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A Lower Bound on the Success Probability of Binary Random
Linear Network Codes aided by Noise Decoding

Ioannis Chatzigeorgiou, Senior Member, IEEE

Abstract—The decoding of binary random linear codes for
packet erasures relies on receivers collecting a sufficient number
of error-free coded packets for the reconstruction of a transmitted
message. Syndrome decoding (SD), which conforms to the broad
definition of guessing random additive noise decoding (GRAND),
endeavors to repair partially-correct received coded packets –
which would otherwise be discarded by the packet erasure
decoder – and boost the probability of a receiver successfully
recovering the transmitted message. This paper introduces a
low-complexity variant of SD, dubbed single-error correcting SD
(SEC-SD), and conducts an in-depth analysis of the success prob-
ability of packet erasure decoding aided by SEC-SD. The analysis
leads to a practical lower bound on the success probability of
packet erasure decoding complemented by SD, and provides
guidance on how SEC-SD can be modified to potentially achieve a
higher success probability than SD at a lower computational cost.

Index Terms—Network coding, binary codes, linear codes,
decoding, error analysis.

I. INTRODUCTION

RANDOM linear network coding (RLNC) [1] and foun-
tain coding [2] fall in the general category of random

linear packet erasure coding, whereby a message composed
of k source packets is encoded into n coded packets, for
n > k, and transmitted over a packet erasure channel,
that is, a channel that introduces errors to packets with a
certain probability. Packet erasure decoding at a destination
node will be successful at recovering the k source packets
if k linearly independent coded packets are received without
errors. Received packets that contain errors are referred to
as partial packets and are discarded by the packet erasure
decoder. Proposed solutions often rely on random linear packet
erasure coding, e.g., protocols based on network coding or
fountain coding that enable the extension of the coverage
of terrestrial infrastructures with the support of the satellite
segment [3]–[5], or cooperative coded caching schemes based
on fountain coding that facilitate the delivery of popular
content to connected vehicles [6].

A. Utilizing the Algebraic Properties of RLNC

Partial packet recovery (PPR) is a family of methods that
attempt to repair partial packets. When PPR is combined with
packet erasure decoding, both the correctly received coded
packets and the repaired coded packets can be utilized in
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the reconstruction of the k source packets. If each coded
packet generated by RLNC consists of b bits, and the n
transmitted coded packets are stacked to form an n × b
matrix, then each column represents a codeword of n bits.
Therefore, the output of RLNC can be viewed not only as
the row-wise concatenation of n coded packets of b bits, but
also as the column-wise concatenation of b codewords of n
bits. Packetized rateless algebraic consistency (PRAC) [7] is
a PPR method that exploits the algebraic properties of RLNC
to identify codewords that contain errors and iteratively search
for valid codewords to replace erroneous codewords. Given the
row/column correspondence of coded packets and codewords
in RLNC, correcting errors in codewords is equivalent to
repairing segments in coded packets. Variants of PRAC that
aim to reduce the required decoding time include data aware
PRAC (DAPRAC) [8] and segmented PRAC (S-PRAC) [9].

B. Guessing Additive Random Noise

Whereas PRAC methods leverage the algebraic properties
of RLNC, syndrome decoding (SD) for RLNC [10] capitalizes
on the observation that, in typical wireless channel conditions,
up to 95% of the content of partial packets at layers higher than
the physical layer is often error-free [11]. Thus, SD attempts
to correct sparse errors that channel decoding at the physical
layer either failed to correct or introduced because of error
propagation. In contrast to PRAC-based schemes, which look
for the most likely transmitted codeword given a received
erroneous codeword, SD looks for the most likely error pattern
that altered a codeword. SD conforms to the broad definition
of guessing random additive noise decoding (GRAND), which
was initially proposed for the decoding of any channel code at
the physical layer [12], although its principles can be applied
to upper layers too. GRAND leverages the fact that, in low
noise conditions, the search space for all possible error patterns
that could have corrupted a codeword is smaller than the search
space for all possible codewords of a code. Details about
recently proposed GRAND variants, primarily for the physical
layer, and their implementation can be found on [13].

Besides SD, which considers coding over the finite field F2

and transmission over a binary symmetric channel, two other
schemes that align with the principles of GRAND have been
proposed to aid random linear network decoding. The scheme
described in [14] extends SD to handle burst errors, in which
case error patterns that altered adjacent codewords are corre-
lated. An alternative to RLNC assisted by SD was proposed in
[15], which also assumes transmission over binary symmetric
channels, but relies on a syndrome definition that is seemingly
different from that used in SD, and considers coding operations
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over any extension of F2, i.e., any finite field F2ρ for ρ ⩾ 1.
The proposed technique yields a decoding advantage, in terms
of error correcting capability, over SD when RLNC is over F2,
but its decoding complexity becomes prohibitive as the packet
length b or the number of coded packets n increase. To reduce
decoding complexity, the authors of [15] place restrictions on
the coding process, which limit the number of error patterns
that the decoder needs to consider, but impose the use of finite
fields larger than F2.

C. Objective and Contributions

The objective of this paper is to study random linear network
decoding over F2 aided by SD [10] and derive a closed-form
expression that bounds from below the success probability of
this joint scheme. We stress that this paper neither develops
novel decoding methods nor looks into finite fields larger than
F2. The reason for focusing on RLNC and SD over F2 is not
to remain faithful to the original scheme proposed in [10], but
to demonstrate that characterization of the success probability
of this joint scheme is not trivial, even when F2 is considered.
We envisage that the proposed framework will motivate further
research into the analysis of random linear network decoding
complemented by GRAND-inspired methods over large finite
fields and different channel models.

In the course of attaining the main objective of this paper,
we make the following contributions:

• We prove that the noise decoding methods presented in
[10] and [15] attempt to solve the exact same estimation
problem.

• We obtain an exact expression for the success probability
of random linear network decoding assisted by SD, when
SD considers a specific constrained set of possible error
patterns. The derived expression serves as a lower bound
on the success probability of random linear network
decoding aided by SD, when SD has access to the full –
unconstrained – set of error patterns, as in [10].

• We demonstrate through simulations that choosing the
constrained over the unconstrained set of error patterns
for SD has the potential to improve the error correction
capability of SD, if the stopping criterion is modifed.

D. Paper Organization

The remainder of this paper has been organized as follows:
Section II describes random linear network coding at a source
node and decoding at a destination node. Section III contrasts
key ideas behind PPR based on noise decoding, and explains
how it can be combined with random linear network decoding
to improve the reliability of the communication link between
the source node and a destination node. Sections IV, V and
VI are concerned with the analysis of the contribution of
SD to the overall success probability of joint random linear
network decoding and SD. Theoretical results from this prob-
ability analysis are compared with probability measurements,
obtained through simulations, in Section VII. Concluding
remarks and research directions for future work are presented
in Section VIII.

E. Nomenclature

We use lowercase letters in italic type (e.g. b) to denote
scalars, lowercase letters in bold type (e.g., m) to represent
column vectors, and uppercase letters in bold type (e.g., Υ) to
refer to matrices. Let Υ ∈ Fn×k

2 , where Fn×k
2 denotes the set

of all n×k matrices over F2. The L1 norm ∥Υ∥1 provides the
Hamming weight of Υ, which enumerates the number of non-
zero elements in Υ. We have adopted the notation Υi:i′,j:j′ to
refer to a submatrix of Υ composed of those entries of Υ that
occupy rows i to i′ and columns j to j′. A range of rows or a
single row of Υ is denoted by Υi:i′,∗ and Υi,∗, respectively.
Similarly, Υ∗,j:j′ and Υ∗,j represent submatrices of Υ formed
by a range of columns or a single column, respectively. For
example, if we are tasked to calculate the Hamming weight
of the second row of Υ ∈ F2×4

2 , defined as:

Υ =

(
1 0 0 1
0 1 1 1

)
,

we obtain Υ2,∗ = (0 1 1 1) and ∥Υ2,∗∥1 = 3. This nomen-
clature has been introduced to facilitate the description of
packet erasure coding and error estimation that are discussed
in Section II and Section III, respectively.

II. PACKET ERASURE CODING AND DECODING BASED ON
BINARY RANDOM LINEAR NETWORK CODES

A source node that employs binary RLNC performs the
following operation

X = GU (1)

to encode a source message, expressed as U ∈ Fk×b
2 , into a

coded message, represented by X ∈ Fn×b
2 , using the generator

matrix G ∈ Fn×k
2 . Essentially, the source message has been

segmented into k source packets, each composed of b bits.
The source packets have then be stacked together to form the
k×b matrix U, that is, Uj,∗ represents the j-th source packet,
for 1 ⩽ j ⩽ k. Similarly, the rows of X, denoted by Xi,∗ for
1 ⩽ i ⩽ n, represent coded packets. The n coded packets
are broadcast to one or more destination nodes. We assume
that systematic coding is employed, which implies that the
first k of the n coded packets are identical to the k source
packets, while the remaining n − k coded packets are linear
combinations of the source packets. The generator matrix G
can thus be expressed as:

G =

(
Ik
C

)
, (2)

where Ik is the k × k identity matrix. Each element of the
(n − k) × k matrix C is chosen uniformly and at random
from F2. Systematic coding ensures that G has full rank, i.e.,
rank(G) = k, which suggests that X will be successfully
decoded into U by a destination node when communication is
error-free. The work presented in this paper can be extended to
non-systematic coding as long as rank(G) = k and, therefore,
elementary column operations on G can transform G into
standard form as in (2).

Equation (1) can also be viewed from a column-wise per-
spective, whereby an input word U∗,l of length k is encoded
into a codeword X∗,l of length n using a (n, k) binary random



3

linear code described by the n × k generator matrix G, i.e.,
X∗,l = GU∗,l for 1 ⩽ l ⩽ b. The (n, k) code is rateless,
that is, for a given k, the value of n and, by extension, the
code rate k/n are not fixed. For n ⩾ k, additional rows can be
randomly generated and appended to G, leading to an increase
in the number of transmitted coded packets or, equivalently,
an increase in the length of the generated codewords. In
conclusion, matrix X can be regarded as the outcome of
row-wise randomized packet erasure coding or column-wise
random linear coding, which are different perspectives on the
encoding of matrix U using a single (n, k) random linear code.

Each coded packet Xi,∗, for 1 ⩽ i ⩽ n, is transmitted to
a destination node over a binary symmetric channel (BSC)
characterized by crossover probability ε. The received coded
packet at the destination node is denoted by Yi,∗. In line with
the methods and terminology used in the literature of PPR,
e.g., [8]–[10], each of the n received coded packets is classified
as valid (i.e., error-free) or partial (i.e., erroneous). If nR ⩽ n
received coded packets contain no errors, their indices form
the ordered sequence (vi)

nR

i=1 = (v1, . . . , vnR), where vi < vi′

for i < i′.
The rows in Y that correspond to valid packets can be

extracted from Y and compose a new matrix Y(v) with the
help of sequence (vi)

nR

i=1. The nR × b matrix Y(v) can be
obtained from the n× b matrix Y using:

Y
(v)
i,∗ = Yvi,∗ = Xvi,∗ for i = 1, . . . , nR, (3)

since the valid packets at the destination node are identical
to the corresponding coded packets at the source node, which
suggests that Y(v) = X(v). The rows in G that contributed
to the generation of the nR valid packets can be isolated in
a similar manner using G

(v)
i,∗ = Gvi,∗ for i = 1, . . . , nR.

Therefore, relationship (1) at the destination node reduces to
X(v) = G(v) U, where the source message conveyed by U can
be recovered if rank(G(v)) = k. Evidently, decoding requires
knowledge of G at the destination node. To achieve this with
minimal overhead, the seed that initializes the pseudo-random
number generator, which produces the random elements of G
at the source node, could be embedded in the header of each
transmitted coded packet [16]. As a result, the pseudo-random
number generator at the destination node would be in sync
with its counterpart at the source node [7].

In the event that rank(G(v)) < k, fewer than k among the
nR valid packets are linearly independent, a unique solution
for U cannot be obtained and, thus, packet erasure decoding
is deemed unsuccessful. As explained in Section I, PPR does
not discard partial packets, but attempts to repair them. Con-
sequently, PPR has the potential to improve the chances that
k among the repaired and valid packets are linearly indepen-
dent, and increase the probability that rank(G(v)) = k. The
following section presents two PPR methods, which estimate
the impact of errors on transmitted packets that have been
generated by systematic RLNC.

III. PPR BASED ON ERROR ESTIMATION

GRAND was proposed as a universal decoding method for
the physical layer of any (n, k) code, when n takes small

to moderate values and the code rate k/n is high [12]. In
this case, the entropy of the noise is smaller than the entropy
of the codewords, therefore identifying the error pattern that
corrupted a codeword is simpler than exhaustively searching
through all possible codewords. As GRAND is not code-
specific, it has rendered decoding of random linear codes feasi-
ble. Section II established that RLNC is equivalent to column-
wise random linear coding. This suggests that GRAND and, in
general, error estimation methods are not only suitable for the
physical layer, but can also be used at layers higher than the
physical layer to correct bit errors in partial packets generated
by RLNC.

Since partial and valid packets form the rows of matrix Y
at the destination node, as mentioned in Section II, we can
write:

Y = X+E, (4)

where E is the error matrix. The objective of the two PPR
methods described in [10] and [15], and discussed in this
section, is the estimation of E, which can help repair partial
packets that form rows of Y in (4). The repaired packets will
increase the number of valid packets, increase the number
of rows in G(v), raise the probability that rank(G(v)) = k
and improve the likelihood that the source message will be
successfully reconstructed.

In operational conditions, physical-layer techniques (e.g.,
forward error correction) at the destination node counteract
most of the effects of the channel noise, thus significantly
reducing the number of errors passed on to layers higher
than the physical layer, which is where random linear network
decoding and PPR are employed. This implies that the error
matrix E in (4) is expected to be sparse, that is, most of the
entries of E are zero. The uniqueness of the solution produced
by the error estimation process in PPR relies on E being
sufficiently sparse [10].

A. Column-wise Error Matrix Estimation

A destination node employing syndrome decoding (SD) [10]
exploits knowledge of the n× k generator matrix G to build
the n× (n− k) parity-check matrix H as follows:

H =
(
−C | In−k

)⊤
, (5)

so that:
H⊤G = 0(n−k)×k , (6)

where −C = C when arithmetic operations are in F2, and
0(n−k)×k is the (n − k) × k zero matrix. Multiplication of
H⊤ by Y at the destination node produces the (n − k) × b
syndrome matrix S, i.e., S = H⊤Y. Using (1), (4) and (6),
we find that the relationship between the syndrome matrix S
and the error matrix E is:

S = H⊤Y = H⊤(X+E) = H⊤(GU+E) = H⊤E. (7)

Let sequence (pi)
n−nR

i=1 contain the indices of the partial
packets, which were discarded by packet erasure decoding, as
seen in Section II. Row Epi,∗, for i = 1, . . . , n− nR, should
contain at least one non-zero element, since it has altered the
transmitted coded packet Xpi,∗ and led to the reception of
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partial packet Ypi,∗. The remaining nR rows of E should
contain zeros only. In a similar manner to (3), the non-zero
rows in the error matrix E can be extracted from E and form
the (n− nR)× b matrix E(p) using:

E
(p)
i,∗ = Epi,∗ for i = 1, . . . , n− nR. (8)

The all-zero rows of E and the corresponding columns of H⊤

do not impact the result of the product H⊤E and can thus
be removed. In other words, H⊤E = (H(p))⊤E(p), where
H

(p)
i,∗ = Hpi,∗ for i = 1, . . . , n − nR, which implies that (7)

can be rewritten as:

S = [H(p)]⊤ E(p). (9)

Mohammadi et al. [10] decomposed the problem of estimat-
ing the (n−nR)×b matrix E(p) into b independent problems,
each aiming at estimating a column of E(p):

S∗,j = [H(p)]⊤ E
(p)
∗,j for j = 1, . . . , b. (10)

Given that E is a sparse matrix, the solution to (10) can be
formulated as:

Ê
(p)
∗,j = argmin

m
∥m∥1 (11a)

subject to [H(p)]⊤m = S∗,j , (12a)

where Ê
(p)
∗,j is the estimate of E

(p)
∗,j , and m ∈ Fn−nR

2 is
a column vector that satisfies constraint (12a) and has the
minimum possible Hamming weight. SD considers (11a) and
initiates an exhaustive search for a solution. The Hamming
weight of m is gradually incremented until a realization of
m that has the lowest Hamming weight and satisfies (12a) is
found. Then, column Ê

(p)
∗,j is set equal to the identified vector

m. This process is repeated for j = 1, . . . , b until all columns
of Ê(p) have been obtained.

B. Full Error Matrix Estimation

A PPR method, which also requires the derivation of a
syndrome matrix for the estimation of E and the subsequent
correction of rows in Y using (4), was proposed in [15]. The
proposed method leverages the fact that the last n−k transmit-
ted packets, also known as non-systematic packets, are random
linear combinations of the first k transmitted packets, called
systematic packets. According to (1) and (2), the relationship
between the systematic packets X1,∗, . . . ,Xk,∗ and the non-
systematic packets Xk+1,∗, . . . ,Xn,∗ is:

Xk+1:n,∗ = CX1:k,∗. (13)

Upon formation of matrix Y from the n received packets,
as described in Section II, the destination node calculates the
following (n− k)× b syndrome matrix:

∆ = Yk+1:n,∗ +CY1:k,∗. (14)

The syndrome matrix ∆ can be rewritten as a function of the
error matrix E, if (14) is combined with (4) and (13):

∆ = (Xk+1:n,∗ +Ek+1:n,∗) +C(X1:k,∗ +E1:k,∗)

= Ek+1:n,∗ +CE1:k,∗, (15)

since Xk+1:n,∗ + Xk+1:n,∗ = 0(n−k)×b. An estimate of the
error matrix E, denoted by Ê, can be obtained using ∆, C as
well as (vi′)

nR

i′=1 and (pi)
n−nR

i=1 , which contain the indices of
the valid and partial packets, respectively, as follows [15]:

Ê = argmin
M

pn−nR∑
p=p1

∥Mp,∗∥1 (16a)

subject to Mi,∗ ̸= 01×b for i = p1, . . . , pn−nR
(17a)

Mi′,∗ = 01×b for i′ = v1, . . . , vnR
(18a)

Mk+1:n,∗ +CM1:k,∗ = ∆. (19a)

The estimated error matrix will be a matrix M ∈ Fn×b
2 that

has the lowest Hamming weight, as per (16a). Condition (17a)
ensures that rows of M with indices corresponding to partial
packets should not contain only zeros, as this would imply
that the respective received packets should have been valid.
By contrast, rows of M that contain only zeros should have
indices that correspond to valid packets, as imposed by (18a).
Matrix M is accepted as a solution if it satisfies (19a).

C. Comparison of the Estimation Methods

Closer inspection of the syndrome matrix S, used in [10]
and defined in (7), and the syndrome matrix ∆, used in [15]
and defined in (14), reveals that the two matrices are identical:

S = H⊤E

=
(
C | In−k

) E1:k,∗
———–
Ek+1:n,∗


= CE1:k,∗ + In−kEk+1:n,∗

= ∆. (20)

Thus, the optimization problem in (16) can be rewritten as:

Ê = argmin
M

pn−nR∑
p=p1

∥Mp,∗∥1 (21a)

subject to Mi,∗ ̸= 01×b for i = p1, . . . , pn−nR (22a)
Mi′,∗ = 01×b for i′ = v1, . . . , vnR (23a)
H⊤M = S, (24a)

where constraint (19a) has been replaced by the equivalent
constraint (24a).

We conclude that the PPR methods developed in [10]
and [15] for RLNC consider the same problem, that is, the
estimation of the error matrix E ∈ Fn×b

2 using S = H⊤E,
given S ∈ F(n−k)×b

2 and H ∈ Fn×(n−k)
2 . The proposers of SD

[10] acknowledged the computational complexity of a solving
method that treats E as a single block and opted for (11),
which estimates E column by column. Since (11) focuses only
on the n− nR non-zero rows of E, the search space for each
column of E contains 2n−nR possible column realizations. As
each of the b columns of E is estimated separately, the search
space for the whole matrix E has size b2n−nR , which increases
linearly with the number of bits b in a packet. On the other
hand, the authors of [15] favored (16), which is equivalent
to (21), to estimate the whole matrix E as a single block. In
that case, the search space for each non-zero row of E has
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size 2b − 1. However, each possible realization of a single
row of E needs to be considered along with every possible
realization of all other rows of E, leading to a search space
of size (2b − 1)n−nR , which grows exponentially with b.

We established that SD [10] is significantly less compu-
tationally expensive than the method proposed in [15], as it
trades estimation accuracy for computational efficiency. The
column-wise estimation process of the error matrix in SD
does not eliminate the possibility of incorrectly returning a
matrix that contains only zeros in rows that correspond to
partial packets. The probability of SD returning an error matrix
that contains all-zero rows at invalid positions reduces with an
increasing packet size b or an increasing crossover probability
ε. This paper derives a lower bound on the probability that
a destination node, which employs RLNC decoding aided
by SD, will decode the received packets and recover the
source message. The bound will reveal the minimum achiev-
able increase in the decoding probability when error matrix
estimation complements RLNC decoding.

D. Problem Decomposition

In order for SD to estimate a column of the error matrix, all
realizations of the 1× (n−nR) vector m that have a specific
weight are considered in (11a). If none of them satisfy (12a),
the weight is incremented by one and the process is repeated.
For example, if the all-zero vector of length n− nR does not
meet (12a) for column j of the syndrome matrix, SD tests all
n− nR vectors m that have weight ∥m∥1 = 1. The non-zero
entries in m are gradually increased and all

(
n−nR

∥m∥1

)
possible

vector realizations are tested for each weight value ∥m∥1. The
entries of the first vector m that satisfies (12a) are copied over
to column j of Ê(p) as per (11a). To obtain a lower bound on
the success probability of RLNC decoding aided by SD, we
introduce a variant of SD that imposes the following additional
constraint on (11a) and (12a):

∥m∥1 ⩽ 1. (25)

We shall refer to this variant of SD as single-error correcting
SD (SEC-SD). In SEC-SD, only realizations of m that have
weight 0 and 1 are queried. If no suitable vector m is
identified, the search is abandoned and estimation of the error
matrix is deemed unsuccessful. Whereas the search space for
the error matrix has size b2n−nR when SD is used, the search
space reduces to b(n − nR + 1) when SEC-SD is employed.
Fig. 1 exemplifies the difference between SD and SEC-SD.

Although SEC-SD has been introduced as a theoretical tool
to study joint random linear network decoding and syndrome
decoding, it could also be used in practice. For example, if 0.5
is the probability that a packet of b = 64 bits will be received
in error, and if errors are uniformly distributed in each packet,
the crossover probability will be ε = 1−(1−0.5)1/64 ≈ 0.01.
If n = 25 packets are transmitted, the 25 × 64 error matrix
will contain 25 × 64 × 0.01 = 16 uniformly distributed non-
zero entries, on average. SEC-SD will be able to handle error
matrices that contain up to b = 64 non-zero entries, provided
that each column contains at most one non-zero entry.

n− nR = 6
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[H(p)]⊤m = S∗,j
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. . .

2

. . .

. . . n− nR

SEC-SD considers the subset

of n− nR + 1 vectors

that have weight 0 or 1

SD considers the full set of 2n−nR vectors

Fig. 1. Application of SD for the identification of the lowest-weight vector
m that satisfies (12a) and thus meets the requirements for use as column j
of matrix Ê(p). Entries set to 1 are depicted by ‘■’, whereas entries set to 0
are represented by ‘□’. The figure also depicts the smaller set of vectors that
SEC-SD considers for a column of Ê(p).

With the help of SEC-SD, the problem of obtaining a lower
bound on the probability of RLNC decoding aided by SD can
be decomposed into the following three parts:

• Analysis of the probability that the BSC will alter at most
one bit in each of the b codewords generated by the (n, k)
random linear code or, equivalently, that each column of
the n × b error matrix contains at most one non-zero
entry. However, the non-zero entries in each column are
conditioned by the reception of nR valid packets and n−
nR partial packets. In other words, the non-zero entries
should be distributed in the columns of E in such a way
that nR rows of E contain only zeros, while the remaining
n−nR rows contain at least one non-zero entry. This task
is carried out in Section IV.

• Derivation of the probability that SEC-SD will return an
accurate estimate of the error matrix, provided that each
column of the error matrix contains at most one non-zero
entry. This task is challenging because we cannot consider
the decoding of a fixed rate (n, k) systematic random
linear code. Instead, we need to consider the decoding of
a variable rate (n−nR, k) random linear code, which has
been obtained by randomly puncturing the output of an
(n, k) systematic random linear code, for values of nR

between 0 and n−1. This problem is tackled in Section V.
• Evaluation of the probability of RLNC decoding aided

by SEC-SD, which bounds from below the probability of
RLNC decoding aided by SD. This work is presented in
Section VI.

IV. ERROR MATRIX REQUIREMENTS FOR SEC
As explained in Section II, RLNC is a packet-wise process

that produces n coded packets of length b bits, which compose
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Fig. 2. Example of the n × b matrix E and the (n − nR) × b submatrix
E(p) for n = 10, nR = 4 and b = 20. Entries set to 1 are depicted by ‘■’,
whereas zero-valued entries are represented by ‘□’. In this example, the last
z = 7 columns contain only zeros.

the rows of the n × b matrix X. This process is equivalent
to performing bit-wise random linear coding to generate b
codewords of length n bits, which form the columns of X.

To derive the probability that SD will correct single errors in
codewords generated by an (n, k) random linear code, we first
need to evaluate the probability that the n× b error matrix E
is composed of columns that contain a single 1 or only zeros.
We should also take into account the fact that knowledge of
the indices of the nR valid packets and the n − nR partial
packets is available at a destination node, which implies that
E consists of nR all-zero rows and n−nR non-zero rows. The
aforementioned conditions can be used to define the following
set of matrices:

S = {Υ ∈ Fn×b
2 : ∥Υ∗,j∥1 ⩽ 1, for j = 1, . . . , b,

∥Υvi′ ,∗∥1 = 0, for i′ = 1, . . . , nR,

∥Υpi,∗∥1 ⩾ 1, for i = 1, . . . , n− nR},

where vi′ and pi are entries of the sequences (vi′)
nR

i′=1 and
(pi)

n−nR

i=1 , which contain the indices of the valid and partial
packets, respectively. The error matrix E meets the require-
ments for single error correction (SEC) if E ∈ S.

Recall that E(p) is the (n− nR)× b submatrix of the error
matrix E that is formed of the n − nR non-zero rows of E.
If we remove the condition for nR all-zero rows from S, we
obtain the set:

S(p)={Υ∈F(n−nR)×b
2 : ∥Υ∗,j∥1⩽1, for j=1, . . . , b,

∥Υi,∗∥1⩾1, for i=1, . . . , n− nR}.

We infer that, if E(p) ∈ S(p), then E ∈ S . Fig. 2 shows an
example of an n×b error matrix E that fulfills the requirements
for SEC. It also illustrates that the absence of all-zero rows
from the (n− nR)× b submatrix E(p) imposes the existence
of n− nR columns in E(p) where the non-zero entry in each
of these columns occupies a different row, as is the case with
the first n−nR columns of E(p) in this example. To complete
E(p), we set the entries in z columns to 0 and inserted a single
1 in a random position in each of the remaining columns, as
shown in Fig. 2. In general, 0 ⩽ z ⩽ b − n + nR. Although
Fig. 2 provides a specific example of E so that E(p) ∈ S(p)

and thus E ∈ S, it helps visualize the general structure of E
and guide the derivation of an expression for the probability
that E ∈ S for any value of nR.

Let n′ = n−nR and b′ = b−z, and let us initially focus on
the n′×b′ submatrix of E(p) that contains no all-zero columns.
The following lemma enumerates all possible realizations of
this n′ × b′ submatrix.

Lemma 1: The number of n′× b′ matrices, where each row
contains at least one 1, each column holds exactly one 1, and
all other entries are set to 0, is given by:

f(n′, b′) =

n′∑
i=0

(
n′

i

)
(−1)

n′−i
ib

′
. (26)

Proof: The condition for at least one non-zero entry in
each row and exactly one non-zero entry in each column of the
n′ × b′ matrix implies that b′ ⩾ n′. Furthermore, n′ of the b′

columns will be orthogonal unit column vectors, that is, their
non-zero entries will occupy different positions, as previously
explained. The remaining b′ − n′ columns will be randomly
selected copies of unit column vectors.

For b′ = n′, the n′ available orthogonal unit column vectors
will be distributed across the n′ columns of the n′×n′ matrix.
The first column will be occupied by one of the n′ available
orthogonal column vectors, the second column will be set
equal to one of the remaining n′ − 1 orthogonal unit column
vectors, etc. In general, the i-th column will be occupied by
one of the remaining n′−i+1 orthogonal unit column vectors,
for i = 1, . . . , n′, resulting in f(n′, n′) = (n′)! possible
realizations of the n′ × n′ matrix.

For b′ = n′+1, assume that the first i− 1 columns and the
last n′ − i columns of the n′ × (n′ + 1) matrix are occupied
by orthogonal unit column vectors, while the i-th column is a
copy of one of the first i− 1 columns. For a fixed value of i,
the number of n′ × (n′ + 1) matrix realizations are:

n′ · (n′ − 1) · . . . · (n′ − i+ 2)︸ ︷︷ ︸
number of permutations

for the first i−1 columns

·(i− 1) · (n′ − i+ 1) · . . . · 1︸ ︷︷ ︸
number of permutations

for the last n′−i columns

= (n′)!(i− 1),

since the i-th column can be a copy of any of the previous
i−1 columns, while the remaining n′ columns will be mapped
to one of the (n′)! permutations of the n′ available orthogonal
unit column vectors. If every possible value of i is considered,
the expression for the total number number of n′ × (n′ + 1)
matrix realizations assumes the form:

f(n′, n′ + 1) = (n′)!

n′+1∑
i=2

(i− 1) = (n′)!

n′∑
i=1

i. (27)

Following this line of reasoning for any b′ ⩾ n′, we obtain:

f(n′, b′) = (n′)!

n′∑
i1=1

i1

i1∑
i2=1

i2 . . .

ib′−n′−1∑
ib′−n′=1

ib′−n′ . (28)

The nested sum in (28) is equal to [17, Eq. (6)]:

n′∑
i1=1

i1

i1∑
i2=1

i2 . . .

ib′−n′−1∑
ib′−n′=1

ib′−n′ =

{
b′

n′

}
, (29)

where
{

b′

n′

}
is known as the Stirling number of the second

kind and determines the number of ways to partition a set of b′
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elements into n′ non-empty subsets. A closed-form expression
for the Stirling number of the second kind is [18, Eq. (13.13)]:{

b′

n′

}
=

1

(n′)!

n′∑
i=0

(
n′

i

)
(−1)

n′−i
ib

′
. (30)

Substituting
{

b′

n′

}
with the right-hand side of (30) into (29)

and then into (28) gives (26).
The result of Lemma 1 leads us to the following corollary:
Corollary 1: The probability that the (n − nR) × b matrix

E(p) is a member of set S(p), for any value of n− nR, when
z of its columns contain only zero entries, is:

P
[
E(p) ∈ S(p), n− nR, z

]
=

=

(
b

z

)
(1− ε)

(n−nR−1)b+z
εb−z f(n− nR, b− z). (31)

Proof: Enumeration of all matrix realizations, conditioned
on being members of S(p) for any value of z, considers all
valid realizations of the b− z non-zero columns, provided by
f(n − nR, b − z) in (26), and all possible ways of choosing
the remaining z of the b columns to be all-zero columns. The
b− z non-zero columns of every matrix realization contain a
total of b−z non-zero entries, each occurring with probability
ε. The remaining (n−nR−1)b+z entries of the (n−nR)×b
matrix hold zeros, each occurring with probability 1− ε.

Based on Corollary 1, we can now derive the probability
that the error matrix E meets the requirements for SEC.

Corollary 2: The probability that the n× b error matrix E
is a member of set S, when nR of its rows contain only zero
entries, is:

P [E ∈ S, nR] =

=

(
n

nR

)
(1− ε)

nRb
b−n+nR∑

z=0

P
[
E(p)∈S(p), n− nR, z

]
. (32)

Proof: Derivation of the probability that E ∈ S, for any
value of nR, exploits the fact that nR of the n rows contain
zeros with probability (1−ε)nRb, while the remaining n− nR

rows form the submatrix E(p). Hence, P [E ∈ S, nR] depends
on the probability that E(p) ∈ S(p) for all realizations of E(p),
that is, for every possible number of all-zero columns in E(p),
i.e., z = 0, . . . , b− n+ nR.

V. SUCCESSFUL DECODING USING SEC-SD

Section IV established that any column of the (n−nR)× b
submatrix E(p) should contain zeros or a single non-zero entry
to meet the requirements for SEC. Let ei denote a unit vector
of n − nR entries, where the i-th entry is set to 1 and all
other entries contain zeros. If ei ̸= eℓ for i ̸= ℓ, then ei and
eℓ are called orthogonal unit vectors, as also mentioned in
Section IV. Using this notation, we expect:

∀j ∈ {1, . . . , b}, E(p)
∗,j = 0(n−nR)×1 or

∃i ∈ {1, . . . , n− nR} : E
(p)
∗,j = ei. (33)

Section IV also explained that E(p) should contain n − nR

columns, where the non-zero entry in each of these columns

occupies a different row, that is, E(p) should contain n− nR

orthogonal columns:

∀i ∈ {1, . . . , n− nR}, ∃j ∈ {1, . . . , b} : E
(p)
∗,j = ei. (34)

Analysis of SEC-SD, which is the focus of this section, will
invoke both (33) and (34).

If the SEC requirements are satisfied, we can deduce from
(10) and (33) that column j of the (n−k)×b syndrome matrix
S, for j = 1, . . . , b, will be equal to:

S∗,j =

{
0(n−k)×1, if E(p)

∗,j = 0(n−nR)×1 (35a)[
H

(p)
i,∗
]⊤

, if E(p)
∗,j = ei. (35b)

According to (35a), if the j-th codeword is received free from
errors and, thus, the j-th column of E(p) contains only zeros,
then all entries in the j-th column of S will be set to zero.
On the other hand, if only the i-th entry of the j-th column of
E(p) is equal to 1, the i-th column of [H(p)]⊤ will be singled
out and its contents will be copied over to the j-th column of
S, as per (35b). Note that the i-th column of [H(p)]⊤ is the
transpose of the i-th row of H(p), i.e., [H(p)]⊤∗,i = [H

(p)
i,∗ ]

⊤.
In line with (11) and (25), SEC-SD attempts to estimate

E
(p)
∗,j and produce Ê(p)

∗,j . If S∗,j is an all-zero column vector, the
decoder will assume that Ê(p)

∗,j = 0(n−k)×1. If S∗,j contains
non-zero entries, then S∗,j will be compared to each column
of [H(p)]⊤, and the indices of all columns that are identical
copies of S∗,j will be stored in a set, denoted by I. If I is not
empty, an element i′ will be randomly selected from I, and
the decoder will output Ê(p)

∗,j = ei′ . If I is empty, decoding
will be deemed unsuccessful and the process will terminate.
The estimation process can be summarized as follows:

Ê
(p)
∗,j =


0(n−nR)×1, if S∗,j = 0(n−k)×1 (36a)
ei′ for i′ ∈ I, if I ≠ ∅ (36b)
0(n−nR)×1, if I = ∅ (failure). (36c)

Note in (36c) that, after the j-th column of Ê(p) is set to the
all-zero column vector for convenience, a failure is declared
and no attempt is made to estimate the remaining columns of
the error matrix. The reason for specifically assigning the all-
zero column vector to the j-th column of Ê(p) in (36c), given
that decoding has failed, will be clarified in Section VII.

As can be inferred from (35) and (36), the probability that
SEC-SD is successful, that is, the probability that Ê(p) = E(p)

and by extension Ê = E, given that the SEC requirements are
fulfilled, depends on [H(p)]⊤.

A. Parity-check Matrices for SEC-SD

Whereas the rank of G(v) is important in RLNC decoding,
the spark of [H(p)]⊤ plays a key role in SD, as will become
apparent in this section. The term ‘spark’ of a matrix was first
coined by Donoho and Elad in [19], and is defined as follows:

Definition 1 (Adapted from [20, p. 23]): The spark of a
matrix Υ with entries from F2 is the smallest number of
columns in Υ that are linearly dependent:

spark(Υ)
.
= min{∥m∥1} subject to Υm = 0 for m ̸= 0.
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By definition, spark(Υ) ⩾ 1, where equality holds if and only
if Υ contains an all-zero column.

The spark of the (n−k)×(n−nR) matrix [H(p)]⊤ coincides
with the notion of the minimum distance of an (n − nR, k)
linear code, which has been obtained by puncturing the output
of an (n, k) linear code that has parity-check matrix H. The
impact of the spark of [H(p)]⊤ in decoding success is well-
known in the coding theory community, but is briefly explained
below for completeness:

• spark([H(p)]⊤) = 1: At least one column of [H(p)]⊤

contains only zeros. Let ℓ be the index of that column.
According to (34), E(p) contains all possible n − nR

orthogonal unit column vectors, therefore a value for
j exists such that E

(p)
∗,j = eℓ, where j ∈ {1, . . . , b}.

The decoder obtains S∗,j = [H
(p)
ℓ,∗ ]

⊤ = 0(n−nR)×1 from
(35b), and outputs Ê

(p)
∗,j = 0(n−nR)×1 ̸= E

(p)
∗,j according

to (36a). In conclusion, a value for j always exists in
{1, . . . , b} that leads to Ê

(p)
∗,j ̸= E

(p)
∗,j , which suggests that

Ê(p) ̸= E(p) is always true.
• spark([H(p)]⊤) = 2: At least two columns of [H(p)]⊤ are

identical, hence the size of I, denoted by |I|, is |I| ⩾ 2
for some values of j ∈ {1, . . . , b}. For those values of
j, the value of i′ in (36b) cannot be determined with
certainty to ensure that Ê(p)

∗,j = E
(p)
∗,j , but can be guessed

with probability 1/|I|.
• spark([H(p)]⊤) ⩾ 3: The columns of [H(p)]⊤ are dif-

ferent from each other, i.e., they are unique, but not
necessarily linearly independent. Thus, |I| = 1 for any
value of j ∈ {1, . . . , b}, so i′ in (36b) is always assigned
the value for which Ê

(p)
∗,j = E

(p)
∗,j .

We deduce that the spark of [H(p)]⊤ should be at least 2
for SEC-SD to have a non-zero probability of obtaining an
accurate estimate of the error matrix, provided that the error
matrix fulfills the requirements for SEC.

Recall that systematic RLNC is employed, which allows us
to express the (n−k)×n transpose of the parity-check matrix
as H⊤ = (C | In−k), as mentioned in Section III-A. Given
that nR denotes the total number of valid packets, let kR ⩽ k
be the number of valid systematic packets. Section III-A also
explained that [H(p)]⊤ is formed by n− nR columns of H⊤.
We can infer that the first k− kR columns of [H(p)]⊤ will be
drawn from C and be random column vectors. The remaining
(n− nR)− (k− kR) columns of [H(p)]⊤ will be drawn from
In−k and be ordered orthogonal unit column vectors, that is,
if the (i, j)-th entry and the (i′, j+1)-th entry of [H(p)]⊤ are
both 1, then i′ > i for j = k − kR + 1, . . . , n− nR − 1.

For compactness, let n′ = n − nR and k′ = k − kR.
Furthermore, let us consider the more general case of matrices
of r′ rows. If we enumerate all matrices in Fr′×n′

2 that have
spark 2 or greater, and are formed by the concatenation
of k′ random columns and n′ − k′ ordered orthogonal unit
columns, we can then focus on the special case of r′ = n− k
and derive the probability of [H(p)]⊤ being one of those
matrices. To facilitate this enumeration, we introduce two
additional parameters to characterize a matrix that meets the
aforementioned constraints:

• a = (a1 · · · an′) describes the partitioning of the n′

columns of the matrix in groups based on the multiplicity
of each column, where ai signifies the number of different
columns that appear i times in the matrix, and can thus
form ai disjoint groups of size i. If all n′ columns of the
matrix are unique, then a1 = n′ and a2 = . . . = an′ = 0.
Vector a should be an element of

A=
{
(a1 · · · an′) ∈ Zn′

+ :

n′∑
i=1

iai = n′,

n′−k′ ⩽
n′∑
i=1

ai ⩽ 2r
′
− 1
}
,

where Z+ represents the set of non-negative integers. The
first condition ensures that the number of groups weighted
by their sizes matches the total number of columns.
The second condition establishes that the number of
groups should be equal to or greater than the number
of orthogonal unit columns but cannot be larger than the
number of all possible column realizations, excluding the
all-zero column. The all-zero column has been excluded
to avoid enumerating spark-1 matrices.

• q = (q1 · · · qn′) expresses the contribution of the orthog-
onal unit columns to the partitioning of all columns of
the matrix. It specifies that qi among the ai groups of
size i have been seeded by qi orthogonal unit columns.
In other words, each of the qi groups is composed by one
of the n′−k′ orthogonal unit columns and i−1 identical
columns from the first k′ columns of the matrix. Vector
q belongs to a set that depends on vector a. This set is
defined as:

Q(a) =
{
(q1 · · · qn′) ∈ Zn′

+ :

n′∑
i=1

qi = n′ − k′,

0 ⩽ qi ⩽ ai

}
.

The first condition ensures that the number of orthogonal
unit columns matches the number of groups seeded by
them, provided that the number of groups for every valid
i falls within a range, specified by the second condition.

To clarify the derivation of vectors a and q, let us consider
the matrix below, where r′ = 3, k′ = 7 and n′ = 9: 1 0 1 1 0 0 1 1 0

0 1 0 1 1 0 0 0 0

︸ ︷︷ ︸
k′ = 7

0 1 0 1 1 1 1 ︸ ︷︷ ︸
n′ − k′ = 2

0 1

 .

The matrix does not contain an all-zero column but some
columns are identical, hence the spark of the matrix is 2.
Two of the columns are unique (a1 = 2), two columns are
repeated twice (a2 = 2) and one column is repeated three
times (a3 = 1), thus a = (2 2 1 0 · · · 0) describes how
the n′ = 9 columns of the matrix can be partitioned into
a1+a2+a3 = 5 groups. The last two columns of the matrix are
orthogonal unit columns, which contributed to the formation
of a group of size 2 (q2 = 1) and the only group of size 3
(q3 = 1), i.e., q = (0 1 1 0 · · · 0).
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Lemma 2: The number of matrices in Fr′×n′

2 that have spark
2 or greater and are formed by the concatenation of k′ random
columns and n′ − k′ preset ordered orthogonal unit columns,
for a partition a ∈ A of the n′ columns, is given by:

g (r′, k′, n′,a) =

=
∑

∀q∈Q(a)

(
n′ − k′

q1, . . . , qn′

)
k′!

(n′!)an′−qn′
∏n′−1

t=1 (t!)at−qt+qt+1

·

·
n′∏
i=1

(
2r

′ − 1− (n′ − k′)−
∑i−1

j=1(aj − qj)

ai − qi

)
. (37)

Proof: Appendix A presents a sketch of the proof.

Expression (37) can be applied to the specifc case of the
(n − k) × (n − nR) matrix [H(p)]⊤ and contribute to an
expression for the probability that all columns of E(p) will
be correctly estimated when the spark of [H(p)]⊤ is at least 2.

B. Error Matrix Estimation in SEC-SD

The number of matrix realizations for [H(p)]⊤ with spark
at least 2 for a partition a ∈ A, where the first k−kR columns
of every matrix realization form a submatrix that is selected
uniformly and at random from F(n−k)×(k−kR)

2 , can be obtained
from (37) for r′ = n − k, k′ = k − kR and n′ = n − nR.
Division of g(n−k, k−kR, n−nR,a) by the total number of
matrix realizations, given by 2(n−k)(k−kR), yields the proba-
bility that [H(p)]⊤ has spark 2 or higher for a particular a ∈ A.
SEC-SD will be successful if every column of Ê(p) matches
the corresponding column of E(p), provided that E(p) ∈S(p),
and if spark([H(p)]⊤) ⩾ 2 for every possible partition a ∈ A,
as illustrated by the following lemma.

Lemma 3: The probability of SEC-SD correctly estimating
E(p) and repairing n−nR partial packets when k−kR of them
are partial systematic packets, provided that E(p) satisfies the
requirements for SEC and contains z all-zero columns, is:

P
[
Ê(p) = E(p) | E(p)∈S(p), k − kR, n− nR, z

]
=

=
∑
∀a∈A

[
g(n− k, k − kR, n− nR,a)

2(n−k)(k−kR)
·

·
n−nR∏
i=1

(
1

i

)iai
(∑n−nR

j=1 aj

n− nR

)b−z−n+nR
]
. (38)

Proof: The proof has been deferred to Appendix B.

The final step for this section is the derivation of the success
probability of SEC-SD when nR packets have been received
without errors, averaged over all possible values of kR and z,
which immediately follows from Lemma 3 as shown below.

Corollary 3: The probability that SEC-SD will successfully
guess the error matrix E, when E meets the SEC requirements

and nR received packets are valid, can be expressed as:

P
[
Ê = E, E ∈ S, nR

]
=

=

kmax∑
kR=kmin

{(
k

kR

)(
n− k

nR − kR

)
(1− ε)nRb·

·
b−n+nR∑

z=0

(
P
[
Ê(p)=E(p) |E(p)∈S(p), k − kR, n− nR, z

]
·

· P
[
E(p)∈S(p), n− nR, z

])}
, (39)

where kmin = max(0, nR − n+ k) and kmax = min(nR, k).
Proof: Using the same reasoning as in Corollary 2 for

the relationship between E and submatrix E(p), we can write:

P
[
Ê = E, E ∈ S, nR

]
=

(
n

nR

)
(1− ε)

nRb ·

·
b−n+nR∑

z=0

P
[
Ê(p)=E(p), E(p)∈S(p), n− nR, z

]
. (40)

The probability in (40) can be decomposed as follows:

P
[
Ê(p)=E(p), E(p)∈S(p), n− nR, z

]
=

=

kmax∑
kR=kmin

(
P
[
Ê(p)=E(p) |E(p)∈S(p), k − kR, n− nR, z

]
·

· P
[
k − kR | n− nR

]
P
[
E(p)∈S(p), n− nR, z

])
, (41)

where the first of the three product terms in (41) has been
derived in (38) and is conditioned on the number of partial
systematic packets, k − kR. If n − nR of the n transmitted
packets are partially received, the probability that k − kR of
them are partial systematic packets, and the remaining ones
are partial coded packets, is given by the second term in (41),
which can be expanded into:

P
[
k − kR | n− nR

]
=

(
k

kR

)(
n− k

nR − kR

)/(
n

nR

)
. (42)

The first product term in (41) is also conditioned on E(p)

fulfilling the SEC requirements when it contains n−nR non-
zero rows and z all-zero columns. The probability that E(p)

satisfies the aforementioned structural expectations is given by
the third product term in (41), which has been derived in (31).
Substituting (31), (38) and (42) into (41) gives (39). The sum
in (39) is calculated over all valid values of kR, where the
smallest value, kmin, should be a non-negative integer and the
largest value, kmax, should not exceed nR when nR < k.

VI. ANALYSIS OF RLNC DECODING AIDED BY SEC-SD
The aim of this paper is to derive an exact expression for the

probability that RLNC decoding aided by SEC-SD, denoted
by PSEC, will recover the k source packets that compose the
source message. Such an expression can then be used to bound
from below the probability P of obtaining the source message
when RLNC decoding is combined with SD, i.e.,

P ⩾ PSEC. (43)
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Recall that SD, in contrast to SEC-SD, does not terminate
if no vectors of weight 0 or 1 that satisfy (12a) exist, but
continues to search for vectors of increasingly larger weight
until a solution is found. Derivation of an expression for PSEC

can be facilitated by Lemma 4, the proof of which follows a
similar line of reasoning as that of the Singleton bound [21].

Lemma 4: If rank(G(v)) = k and hence RLNC decoding is
successful, then SEC-SD would also be successful if the error
matrix met the SEC requirements.

Proof: Assume that systematic RLNC encodes k pack-
ets into n packets using G, as in (2), errors occur during
transmission and rank(G(v)) = k at a destination node. If
kR systematic packets are valid and the corresponding kR
pivot columns of G(v) are discarded, the remaining k − kR
columns should contain an (nR − kR) × (k − kR) submatrix
that has rank k − kR. Given (5), this (nR − kR) × (k − kR)
submatrix is also located within the first k − kR columns of
[H(p)]⊤, which is the transpose of the parity-check matrix of
the equivalent (n−nR, k) linear code (see Section V-A). Thus,
the first k − kR columns of [H(p)]⊤ are linearly independent
and, if considered with the remaining (n − k) − (nR − kR)
orthogonal unit columns of [H(p)]⊤, we deduce that the rank
of [H(p)]⊤ is n−nR and the spark of [H(p)]⊤ is n−nR+1.
For n − nR ⩾ 2, [H(p)]⊤ consists of two or more columns
that are all unique and different from the all-zero column,
since spark([H(p)]⊤) ⩾ 3. For n− nR = 1, [H(p)]⊤ reduces
to a column, which is different from the all-zero column,
since spark([H(p)]⊤) = 2. In general, for n − nR > 0, the
columns of [H(p)]⊤ are unique and non-zero, therefore the
(n − nR, k) linear code has SEC capability. Consequently, if
the SEC requirements are satisfied, SEC-SD will be successful
in determining the error matrix.

The probability PSEC can be expressed as the sum of the
likelihoods of the following three complementary events:

1) The error matrix is non-zero and fulfills the SEC require-
ments. Lemma 4 established that an RLNC decoding
success can be interpreted as a SEC-SD success. Oth-
erwise, if RLNC decoding is unsuccessful, the task of
recovering the source message falls on SEC-SD. Thus,
we can say that the decoding outcome depends solely
on SEC-SD, hence the RLNC decoding stage can be
ignored.

2) The error matrix is non-zero but does not fulfill the
SEC requirements. In that case, the decoding outcome
depends solely on RLNC decoding, as SEC-SD will fail
if RLNC decoding is unsuccessful.

3) All entries of the error matrix are zero because none of
the received packets contain bit errors, so neither RLNC
decoding nor SEC-SD are required.

Breaking down the decoding process into events E1, E2 and
E3 paves the way for the following theorem:

Theorem 1: The probability that RLNC decoding assisted by
SEC-SD will recover a message composed of k source packets
of length b bits, when n > k packets have been transmitted

over a BSC with crossover probability ε, can be obtained from

PSEC =

=

n−1∑
nR=0

{
b−n+nR∑

z=0

ϑ(nR, z)

kmax∑
kR=kmin

(
k

kR

)(
n− k

nR − kR

)
·

·
∑
∀a∈A

[
g(n− k, k − kR, n− nR,a)

2(n−k)(k−kR)
·

·
n−nR∏
i=1

(
1

i

)iai
(∑n−nR

j=1 aj

n− nR

)b−z−n+nR
]}

+

+

n−1∑
nR=k

{[
(1−ε)nRb

(
1−(1−ε)b

)n−nR

−
b−n+nR∑

z=0

ϑ(nR, z)

]
·

·
k∑

kR=kmin

(
k

kR

)(
n−k

nR−kR

)k−kR−1∏
i=0

(
1− 2−nR+kR+i

)}
+

+ (1− ε)nb, (44)

where

ϑ(nR, z) =

(
b

z

)
(1− ε)(n−1)b+z εb−z f(n− nR, b− z),

kmin = max(0, nR−n+k), kmax = min(nR, k), and functions
f(·) and g(·) have been defined in (26) and (37), respectively.

Proof: Probability PSEC can be expressed as the sum of
three terms:

PSEC = PE1 + PE2 + PE3, (45)

where each term corresponds to one of the aforementioned
events, namely E1, E2 and E3.

When event E1 occurs for a particular value of nR, the error
matrix satisfies the SEC conditions, i.e., E ∈ S. SEC-SD will
be successful if the estimated error matrix matches the actual
error matrix, i.e., Ê = E. The expression for PE1, which
considers all valid values of nR, assumes the form:

PE1 =

n−1∑
nR=0

P
[
Ê = E, E ∈ S, nR

]
, (46)

where P
[
Ê = E, E ∈ S, nR

]
is given in (39).

Event E2 occurs when the error matrix does not satisfy
the SEC conditions, that is, E /∈ S. In that case, the RLNC
decoder will use the nR valid packets to recover the k source
packets, and will succeed if rank(G(v)) = k, which is possible
when nR ⩾ k. The probability that occurrence of event E2 will
lead to a decoding success for k ⩽ nR ⩽ n− 1 is given by:

PE2 =

n−1∑
nR=k

P [E /∈ S, nR]P
[
rank(G(v)) = k | nR

]
. (47)

To obtain P [E /∈ S, nR], we can simply subtract P [E ∈ S, nR]
from the probability of receiving nR valid packets and n−nR

partial packets:

P [E /∈ S, nR] =

(
n

nR

)
(1− ε)nRb(1− (1− ε)b)n−nR −

− P [E ∈ S, nR] , (48)
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where P [E ∈ S, nR] is given in (32). The second product term
in (47), which represents the probability of successful RLNC
decoding for a given value of nR ⩾ k when binary systematic
RLNC is used, has been derived in [22]:

P
[
rank(G(v)) = k | nR

]
=

k∑
kR=kmin

(
k
kR

)(
n−k

nR−kR

)(
n
nR

) ·

·
k−kR−1∏

i=0

(
1− 2−nR+kR+i

)
. (49)

The probability of event E3, that is, the probability that all
b bits in each of the n packets will be received correctly, is
PE3 = (1− ε)nb. Substitution of PE1, PE2 and PE3 into (45)
results in (44).

The next section compares simulation results with theoreti-
cal values obtained using (44), which is an exact expression for
the success probability of RLNC decoding aided by SEC-SD,
and serves as a lower bound on the success probability of
RLNC decoding assisted by SD, as per (43).

VII. RESULTS AND DISCUSSION

In addition to the proof of Theorem 1 in Section VI, Fig. 3
provides a visual confirmation of the validity of (44), which
exactly matches measurements of the success probability of
RLNC decoding aided by SEC-SD that have been obtained
through simulations1. For completeness, theoretical values [22]
and simulation results for the success probability of RLNC
decoding have also been included in the plot. For the sake
of compactness, RLNC decoding has been shortened to RD,
and RLNC decoding aided by SEC-SD has been abbreviated to
RD/SEC-SD. Fig. 3 shows how the probability of recovering k
source packets is affected by the number of transmitted packets
n, the packet length b and the crossover probability ε. The nine
subfigures in Fig. 3 have been organized into a 3×3 grid-like
arrangement, where the value of k is fixed for subfigures in the
same column, and the value of b is fixed for subfigures in the
same row. In each subfigure, two values for ε are considered,
while n takes values in the range k ⩽ n ⩽ 1.2k, where k ∈
{50, 100, 200} and b ∈ {16, 24, 32}.

Observe in Fig. 3 that SEC-SD only marginally improves
the success probability of RD/SEC-SD for values of n ei-
ther very close to k or much higher than k. In the former
case, the difference n− k is a very small number, hence
the (n− k)× (n− nR) matrix [H(p)]⊤ consists of only a
few rows. As a result, the random columns of [H(p)]⊤ are
chosen from a small pool of 2n−k column vectors, mak-
ing the presence of all-zero columns and identical columns
in [H(p)]⊤ very likely. Consequently, spark([H(p)]⊤) < 3
with high probability, thus the chances of SEC-SD correctly
guessing the error matrix are hindered. On the other hand,
when n ⩾ k/(1 − ε)b, k linearly independent packets are
found among the valid packets with high probability, which

1Software simulations were implemented in MATLAB. The probability
of successful decoding for a tuple (k, n, ε, b) has been averaged over
3×105 channel realizations. For each realization, submatrix C was randomly
generated, as described in Section II. The MATLAB-based function ‘Partitions
of an integer’ [23] was used to build set A in (44).

suggests that RLNC decoding is often successful without
assistance from SEC-SD. However, for values of n between
k + 1 and k/(1 − ε)b, the contribution of SEC-SD to the
success probability of RD/SEC-SD is more substantial and
helps RD/SEC-SD achieve a notable coding gain over RD.

Fig. 4 compares the success probabilities of RD and
RD/SEC-SD, and contrasts them with the success probability
of RD/SD, for k = 10, b = 16 and n ∈ {12, 14, 16}. As
described in Section III-D, SEC-SD abandons its attempt to
estimate all of the b columns of the error matrix when at
least one of its columns has weight greater than 1. On the
other hand, SD considers column vectors of increasingly large
weight until (12a) is met for every column of the error matrix.
As the crossover probability ε increases and the sparsity of
the error matrix reduces, SEC-SD is less likely to return an
accurate estimate of the error matrix than SD. Fig. 4 confirms
that the gap between the success probabilities of RD/SEC-SD
and RD/SD widens as the value of ε increases. Nevertheless,
Fig. 4 also confirms that the exact expression for the success
probability of RD/SEC-SD, given in (44), is a useful lower
bound on the success probability of RD/SD.

The success probability of RD combined with a variant of
SEC-SD, dubbed ‘do not quit’ SEC-SD and abbreviated as
SEC-SD(dnq), is also depicted in Fig. 4. SEC-SD(dnq) looks
for column vectors of weight 0 or 1 that satisfy (12a) but, in
contrast to SEC-SD, it does not quit if no solution is found for
a column of the estimated error matrix Ê. Instead, the all-zero
column vector is assigned to that column, as per (36c), and
SEC-SD(dnq) moves on to the estimation of the next column
of Ê. When estimation of a column of Ê is unsuccessful and,
thus, Ê = E cannot be achieved, SEC-SD quits and declares
a decoding failure, whereas SEC-SD(dnq) continues to run
until all columns of Ê have been assigned a column vector
of weight 0 or 1, despite the fact that Ê ̸= E is unavoidable.
When Ê ̸= E in SEC-SD(dnq), ν non-zero rows of Ê could
still match the corresponding rows of E, for 0 ⩽ ν < n−nR,
in which case ν of the n−nR partial packets would be repaired.
As a result, the number of valid packets would grow from nR

to nR+ν and the probability of decoding the k source packets
would increase, compared to SEC-SD, as shown in Fig. 4.

Of interest is the potential of RD/SEC-SD(dnq) to achieve
a marginally higher success probability than RD/SD, as il-
lustrated in Fig. 4, even though the former decoding scheme
utilizes a smaller search space for the estimation of the
error matrix than the latter decoding method, as explained in
Section III-C. This observation can be justified intuitively if
we take a closer look at the estimation process of a column of
the error matrix E that has weight greater than 1, i.e., at least
two of its elements are non-zero. SEC-SD(dnq), being unable
to find a weight-1 column vector that meets (12a), will assign
the all-zero column vector to the corresponding column of Ê.
The all-zero column will have no impact on partial packets,
as it will neither correct any channel errors nor result in any
decoding errors. SD, on the other hand, will continue to test
column vectors of weight greater than 1 against (12a) until a
column vector that satisfies (12a) is identified. If the estimated
column in Ê is different from the corresponding column in E,
the incorrectly guessed non-zero elements in that column will



12

50 51 52 53 54 55 56 57 58 59 60

0

0.2

0.4

0.6

0.8

1

100 102 104 106 108 110 112 114 116 118 120

0

0.2

0.4

0.6

0.8

1

200 204 208 212 216 220 224 228 232 236 240

0

0.2

0.4

0.6

0.8

1

50 51 52 53 54 55 56 57 58 59 60

0

0.2

0.4

0.6

0.8

1

100 102 104 106 108 110 112 114 116 118 120

0

0.2

0.4

0.6

0.8

1

200 204 208 212 216 220 224 228 232 236 240

0

0.2

0.4

0.6

0.8

1

50 51 52 53 54 55 56 57 58 59 60

0

0.2

0.4

0.6

0.8

1

100 102 104 106 108 110 112 114 116 118 120

0

0.2

0.4

0.6

0.8

1

200 204 208 212 216 220 224 228 232 236 240

0

0.2

0.4

0.6

0.8

1

Fig. 3. Theoretical values, which have been calculated using (44) and depicted as dashed curves ( ), for the probability that RLNC decoding aided by
SEC-SD (RD/SEC-SD) will be successful, are compared to simulation results, depicted as crosses (×). The number of source packets k is fixed for subfigures
in the same column, where k ∈ {50, 100, 200}. Similarly, the packet length b in bits is fixed for subfigures in the same row, where b ∈ {16, 24, 32}. Each
subfigure considers two values for the crossover probability ε. For reference, theoretical values ( ) and simulation results (◦) for the probability of successful
RLNC decoding (RD) have been included in all subfigures, as explained in the legend.
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Fig. 4. Probability of successful decoding, when k = 10 source packets of
b = 16 bits are encoded into n packets, transmitted over a BSC with crossover
probability ε and decoded using RD, RD/SEC-SD, RD/SEC-SD(dnq) or
RD/SD, where n ∈ {12, 14, 16} and 0.001 ⩽ ε ⩽ 0.01.

introduce decoding errors in partial packets. Fig. 5 shows an
example where SD incorrectly estimated a single column of
the error matrix and inadvertently introduced errors to all but
one of the rows of the error matrix. SD could thus repair
a single partial packet, whereas SEC-SD(dnq) could repair
two partial packets in the same example depicted in Fig. 5,
even though SEC-SD(dnq) was unable to estimate two of the
columns of the error matrix and assigned the all-zero column
vector to those columns.

Another observation that can be made in Fig. 4 is that the
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Fig. 5. Example of a case where SEC-SD(dnq) repaired more partial packets
than SD, when the number of partial packets is n−nR = 5 and each packet
contains b = 7 bits. The 5 × 7 error matrix E(p) to be estimated is shown
at the top-left of the figure. SEC-SD estimated the 1st and 2nd columns of
the error matrix but terminated execution when the 3rd column was reached,
because the solution is a weight-2 vector but SEC-SD only considers weight-0
and weight-1 vectors. SD correctly estimated the first six columns of the error
matrix and identified a vector for the 7th column, which does not match the
7th column of E(p). SEC-SD(dnq), in contrast to SEC-SD, did not terminate
execution when the estimation process could not assign a weight-0 or weight-1
vector to a column, but assigned the all-zero vector to that column. Although
SEC-SD(dnq) correctly estimated fewer columns of E(p) than SD in this
example, it successfully guessed more rows (highlighted in green) and, thus,
repaired more partial packets, than SD.

success probabilities of RD/SEC-SD, RD/SEC-SD(dnq) and
RD/SD shift closer together as the crossover probability ε
drops, for a fixed value of n. This observation is corroborated
by Table I, which presents simulation results for k = 100,
n = 120 and b = 512, when ε varies between 0.00035
and 0.00045. For ε = 0.00045, the increased packet error
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TABLE I
COMPARISON OF PERFORMANCE AND COMPLEXITY MEASURES OF RD/SEC-SD, RD/SEC-SD(DNQ) AND RD/SD FOR k = 100 SOURCE PACKETS,
n = 120 TRANSMITTED CODED PACKETS AND b = 512 BITS PER PACKET. THE CROSSOVER PROBABILITY ε VARIES FROM 0.00035 TO 0.00045. THE

SUCCESS PROBABILITY OF A DECODING SCHEME HAS BEEN USED AS A PERFORMANCE MEASURE. COMPLEXITY CONSIDERS THE NUMBER OF COLUMN
VECTORS THAT HAVE BEEN TESTED, ON AVERAGE, FOR THE ESTIMATION OF ALL COLUMNS OF THE ERROR MATRIX.

Crossover Packet error Success Success Success Success Avg. number of Avg. number of Avg. number of
probability probability prob. of prob. of probability of prob. of vectors queried vectors queried vectors queried

ε 1− (1− ε)b RD RD/SEC-SD RD/SEC-SD(dnq) RD/SD by SEC-SD by SEC-SD(dnq) by SD
0.00035 0.16409 0.44079 0.76007 0.99985 0.99979 810.3 1054.8 1137.3
0.00036 0.16836 0.39557 0.73372 0.99984 0.99976 813.3 1069.3 1157.4
0.00037 0.17261 0.35129 0.70903 0.99984 0.99976 818.8 1085.1 1178.3
0.00038 0.17683 0.31193 0.68384 0.99981 0.99975 824.2 1101.6 1200.5
0.00039 0.18104 0.27246 0.65809 0.99981 0.99975 829.9 1118.7 1224.9
0.00040 0.18522 0.23742 0.63503 0.99981 0.99973 836.0 1136.3 1251.0
0.00041 0.18939 0.20455 0.61062 0.99980 0.99970 840.3 1155.2 1276.4
0.00042 0.19353 0.17451 0.58685 0.99980 0.99970 844.7 1173.8 1305.3
0.00043 0.19765 0.14914 0.56423 0.99979 0.99969 850.9 1194.5 1334.2
0.00044 0.20175 0.12509 0.53969 0.99976 0.99969 853.9 1215.8 1366.7
0.00045 0.20583 0.10754 0.52260 0.99975 0.99961 861.2 1238.4 1399.2

probability impairs the success probability of RD, which sets
at 0.10754. SEC-SD can boost the success probability of RD
from 0.10754 to 0.52260, which establishes that RD/SD has
the potential to achieve an ever higher success probability.
Indeed, RD/SD – but also RD/SEC-SD(dnq) – achieve com-
parable success probabilities that are close to 1, even though
estimation of the error matrix by SD requires the testing
of more column vectors, on average, than SEC-SD(dnq). As
in Fig. 4, Table I confirms that the success probability of
RD/SEC-SD approaches the success probabilities of RD/SEC-
SD(dnq) and RD/SD for low values of ε. As ε reduces,
the sparsity of the error matrix increases, thus the columns
of the error matrix are more likely to have weight 0 or 1,
which increases the likelihood of all three decoding schemes
producing identical estimates. Given that the packet error
probability observed at the output of the physical layer in
practical scenarios is 0.1 or lower [24], the error matrix is
expected to be sparse and, therefore, the success probability
of RD/SEC-SD will be a tight lower bound on the success
probability of RD/SD, as shown in Fig. 4.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

This work established that two noise decoding methods,
presented in [10] and [15], rely on the same syndrome matrix
to estimate the error matrix, that is, the matrix that specifies
the location of bit errors in coded packets generated by RLNC
and transmitted over a binary symmetric channel. The focus
of the paper then shifted to the method proposed in [10],
referred to as syndrome decoding (SD), on account of its
low complexity, which increases linearly with packet size, and
not exponentially as the scheme in [15]. The introduction of
an early stopping criterion gave rise to SEC-SD, which is a
minimum-complexity variant of SD that traverses a smaller
search space than SD and is, hence, suboptimal in terms
of error estimation performance. A comprehensive analysis
led to the derivation of an exact closed-form expression for
the probability that joint random linear network decoding
and SEC-SD will be successful, which bounds from below
the success probability of random linear network decoding
aided by SD. A minor modification in the implementation of

SEC-SD uncovered its potential to repair more partial coded
packets, on average, than SD while keeping complexity lower
than that of SD.

A prospective research direction is the derivation of an upper
bound, which could be guided by the method proposed in
[15] and the optimization problem in (21). An upper bound,
together with the lower bound derived in this paper, would
provide fundamental limits on the probability that random
linear network decoding complemented by noise decoding
over F2 will be successful. Generalization of this work to
any finite field F2ρ , for ρ ⩾ 1, would be equally important
but challenging; this is because the sparsity of the error
matrix – which greatly facilitated the probability analysis for
operations over F2 – will be reduced when the error matrix
at the output of the binary symmetric channel is converted
from F2 to F2ρ in order to be used as a map of errors in
coded packets over F2ρ . The theoretical analysis of PRAC [7]
would also be of interest, as it would pave the way for a
rigorous comparison between noise decoding and PRAC, and
would identify channel conditions for which each approach is
better suited. Last but not least, existing designs that combine
random linear network coding with turbo coding [25] or
low-density parity check coding [26] could be revisited to
account for the contribution of noise decoding to the overall
performance.

APPENDIX A
PROOF OF LEMMA 2

The problem in Lemma 2 can be restated as: “Determine
the number of sequences of length n′ that can be formed for a
given partition a ∈ A, if the first k′ entries can take any value
in the range {1, 2, . . . , 2r′− 1} and the last n′ − k′ entries are
pre-selected integers, different from each other, that have been
drawn from the same range.”

An example sequence of n′ = 14 integers for k′ = 11 and
r′ = 3 is shown in Fig. 6(a). The vector a = (2 3 2 0 · · · 0}
describes how the 14 integers can be partitioned into groups.
In this example, the last n′ − k′ = 3 entries of the sequence
have contributed to the formation of q2 = 2 groups of size 2
and q3 = 1 group of size 3, as depicted in Fig. 6(b), resulting
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Fig. 6. (a) Sequence of n′ = 14 integers in {1, 2, . . . , 7}. The first k′ = 11
integers have been randomly selected. The last n′−k′ = 3 integers (shown in
red) have been pre-selected and are different from each other. (b) Partitioning
of the sequence into groups is based on the multiplicity of each entry. The
sequence is formed by a1 = 2 unique integers, a2 = 3 groups containing
two integers, and a3 = 2 groups composed of three integers. The last three
entries of the sequence contribute to the creation of q2 = 2 of the two-
element groups and q3 = 1 of the three-element groups (framed in red). (c)
Regrouping, after the removal of the last three entries of the sequence from
the groups shown in (2), leads to the formation of 4 single-element groups,
2 two-element groups and 1 three-element group.

in vector q = (0 2 1 0 · · · 0}. In the remainder of this
section, we show that the number of sequences of length n′

for a given partition a ∈ A can be obtained from the product
of three terms summed over every q ∈ Q(a), that is:

g(r′, k′, n′,a) =
∑

∀q∈Q(a)

ζ1ζ2ζ3. (50)

For a given vector q = (q1 · · · qn′}, the number of ways
that the last n′ − k′ entries of a sequence can be distributed
into q1 single-element groups, q2 two-element groups, and so
on, where q1+. . .+qn′ = n′−k′ and qi ⩾ 0 for i = 1, . . . , n′,
is given by the multinomial coefficient:

ζ1 =

(
n′ − k′

q1, . . . , qn′

)
. (51)

Whereas term ζ1 is concerned with the last n′ − k′ entries
of a sequence, term ζ2 in (50) focuses on the first k′ entries
and enumerates the ways they can be re-grouped after the last
n′ − k′ entries have been removed from the original groups.
If a′ = (a′1 · · · a′n′) describes the partitioning of the first k′

entries, a′1, . . . , a
′
n′ can be expressed in terms of the elements

of a and q as a′i = ai − qi + qi+1 for i = 1, . . . , n′ − 1 and
a′n′ = an′ − qn′ , as illustrated in Fig. 6(c). The multinomial
coefficient can be used again to count the number of ways the
first k′ entries can be distributed into each group, as follows:

ζ2 =

(
k′

1, . . . , 1︸ ︷︷ ︸
a1−q1+q2

, 2, . . . , 2︸ ︷︷ ︸
a2−q2+q3

, . . . , n′, . . . , n′︸ ︷︷ ︸
an′−qn′

)

=
k′!

(n′!)an′−qn′
∏n′−1

t=1 (t!)at−qt+qt+1

. (52)

Essentially, the product ζ1ζ2 provides the number of ways
that the n′ entries of a sequence can be partioned into ai
groups of size i, for i = 1, ..., n′, when n′−k′ of those entries
are occupied by pre-selected distinct integers that contributed
to the formation of qi of the ai groups. All possible ways of
filling up the remaining ai − qi groups with integers drawn

from the range {1, 2, . . . , 2r′− 1} are enumerated by term ζ3
in (50). Starting with the a1 unique entries of the sequence,
we know that a1 − q1 of them occupy the first k′ positions.
The values of these a1 − q1 entries will be chosen from an
interval of 2r

′−1 integers that excludes the n′−k′ pre-selected
integers in the last n′−k′ positions. In general, ai−qi groups
of size i will be populated by integers occupying the first k′

positions and taking values from an interval of 2r
′−1 integers,

from which the values of the last n′−k′ entries and the values
of the previously considered i− 1 groups have been removed.
The total number of combinations, for i = 1, . . . , n′, is:

ζ3 =

n′∏
i=1

(
2r

′ − 1− (n′ − k′)−
∑i−1

j=1(aj − qj)

ai − qi

)
. (53)

Substituting ζ1, ζ2 and ζ3 into (50) gives (37).

APPENDIX B
PROOF OF LEMMA 3

For compactness, we drop the arguments k − kR, n − nR

and z, and write the probability of SEC-SD correctly esti-
mating E(p), given that E(p) meets the SEC requirements, as
P
[
Ê(p)=E(p) | E(p)∈S(p), . . .

]
in (38). This probability can

be expressed as the product of two terms summed over all
partitions in A, that is:

P
[
Ê(p)=E(p) | E(p)∈S(p), . . .

]
=

=
∑
∀a∈A

P
[
spark([H(p)]⊤)⩾2 | . . .

]
·

· P
[
Ê(p)=E(p) | E(p)∈S(p), spark([H(p)]⊤)⩾2, . . .

]
. (54)

The first product term in (54) represents the probability that the
spark of [H(p)]⊤ is 2 or greater. The second term evaluates the
probability that E(p) will be correctly estimated, given that the
SEC conditions are met and the spark of [H(p)]⊤ is at least 2.

As also explained in Section V-B, the first term of the
product in (54) relies on (37) and is equal to:

P
[
spark([H(p)]⊤)⩾2 | . . .

]
=

g(n− k, k − kR, n− nR,a)

2(n−k)(k−kR)
,

which is the fraction of realizations of [H(p)]⊤ that have spark
2 or greater, for a specific partition a ∈ A. The second term
of the product in (54) can be decomposed into a product of
three probabilities:

P
[
Ê(p)=E(p) | spark([H(p)]⊤)⩾2,E(p)∈S(p), . . .

]
=

= P1P2P3, (55)

where P1, P2 and P3 describe the probabilities of individual
columns of Ê(p) matching the corresponding columns of E(p).

Recall from Section IV and Fig. 2 that E(p) is composed
of n − nR orthogonal unit columns, b − z − n + nR random
unit columns and z all-zero columns. Multiplication of the
n− nR orthogonal unit columns of E(p) with [H(p)]⊤ copies
the n−nR columns of [H(p)]⊤ over to n−nR columns of the
syndrome matrix S. This implies that n−nR of the columns of
S form a submatrix that is described by the same partitioning
vector a as [H(p)]⊤. Let S∗,j be a column of this submatrix
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and i be the number of columns of [H(p)]⊤ that match S∗,j . In
line with (36b), the probability that the syndrome decoder will
select the column of [H(p)]⊤ that produces Ê(p)

∗,j = E
(p)
∗,j is thus

1/i. As iai of n−nR columns of S form ai groups of size i,
this process will be repeated iai times, for i = 1, . . . , n−nR.
The probability of correctly guessing n−nR columns of E(p)

from those n− nR columns of S is:

P1 =

n−nR∏
i=1

(
1

i

)iai

.

The second product term in (55), denoted by P2, represents
the probability of successfully estimating the b− z − n+ nR

random unit columns of E(p). Let S∗,j be a column of the
syndrome matrix that has been generated by a random unit
column of E(p). Since iai columns of [H(p)]⊤ form ai groups
of size i, we infer that S∗,j would be a copy of one of
those iai columns with probability iai/(n − nR). Based on
S∗,j , the syndrome decoder will output Ê

(p)
∗,j = E

(p)
∗,j with

probability 1/i, if i columns of [H(p)]⊤ are equal to S∗,j . The
joint probability of S∗,j matching a column of [H(p)]⊤ that is
repeated i times and enabling the syndrome decoder to produce
Ê

(p)
∗,j = E

(p)
∗,j is thus (iai/(n − nR))(1/i) = ai/(n − nR). In

general, S∗,j could be a copy of a unique column of [H(p)]⊤

or a column that is repeated any number of times up to
n − nR. Therefore, the overall probability that the syndrome
decoder will correctly guess a random unit column of E(p) is
(a1 + . . .+ an−nR)/(n− nR). As every random unit column
of E(p) is generated independently of the other columns, the
probability of successfully estimating all of the b−z−n+nR

random unit columns is given by:

P2 =

(∑n−nR

i=1 ai
n− nR

)b−z−n+nR

.

The third term of the product in (55) is concerned with the
probability of correctly estimating an all-zero column of E(p),
which is P3 = 1 based on (35a) and (36a). Substituting P1,
P2 and P3 into (55) completes the expression of the second
product term in (54) and leads to (38).
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