) is incompara-
ble with both the matching-based formulation (82)-(98) and
the assignment-based formulation (99)-(113).

Proof First consider a problemwith two jobswith processing
times that lie in the uncertainty set U = {(p1, p2) : p1 ≤
3, p2 ≤ 3, p1+2p2 ≤ 7}. Suppose also that� = 1, i.e. one
swap can be made to amend the first-stage schedule. In this
case, the linear relaxation of the matching-based formulation
has an objective value of 7, whilst the linear relaxation of the
assignment-based formulation has an objective value of 5.

Now consider an instance involving jobs with p̂ =
(10, 8, 9, 4, 1, 5, 7, 1) and p̄ = (9, 7, 5, 4, 1, 3, 6, 1) lying
in the budgeted uncertainty setUB , and set
 = 1 and� = 1.
The linear relaxation of the matching-based formulation for
this instance has an optimal objective value of −9.2 (to 1
decimal place),whilst the linear relaxation of the assignment-
based formulation has an objective value of −285.4 (to 1
decimal place).

For both of these instances, the linear relaxation of the
general formulation attains an objective value of 0. (In fact,
for any polyhedral uncertainty set in which ami ≥ 0 and
bm ≥ 0 for all i ∈ N , the linear relaxation of the general
formulation will be 0, since it is free to set the linearisation
variables hkii ′ j = 0 for all i, i ′, j ∈ N , k ∈ K and therefore
qm = 0 for all m ∈ M.)

These examples show that the matching and assignment-
based formulations are tighter than the general formulation
for some instances, but less tight for other instances. Hence
the general formulation is incomparable with the matching
and assignment-based formulations.
�

It is the case however that the objective value of the lin-
ear relaxation of the non-linear matching-based formulation
is always greater than or equal to the objective value for the
linear relaxationof the non-linear assignment-based formula-
tion. That is, that non-linearmatching formulation dominates
the non-linear assignment formulation.

Theorem 8 Thenon-linearmatching-based formulation (32)-
(38) dominates the non-linear assignment-based formulation
(48)-(56).

The proof of this statement involves the construction of
a transformation φ to show that any feasible solution to the
matching formulation can be transformed into a feasible solu-
tion to the assignment problem. The proof can be found in
Appendix A. It does however remain open as to whether this
result can be extended to the linearised versions of these for-
mulations given by (82)-(98) and (99)-(113), respectively.

123

278 Journal of Scheduling (2025) 28:269–287

6 Computational experiments

This section presents results from solving the three compact
models introduced in this paper. The results of these exact
models are compared against each other, as well as against
three additional heuristic solution methods. As a particular
example of a general polyhedral uncertainty, here we con-
sider budgeted uncertainty as outlined in the previous section.
Before introducing the heuristics we propose for solving this
problem and examining their performance, we comment on
the test instances and computational hardware used for these
experiments.

Instances have been generated by randomly sampling both
p̂i and p̄i from the set {1, 2, . . . , 100}. 20 instances of sizes
n ∈ {10, 15, 20} have been generated, resulting in a total
of 60 deterministic test instances. For each deterministic
instance, three uncertain instances have been generated by
setting
 ∈ {3, 5, 7}, resulting in a total of 180 uncertain
instances. These instances, as well as the complete results
data, can be found at https://github.com/boldm1/RR-single-
machine-scheduling.

All methods have been run on 4 cores of a 2.30GHz Intel
Xeon CPU, limited to 16GB RAM. The exact models have
been solved using Gurobi 9.0.1, with a time limit of 10min.

6.1 Heuristics

The three heuristic methods we consider are as follows:

1. Sorting. Obtain a schedule by ordering the jobs i ∈ N
according to non-decreasing p̂i + p̄i , i.e. a schedule that
performs best in the worst-case scenario when
 = n,
and evaluate by solving Adv(x).

2. Max-min. Solve the max-min problem

max
p∈UB

min
x∈X

∑

i∈N

∑

j∈N
pi (n + 1 − j)xi j

to obtain a worst-case scenario p ∈ UB . Find a schedule x
that performs best in this worst-case scenario and evaluate
by solving Adv(x).

3. Min-max. Solve the min-max problem

min
x∈X

max
p∈UB

∑

i∈N

∑

j∈N
pi (n + 1 − j)xi j

and evaluate by solving Adv(x).

Note thatmin-max is equivalent to solving the recoverable
robust problem for � = 0. Observe that, by construction,
the max-min solution will perform worse for the recoverable
robust problem with � = 0 than the min-max solution. We
can thus conjecture that min-max performs also better than
max-min for other values of �.

0 2 4 6 8 10 12 14
Gap (%)

0

20

40

60

80

100

%
of

in
st
an

ce
s

sorting
max-min
min-max

Fig. 3 Cumulative percentage of instances solved to within a given gap
of the best known solution

Each heuristic method has been used to find a feasible
solution to all 180 uncertain test instances. Figure3 shows
the cumulative percentage of instances solved by each of the
heuristics to within a given gap to the best solution found by
any method, including the exact models, which have been
solved with � = 2. It is clear from this plot that min-max
is the strongest of the three proposed heuristics, solving all
180 instances to within 3.2% of the best solution. This gap
increases to 8.8% for sorting, whilst max-min solves all but
one instance to within 15%. The average of these gaps across
all instances for min-max, sorting and max-min are 0.9%,
3.1% and 4.1% respectively.

Given its strong performance, we propose using min-max
to provide a warm-start solution to the exact models. The
benefits of this are assessed in the next section.

6.2 Exact models

Wenow examine the results of solving the three exact models
proposed in this paper and their warm-start variants. The 180
uncertain instances have been solved by each model and its
warm-start variant for � ∈ {0, 1, 2, 3}. Note that the general
model has been implementedwith K = 2. This has been cho-
sen tomake the general model as computationally efficient to
solve as possible, whilst actually still providing an advantage
over the min-max model, i.e. for K = 1 the general model
corresponds to the min-max model.

Tables 1 and 2 compare the performance of these exact
models for different values of
 and� respectively. For each
set of 20 instances with the same combination of instance
parameters, Tables 1 and 2 report the following:

• Time - Average CPU time (secs) required to solve the
instances. Instances that are were solved within the time

123

https://github.com/boldm1/RR-single-machine-scheduling
https://github.com/boldm1/RR-single-machine-scheduling

Journal of Scheduling (2025) 28:269–287 279

Table 1 Comparison of the
three exact models proposed in
this paper and their warm-start
variants, for different values of

General General + warm-start
n
 � time LBgap UBgap #solv time LBgap UBgap #solv

10 3 2 600.0 100.0 0.2 0 600.0 100.0 0.2 0

10 5 2 600.0 100.0 0.1 0 600.0 100.0 0.1 0

10 7 2 600.0 100.0 0.1 0 600.0 100.0 0 0

15 3 2 600.0 100.0 0.4 0 600.0 100.0 0.3 0

15 5 2 600.0 100.0 0.6 0 600.0 100.0 0.3 0

15 7 2 600.0 100.0 0.4 0 600.0 100.0 0.3 0

20 3 2 600.0 100.0 0.8 0 600.0 100.0 0.3 0

20 5 2 600.0 100.0 0.9 0 600.0 100.0 0.4 0

20 7 2 600.0 100.0 1.2 0 600.0 100.0 0.5 0

0 0

Matching Matching + warm-start

n
 � time LBgap UBgap #solv time LBgap UBgap #solv

10 3 2 2.6 0.0 0.0 20 2.6 0.0 0.0 20

10 5 2 4.1 0.0 0.0 20 4.1 0.0 0.0 20

10 7 2 2.1 0.0 0.0 20 3.4 0.0 0.0 20

15 3 2 135.3 0.0 0.0 19 110.0 0.0 0.0 20

15 5 2 202.6 0.0 0.0 17 159.0 0.0 0.0 18

15 7 2 209.4 0.0 0.0 16 198.1 0.0 0.0 16

20 3 2 591.1 0.8 0.0 3 586.4 0.8 0.0 2

20 5 2 599.9 0.5 0.0 1 600.0 0.6 0.0 0

20 7 2 600.0 0.5 0.0 0 600.0 0.4 0.0 0

116 116

Assignment Assignment + warm-start

n
 � time LBgap UBgap #solv time LBgap UBgap #solv

10 3 2 8.0 0.0 0.0 20 8.2 0.0 0.0 20

10 5 2 6.8 0.0 0.0 20 5.1 0.0 0.0 20

10 7 2 3.4 0.0 0.0 20 3.0 0.0 0.0 20

15 3 2 50.9 0.0 0.0 20 55.4 0.0 0.0 20

15 5 2 62.6 0.0 0.0 20 59.3 0.0 0.0 20

15 7 2 59.1 0.0 0.0 20 64.3 0.0 0.0 20

20 3 2 344.0 0.0 0.0 20 242.5 0.0 0.0 19

20 5 2 377.7 0.0 0.0 20 292.2 0.0 0.0 19

20 7 2 453.2 0.0 0.0 19 321.3 0.0 0.0 20

limit are counted as having a CPU time of 600s, i.e. equal
to the time limit.

• LBgap - Average gap (%) between the best objective
bound and the best known feasible solution found by any
method.

• UBgap - Average gap (%) between the best feasible solu-
tion found within the time limit and the best known
feasible solution found by any method.

• #solv - Number of instances solved to optimality within
the time limit.

From Tables 1 and 2, it is clear that the general model is
by far the weakest of the three proposed models. Other than
for � = 0, no instances are solved to optimality. The gen-
eral model is able to find near-optimal feasible solutions, but
fails to begin closing the optimality gap in most instances.
The matching-based model improves considerably on the
general model, whilst the assignment model is the strongest
performing of the three exact models, solving the most num-
ber of instances to optimality and having the smallest gaps
over those instances that cannot be solved to optimality. The
addition of a warm-start solution is clearly beneficial only

123

280 Journal of Scheduling (2025) 28:269–287

Table 2 Comparison of the
three exact models proposed in
this paper and their warm-start
variants, for different values of
�

General General + warm-start
n
 � time LBgap UBgap #solv time LBgap UBgap #solv

10 7 0 0.3 0.0 0.0 20 0.3 0.0 0.0 20

10 7 1 600.0 100.0 0.0 0 600.0 100.0 0.0 0

10 7 2 600.0 100.0 0.1 0 600.0 100.0 0.0 0

10 7 3 600.0 100.0 0.0 0 600.0 100.0 0.0 0

15 7 0 3.3 0.0 0.0 20 3.0 0.0 0.0 20

15 7 1 600.0 100.0 0.4 0 600.0 100.0 0.3 0

15 7 2 600.0 100.0 0.4 0 600.0 100.0 0.3 0

15 7 3 600.0 100.0 0.5 0 600.0 100.0 0.3 0

20 7 0 122.5 0.1 0.0 18 133.0 0.1 0.0 18

20 7 1 600.0 100.0 1.1 0 600.0 100.0 0.7 0

20 7 2 600.0 100.0 1.2 0 600.0 100.0 0.5 0

20 7 3 600.0 100.0 1.5 0 600.0 100.0 0.5 0

58 58

Matching Matching + warm-start

n
 � time LBgap UBgap #solv time LBgap UBgap #solv

10 7 0 0.0 0.0 0.0 20 0.0 0.0 0.0 20

10 7 1 2.1 0.0 0.0 20 2.2 0.0 0.0 20

10 7 2 2.1 0.0 0.0 20 3.4 0.0 0.0 20

10 7 3 5.3 0.0 0.0 20 5.9 0.0 0.0 20

15 7 0 0.2 0.0 0.0 20 0.2 0.0 0.0 20

15 7 1 383.9 0.1 0.0 11 337.6 0.1 0.0 12

15 7 2 209.4 0.0 0.0 16 198.1 0.0 0.0 16

15 7 3 146.2 0.0 0.0 17 178.2 0.0 0.0 16

20 7 0 1.6 0.0 0.0 20 1.6 0.0 0.0 20

20 7 1 600.0 0.9 0.0 0 600.0 0.9 0.0 0

20 7 2 600.0 0.5 0.0 0 600.0 0.4 0.0 0

20 7 3 518.1 0.2 0.0 8 556.4 0.1 0.0 8

172 172

Assignment Assignment + warm-start

n
 � time LBgap UBgap #solv time LBgap UBgap #solv

10 7 0 0.0 0.0 0.0 20 0.0 0.0 0.0 20

10 7 1 2.8 0.0 0.0 20 2.0 0.0 0.0 20

10 7 2 3.4 0.0 0.0 20 3.0 0.0 0.0 20

10 7 3 5.7 0.0 0.0 20 4.1 0.0 0.0 20

15 7 0 0.2 0.0 0.0 20 0.1 0.0 0.0 20

15 7 1 97.5 0.0 0.0 19 86.8 0.0 0.0 20

15 7 2 59.1 0.0 0.0 20 64.3 0.0 0.0 20

15 7 3 42.4 0.0 0.0 20 50.3 0.0 0.0 20

20 7 0 1.5 0.0 0.0 20 1.3 0.0 0.0 20

20 7 1 583.4 0.3 0.0 2 577.0 0.2 0.0 6

20 7 2 453.2 0.0 0.0 19 321.3 0.0 0.0 20

20 7 3 443.4 0.0 0.0 19 312.0 0.0 0.0 20

123

Journal of Scheduling (2025) 28:269–287 281

Fig. 4 Performance profiles of relative solution times for different instance sizes

for the assignment-based model, where the addition solves
more instances to optimality in less time.

From Table 1 it can be seen that instances tend to become
harder to solve as
 increases from 3 to 7. From Table 2 we
observe that, unsurprisingly, instances are easiest to solve to
solve when � = 0 (this corresponds to solving the min-max
model). Interestingly however, when n = 15 and n = 20,
instances are most difficult when � = 1, and become eas-
ier to solve as the number of recovery swaps allowed, �,
increases, i.e. the second stage-solution becomes less con-
strained by the first-stage solution.

Figure4 shows performance profiles (Dolan and Moré,
2002) of the relative solution times of the matching and
assignment-based models and their warm-start variants, for
different instance sizes. The generalmodel and its warm-start
variant is excluded from these plots given its poor perfor-
mance. A performance profile is a graphical comparison
of the performance ratios. The performance ratio of model

m ∈ M for instance i ∈ I is defined as

pim = tim
minm∈M tim

,

where tim is the time required to solve instance i using model
m. If model m fails to find an optimal solution to instance i
within the given time limit, then pim = P , for some P >

maxi,m tim (so long as P is chosen to be greater than the
given time limit, the specific value chosen has no effect on
the resulting plot). The performance profile ofmodelm ∈ M
is then defined to be the function

ρm(τ) = |{pim ≤ τ : i ∈ I}|
|I| ,

that is, the probability that model m is within a factor τ of
the best performingmodel. The performance profiles in Fig. 4
have been plotted on the log-scale for clarity.

123

282 Journal of Scheduling (2025) 28:269–287

The top-left performance profile in Fig. 4 includes data
from all instances, whilst the three other performance profiles
consider the three sizes of instance separately.We see that for
n = 10, the matching-based model performs slightly better
than the assignment-based model, however the inclusion of
a warm-start does not seem to improve the matching model.
For n = 15 and n = 20 however, the assignment model is
stronger than the matching model. The benefits of a warm-
start solution becomemost apparent when solving the largest
instances, where a warm-start decreases solution times and
increases the number of instances solved to optimality of
both the matching and assignment model.

6.3 Model parameters

We now examine the impact of the model parameters
 and
� on the objective value. For each set of instances, Tables 3
and 4 report the average objective value of the best known
feasible solutions found by any method for different values
of
 and � respectively, as well as the relative percentage
difference in this average from the sets of instances where

 = 3 and � = 0, respectively.

The results in Table 3 show that, as we would expect,
increasing the
 increases the average objective value in a
concavemanner. Table 4 shows that the inclusion of a second-
stage recourse solution provides an improvement in objective
value. However we also see that, for the instances we have
solved, increasing� beyond� = 1 provides little additional
benefit. That is, the vast majority of the benefit of allowing
a recourse solution can be captured by allowing just a sin-
gle swap to the first-stage schedule. However, it is important
to note the effect of having been limited to instances sizes
of 20 and less by the computational intensity of solving the
proposed exact models. We expect that for larger instance
sizes, a less restricted and more powerful recourse action,
i.e. increasing �, would become more advantageous. We
can see an indication of the effect of the instance sizes in
Table 4, with the increase of � from 1 to 2 having a big-
ger impact for the instances with 20, when compared to the
instances with 10 jobs. Additionally, for a discrete budgeted
uncertainty set where pi ∈ { p̂i , p̂i + p̄i } for each i ∈ N ,
we might expect the benefits of increasing � to be more
apparent, since in this case the adversary is unable to spread
the delay across multiple jobs in an attempt to preempt the
recourse response, as is currently the case under the contin-
uous budgeted uncertainty set that we consider. The impact
of discrete budgeted uncertainty is an interesting possibility
for future research on this problem.

Table 3 The effects of
increasing
 on the average
objective value of the best
known solution

n
 � avg. best %diff.

10 3 2 3946.5 0.0

10 5 2 4578.0 14.1

10 7 2 5053.0 22.1

15 3 2 7164.9 0.0

15 5 2 8177.5 12.7

15 7 2 9002.1 20.7

20 3 2 11814.3 0.0

20 5 2 13317.8 11.5

20 7 2 14582.5 19.3

Table 4 Effect of increasing �

on the average objective value of
the best known solution

n
 � avg. best

10 7 0 5079.7

10 7 1 5053.0

10 7 2 5053.0

10 7 3 5053.0

15 7 0 9093.8

15 7 1 9002.2

15 7 2 9002.1

15 7 3 9002.1

20 7 0 14735.6

20 7 1 14583.7

20 7 2 14582.5

20 7 3 14582.5

7 Conclusions

This paper has introduced a recoverable robust model for
the single machine scheduling problem with the total flow
time criterion. A general result that allows for the construc-
tion of compact formulations for a wide range of recoverable
robust problems has been presented, and this approach has
been applied to the specific scheduling problem we consider.
We have analysed the incremental subproblem of the robust
scheduling problem in detail in an attempt to develop more
tailored and effective compact formulations for this problem.
Specifically, we have proved that matching problems with
edge weights of the form of (25) have integral solutions,
and therefore the inclusion of the odd-cycle constraints of
the standard matching polytope is unnecessary. This result
allows us to derive a matching-based compact formulation
for the full recoverable robust single machine scheduling
problem. A symmetric assignment-based formulation has
also been presented, and we show how the integral match-
ing result can be transferred to this alternative formulation to
enable the derivation of a third compact model for this prob-
lem. Computational results show that this assignment-based
model is the strongest of the three exact models.

123

Journal of Scheduling (2025) 28:269–287 283

There remain a number of promising directions in which
future research on this problem can develop. Firstly, in this
work we have considered a limited recourse action of allow-
ing � disjoint swaps to be made to the first-stage schedule.
Other measures of distance between the first and second-
stage solution are certainly possible and worth investigating,
especially if the restriction that the swapped pairs be disjoint
could be relaxed, and interchanges between the positions of
three or more jobs simultaneously can be factored into a
recourse action. Another obvious avenue for future research
is the analysis of this problem in the context of uncertainty
sets different from budgeted uncertainty. Given the vast num-
ber of different objective criteria that have been used for
single-machine scheduling problems and the unique prop-
erties of each, it would be interesting and worthwhile to
investigate the application of this recoverable robust model
to some of these. As a final suggestion, given the limited
size of instance that have been solved by the exact models
we propose, an accurate and effective heuristic approach for
solving large-scale instances of this problem would certainly
be a valuable development.

A Omitted proofs

Proof of Theorem 6 Let an instance I of problem (45)-(47)
be given, and define

P = { y ∈ R
n×n+ : (40) − (43)}.

To solve I , we construct a graph with a single node for each
job i ∈ N , where an edge between nodes i and j indicates
that jobs i and j swap their positions from the first-stage
schedule. Since edges correspond to unique swaps, the set of
edges in this graph is given by E = {(i, j) : i, j ∈ N , j >

i}. The weight of an edge (i, j) in this graph is equal to the
reduction in objective cost from making the corresponding
swap, i.e. aibi +a jb j −aib j −a jbi = (ai −a j)(bi −b j). We
aim to choose up to� edges from this graph to maximise the
reduction in objective cost. That is, given I , we construct an
instance J of the following cardinality-constrained matching
problem:‘

min
∑

i∈N
aibi −

∑

(i, j)∈E
(ai − a j)(bi − b j)zi j (57)

s.t.
∑

(i, j)∈E
zi j +

∑

(j,i)∈E
zi j ≤ 1 ∀i ∈ N

(58)
∑

(i, j)∈E
zi j ≤ � (59)

zi j ≥ 0 ∀(i, j) ∈ E .

(60)

As stated in Corollary 4, this problem has an integral optimal
solution. Hence, letting P ′ = {z ∈ R

|E |
+ : (58)-(60)}, we

construct mappings φ : P → P
′
and φ−1 : P ′ → P which

preserve objective value and integrality, showing problems I
and J are indeed equivalent. To this end, we define φ(y) = z
by zi j = yi j for all (i, j) ∈ E . Observe that

objI (y) =
∑

i∈N

∑

j∈N
aib j yi j

=
∑

i∈N
aibi yii +

∑

i∈N

∑

j∈N : j
=i

ai b j yi j

=
∑

i∈N
aibi yii +

∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)yi j

=
∑

i∈N
aibi

(

1 −
∑

j∈N : j
=i

yi j

)

+
∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)yi j

=
∑

i∈N
aibi −

∑

i∈N

∑

j∈N : j
=i

ai bi yi j

+
∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)yi j

=
∑

i∈N
aibi −

∑

i∈N

∑

j∈N : j>i

(aibi + a jb j)yi j

+
∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)yi j

=
∑

i∈N
aibi −

∑

i∈N

∑

j∈N : j>i

(aibi + a jb j − aib j − a jbi)yi j

=
∑

i∈N
aibi −

∑

(i, j)∈E
(ai − a j)(bi − b j)zi j

= objJ (z).

Conversely, we define φ−1(z) = y with yi j = y ji = zi j
for each (i, j) ∈ E , and yii = (1 − ∑

j∈N : j>i zi j)(1 −∑
j∈N : j<i z ji) for each i ∈ N . Then

objJ (z) =
∑

i∈N
aibi −

∑

(i, j)∈E
(ai − a j)(bi − b j)zi j

=
∑

i∈N
aibi −

∑

i∈N

∑

j∈N : j>i

(aibi + a jb j)zi j

+
∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)zi j

=
∑

i∈N
aibi −

∑

i∈N
aibi

∑

j∈N : j>i

zi j

−
∑

i∈N
aibi

∑

j∈N : j<i

z ji

123

284 Journal of Scheduling (2025) 28:269–287

+
∑

i∈N
aibi

∑

j∈N : j>i

zi j
∑

j∈N : j<i

z ji

︸ ︷︷ ︸
=0

+
∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)zi j

=
∑

i∈N
aibi

(

1 −
∑

j∈N : j>i

zi j

)(

1 −
∑

j∈N : j<i

z ji

)

+
∑

i∈N

∑

j∈N : j>i

(aib j + a jbi)zi j

=
∑

i∈N
aibi yii +

∑

i∈N

∑

j∈N : j>i

ai b j yi j

+
∑

i∈N

∑

j∈N : j>i

a j bi y ji

=
∑

i∈N
aibi yii

+
∑

i∈N

∑

j∈N : j
=i

ai b j yi j

=
∑

i∈N
aib j yi j

= objI (y).

Therefore min y∈P objI (y) = minz∈P ′ objJ (z). Since prob-
lem (28)-(31) has an optimal integral solution, there must
also be an optimal integral solution to I via the mapping
φ−1, proving the claim.
�

Proof of Theorem 8 To prove this, it will suffice to show that
P(Fm) � P(Fa), where P(Fm) and P(Fa) denote the sets
of feasible solutions to the linear relaxations of the non-
linear matching-based and assignment-based formulations
respectively, i.e. that for each (x, z, q) ∈ P(Fm), there
exists a y such that (x, y, q) ∈ P(Fa). Note that the
same vector q is used in both formulations, which results
in the objective values being the same. To this end, let z be
part of a feasible solution to the matching formulation, and
define the transformation φ(z) = y by yi j = y ji = zi j
for (i, j) ∈ E = {(i, j) ∈ N × N : i < j} and
yii = 1 − ∑

j∈N : j>i zi j − ∑
j∈N : j<i z ji for i ∈ N .

Firstly, observe that the assignment constraints (49) and
(50) are satisfied by this definition of y. For each j ∈ N we
have that

∑

i∈N
yi j =

∑

i∈N :i< j

yi j +
∑

i∈N :i> j

y ji + yii

=
∑

i∈N :i< j

zi j +
∑

i∈N :i> j

z ji

+ 1 −
∑

i∈N :i< j

zi j −
∑

i∈N :i> j

z ji = 1.

The same can be shown for the ‘incoming’ assignment con-
straints for each i ∈ N .

Now observe that constraint (35) states that

∑

i∈N

∑

j∈N : j>i

zi j ≤ �,

or equivalently

∑

i∈N

∑

j∈N : j>i

yi j ≤ �.

Since, yi j = y ji for all i, j ∈ N , we have that

∑

i∈N

(∑

j∈N : j>i

yi j +
∑

j∈N : j<i

yi j

)

≤ 2�,

and therefore as a consequence of the assignment constraints,
which imply

∑

i∈N

∑

j∈N
yi j =

∑

i∈N

(∑

j∈N : j>i

yi j +
∑

j∈N : j<i

yi j + yii

)

= n,

we have that

∑

i∈N
yii = n −

∑

i∈N

(∑

j∈N : j>i

yi j +
∑

j∈N : j<i

yi j

)

≥ n − 2�.

This is exactly constraint (51) from the assignment-based
formulation.

Finally, consider constraints (33):

∑

m∈M
amiqm +

∑

j∈N : j>i

(∑

�∈N
� · x j� −

∑

�∈N
� · xi�

)

zi j

−
∑

j∈N : j<i

(∑

�∈N
� · xi�

−
∑

�∈N
� · x j�

)

z ji ≥ (n + 1 −
∑

�∈N
� · xi�) ∀i ∈ N .

These can be rewritten as

∑

m∈M
amiqm ≥ (n + 1 −

∑

�∈N
� · xi�)

+
∑

j∈N : j<i

z ji
∑

�∈N
� · xi� +

∑

j∈N : j>i

zi j
∑

�∈N
� · xi�

−
∑

j∈N : j<i

z ji
∑

�∈N
� · x j�

−
∑

j∈N : j>i

zi j
∑

�∈N
� · x j�

123

Journal of Scheduling (2025) 28:269–287 285

= (n + 1 −
∑

�∈N
� · xi�) +

∑

j∈N : j<i

yi j
∑

�∈N
� · xi�

+
∑

j∈N : j>i

yi j
∑

�∈N
� · xi�

−
∑

j∈N : j<i

yi j
∑

�∈N
� · x j�

−
∑

j∈N : j>i

yi j
∑

�∈N
� · x j�

= (n + 1 −
∑

�∈N
� · xi�) +

∑

j∈N : j
=i

yi j
∑

�∈N
� · xi�

−
∑

j∈N : j
=i

yi j
∑

�∈N
� · x j�

= n + 1 −
(

1 −
∑

j∈N : j
=i

yi j

) ∑

�∈N
� · xi�

−
∑

j∈N : j
=i

yi j
∑

�∈N
� · x j�

= n + 1 − yii
∑

�∈N
� · xi�

−
∑

j∈N : j
=i

yi j
∑

�∈N
� · x j�

= n + 1 −
∑

j∈N
yi j

∑

�∈N
� · x j�

= (n + 1)
∑

j∈N
yi j

−
∑

j∈N
yi j

∑

�∈N
� · x j�

=
∑

j∈N

(
n + 1 −

∑

�∈N
� · x j�

)
yi j ,

for each i ∈ N which are constraints (53) from the assign-
ment formulation.

Hence, every feasible solution to the non-linear matching-
based formulation has a corresponding feasible solution for
the non-linear assignment-based formulation, i.e. P(Fm) ⊆
P(Fa). The examples used in the proof of Theorem 7 show
that there exist instances for which the LP bound of the
matching formulation is strictly larger than that of the assign-
ment formulation, demonstrating that P(Fm) ⊂ P(Fa).
�

B Complete formulations

B.1 General model

The complete linear compact formulation for the general
recoverable robust model presented in Sect. 3 is as follows:

min
∑

m∈M
bmqm (61)

s.t.
∑

k∈K
μk = 1 (62)

∑

m∈M
amiqm≥

∑

k∈K

⎛

⎝
∑

j∈N
(n+1− j)

∑

i ′∈N
hkii ′ j

⎞

⎠ ∀i ∈ N

(63)

∑

i ′∈N
zkii ′ = 1 ∀i ∈ N , k ∈ K (64)

∑

i∈N
zkii ′ = 1 ∀i ′ ∈ N , k ∈ K (65)

zkii ′ = zki ′i ∀i, i ′ ∈ N , k ∈ K (66)
∑

i∈N
zkii ≥ n − 2� ∀k ∈ K (67)

∑

j∈N
xi j = 1 ∀i ∈ N (68)

∑

i∈N
xi j = 1 ∀ j ∈ N (69)

wk
ii ′ j ≤ zkii ′ ∀i, i ′, j ∈ N , k ∈ K (70)

wk
ii ′ j ≤ xi ′ j ∀i, i ′, j ∈ N , k ∈ K (71)

wk
ii ′ j ≥ zkii ′ + xi ′ j − 1 ∀i, i ′, j ∈ N , k ∈ K (72)

hkii ′ j ≤ wk
ii ′ j ∀i, i ′, j ∈ N , k ∈ K (73)

hkii ′ j ≤ μk ∀i, i ′, j ∈ N , k ∈ K (74)

hkii ′ j ≥ μk + wk
ii ′ j − 1 ∀i, i ′, j ∈ N , k ∈ K (75)

wk
ii ′ j ∈ {0, 1} ∀i, i ′, j ∈ N , k ∈ K (76)

hkii ′ j ≥ 0 ∀i, i ′, j ∈ N , k ∈ K (77)

μk ≥ 0 ∀k ∈ K (78)

qm ≥ 0 ∀m ∈ M (79)

zkii ′ ∈ {0, 1} ∀i, i ′ ∈ N , k ∈ K (80)

xi j ∈ {0, 1} ∀i, j ∈ N . (81)

2.2 Matching-basedmodel

The fully-linearised formulation of the matching-based
model presented in Sect. 4.1 is as follows:

min
x, z, u, v, q

∑

m∈M
bmqm (82)

s.t.
∑

(i, j)∈E
zi j +

∑

(j,i)∈E
z ji ≤ 1 ∀i ∈ N

(83)

123

286 Journal of Scheduling (2025) 28:269–287

∑

(i, j)∈E
zi j ≤ � (84)

∑

m∈M
amiqm +

∑

(i, j)∈E

(∑

�∈N
� · vi j� −

∑

�∈N
� · ui j�

)

−
∑

(j,i)∈E

(∑

�∈N
� · v j i� −

∑

�∈N
� · u ji�

)

≥ (n + 1 −
∑

�∈N
� · xi�) ∀i ∈ N

(85)
∑

i∈N
xi� = 1 ∀� ∈ N (86)

∑

�∈N
xi� = 1 ∀i ∈ N (87)

ui j� ≤ xi� ∀(i, j) ∈ E, � ∈ N (88)

ui j� ≤ zi j ∀(i, j) ∈ E, � ∈ N (89)

ui j� ≥ zi j + xi� − 1 ∀(i, j) ∈ E, � ∈ N (90)

vi j� ≤ x j� ∀(i, j) ∈ E, � ∈ N (91)

vi j� ≤ zi j ∀(i, j) ∈ E, � ∈ N (92)

vi j� ≥ zi j + x j� − 1 ∀(i, j) ∈ E, � ∈ N (93)

ui j� ≥ 0 ∀(i, j) ∈ E, � ∈ N (94)

vi j� ≥ 0 ∀(i, j) ∈ E, � ∈ N (95)

qm ≥ 0 ∀m ∈ M (96)

zi j ≥ 0 ∀(i, j) ∈ E (97)

xi� ∈ {0, 1} ∀i, � ∈ N . (98)

2.3 Assignment-basedmodel

The fully-linearised formulation of the assignment-based
model derived in Sect. 4.2 is as follows:

min
x, y, w, q

∑

m∈M
bmqm (99)

s.t.
∑

i∈N
yi j = 1 ∀ j ∈ N (100)

∑

j∈N
yi j = 1 ∀i ∈ N (101)

∑

i∈N
yii ≥ n − 2� (102)

yi j = y ji ∀i, j ∈ N (103)
∑

m∈M
ami qm≥

∑

j∈N

(
(n+1)yi j−

∑

�∈N
� · wi j�

)
∀i∈N (104)

∑

i∈N
xi� = 1 ∀� ∈ N (105)

∑

�∈N
xi� = 1 ∀i ∈ N (106)

wi j� ≤ x j� ∀i, j, � ∈ N (107)

wi j� ≤ yi j ∀i, j, � ∈ N (108)

wi j� ≥ x j� + yi j − 1 ∀i, j, � ∈ N (109)

wi j� ≥ 0 ∀i, j, � ∈ N (110)

qm ≥ 0 ∀m ∈ M (111)

yi j ≥ 0 ∀i, j ∈ N (112)

xi� ∈ {0, 1} ∀i, � ∈ N . (113)

Acknowledgements The authors would like to thank the reviewers for
the part they played in the improvement of this paper with their con-
structive and insightful feedback. The authors are also grateful for the
support of the EPSRC-funded (EP/L015692/1) STOR-i Centre for Doc-
toral Training.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aissi, H., Aloulou, M. A., & Kovalyov, M. Y. (2011). Minimizing the
number of late jobs on a singlemachine under due date uncertainty.
Journal of Scheduling, 14(4), 351–360.

Aloulou,M.A.,&DellaCroce, F. (2008). Complexity of singlemachine
scheduling problems under scenario-based uncertainty. Opera-
tions Research Letters, 36(3), 338–342.

Balinski, M. L. (1965). Integer programming: Methods, uses, compu-
tations.Management Science, 12(3), 253–313.

Bendotti, P., Chrétienne, P., Fouilhoux, P., & Pass-Lanneau, A.
(2022). The anchor-robust project scheduling problem.Operations
Research.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations
Research, 52(1), 35–53.

Bold, M., & Goerigk, M. (2021). A compact reformulation of the
two-stage robust resource-constrainedproject scheduling problem.
Computers & Operations Research, 130, 105232.

Bold, M., & Goerigk, M. (2022). Investigating the recoverable robust
single machine scheduling problem under interval uncertainty.
Discrete Applied Mathematics, 313, 99–114.

Bougeret, M., Pessoa, A. A., & Poss, M. (2019). Robust scheduling
with budgeted uncertainty. Discrete Applied Mathematics, 261,
93–107.

Bruni, M. E., Pugliese, L. D. P., Beraldi, P., & Guerriero, F. (2017). An
adjustable robust optimization model for the resource-constrained
project scheduling problem with uncertain activity durations.
Omega, 71, 66–84.

Bruni, M. E., Pugliese, L. D. P., Beraldi, P., & Guerriero, F. (2018). A
computational study of exact approaches for the adjustable robust
resource-constrained project scheduling problem. Computers &
Operations Research, 99, 178–190.

Buchheim, C., & Kurtz, J. (2017). Min-max-min robust combinatorial
optimization. Mathematical Programming, 163(1–2), 1–23.

Chang, Z., Song, S., Zhang, Y., Ding, J.-Y., Zhang, R., & Chiong, R.
(2017). Distributionally robust single machine scheduling with

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Scheduling (2025) 28:269–287 287

risk aversion. European Journal of Operational Research, 256(1),
261–274.

Daniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge
against processing time uncertainty in single-stage production.
Management Science, 41(2), 363–376.

Dolan, E.D.,&Moré, J. J. (2002). Benchmarking optimization software
with performance profiles. Mathematical Programming, 91(2),
201–213.

Edmonds, J. (1965). Maximum matching and a polyhedron with 0,1-
vertices. Journal of Research of the National Bureau of Standards,
69B, 125–130.

Fischer, D., Hartmann, T. A., Lendl, S., & Woeginger, G. J. (2021).
An investigation of the recoverable robust assignment problem. In
16th International Symposium on Parameterized and Exact Com-
putation (IPEC 2021), vol. 214, pp. 19:1–19:14. Schloss Dagstuhl.

Fridman, I., Pesch, E., & Shafransky, Y. (2020). Minimizing maximum
cost for a single machine under uncertainty of processing times.
European Journal of Operational Research, 286(2), 444–457.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: a survey. In Annals of discrete mathematics, vol. 5, pp.
287–326. Elsevier.

Hanasusanto,G.A.,Kuhn,D.,&Wiesemann,W. (2015).K-adaptability
in two-stage robust binary programming. Operations Research,
63(4), 877–891.

Kasperski, A. & Zielinski, P. (2014). Minmax (regret) scheduling
problems. Sequencing and scheduling with inaccurate data, pp.
159–210.

Kasperski, A. (2005). Minimizingmaximal regret in the single machine
sequencing problemwith maximum lateness criterion.Operations
Research Letters, 33(4), 431–436.

Kasperski, A., & Zieliński, P. (2008). A 2-approximation algorithm for
interval data minmax regret sequencing problems with the total
flow time criterion. Operations Research Letters, 36(3), 343–344.

Kasperski, A., & Zieliński, P. (2016). Single machine scheduling prob-
lems with uncertain parameters and the OWA criterion. Journal of
Scheduling, 19(2), 177–190.

Kasperski, A., & Zieliński, P. (2019). Risk-averse single machine
scheduling: Complexity and approximation. Journal of Schedul-
ing, 22(5), 567–580.

Kouvelis, P.,&Yu,G. (1997).Robust discrete optimization and its appli-
cations. Netherlands: Kluwer Academic Publishers Dordrecht.

Lebedev, V., &Averbakh, I. (2006). Complexity of minimizing the total
flow time with interval data and minmax regret criterion. Discrete
Applied Mathematics, 154(15), 2167–2177.

Liebchen, C., Lübbecke,M.,Möhring, R., & Stiller, S. (2009). The con-
cept of recoverable robustness, linear programming recovery, and
railway applications. In Robust and online large-scale optimiza-
tion, pp. 1–27. Springer.

Lu, C.-C., Lin, S.-W.,&Ying, K.-C. (2012). Robust scheduling on a sin-
gle machine to minimize total flow time.Computers &Operations
Research, 39(7), 1682–1691.

Lu, C.-C., Ying, K.-C., & Lin, S.-W. (2014). Robust single machine
scheduling for minimizing total flow time in the presence of uncer-
tain processing times. Computers & Industrial Engineering, 74,
102–110.

Mastrolilli, M., Mutsanas, N., & Svensson, O. (2013). Single machine
scheduling with scenarios. Theoretical Computer Science, 477,
57–66.

Montemanni, R. (2007). A mixed integer programming formulation for
the total flow time single machine robust scheduling problem with
interval data. Journal of Mathematical Modelling and Algorithms,
6(2), 287–296.

Schrijver, A. (2003). Combinatorial optimization: Polyhedra and effi-
ciency (Vol. 24). New York: Springer Science & Business Media.

Tadayon, B., & Smith, J. C. (2015). Algorithms and complexity anal-
ysis for robust single-machine scheduling problems. Journal of
Scheduling, 18(6), 575–592.

Thomas, D. J. (2015). Matching Problems with Additional Resource
Constraints. PhD thesis, Universität Trier.

Yang, J., & Yu, G. (2002). On the robust single machine scheduling
problem. Journal of Combinatorial Optimization, 6(1), 17–33.

Zhao, H., Zhao, M., et al. (2010). A family of inequalities valid for
the robust single machine scheduling polyhedron. Computers &
Operations Research, 37(9), 1610–1614.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Recoverable robust single machine scheduling with polyhedral uncertainty
	Abstract
	1 Introduction
	2 Problem definition
	3 A general model for recoverable robustness
	4 Complexity of subproblems and compact formulations
	4.1 Matching-based formulation
	4.2 Assignment-based formulation

	5 Comparison of formulations

	6 Computational experiments
	6.1 Heuristics
	6.2 Exact models
	6.3 Model parameters

	7 Conclusions
	A Omitted proofs
	B Complete formulations
	B.1 General model
	2.2 Matching-based model
	2.3 Assignment-based model

	Acknowledgements
	References

