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EQUIVARIANT COSHEAVES AND GRAPHIC STATICS

ZOE COOPERBAND, MIGUEL LOPEZ and BERND SCHULZE

Abstract
This work extends the theory of reciprocal diagrams in

graphic statics to frameworks that are invariant under finite
group actions by utilizing the homology and representation the-
ory of cellular cosheaves, recent tools from applied algebraic
topology. By introducing the structure of an equivariant cellular
cosheaf, we prove that pairs of self-stresses and reciprocal dia-
grams of symmetric frameworks are classified by the irreducible
representations of the underlying group. We further derive the
symmetry-aligned Euler characteristics of a finite dimensional
equivariant chain complex, which for the force cosheaf yields
a new formulation of the symmetry-adapted Maxwell counting
rule for detecting symmetric self-stresses and kinematic degrees
of freedom in frameworks. A freely available program is used
to implement the relevant cosheaf homologies and illustrate the
theory with examples.

1. Introduction

Graphic statics is a geometric toolbox for analyzing the relationship between the
form of a bar-joint framework and its internal force loading. The theory dates back to
classical work of Maxwell and Cremona [33, 15] and has been widely used for design-
ing and modeling various types of real-world structures. Building on earlier work by
Rankine and others, they discovered that for a plane framework, there is an equiv-
alence between its self-stresses (or equilibrium stresses) and its reciprocal diagrams
(or force diagrams), which realize the dual of the original graph as frameworks with
bar lengths determined by the stress coefficients. See Figure 1 for an example.

They also found that the vertical projection of a spatial polyhedron into the plane
yields a framework with a self-stress. In 1982 Whiteley established the converse of
this result by showing that every self-stressed plane framework on a polyhedral graph
can be vertically lifted to a polyhedron in 3-space (also known as a “discrete Airy
stress function polyhedron” in engineering), where the changes in slope along edges
are encoded by the corresponding stress coefficients [44]. See also Crapo and White-
ley [14]. Since then, the Maxwell-Cremona correspondence has been applied to the
solution of numerous problems in polyhedral combinatorics, and discrete and compu-
tational geometry. See e.g. [9, 27, 43].
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(a) (b)

Figure 1: A planar framework in Desargues configuration with a self-stress and verti-
cal mirror-symmetry (a) and its corresponding mirror-symmetric reciprocal diagram,
where corresponding edges are parallel (b). The “transformation” of the mirror from
vertical to horizontal is a consequence of Remark 3.10. Reflections in dashed mirror
lines are indicated by curved double arrows. Solid vs dashed edges in (a) indicate
tension vs compression in elements.

Increased interest in the design of material-efficient structures in engineering, such
as gridshell roofs or cable net structures, has heralded a surge of interest in this
theory. The visual nature of force-form duality allows an integrated analysis early
into the design process, crucial for finding optimal designs. Modern computational
tools play a key role here, as they allow quick visualisations of these relationships.
Techniques from graphic statics have recently also found new applications in control
theory [36] and materials science [21].

Recently, there has been an explosion of results regarding the rigidity, flexibility
and stressability of symmetric frameworks. See e.g. [11, 40] for an introduction to the
theory and a summary of results. Much of this work has been motivated by problems
from the applied sciences and industry, where symmetry is utilized by both man-made
and natural structures for stability, construction, and aesthetics. For gridshell roofs,
increasing the dimensionality of the space of self-stresses can reduce the volume of
material needed to construct the load-bearing structure [38]. By associating the self-
stresses of different symmetry types to irreducible representations of the symmetry
group of the structure1, new tools for designing and analyzing gridshell structures
were recently obtained in [38, 35]. Using a similar approach, refined relations between
self-stresses and motions of different symmetries in form and force diagrams were
established in [37].

Recently, a homological description of 2D graphic statics was given in [12] affirming
algebraic topology as a useful theory for structural engineering. This work built upon
the observation made in [12] that the self-stresses of a framework can be encoded

1Self-stresses with both symmetric and anti-symmetric sign patterns for the stress coefficients play
an important role in the design of gridshells. While fully-symmetric self-stresses relate to symmetric
vertical loadings of the gridshell (such as self-weight), anti-symmetric self-stresses relate to anti-
symmetric loadings, such as uneven gravity loads arising from drifted snow, for example.
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with a tool called a cellular cosheaf. Developed and popularized by the theses of
Shepard [41] and Curry [16], cellular sheaves and cosheaves have rapidly found wide
applications in areas such as network coding [20], optimization [23], space networks
[42], opinion dynamics [24], and many more. Recently, there have been numerous
exciting applications in machine learning, where the sheaf Laplacian [25] fittingly
encodes network data diffusion. This work incidentally describes data equivariance
over networks and cell-complexes, bridging the gap towards advances in equivariant
and convolutional neural networks [8, 5].

Cosheaves embody the finite element approach, namely breaking a physical system
into smaller units which relate to other units by constraint equations. Finite elements,
when framed in terms of cosheaf stalks and extension maps, have access to the wide
array of formal methods from homological algebra. The concept of moving from local
to global equilibria is paralleled with moving from local to global sections in sheaves,
bundles, and other algebraic constructions. This paper is an early description of such
methods for homological engineering, or designing chain complexes and homology
spaces to model the constraints and degrees of freedom of complex physical systems.

1.1. Contributions
In the present article, we utilize representation theory and computational homol-

ogy to gain deeper insights into 2D symmetric graphic statics. (The elementary details
on representations are contained in the Appendix A.) We show that group actions on
frameworks give rise to group actions on cosheaves whose homology encodes struc-
tural information. The force and position cosheaves, encoding the space of self-stresses
and reciprocal coordinates respectively, both pass to the group action. We develop
the Euler characteristic of irreducible cosheaf characters to reformulate Maxwell’s
counting rule for symmetric frameworks (Theorem 4.5) and to provide a new proof of
this result. We then prove our main theorem, which says that the Maxwell-Cremona
equivalence between self-stresses of a framework and its reciprocal diagrams not only
occurs over symmetric frameworks, but that this equivalence also respects the under-
lying irreducible representations (Theorem 4.7).

As a consequence of Theorem 4.7, self-stress and reciprocal diagram pairs can be
aligned and organized by their underlying symmetry. Moreover, this theory can be
used to decompose reciprocal diagrams of self-stressed frameworks with point group
symmetry G into diagrams of basic symmetry types corresponding to irreducible
representations of G. See Appendix B for a detailed example. While Theorem 4.7
is simple to state, it generalizes previous works [37, 38] with an advanced method
extending to any finite symmetry group and symmetry type. This general result
had been out of reach with previous methods, but becomes accessible through our
novel cosheaf-theoretic approach, which provides the first mathematical proof of these
symmetry relationships in graphic statics.

In structural engineering, our results enable a targeted stress analysis of gridshell
roofs and related structures based on specific symmetry types to enhance stability
and optimize load distribution. While our methods apply to arbitrary finite symme-
try groups, we focus our examples on small dihedral groups, which are particularly
relevant in engineering applications. Computationally, the advantage is that for a
stress analysis of a particular symmetry type, we can reduce the system by effectively
examining a quotient structure, significantly simplifying the problem. In fact, the
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structural and matrix complexity is roughly divided by the order of the symmetry
group, since we are typically working with symmetric structures where the group
action is free on most members. See also Appendix B.

Equivariant cellular cosheaves, as introduced here, are closely related to equivariant
coefficient systems over simplicial complexes as developed in [4]. Equivariant sheaves
have found use in equivariant homotopy theory [3], and equivariant homology is an
active sub-field of algebraic topology [34], but to the authors’ knowledge, this is the
first description and application of this particular structure. We expect equivariant
cosheaves to be useful more broadly in symmetric rigidity theory [40], including appli-
cations to the first-order rigidity of frameworks with phase symmetry [39] and other
contexts where symmetry-adapted decompositions can simplify structural analysis
and provide deeper insights.

The paper is organized as follows: In Section 2 we provide the necessary back-
ground on graphic statics cellular cosheaves. In Section 3 we introduce the notion
of an equivariant cellular cosheaf, combining the theories of the previous section
with group representation theory. Section 4 focuses on the irreducible components
of the homology relations, and in particular develops the graphic statics relations
of irreducibles. Finally, in Section 5 we discuss some avenues for future work. The
Appendix A covers the necessary standard representation theory. For greater clarity,
thorough computations on a simple framework are carried out in Appendix B.

The figures in this paper were developed using Python code that is freely available
at the following link: https://github.com/zcooperband/EquivariantGraphicStatics. In
the linked project, the relevant cosheaf homologies are implemented using matrix
methods, and equivariant irreducible self-stress reciprocal diagram pairs are extracted.
The project contains several prepared sample frameworks and tests for quick verifi-
cation of commutativity of diagrams of the form (18).

2. Statics, Graphic Statics, and Cosheaves

While in structural engineering it is common to merge the abstract/combinatorial
and geometric characteristics of a pin-jointed truss model, it is useful to distinguish
between the two. Discounting geometric singularities, many algebraic properties of a
truss are invariant under changes in geometry. The underlying combinatorial structure
is that of a cell complex.

A (finite, regular, CW) cell complex is a topological space X partitioned into a
finite number of cells {c}, where each cell c is homeomorphic to a topological disk
of some dimension2. We say cells c and d are incident and write c� d if c is a lower
dimensional cell on the boundary of the closure of d.

A signed incidence relation on a cell complex X assigns to each pair c, d of cells of
X a value [c : d] ∈ {0,±1} , so that the following properties are satisfied:

• (Adjacency) [c : d] ̸= 0 if and only if c� d and dim c+ 1 = dim d.

• (Directed Edges) [u : e][v : e] = −1 for an edge with incident vertices u, v � e.

• (Regularity) For any b� d,
∑
c[b : c][c : d] = 0.

2Moreover, cells must have “nice intersections”; for a complete definition of a regular (CW) complex
see [16]. For the purposes of this paper, systems of polyhedra are regular cell complexes.
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A signed incidence relation encodes the consistency of local orientations over cells.
When the orientation of two incident cells c� d agree, such as when a directed edge
“points towards” a vertex, we set [c : d] = +1; otherwise we set [c : d] = −1.

A framework (G, p) in the plane R2 is a graph G with sets of vertices V and
edges E together with a realization map p : V → R2 that assigns each vertex v a
geometric position pv = p(v) ∈ R2. We typically require that p be locally injective,
meaning that for every edge with endpoints u, v � e, we have pu ̸= pv (although in
reciprocal diagrams of frameworks this property may be lost). A framework (G, p)
is planar if its edges, embedded in R2 as straight lines, do not intersect anywhere
except at their endpoints. A planar framework induces a cell complex X, which we
may write as X = (V ,E ,F ) where F is the set of faces that naturally correspond
to the connected components of the complement of the union of the geometric edges.
Dually, every two-dimensional cell complex realized in R2 determines a framework
(which may have overlapping faces). In the following, we will often abuse terminology
slightly and call (X, p) a framework in R2.

Every framework models a pin-jointed truss in the plane. This is a geometric model
of a physical truss, where the nodes allow rotations in any direction of the space and
the truss members are loaded in pure axial tension or compression. A stress over a
framework (X, p) is an assignment of a real-valued scalar we to each edge e encoding
the internal tension or compression force over that edge. A self-stress (or equilibrium
stress) w on a framework (X, p) is a stress that satisfies the following equation3 at
every vertex v ∑

{v�e�u:v ̸=u}

we(pv − pu) = 0, (1)

the sum being over the edges e that are incident with v.
Equilibrium stresses encapsulate the condition that the truss is in force equilibrium

and are of vital importance to structural engineering statics. In the next section, we
show that equilibrium stresses are an instance of a much more general phenomenon.

2.1. Cellular Cosheaves
In a variety of engineering applications, vector valued data is assigned to the cells

of a cell complex. This data can be forces, kinematic motions, positions, and other
geometric-algebraic data. Cosheaves are mathematically precise and concise formula-
tions of these distributed data structures.

Definition 2.1 (Cellular cosheaf). Fixing a field k, a (k-valued cellular) cosheaf K
over a cell complexX consists of the following data. Each cell c ∈ X is assigned a finite
dimensional vector space Kc ∼= kn, for some n ∈ N, called the stalk at c. When cells
c� d are incident, a linear extension map is assigned between stalks Kd�c : Kd → Kc.
Cosheaves are functors, meaning that Kc�b ◦ Kd�c = Kd�b and Kc�c = id for incident
cells b� c� d.

We fix the field of all cellular cosheaves to be R or C. One thinks of a cosheaf as a
blueprint for local algebraic data, describing what data is attached to which cell and

3Here the value we corresponds to a tension/compression force scaled by the length of the edge
∥pv − pu∥.
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how these relate. However, to detect global algebraic structure, we use the blueprint
and build a computational machine known as a chain complex.

Definition 2.2 (Cosheaf chain complex). The space of i-chains of a cosheaf K over
a cell complex X is the direct sum of stalks

CiK =
⊕

dim c=i

Kc.

The boundary of an i-chain x is the i− 1 dimensional chain ∂x with component

(∂x)c =
∑
c�d

[c : d]Kd�cxd

at the i− 1 dimensional cell c. Note that ∂x = 0 if x is a 0-chain. From the regularity
property of signed incidence relations, it follows that ∂ ◦ ∂ = 0 and hence

. . . Ci+1K
∂i+1−−−→ CiK

∂i−→ Ci−1K → . . . (2)

is a chain complex denoted CK.

Certain practical necessities, such as the orientations of cells, are necessary for com-
putations and amount to a choice of basis for chains. This motivates decoupling the
cosheaf abstraction from its computational aspects of its underlying chain complex,
primarily used to compute its homology.

Definition 2.3 (Cosheaf homology). Let K be a cosheaf over a cell complex X. We
say an i-chain x ∈ CiK is a cycle if ∂i(x) = 0. The i-th cosheaf homology of the chain
complex CK is

HiK = ker ∂i/im ∂i+1

i.e. the space of quotients of cycles by boundaries of higher dimensional chains.

Example 2.4 (Constant cosheaves). Let V be a finite dimensional vector space. The
constant cosheaf V over a cell complex X has identical stalks V c = V for all cells c
and identity extension maps V d�c = id. The homology of V is isomorphic to m copies
of cellular homology with dimHV = m dimH(X; k) where m = dimV .

Example 2.5 (The force cosheaf). The following force cosheaf encodes the forces
within an axially loaded pin-jointed truss as well as equilibrium stresses of the truss.
This cosheaf is non-trivial and has been defined and developed previously in the
context of graphic statics [12, 13].

Fix a planar framework (X, p) in R2. The force cosheaf F over (X, p) has stalks
Fe = R encoding the axial force in an edge e and Fv = R2 encoding the space of
external forces at each joint. The stalks over the faces of X vanish. Both extension
maps Fe�u and Fe�v send 1 ∈ Fe to the same vector4

[v : e](pv − pu) = [u : e](pu − pv). (3)

The boundary map of the force cosheaf ∂ : C1F → C0F can be represented as a size
2|V | × |E| matrix known as the equilibrium matrix. Note that the equilibrium matrix

4This assignment dictates that 1 ∈ Fe corresponds to the edge being in compression scaled by the
length of the edge. If we were to wish for the basis element 1 ∈ Fe to correspond to a tension value,
we would simply set Fe�v(1) = Fe�u(1) = [v : e](pu − pv).



EQUIVARIANT COSHEAVES AND GRAPHIC STATICS 7

is the transpose of the classical rigidity matrix from geometric rigidity theory [11].
The kernel of ∂ is the first homology H1F , the vector space of equilibrium stresses of
the structure. To confirm this, we expand the boundary matrix at a chain w ∈ C1F

(∂w)v =
∑
v�e

[v : e]Fe�vwe =
∑

{v�e�u:v ̸=u}

[v : e]2(pv − pu)we (4)

which is zero at all vertices v exactly when w is an equilibrium stress following
Equation (1). The cokernel of ∂ is the zeroth homology H0F = C0F/im ∂, interpreted
as the space of infinitesimal motions of the framework. These include the trivial
infinitesimal motions corresponding to rigid body motions (rotation and translation)
as well as the non-trivial infinitesimal motions (mechanisms).

2.2. Maps Between Cosheaves

An exact sequence of vector spaces is a sequence of vector spaces and linear maps

· · · → V3
f2−→ V2

f1−→ V1
f0−→ V0

f−1−−→ V−1 → . . . (5)

where for each index the maps satisfy im fi = ker fi−1. A short exact sequence is of
form (5) where Vi = 0 except at indices i = 0, 1, 2. Then the map f1 would be injective
and the map f0 surjective with isomorphism V0 ⊕ V2 ∼= V1.

Let K and L be cosheaves over a cell complex X. A cosheaf map ϕ : K → L is
comprised of component maps between stalks ϕc : Kc → Lc such that the following
diagram commutes

Kd Ld

Kc Lc

ϕd

Kd�c Ld�c

ϕc

(6)

for every pair of incident cells c� d. Cosheaf maps induce maps on chain complexes
ϕ : CK → CL comprised of the constituent maps. A short exact sequence of cosheaves
0 → K → L → M → 0 has an induced short exact sequence of cosheaf maps

0 → CK ϕ−→ CL ψ−→ CM → 0 (7)

such that the induced sequence at each stalk

0 → Kc
ϕc−→ Lc

ψc−→ Mc → 0 (8)

is exact. All cosheaf stalks we will discuss are finite dimensional and we assume the
underlying cell complex X has only a finite number of cells, so the sequence (7) is an
exact sequence of finite dimensional vector spaces.

From any injective cosheaf map ϕ : K → L we can construct the quotient cosheaf
L/ϕK with stalks (L/ϕK)c = Lc/imϕcKc. If each stalk Kc is considered as a subspace
of the stalk Lc under the embedding ϕc, we may treat K as a sub-cosheaf of L and
drop notation to L/K.

A short exact sequence of cosheaf maps induces maps on homology, and moreover
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we get a long exact sequence in homology

· · · → Hi+1L/K
ϑ−→ HiK

ϕ−→ HiL
ψ−→ HiL/K

ϑ−→ Hi−1K → . . . (9)

where ϑ are connecting homomorphisms.

Example 2.6 (Planar graphic statics). Suppose (X, p) is a planar framework in R2.
Both the force cosheaf F from Example (2.5) and the constant cosheaf R2 are set
over this framework (X, p). There is a natural injective map ϕ from F to R2 which
we now describe.

The map ϕ is the identity over vertices with ϕv : Fv → R2
v equating stalks Fv = R2

and R2
v = R2. Then ϕ is injective over edges, where over an edge u, v � e, ϕe : Fe →

R2 sends5 1 to the vector [u : e](pu − pv). By construction, ϕ is natural with

id ◦ Fe�v = ϕv ◦ Fe�v = R2
e�v ◦ ϕe = id ◦ ϕe

and with a similar equation over the other incidence u� e.

We assign the notation P := R2/ϕF for convenience, and let π : R2 → P denote
the cosheaf quotient map. We call P the position cosheaf dual to F because we will
see that P encodes the positions of the dual vertices of reciprocal diagrams. Since
trusses have trivial data over faces f , Ff = 0 and Pf = R2

f = R2. Over an edge
u, v � e, we know that ϕFe is the span of the vector (pu − pv) and consequently
Pe = R2/span{pu − pv}. Lastly, Pv = 0 over vertices v.

In graphic statics, self-stresses of a planar frameworkX = (V ,E ,F ) are associated
with reciprocal diagrams: realizations ξ of the dual cell complex X̃ = (F̃ , Ẽ , Ṽ ) such
that an edge e is parallel with its dual ẽ. See e.g. Figure 1. Abstractly, the position
of a dual node f̃ is a coordinate in R2 which we encode by the map ξ : F̃ → R2. The
collection of these positions ξF̃ must satisfy the constraint that ξf̃ − ξg̃ is parallel
with the vector pu − pv for any edge with vertex and face incidences u, v � e� f, g.
Equivalently, ξf̃ − ξg̃ is an element of span{pu − pv} and therefore

[ξf̃ − ξg̃] = [0] ∈ R2/span{pu − pv} = Pe (10)

is the zero class.

This is all to say the space of parallel reciprocal diagrams, encoded by realizations
ξ over F̃ ∼= F over vertices of the dual graph X̃, are elements of H2P. We see that
ξ is a cycle if and only if Equation (10) is satisfied everywhere [12].

From the exact sequence of F , R2 and the quotient cosheaf P we have a segment
of the long exact sequence

0 → H2R2 → H2P
ϑ−→ H1F

ϕ−→ H1R2 → . . . (11)

Since the framework is planar and hence X has spherical topology, H2X ∼= R and
H1X = 0. Consequently, the constant homology is determined as H2R2 ∼= R2 and
H1R2 = 0 and line (11) simplifies considerably. We find there is an isomorphism
ϑ : H2P/R2 → H1F , meaning that the space of self-stresses of X is isomorphic to the
space of parallel reciprocal diagrams of X̃ up to global translation.

5This assignment is the same as the extension maps Fe�u and Fe�v .
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In the above Example 2.6, we derived the position cosheaf purely from the force
and constant cosheaves. The properties of any quotient cosheaf in general can be
derived in a similar manner (by the universal property of quotients). This is critical
because the problem of understanding quotient spaces (here reciprocal diagrams)
is translated into an equivalent problem of understanding its precursors (here self-
stresses and ambient space) which are often much more tractable.

3. Equivariant Cosheaves

We now integrate the theory of cellular cosheaves with that of finite group repre-
sentations. (Basic results on the latter are provided in Appendix A.) This combination
enables us to define equivariant cosheaves, which provide a framework for describing
symmetric data assignments. We then focus on applications: symmetric force loading
assignments and symmetric reciprocal frameworks.

Definition 3.1 (G-cell complex). For a finite group G, a G-cell complex (X,α) is a
cell complex X with a permutation action α : G×X → X on the set of cells of X
satisfying:

• (Functorial) For any cell c, any g, h ∈ G, and ϵ ∈ G the identity element, we
have α(g, α(h, c)) = α(gh, c) and α(ϵ, c) = c.

• (Equivariant) If c� d then α(g, c)� α(g, d).

Definition 3.2 (G-cosheaf). Suppose that G is a finite group, (X,α) is a G-cell
complex and K is a k-cosheaf over (X,α) such that Kc ∼= Kgc for every g ∈ G and
cell c. A cosheaf representation ρ is a family of group representations on each space
of chains {ρi : G→ GLk(CiK)} such that:

(i) For every g ∈ G, ρi−1(g) ◦ ∂i = ∂i ◦ ρi(g).

(ii) For x an i-chain, the value of ρi(g)(x) at a cell gc depends only on xc. In
other words, there are isomorphisms for each cell, ρc : G→ Orbit(Kc), such
that (ρi(g)(x))gc = ρc(g)xc.

We say the pair (K, ρ) is a (k)G-cosheaf.

There are numerous observations we can make about G-cosheaves. From point
(i), for each g, ρ(g) is a G-chain complex6 automorphism from CK to itself. This
means each chain space CiK is a G-module and the boundary maps ∂i are G-
homomorphisms. Utilizing point (ii) of Definition 3.2 and looking at the component
of the boundary map corresponding to the incidence c� d, we find that point (i) is

6A G-chain complex is a functor from G as a single object category to the category of chain com-
plexes.
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equivalent to the equation

(ρi−1(g) ◦ ∂i(xd))gc = [c : d]ρc(g)Kd�cxd
= [gc : gd]Kgd�gcρd(g)xd
= (∂i ◦ ρi(g)(xd))gc.

(12)

being satisfied everywhere. Consequently, the “local” components of the cosheaf rep-
resentation ρ, {ρc} satisfy the commutative diagram

Kd Kgd

Kc Kgc

ρd(g)

Kd�c Kgd�gc

ρc(g)

(13)

up to sign, for every g ∈ G and every incidence c� d. Recalling diagram (6), the
above diagram (13) is exactly the condition that ρ(g) is a G-cosheaf map. Therefore,
every G-cosheaf representation ρ is nearly a G-natural cosheaf automorphism7, and
is so up to sign (this is a point worthy of future investigation).

Figure 2: A sketch of the trivial representation ι over the constant cosheaf R, satisfying
the constraint equation (12). The edge e changes orientation under the group action
g, meaning [ge, e] = −1. The trivial representation ι does not detect cell geometry or
embedding, only orientations.

Example 3.3 (Trivial constant G-cosheaves). Here we illustrate why a cosheaf rep-
resentation may not be a G-indexed family of cosheaf maps. Permuting the under-
lying cell interferes with preservation of orientation and signs, even on the simplest
cosheaves.

Suppose (X,α) is a G-cell complex and Rn is a constant cosheaf over (X,α). The
trivial cosheaf representation ι over Rn is comprised of local maps ιc(g) = [gc, c] · id
for every g ∈ G and cell c, where [gc, c] ∈ ±1 measures orientation alignment between
c and gc. We let [gc, c] = +1 if the orientation of c is reflected by the g action, or
[gc, c] = −1 if the orientation of c is reversed. To satisfy Equation (12) we require

[gc, c][c : d] = [gc : gd][gd, d] (14)

to hold true for all c� d and g. Requiring vertices to always have positive sign,
[gv, v] = +1 for all v, an edge u, v � e changes sign and has [ge, e] = −1 when [v :

7We mean a functor from G as a single object category to the category of natural transformations
of cosheaves to themselves.
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e][gv : ge] = −1 (or equivalently [u : e][gu : ge] = −1). This sign change is demon-
strated in Figure 2.

With this trivial cosheaf action ι, structure follows from the underlying permu-
tation action α. Over the unit constant cosheaf R, each map ιi(g) : CiR → CiR is
a signed permutation matrix with cells for basis elements. Abusing notation and
declaring αi to be a representation consisting of permutation matrices on i-cells in
CiX = CiR, it follows that ι0 = α0 and ιi is equivalent to αi up to sign for i > 0.

Over Rn with the trivial cosheaf action, each map ιi(g) : CiRn → CiRn can be
represented as a matrix with ±In signed identity blocks. This is equivalent to the
representation In ⊗ αi on CiRn up to sign, where In(g) = In is the trivial represen-
tation on Rn.

Example 3.4 (Regular representation). The group G can be considered as a discrete
cell complex comprised of a point for each group element. Let (G, ℓ) be a G-cell
complex where ℓ is the left action of G on itself. Suppose (R, ι) is the unit constant
cosheaf over (G, ℓ) with the trivial G-action from the above example. Then the space
of 0-chains C0(R, ι) ∼= R|G| is generated by a basis of group elements and ι = ι0 = α0

is the left regular representation.

Example 3.5 (Cyclic and dihedral constant cosheaf). When G is a cyclic or dihe-
dral group, there is a more useful representation than the trivial one over constant
cosheaves. We let η be a cosheaf representation over R2 determined by local maps
ηc(g) = [gc, c]τ(g) where τ is the representation on R2 introduced in Example A.1.
The representation ηi(g) is equal to the representation τ ⊗ αi when i = 0 and is
equivalent up to sign when i > 0. See Figure 3 for an illustration.

Figure 3: The D8-constant cosheaf (R2, η1) is pictured over a square cell complex,
with 1- and 0-dimensional data drawn as dashed arrows (2-dimensional vectors) in
edges and at vertices in the top and bottom row, respectively. Here we examine the
commutativity condition (i) of Definition 3.2 over edges and vertices. To the left the
group element is a π/2 rotation counter-clockwise, and to the right the group element
is a reflection about the horizontal axis. Take note of the sign alignment [ge, e] = ±1
between an edge e and its permutation.

A realization p : V → R2 is a G-realization if there is a representation τ0 : G→
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GL(R2) over which p is equivariant. In other words, p satisfies

τ0(g)pv = pgv (15)

for every g ∈ G and v ∈ V . We take τ0 = τ to be the standard representation from
Example A.1. A G-framework is a G-cell complex (X,α) together with a G-realization
forming a triple (X,α, p).

Example 3.6 (Cyclic and dihedral force cosheaf). We investigate the force cosheaf F
over such a realized G-cell complex (X,α, p). Due to the isomorphism of vertex stalks
Fv ∼= R2, we can consider the representation ρ on F extending the representation
τ ⊗ α0 on C0F ∼= C0R2 to 1-chains. We set ρe(g) = id between edge stalks Fe → Fge
sending a unit compression over e to unit compression over ge for every edge e and
element g ∈ G. With this identification ρ1 is equivalent to α1, the representation
of (strictly positive) permutation matrices on edge generators in C1F ∼= C1X. To
confirm that ρ is indeed a G-representation we check the condition (12), namely the
the following vectors are equal

[gv : ge]Fge�gv ◦ id(1) = [gv : ge]2(pgv − pgu)

= [v : e]2τ(g)(pv − pu)

= [v : e]τ(g) ◦ Fe�v(1).

Here we utilized the definitions of a G-realization (15) and of the force cosheaf exten-
sion map in line (3).

The force cosheaf F and its cosheaf representation ρ are used in most other sources
of equivariant trusses [11, 37]. See Figure 4 for an illustration.

Figure 4: The D8-force cosheaf (F , ρ) is pictured over a square. Data over edges are
shown as scalars (top row), and data over vertices are shown as dashed arrows at
vertices, as before (bottom row). Two of the edges are in varying degrees of compres-
sion, and we check condition (i) of Definition 3.2 for F .

Let µ(1), . . . , µ(m) denote the irreducible representations of G, unique up to iso-
morphism. For each dimension index i we have that CiK is isomorphic to a direct
sum of G-submodules

CiK ∼= C
(1)
i K ⊕ C

(2)
i K ⊕ · · · ⊕ C

(m)
i K

where C
(j)
i K is isomorphic to the direct sum of N (j)(ρi) ⩾ 0 copies of the irre-

ducible G-module (knj , µ(j)). Each space C
(j)
i K has dimension N (j)(ρi)nj . (See also
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Appendix A.)

Let ∂
(j)
i denote the restriction of the boundary map ∂i to the subspace C

(j)
i K. By

Theorem A.6 it follows that ∂i can be represented by the sum

∂i = ∂
(1)
i ⊕ · · · ⊕ ∂

(m)
i (16)

over the irreducible G-submodules. The image of ∂
(j)
i is zero on C

(t)
i−1 for any t ̸= j.

Lemma 3.7. Any G-cosheaf chain complex C(K, ρ) is isomorphic to the decomposi-
tion

CK ∼= C(1)K ⊕ · · · ⊕ C(m)K (17)

where each chain complex C(j)K is of the form

· · · → C
(j)
i+1K

∂
(j)
i+1−−−→ C

(j)
i K

∂
(j)
i−−→ C

(j)
i−1K → . . .

Proof. This is Theorem A.7 applied to the boundary maps ∂i of the chain complex.

3.1. Equivariant Cosheaf Maps

Definition 3.8 (G-cosheaf map). Suppose G is a finite group, (X,α) is a G-cell
complex, (K, ρ) and (L, η) are G-cosheaves over (X,α) and ϕ : K → L is a cosheaf
map. We say that ϕ is a G-cosheaf map if the diagram

CiK CiL

CiK CiL

Ci−1K Ci−1L

Ci−1K Ci−1L

ϕ

∂

ρ(g)

∂

η(g)

ϕ

∂
ϕ

ρ(g)

η(g)

ϕ

∂

(18)

commutes for every index i and group element g ∈ G. This means the composition of
maps over every path from CiK to Ci−1L must be equal.

The commutativity of the front and back squares of diagram (18) follow from ϕ
being a chain map and the commutativity of the left and right squares follow by
both K and L being G-cosheaves (by assumption). The only statements that must
be checked are the commutativity of the top and bottom squares of diagram (18). In
particular, for every i-chain x ∈ CiK it must be true that

ϕgcρc(g)xc = ηc(g)ϕcxc. (19)

Every G-cosheaf map ϕ consists of a family of G-homomorphisms on chain spaces
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{ϕ : CiK → CiL}. A short exact sequence of G-cosheaf maps

0 → C(K, ρ) ϕ−→ C(L, η) ψ−→ C(M, µ) → 0 (20)

is a short exact sequence of cosheaf maps, equivariant under the respective represen-
tation actions. From any injective G-cosheaf map ϕ : (K, ρ) → (L, η) the quotient G-
cosheaf (L/ϕK, η/ϕρ) has stalks (L/ϕK)c = Lc/imϕcKc. The group action on stalks
is the action η on quotient classes:

(η/ϕρ)c(g)(x+ imϕc) = ηc(g)(x) + im (ηc(g) ◦ ϕc)
= ηc(g)(x) + im (ϕgc ◦ ρc(g)ϕc)
= ηc(g)(x) + imϕgc

We simplify the notation by letting η/ρ denote the representation η/ϕρ.

Example 3.9 (Cyclic and dihedral position cosheaf). Letting G be cyclic or dihedral,
recall from Example 3.6 and Example 3.5 that we defined the appropriate cosheaf
representations for the force F and constant R2 cosheaves. In Example 2.6 we devel-
oped classical planar graphic statics and proved that the structure of the position
cosheaf P can be deduced from these previous two cosheaves (without G-action). We
wish to do the same while including the G-action, namely we show that the appropri-
ate representation of P can be derived purely from the representations of (F , ρ) and
(R2, η). This is the subject of Lemma 3.11, and we describe the G-cosheaf (P, η/ρ)
for now.

When assuming the underlying G-cosheaf is an oriented 2-manifold, it is possible
to assign every face a consistent local orientation. Then [gf, f ] = ±1 depending on
whether g is a rotation or a reflection. There is a simple formulation of η/ρ, namely
η/ρ2 = η2 consisting of local maps

η/ρf (g) =

{
+τ(g) g is a rotation

−τ(g) g is a reflection
, (21)

which is always positive when the group G is Zm. Over edges the representation η/ρ1
is similar

η/ρe(g) =

{
+1 g is a rotation

−1 g is a reflection
. (22)

Remark 3.10. The sign flip in Equations (21) and (22) has counter-intuitive effects.
Take the reflection s (in some dihedral group) along the vertical axis; the standard
representation τ takes value

τ(s) =

[
−1 0
0 1

]
= −

[
1 0
0 −1

]
,

inverting the first coordinate. Then at any face f , η/ρf (s) takes the value−τ(s), which
is a matrix that inverts the second coordinate, “acting like” a reflection along the hor-
izontal axis. We can think of η/ρ having dual mirror symmetry in the dihedral group,
a phenomenon previously noticed in [37]. An example of this mirror-transformation
is clearly visible in Figure 1, also pictured in detail in Figure 5.
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We emphasize the importance of deducing properties of the quotient G-cosheaf
(P, η/ρ) purely in terms of its priors (F , ρ) and (R2, η). Universal properties (here,
of quotients) are extremely powerful, and properties of any quotient G-cosheaf can
be derived in an algorithmic manner by diagram chasing. The authors hope the
methods used in Lemma 3.11 guide future derivations of quotient G-actions, say in
Fourier methods or harmonic analysis over cosheaves.

Lemma 3.11. The position cosheaf (P, η/ρ) defined in the above Example 3.9 indeed
is a Zn- or Dn-cosheaf and π : (R2, η) → (P, η/ρ) is a Zn- or Dn-cosheaf map.

Proof. Fix the group G as Zm or D2m. We first prove the map ϕ : F → R2 is in
fact a G-cosheaf map satisfying the condition of line (19) at all cells and group
elements. Let (F , ρ) and (R2, η) be the force and constantG-cosheaves of Examples 3.5
and 3.6. Line (19) is satisfied trivially over vertices, as both ρ0 and η0 are equivalent
to the same representation τ ⊗ α0. For commutativity over edge cells, we note that
ρe(g) = +1 and that ηe(g) = [ge, e]τ(g). Then the orientation of the edge e being
preserved/reversed to ge is equivalent to the base of e (the vector (pu − pv) for u, v �
e) being preserved/reflected, and

ϕge = [ge, e]τ(g)ϕe (23)

Because ϕ is a G-cosheaf map, the image ϕCF is a G-submodule of the chain
complex CR2. We next prove that that quotient map π from Example 2.6 is also a
well-defined G-cosheaf map, and in the process show that line (21) and line (22) hold
true.

We check the commutativity of the diagram (18) for the map π over 2- and 1-
chains. By assumption π is a (regular) cosheaf map, meaning the front and back
squares of the diagram commute. Also the left square commutes by the construction
of (R2, η) in Example 3.5. Clearly π ◦ η2(g) = η/ρ2(g) ◦ π as maps from C2R2 to C2P,
so the top square commutes.

We show that π ◦ η1(g) = (η/ρ)1(g) ◦ π, verifying the commutativity of the bottom
square of diagram (18). For computations, we associate Pe over an edge u, v � e
with the orthogonal space (ϕFe)⊥ in R2 by rotating the vector (pu − pv) = ϕe(1)
generating ϕFe by angle π/2 clockwise, setting Pe ∼= span{R(π/2)ϕe(1)} where R(·)
is a rotation matrix by the specified angle. Then we define π1 : C1R2 → C1P by
setting πe(ye) = ⟨R(π/2)ϕe(1), ye⟩ for y ∈ C1R2. We know that at an edge e and
g ∈ G, η/ρe(g) is a scalar, thus we have

πge ◦ ηe(g)(ye) = η/ρe ◦ πe(ye)
[ge, e]⟨R(π/2)ϕge(1), τ(g)ye⟩ = η/ρe(g)⟨R(π/2)ϕe(1), ye⟩

[ge, e]2τ(g)−1R(π/2)τ(g)ϕe(1) = η/ρe(g)R(π/2)ϕe(1)

(24)

using line (23). This implies that

η/ρe(g)ϕe(1) = R(π/2)−1τ(g)−1R(π/2)τ(g)ϕe(1) = [R(π/2), τ(g)]ϕe(1)

the commutator of the two orthogonal matrices. If g is a rotation, the matrices com-
mute and η/ρe = +1. When g is a reflection then

R(π/2)−1
(
τ(g)−1R(π/2)τ(g)

)
= R(π/2)−1R(π/2)−1 = R(π)

sends ϕe(1) to −ϕe(1).
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Figure 5: Generators for the representation of the D8-constant cosheaf (R2, η2) are
pictured acting on a square face (two-dimensional data). The bottom row shows the
1-dimensional data (dashed vectors for the edges). This is a continuation of Figure 3.
To the left, the stalks are permuted, rotated by π/2 counter-clockwise, then resigned
by multiplying by the scalar [gc, c]. To the right, the stalks are permuted, reflected
along the horizontal axis, then re-signed. The composition of reflection along the
horizontal axis and negation misleadingly appears like a reflection along the vertical
axis, following Remark 3.10.

For the final right commutativity square of diagram (18), we confirm that (P, η/ρ)
is indeed a G-cosheaf by checking point (i) of Definition 3.2. For x ∈ C2P the following
equations are equivalent,

[ge : gf ]Pgf�geη/ρf (g)xf = η/ρe(g)[e : f ]Pf�exf
[ge : gf ][gf, f ]⟨R(π/2)ϕge(1), τ(g)xf ⟩ = η/ρe(g)[e : f ]⟨R(π/2)ϕe(1), xf ⟩,

(25)

which after using equation (14), (25) is identical to line (24) swapping variables x
and y. Thus π is a G-map between G-cosheaves.

As consequence of Example 3.9 and Lemma 3.11, we know that

0 → C(F , ρ) ϕ−→ C(R2, η)
π−→ C(P, η/ρ) → 0. (26)

is an exact sequence of Zm- or D2m-cosheaves.

4. Irreducible Representations and Homology

Previously we confirmed that cosheaves and maps between cosheaves can be enriched
with group representations. From this groundwork we have the methods for separat-
ing cosheaf chains and homology cycles into their constituent irreducible components,
each respecting one of the underlying symmetries of the framework.

Lemma 4.1. To any short exact sequence of cosheaf chain complexes of the form (20),
there is a short exact sequence of G-cosheaf chain complexes for each irreducible rep-
resentation µ(j) of G:

0 → C(j)(K, ρ) ϕ(j)

−−→ C(j)(L, η) ψ(j)

−−→ C(j)(L/K, η/ρ) → 0 (27)
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Figure 6: Generators for the representation of the position cosheaf (P, η/ρ) are pic-
tured acting on a square face. Note that the top row is identical to that of Figure 5,
and the basis vectors orthogonal to edges are drawn in the bottom row. The vector in
the top-center square has components (+2,+1) in the x and y directions. To the left,
vectors/scalars are permuted and rotated by π/2 counter-clockwise. To the right, the
square is reflected along the horizontal axis, then some vectors/scalars reverse sign
following Equation (21). The composition appears like a reflection along the vertical
axis, following Remark 3.10.

Proof. Each component chain map ϕi : CiK → CiL and ψi : CiL → CiM are G-
homomorphisms. By Theorem A.7 the sequence

0 → C
(j)
i (K, ρ)

ϕ
(j)
i−−→ C

(j)
i (L, η)

ψ
(j)
i−−→ C

(j)
i (L/K, η/ρ) → 0 (28)

of i-chains is exact. We know ϕi and ψi commute with the respective cosheaf bound-
ary maps ∂ which likewise decompose along the irreducible components in line (16).
Thus exact sequences of G-modules (28) extend to exact sequences of G-chain com-
plexes (27).

The long exact sequence (9) respects the group action of the G-cosheaves. We have
seen that representations ρ(g) : CK → CK and η(g) : CL → CL are chain complex
automorphisms for each g ∈ G. These maps (as quasi-automorphisms) induce iso-
morphisms in homology ρ(g) : HK → HK and η : HL → HL. The following diagram
with exact rows commutes for every g ∈ G:

. . . Hi+1L/K HiK HiL HiL/K . . .

. . . Hi+1L/K HiK HiL HiL/K . . .

ψ ϑ

η/ρ(g)

ϕ

ρ(g)

ψ

η(g)

ϑ

η/ρ(g)

ψ ϑ ϕ ψ ϑ
(29)

following from the naturality of the long exact sequence [26].

Lemma 4.2. Every long exact sequence of G-cosheaf homology splits into irreducible
factors. For a short exact sequence of G-cosheaves, to each irreducible representation
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µ(j) of G the sequence

· · · → H
(j)
i+1L/K

ϑ(j)

−−→ H
(j)
i K ϕ(j)

−−→ H
(j)
i L ψ(j)

−−→ H
(j)
i L/K → . . . (30)

is exact.

Proof. Line (30) is the long exact sequence of the chain complex (27). By Theo-
rem A.7, the connecting homomorphism ϑ(j) is exactly the (j)-th irreducible compo-
nent of the full connectingG-homomorphism ϑ : Hi+1L/K → HiK from diagram (29).

4.1. A Symmetrical Maxwell Counting Rule

Characters have useful orthogonality and projection properties [29] that make char-
acter theory a critical tool for counting the dimensions of chain and homology spaces
(see also Appendix A.) We demonstrate the utility of character theory by formulating
a symmetric version of Maxwell’s rule for frameworks in terms of a symmetric Euler
characteristic for chain complexes using characters.

The Euler characteristic of a finite dimensional chain complex C is the alternating
sum of the dimensions

X (C) =
∑
i

(−1)i dimCi

The Euler formula has found use in molecular chemistry [7], DNA polyhedra [28],
configuration spaces in robotics [18], and of course in structural mechanics [11, 12]
among many other applications.

Theorem 4.3 (Standard Euler Characteristic [26]). The Euler characteristic of a
finite dimensional chain complex and its homology are equal. In particular, for a
cosheaf K with finite dimensional stalks over a finite dimensional cell complex we
have

X (CF) =
∑
i

(−1)i dimCiK =
∑
i

(−1)i dimHiK = X (HF).

Theorem 4.3 also applies to chain complexes corresponding to the irreducible rep-
resentations of G, namely X (C(j)K) = X (H(j)K).

The well-known Maxwell counting rule is the statement that the difference in
dimensions of self stresses and kinematic degrees of freedom is equivalent to counting
the different dimension cells of a finite framework [6]; in two dimensions this is the
equation

#kinematic degrees of freedom−#self stress dimensions = 2#vertices−#edges
(31)

where global translation and rotation assignments are included in the kinematic space.
This is exactly the application of Theorem 4.3 to the force cosheaf F [12].

Over a G-framework (X,α, p), the Maxwell counting rule (31) takes a more refined
form. At the identity element ϵ, the character χρ(ϵ) = trace(ρ(ϵ)) is nothing more than
the degree of χρ. Therefore the Standard Euler Characteristic Theorem (Theorem 4.3)
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for a G-cosheaf (K, ρ) can be reformulated as

X (CK) =
∑
i

(−1)iχ(ρi)(ϵ) =
∑
i

(−1)iχ(ρHiK)(ϵ) = X (HK). (32)

However, there is no need to restrict the character χ(ρ) to only the identity element.
Equation (32) in vector form (in C|G|) is∑

i

(−1)iχ(ρi) =
∑
i

(−1)iχ(ρHiK), (33)

which is quickly seen from repeated application of Theorem A.4 and character iden-
tities (45). Equation (33) applies to any G-cosheaf chain complex (CK, ρ), including
its irreducible component chain complexes (C(j)K, ρ). For any index (j) the following
identity holds: ∑

i

(−1)iχ(ρ
(j)
i ) =

∑
i

(−1)iχ(ρ
(j)
HiK). (34)

Definition 4.4. For a finite group G, the symmetric Euler characteristic of a finite
dimensional G-chain complex (C, ρ) is

X̂ (C, ρ) =

(∑
i

(−1)iN (1)(ρi), . . . ,
∑
i

(−1)iN (m)(ρi)

)
, (35)

an m-tuple of integers where m is the number of irreducible representations of the
group G, and N (j)(ρi) is defined in Appendix A (see Theorem A.9).

Theorem 4.5 (Symmetric Euler characteristic). For a finite group G, the symmetric
Euler chararacteristics of a finite G-chain complex and its homology are equal. In
particular for a G-cosheaf K with finite dimensional stalks over a finite dimensional
cell complex, the (j)-th components of the symmetric Euler characteristics are equal
to

X̂ (j)(CK, ρ) =
∑
i

(−1)iN (j)(ρi) =
∑
i

(−1)iN (j)(ρHiK) = X̂ (j)(HK, ρHK) (36)

for every index (j).

Proof. Clearly the equalities

X̂ (j)(CK, ρ) · χ(µ(j)) =
∑
i

(−1)iN (j)(ρi) · χ(µ(j)) =
∑
i

(−1)iχ(ρ
(j)
i )

hold by the defining Equation (35). A similar equality holds for homologies X̂ (j)(HK, ρHK).
The result then follows from Equation (34).

Note that when G is the trivial group, the extended Euler characteristic X̂ (CK, id)
is nothing more than the standard Euler characteristic X (CK). In fact, for any finite
group the standard Euler characteristic can be recovered by taking the degree of both
sides of Equation (49); this is the weighted sum

X (CK) =
∑
i

(−1)i degχ(ρi) =
∑
i

∑
(j)

(−1)iN (j)(ρi) · degχ(µ(j)) =
∑
(j)

X̂ (j)(CK, ρ) · dimµ(j).

Over the G-force cosheaf (F , ρ), Equation (36) is the symmetric Maxwell rule,
the analogue of Equation (31) in the group equivariant setting. While the standard
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Euler characteristic X (CF) is an alternating sum of numbers of cells by dimension,
the components of X̂ (CF) are alternating sums of symmetric force chains detailed
in numerous previous works [19, 10, 11]. The symmetric Maxwell rule is useful for
quickly detecting self-stresses of different symmetry types, which are undetectable
using standard non-symmetric counts.

Example 4.6. To demonstrate the symmetric Maxwell rule we re-examine the mirror-
symmetric framework in Figure 1(a). For this example, we have 2#vertices−#edges =
12− 9 = 3 and hence the standard Maxwell rule given in Equation (31) only detects
the three trivial degrees of freedom in the plane and no self-stress. However, using
Theorem 4.5 we can detect the self-stress indicated in Figure 1(a).

Aligned with the trivial representation µ(1), the chain complex C(1)F consists of

chains that are fixed by every group action on the underlying space. The space C
(1)
0 F

is spanned by fully mirror-symmetric vector assignments to vertices; these are spanned
by vertical forces assignments to nodes B and C, as well as mirror-symmetric force

pairs to A-C and D-F causing N (1)(ρ0) = 2 + 2 · 2 = 6. The space C
(1)
1 F is spanned

by symmetric edge-assignments, the dimension of which (for the force cosheaf F) is
equivalent to the number of edge orbits. Because three edges lie along the axis of
symmetry and six don’t, N (1)(ρ1) = 3 + 6/2 = 6.

The symmetric Maxwell rule states that for the trivial index (1), the equation

X̂ (1)(CF , ρ) = X̂ (1)(HF , ρHF )

evaluates to the following equation

N (1)(ρ0)−N (1)(ρ1) = 6− 6 = 0 = N (1)(ρH0F )−N (1)(ρH1F ) = dimH
(1)
0 F − dimH

(1)
1 F

using dimµ(1) = 1. This means that there is an equal number of mirror symmetric self-
stresses as kinematic degrees of freedom. But the vertical translation of the framework
along the mirror line is clearly mirror-symmetric and hence we conclude that there
must also be a mirror-symmetric self-stress (as indicated in Figure 1(a)).

In general, the symmetry-extended Maxwell rule often provides significantly more
insights into self-stresses and infinitesimal motions of frameworks than the standard
Maxwell counts (see also e.g. [19, 10, 11]). As such, it has become a powerful tool
in geometric rigidity theory and its applications. Recently, it has also been used as
a design tool for engineering structures with self-stresses of desired symmetry types
(see e.g. [38, 35]).

4.2. Symmetric Graphic Statics

We recall that the exact sequence of G-chain complexes (26) is isomorphic to a
direct sum of irreducible chain complex components of the form (17). For a given
irreducible representation of G with index (j), the following diagram commutes with
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exact rows

0 C
(j)
2 R2 C

(j)
2 P 0

0 C
(j)
1 F C

(j)
1 R2 C

(j)
1 P 0

0 C
(j)
0 F C

(j)
0 R2 0

π(j)

∂(j) ∂(j)

ϕ(j)

∂(j)

π(j)

∂(j)

ϕ(j)

summarizing the relationship between the symmetric chains (force loadings and posi-
tions) relevant in graphic statics.

Because H1X = 0 and thus H1R2 = 0, it follows that H
(j)
1 R2 = 0 for each (j). The

homology spaces H2R2 and H0R2 consist of constant vector assignments to every
face and vertex in X. Consequently, the G-modules (HiR2, ηHiR2) and (R2, τ) are

equivalent for i = 0, 2 and the isomorphism R2 → HiR2 is the diagonal map.
Utilizing Lemma 4.2, the long exact sequence corresponding to an irreducible rep-

resentation µ(j) splits into two exact sequences

0 → H
(j)
2 R2 π(j)

−−→ H
(j)
2 P ϑ(j)

−−→ H
(j)
1 F → 0 (37)

0 → H
(j)
1 P ϑ(j)

−−→ H
(j)
0 F ϕ(j)

−−→ H
(j)
0 R2 → 0,

where the former exact sequence describes the µ(j)-symmetric components of the
graphic statics relation, described previously in Example 2.6.

Theorem 4.7 (Symmetric planar 2D graphic statics). Let (X,α, p) be a planar G-
framework in R2. For each irreducible representation µ(j) of G, there is an isomor-
phism between µ(j)-symmetric self-stresses and µ(j)-symmetric realizations of the dual
G-cell complex up to µ(j)-translational symmetry.

Proof. The first exact sequence (37) reduces to

0 → (R2)(j)
π(j)

−−→ H
(j)
2 P ϑ(j)

−−→ H
(j)
1 F → 0 (38)

meaning ϑ(j) : H
(j)
2 P/π(j)(R2)(j) ∼= H

(j)
1 F is an isomorphism. The image π(j)(R2)(j)

consists of the τ (j)-constant vector assignments to all faces of X (constant transla-
tional assignments to dual vertices).

Theorem 4.7 is a key result in the development of symmetric graphic statics, sig-
nificantly extending the work in [37], which only considers reciprocal diagrams arising
from “fully-symmetric” self-stresses. It proves and provides the algebraic maps needed
to relate self-stresses of different symmetry types in primal frameworks with their dual
frameworks while maneuvering past formerly perplexing issues (see Remark 3.10). The
components of homology spaces associated to each symmetry type may be analyzed
independently, paring down computational burden. This formalization of graphic stat-
ics relationships may also aid symmetric kinematic analysis [35, 37].
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Example 4.8. A truss with one degree of self-stress and D2 (mirror) symmetry is
pictured in Figure 1(a). Its three degrees of reciprocal diagrams are either µ(1)- or
µ(2)-symmetric, which we now describe.

The group D2 has two irreducible one-dimensional representations, the trivial
representation µ(1) and the representation µ(2) that takes value −1 on the reflec-
tion s ∈ D2. The self-stress pictured in Figure 1(a) corresponds to the former, with

H
(1)
1 F = H1F having dimension 1. The representation τ (1) is one-dimensional, and

the graphic statics sequence (38) with superscript (1) has isomorphic entries to

0 → R → H
(1)
2 P ϑ(1)

−−→ H
(1)
1 F → 0

Here H
(1)
2 R2 ∼= R consists of the left-right translations of the reciprocal (b). One

dimension of H
(1)
2 P corresponds to this horizontal translation, while the other scales

the diagram pictured in (b) corresponding to the self-stress in (a). The exact sequence (38)
for superscript (2) is equivalent to

0 → R → H
(2)
2 P → 0

where H
(2)
2 R2 ∼= R consists of the up-down translations of the reciprocal, which are

inverted by the action ηf (s) = −τ(s) over the reflection s at every face/dual vertex.
It is a standard method in representation theory to split the homology space H2P

into its components H
(1)
2 P and H

(2)
2 P in computations. For each irreducible repre-

sentation µ(j), we form the linear map

γ(j) :=
∑
g∈G

χ(µ(j))(g) · η/ρ(g) : C2P → C2P. (39)

Then γ(j) has image C
(j)
2 P, and when restricted to homology cycles the map γ(j)|H2P

has the desired image H
(j)
2 P. This method (39) will also be used in the example in

Appendix B.

5. Conclusion and Future Work

We have developed graphic statics for symmetric frameworks, decomposing the
classical self-stress to reciprocal diagram correspondence by the irreducible represen-
tations of the finite group. These reciprocal diagrams are useful as both a geometric
visualization of the internal stresses and as a design tool for the framework (and its
polyhedral liftings). Through the symmetric graphic statics result – Theorem 4.7 –
frameworks can now be designed graphically along the symmetry of their internal
stresses. A detailed example is provided in Appendix B. (See also Example 4.8 and
the example shown in Figure 7.)

It is straightforward to generalize the methods here to frameworks with exte-
rior loadings as well as polyhedral lifts of self-stressed frameworks with cyclic and
dihedral symmetry. This leads to the natural question of formulating equivariant
cosheaves over periodic stressed frameworks, considered as the lift of a toroidal lifting
[17] to the simply connected cover R2. The group characters and representations are
then intimately related to the discrete Fourier transform by the Peter-Weyl theo-
rem, indicating a deep connection with methods in harmonic analysis [32]. In higher
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Figure 7: A framework with D8 dihedral symmetry and a family of reciprocal frame-
works corresponding to irreducible representations of D8. The last irreducible repre-

sentation µ(5) has dimension two. Then, with the space H
(5)
2 P being 4-dimensional

the representation η/ρ
(5)
H2P consists of two factors of µ(5). The result is that the four

dimensions of reciprocal diagrams are grouped into pairs of two each. Note that point
coordinates may overlap in the reciprocal frameworks, and in such cases, nodes and
edges might not be visible in the drawing.

dimensions, there are potential extensions of this work to vector graphic statics [1],
3D-graphic statics [22], and beyond.

The kinematics and dynamics of symmetric structures can likewise be investi-
gated homologically and equivariantly. The instantaneous velocities of a framework
(treated as a pinned linkage) are homology classes [13] and could be treated with
the cosheaf method. This may be particularly useful for modeling the folding of sym-
metric origami, which have found remarkable applications in deployable aerospace
structures, biomedical devices, and metamaterials [31]. We note that after applying
such a velocity for some finite time, the underlying framework symmetry may change.

It is open to study the actions of subgroups H ⩽ G and the relations between
representations and characters under subgroup restriction or Brauer induction, such
as the approach in [4]. We suspect one can define a sheaf theoretic analogue of Bredon
homology [34]; however this would require extra structure outside of the scope of this
paper. Moreover, it is unclear how to interpret equivariant homology groups of a
cosheaf, but we believe that it is worthy of further investigation.

There has been much previous work on the quotient framework of a symmetric
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framework (with possible self-loops) under the group action in question [40, 37]. One
consequence of this work is that the self-stresses of quotient frameworks are identified
as an equivariant homology space. It is well known that when G is a free action, a
G-sheaf on X is equivalent to an ordinary sheaf on X/G [3]. We suspect that methods
from equivariant homology theory [30] can be utilized towards the understanding of
quotient frameworks and structures.
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Appendix A. Finite Group Representations

We review the necessary definitions and results from group representation theory.
A group representation is a homomorphism ρ : G→ GLk(W ) where G is a group and
W is a vector space over some field k. In this paper we require the field k to be R or
C and the group G to be finite. The dimension of W is said to be the dimension of ρ.
We say (W,ρ) is a (k)G-module under the group action g · w := ρ(g)w transforming
vectors w ∈W . If ρ is clear from the context, then we also just write W for (W,ρ).

Example A.1 (Standard representation of cyclic and dihedral groups). Let Zm denote
the cyclic group onm elements andD2m denote the dihedral group of order 2m. (Note
that Z2 = D2.) These groups act on the plane R2 by rotations and reflections by a two-
dimensional standard representation τ . Picking a rotation generator r1, τ(r1) ∈ SO(2)
is a rotation matrix by angle 2π/m. For a reflection s, τ(s) is a determinant −1 matrix
with eigenvectors parallel or perpendicular to the line of reflection.

We say two representations ρ0 and ρ1 are equivalent if there exists an invertable
matrix P such that

ρ0 = P−1ρ1P (40)

where we regard P as a change in basis. In coordinates, if B0 is a set of basis vectors
for V0 and B1 is a basis for V1, then there is an invertable matrix P such that for
each basis vector b0 ∈ B0 and b1 ∈ B1, b1 = Pb0.

Suppose that (V, ρ) and (W, η) are G-modules. A G-homomorphism ϕ : (V, ρ) →
(W, η) is a linear map ϕ : V →W satisfying the natural equality η(g) ◦ ϕ = ϕ ◦ ρ(g)
for every g ∈ G. We say that (V, ρ) and (W, η) are isomorphic G-modules if there
exists a G-isomorphism between them.
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SupposeW is a subspace of a G-module (V, ρ). We say thatW is a (ρ-invariant) G-
submodule if ρ(g)w ∈W for every w ∈W . Then ρ induces a representation ρW : G→
GLk(W ) consisting of the restriction of ρ to the subspace. The resulting embedding
(W,ρW ) → (V, ρ) is a G-homomorphism.

If (W,ρW ) is aG-submodule of (V, ρ) we construct theG-quotient space (V/W, ρ/ρW ).
The group G acts on a quotient vector x+W by

ρ/ρW (g)(x+W ) = ρ(g)(x) + ρ(g)W = ρ(g)(x) +W. (41)

Because the field k is R or C, by Maschke’s Theorem there is a G-submodule (U, η)
such that (V, ρ) is isomorphic to (W ⊕ U, ρW ⊕ η) [29].

A G-module (V, ρ) is irreducible (and ρ is irreducible) if its only G-submodules
are zero and (V, ρ) itself. If (W0, ρ1) and (W1, ρ2) are G-submodules of V such that
V ∼=W0 ⊕W1, then the representation ρ is equivalent to the direct sum

(ρ0 ⊕ ρ1)(g) =

[
ρ0(g) 0
0 ρ1(g)

]
B0∪B1

in the basis B0 ∪ B1 of W0 ⊕W1, the ordered union of basis sets B0 for W0 and B1

for W1. Clearly the representations (V, ρ) and (W0 ⊕W1, ρ0 ⊕ ρ1) are isomorphic.

Example A.2 (Irreducible representations of common groups). The group Z2 has two
1-dimensional irreducible representations, namely the one that assigns 1 to both group
elements, denoted by µ(1), and the one that assigns 1 to the trivial and −1 to the
non-trivial group element, denoted by µ(2). It is easy to see that the standard repre-
sentation τ over Z2 from Example A.1 decomposes as τ = µ(1) ⊕ µ(2) in the case of
reflection symmetry and τ = 2µ(2) in the case of half-turn symmetry (see also [39]).

Over the complex numbers, the cyclic group Zm = {0, . . . ,m− 1} hasm 1-dimensional
irreducible representations µ(1), . . . , µ(m), where for each j = 1, . . . ,m and each t ∈
Zm, we have µ(j)(t) = ζt(j−1), with ζ = e

2πi
m . A straightforward calculation shows

that for m ⩾ 3, the standard representation τ of Zm from Example A.1 decomposes
as τ = µ(2) ⊕ µ(m) (see e.g. [39, 2]).

The dihedral groupD4 = Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} has four 1-dimensional
irreducible representations µ(00), µ(01), µ(10), µ(11), which are defined by µ(j1j2)((t1, t2)) =
(−1)j1t1+j2t2 for 0 ⩽ j1, j2 ⩽ 1 and (t1, t2) ∈ D4. It is again easy to see that the rep-
resentation τ of D4 decomposes as τ = µ(10) ⊕ µ(01).

Finally, for all m ⩾ 3, the representation τ of D2m is an irreducible 2-dimensional
representation over the complex numbers [2].

The tensor product of two G-modules (V0, ρ0) and (V1, ρ1) is the G-module (V0 ⊗
V1, ρ0 ⊗ ρ1) with the group action

(ρ0 ⊗ ρ1)(g)(x0 ⊗ x1) = (ρ0(g)x0)⊗ (ρ1(g)x1)

Example A.3 (Permutation Representation). Suppose S is a finite set and α : G×
S → S is a permutation action on S. Then α extends to a permutation representation
on k|S|, the vector space with a basis of formal elements of S. If S = G and α is the
group action acting by composition, then α is the regular representation.

With the field k equal to R or C and the group G finite, there are only finitely many
irreducible representations of G up to isomorphism [29]. We label these irreducible
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G-modules as (kn1 , µ(1)), . . . , (knm , µ(m)) where ni is the dimension of the i-th irre-
ducible representation and m is the number of conjugacy classes of G. It is customary
for the first irreducible (kn1 , µ(1)) to be trivial, meaning n1 = 1 and µ(1)(g) = 1 for
every element g ∈ G. Every G-module can be uniquely decomposed as a direct sum
of irreducible representations up to isomorphism [29].

Theorem A.4 ([29]). Let ϕ : (V, ρ) → (W, η) be a G-homomorphism. The subspaces
kerϕ ⊂ V and imϕ ⊂W are G-submodules under the action of ρ and η. Likewise,
the cokernel W/imϕ is a G-quotient space under η.

This theorem is utilized in the following fundamental lemma.

Lemma A.5 ((Partial) Schur’s Lemma [29]). Suppose (V, ρ) and (W, η) are irre-
ducible G-modules over the field R or C. If ϕ : (V, ρ) → (W, η) is a G-homomorphism
then ϕ is an isomorphism or the zero map.

Following Schur’s Lemma every G-module (V, ρ) is equivalent and isomorphic to a
unique direct sum of irreducible G-modules. For each irreducible representation µ(j)

of G, let (V (j), ρ(j)) denote the G-submodule of (V, ρ) isomorphic to the direct sum
of the integer number N (j)(ρ) of irreducible G-submodules (knj , µ(j)) that are factors
of (V, ρ). It follows that

(V, ρ) ∼= (V (1), ρ(1))⊕ · · · ⊕ (V (m), ρ(m)). (42)

Suppose V ∼= V0 ⊕ V1 and W ∼=W0 ⊕W1 are two G-modules and constituent G-
submodules. Further, suppose ϕ0 : V0 →W0 and ϕ1 : V1 →W1 are twoG-homomorphisms.
We write ϕ0 ⊕ ϕ1 : V0 ⊕ V1 →W0 ⊕W1 for the combined G-homomorphism, repre-
sented by a block diagonal matrix

ϕ0 ⊕ ϕ1 =

[
ϕ0 0
0 ϕ1

]
in some basis BV0

∪ BV1
for the domain and a basis BW0

∪ BW1
for the codomain.

We say an ordered basis B = (b1, . . . , bN ) for a G-module V is adapted if:

• bℓ ∈ B implies that bℓ ∈ V (j) for some (j).

• If bℓ, bℓ′ ∈ B with bℓ ∈ V (j), bℓ′ ∈ V (t) and j < t, then ℓ < ℓ′.

Letting B(j) denote a basis for V (j), it follows that an adapted basis for V is
an ordered union of bases B(1) ∪ · · · ∪ B(m). We say that a vector x ∈ V is µ(j)-
symmetric if x is an element of the subspace V (j), or equivalently x is a linear com-
bination of basis vectors in B(j).

Theorem A.6 ([29]). Suppose G is finite and the field k is R or C. Every G-
homomorphism ϕ : (V, ρ) → (W, η) decomposes as a direct sum of G-homomorphisms
ϕ(1) ⊕ · · · ⊕ ϕ(m) over irreducibles with

ϕ(j) : V (j) →W (j).

In particular, the matrix ϕ(1) ⊕ · · · ⊕ ϕ(m) is block diagonal with respect to adapted
bases of V and W .

Proof. This is a direct consequence of Schur’s Lemma A.5.
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Theorem A.7. Fix a sequence of G-modules

· · · → V3
ϕ3−→ V2

ϕ2−→ V1
ϕ1−→ V0

ϕ0−→ V−1 → . . . . (43)

where maps ϕi are G-homomorphisms. For any irreducible representation µ(j) of G,
there is a well-defined sequence of G-submodules

· · · → V
(j)
3

ϕ
(j)
3−−→ V

(j)
2

ϕ
(j)
2−−→ V

(j)
1

ϕ
(j)
1−−→ V

(j)
0

ϕ
(j)
0−−→ V

(j)
−1 → . . . . (44)

where Vi ∼= V
(1)
i ⊕ · · · ⊕ V

(m)
i are isomorphic G-modules and ϕi is equivalent to the

map ϕ
(1)
i ⊕ · · · ⊕ ϕ

(m)
i in an adapted basis. Moreover, if sequence (43) is exact then

sequence (44) is exact for every index (j).

Proof. By Theorem A.6 each map ϕi is equivalent to the map ϕ
(1)
i ⊕ · · · ⊕ ϕ

(m)
i in

some adapted basis for Vi. Specifically the image of ϕ
(j)
i is contained in V

(j)
i−1, meaning

the composition ϕ
(j)
i−1 ◦ ϕ

(j)
i is well defined.

Suppose that sequence (43) is exact and fix an index i. For j ̸= t it must be true

that kerϕ
(j)
i ∩ kerϕ

(t)
i = 0. Thus we have equalities

kerϕ
(1)
i ⊕ · · · ⊕ kerϕ

(m)
i = kerϕi = imϕi+1 = imϕ

(1)
i+1 ⊕ · · · ⊕ imϕ

(m)
i+1

of the G-submodule of Vi. It is also true for j ̸= t that kerϕ
(j)
i ∩ imϕ

(t)
i = 0. There-

fore we have an equality of G-submodules kerϕ
(j)
i = imϕ

(j)
i+1 for each (j) and the

sequence (44) is exact.

We conclude this brief exposition on group representations with a comment on
characters. The character of a (real or complex) representation ρ is a class function
χρ : G→ C given by the traces

χρ(g) = trace(ρ(g)).

The degree of a character χp is the dimension of the representation ρ. Characters are
invariants of equivalent representations and hence are basis independent. It is useful
to think of the character as a vector χ(ρ) ∈ C|G| where each coordinate is the trace
of the matrix ρ(g) (in some basis). Two group elements g0 and g1 are conjugate if
there exists some h ∈ G such that g0 = h−1g1h. The traces of conjugate elements g0
and g1 are equal, and hence any character table only needs to list a representative
from each conjugacy class (noting its multiplicity). An example of a character table
is shown in Figure 7.

The following well-known identities then hold for any two representations ρ1 and
ρ2:

χ(ρ0 ⊕ ρ1)(g) = χ(ρ0)(g) + χ(ρ1)(g) (45)

χ(ρ0 ⊗ ρ1)(g) = χ(ρ0)(g) · χ(ρ1)(g). (46)

Moreover, if ρ0 and ρ1 are two representations of a finite group G then ρ0 is equivalent
to ρ1 if and only if χ0 = χ1 [29].

It is well known that the characters of the irreducible representations of a finite
group G form a basis for the dual group Ĝ of class functions G→ C [29]. This allows



30 ZOE COOPERBAND, MIGUEL LOPEZ and BERND SCHULZE

characters to be decomposed, as shown in Theorem A.9, via the character inner
product

⟨χ0, χ1⟩ =
1

|G|
∑
g∈G

χ0(g) · χ1(g) (47)

where χ1(g) is the complex conjugate of χ1(g).

Theorem A.8 (Character Orthogonality [29]). Over any finite group G and any two
irreducible representations µ(j) and µ(t), the following holds:

⟨χ(µ(j)), χ(µ(t))⟩ =

{
1 if j = t

0 if j ̸= t
(48)

The characters χ(µ(j)) from Theorem A.8 are irreducible characters and can be
looked up in standard references on representation theory [2].

Theorem A.9 (Character Decomposition [29]). Let G be a finite group and χ be the
character of a representation ρ of G. Then χ(ρ) can be uniquely decomposed into a
linear combination of irreducible characters

χ(ρ) =
∑
(j)

N (j)(ρ) · χ(µ(j)) (49)

where N (j)(ρ) = ⟨χ(ρ), χ(µ(j))⟩.

These facts make character theory an essential tool for computing and decomposing
into G-submodules.

Appendix B. Fully Worked Example

In this section we demonstrate the full process of decomposing chain and homology
spaces of a cellular cosheaf into constituent components for each irreducible represen-
tation. Due to the considerable complexity, a minimal framework has been selected
which has two degrees of self-stress each with a different symmetry type. The frame-
work is pictured in Figure 8 top-left with all cell indices labeled.

The nodes of the “diamond framework” F in Figure 8 top-left are located at
coordinates (0,±3), (±3, 0) and (±1, 0). There are six vertices and eleven edges, so
the cosheaf boundary map ∂ of F (i.e. the equilbrium matrix of F) is a size 12× 11
matrix (with cells ordered as in Figure 8, with the x-coordinate of vertex stalks
preceding the y-coordinate).
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Figure 8: A framework with D4 symmetry. Cells are labeled (top-left) with numbers
i indexing vertices, j′ indicating edges and letters indexing faces. The chain complex
for the force cosheaf CF is decomposed by irreducible representations (bottom-left)

where the basis vectors of C
(ij)
1 and C

(ij)
0 are visually pictured. We see that the

matrices ∂(ij) are matrices of size 3× 4, 3× 2, 3× 2 and 3× 3. One may then find
generators for the homology spaces, pictured (right). Above are the rotational and
translational infinitesimal motions of the framework. In the bottom-right are the sym-
metric self-stresses and their corresponding dual reciprocal frameworks. The values
written on the edges are a scalar multiple of each generating self-stress; solid and
dashed lines indicate tension/compression. Since point coordinates may overlap in
the dual realizations, some nodes and edges might not be visible in the drawing.
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∂ =



3 1 −1 −3 0 0 0 0 0 0 0
3 3 3 3 0 0 0 0 0 0 0
−3 0 0 0 −2 0 0 −3 0 0 0
−3 0 0 0 0 0 0 3 0 0 0
0 −1 0 0 2 −2 0 0 −1 0 0
0 −3 0 0 0 0 0 0 3 0 0
0 0 1 0 0 2 −2 0 0 1 0
0 0 −3 0 0 0 0 0 0 3 0
0 0 0 3 0 0 2 0 0 0 3
0 0 0 −3 0 0 0 0 0 0 3
0 0 0 0 0 0 0 3 1 −1 −3
0 0 0 0 0 0 0 −3 −3 −3 −3



(50)

We see the boundary equation of the force cosheaf (4) is reflected in each pair
of rows of line (50). Moreover in each column we see that even indexed terms (x-
coordinates) and odd indexed terms (y-coordinates) are equal in magnitude but oppo-
site in sign. This reflects that each edge exerts an equal and opposite force on the
two vertices it connects.

We now turn to the D4 group action on the framework, generated by a rotation
r and a reflection s in the horizontal axis (so s · 1 = 6). Not only are the vertex
and edge indices permuted but the stalks themselves are also mixed in the manner
indicated in Figure 4 for a square. The combined action on 0-chains is ρ0 = α0 ⊗ τ
where ⊗ is the Kronecker product, α0 is the permutation representation of the vertex
set (recall Example A.3), and τ is the standard representation on R2 as described in
Example A.1:

τ(r) =

[
−1 0
0 −1

]
, τ(s) =

[
1 0
0 −1

]
. (51)

The representation ρ1 = α1 over the space C1F is simply the permutation repre-
sentation of the edge set. In the literature, the representations ρ0 and ρ1 are also
known as the “external” and “internal” representation, respectively (see e.g. [19, 10,
38, 40]).

One can confirm that ρ0(g)∂ = ∂ρ1(g) for each group element g ∈ D4 so that (F , ρ)
satisfies the conditions in Definition 3.2 for a G-cosheaf. By Lemma 3.7 we may
decompose the chain complex C(F , ρ) into a direct sum of chain complexes

C(F , ρ) ∼= C(00) ⊕ C(11) ⊕ C(01) ⊕ C(10),

each associated with a different irreducible representation of D4. For computations

we find a concrete basis for each space of chains C
(ij)
k for dimensions k = 0, 1. To this

end, we form the maps

γ
(ij)
k :=

∑
g∈G

χ(µ(ij))(g) · ρk(g) : CkF → CkF (52)

where the values of χ(µij)(g) = µ(ij)(g) are described in Example A.2. It is well

known from group representation theory that each matrix γ
(ij)
k : CkF → CkF has

range equal to the subspace C
(ij)
k . So we may now form a list of basis vectors B

(ij)
k



EQUIVARIANT COSHEAVES AND GRAPHIC STATICS 33

that span the image of γ
(ij)
k (i.e. each space C

(ij)
k ). Under these bases the boundary

matrix (50) is equivalent to a block diagonal matrix with (not-necessarily square)
blocks ∂(ij) along the diagonal.

A sketch of the decomposition of the chain complex CF along each irreducible
representation is pictured in Figure 8 (left) where we can see the dimensions of each
block. From each reduced chain complex C(ij)F we can obtain the self-stresses and
infinitesimal motions corresponding to the symmetry type by resolving the homol-

ogy equations H
(ij)
0 F = C

(ij)
0 F/im ∂(ij) and H

(ij)
1 F = ker ∂(ij). These are pictured

in Figure 8 (right).
This decomposition procedure, illustrated above for the force cosheaf, applies anal-

ogously to the constant cosheaf R2 and the position cosheaf P. In each case, the
homology spaces associated with the reduced chain complexes C(ij)F , C(ij)R2 and
C(ij)P capture the structural features of the framework corresponding to a specific
symmetry type described by the irreducible representation µ(ij).

To find the constituent components of maps between homology spaces one simply
projects and embeds with respect to the proper bases of each cosheaf. For instance,

to find matrix representations for the connecting morphisms ϑ(ij) : H
(ij)
2 P → H

(ij)
1 F ,

one finds a matrix representation of ϑ in the bases B
(ij)
H1F and B

(ij)
H2P . This amounts to

multiplying a matrix representation of ϑ by change-of-basis matrices whose rows and

columns consist of the coordinates of the basis vectors in B
(ij)
H1F and B

(ij)
H2P respec-

tively. In forming these maps one must take care that the diagram (18) commutes.
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