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Abstract In this work, we study the propagation of wildfires using an advection–
diffusion–reaction model which also includes convective and radiative heat loss. An
existing model is discussed and a physically consistent modification of the model is
proposed. Using this, the existence of travelling waves (TWs) in the one-dimensional
case is investigated. Prior numerical studies reveal the existence of TWs. Under the
travelling wave ansatz and certain approximation, the model is reduced to a semi-
autonomous dynamical system with three unknowns which can be analyzed by a
shooting algorithm. It is hypothesized that under mild wind speeds, TWs in both
directions exist, and under strong tailwinds only TWs in the direction of wind are
possible. The theoretical implications are investigated using both solvers for the PDE
models and the shooting algorithm. The results match, and unveil the dependence of
the fronts on the parameters consistent with the predictions.

1 Introduction
Wildfire as a natural phenomenon poses a palpable threat to our society which has
become evident in recent years. Due to climatic change, the frequency and severity
of wildfires will only increase over the next decades [1]. This makes it important to
develop accurate mathematical models and analytical tools that predict how wildfires
spread. For instance, wildfires are known to possess a front that moves with a given
speed which depends heavily on the wind speed and flammability of the vegetation.
Naturally, the question arises if its spread can be approximated by a travelling wave
(TW). To investigate this question, in this work, we focus on continuous advection–
diffusion–reaction (ADR) models for wildfires which were studied for example in

Koondanibha Mitra
Mathematics & Computer Science Department, Eindhoven University of Technology, 5600 MB
Eindhoven, The Netherlands, e-mail: k.mitra@tue.nl,

Qiyao Peng
1. Mathematical Institute, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC, Leiden,
The Netherlands.
2. Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan
1111, 1081 HV, Amsterdam, The Netherlands, e-mail: q.peng@vu.nl,

Cordula Reisch
Institute for Partial Differential Equations, TU Braunschweig, Universitaetsplatz 2, 38106 Braun-
schweig, Germany, e-mail: c.reisch@tu-braunschweig.de,

1

k.mitra@tue.nl
q.peng@vu.nl
c.reisch@tu-braunschweig.de


2 Koondanibha Mitra and Qiyao Peng and Cordula Reisch

[2, 3, 4]. The ADR models describe the fire dynamics by modeling the variation of
temperature and biomass. There exists a two-way and nonlinear coupling between
these two primary variables. In addition, the reaction term is discontinuous only
playing a role in the domain that is burning. This leads to challenges in analyzing
the model and predicting the existence of travelling waves. Having estimates about
TW solutions in terms of parameters such as wind speed will also help us to predict
the areas at risk for planning interventions and potentially necessary evacuations.

ADR models for wildfires have been intensively studied: In [5] TW solutions for
a diffusive model for the temperature in solid and gaseous phases are analyzed. [6]
gives an overview of TWs for static problems and for problems where both variables
diffuse. [7] analyses the travelling wave speed for a fully diffusive combustion model
with a continuous reaction function including the Arrhenius law. A major obser-
vation of the analytical and numerical investigations is that the spreading speed of
the fire depends mostly on the fire switching ‘on’ and ‘off’ and not on the cooling
down of the temperature. [2] proves the existence and uniqueness of weak solutions
for the model including an unsteady switching function for the combustion process.
Based on the existence results, a mixed finite element method is proposed. In [8]
the discontinuous combustion function is approximated by a continuous function in-
cluding the Arrhenius law and linear cooling processes. The approximation function
is chosen such that TW solutions can be observed numerically. Data assimilation
is discussed for estimating the model parameters. [4, 9] propose implicit-explicit
numerical methods for simulating the ADR model. The spread of fire is numerically
studied in heterogeneous environments and under the influence of wind.

Besides the numerical studies and the analytical proof of the existence and unique-
ness of weak solutions, results also indicate the existence of TWs for models with
one non-diffusive variable. In [10], the existence of TW solutions was proven for a
simplified model where ambient cooling effects were not regarded. In this simplified
model, there is no mechanism by which the fire can die out and hence the temperature
does not decrease. This leads to an unphysical situation. Instead, in the current work,
inspired by [11] where TWs having similar profiles were analyzed for the spreading
of biofilms, we make several important steps toward showing the existence of TWs
in a much more general setting. In Section 2, we discuss an existing ADR model and
propose its modification. Then we approximate the nonlinear combustion term and
non-dimensionalize the system. In Section 3, a TW transformation is proposed for
the one-dimensional case leading to an ordinary differential equation system in the
wave variables. In Section 4, a shooting algorithm is proposed to find the TW solu-
tions directly for the approximate model. Additionally, the dynamics of the partial
and the ordinary differential equation systems are numerically compared to verify
the transformation and our predictions.

2 Advection–Diffusion–Reaction Models for Wildfire
2.1 The Existing ADR Model
The model proposed in [2] and studied in [3] reads
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𝜌0𝐶

(
𝜕𝑇

𝜕𝑡
+ w · ∇𝑇

)
= ∇ · [𝐾 (𝑇)∇𝑇] − ℎ(𝑇 − 𝑇∞) + 𝜌0 Ψ𝑇 𝑆𝑌,

𝜕𝑌

𝜕𝑡
= −Ψ𝑇 𝑌,

(1)

with the temperature 𝑇 and the biomass 𝑌 > 0. The model parameters are the
bulk density 𝜌0, the specific heat 𝐶, the convection coefficient ℎ, the ambient air
temperature 𝑇∞, the heating value 𝑆, and the wind speed w. The first term on the
right denotes the combined effect of heat diffusion and radiation, with the resulting
diffusivity being (with 𝜖 > 0 denoting a scaling factor)

𝐾 (𝑇) = 𝑘 + 𝜖𝜎𝑇3, 𝑘 : heat diffusivity, 𝜎 : Stefan-Boltzmann constant,

see [2] for the details. The second term is convective heat loss to the environment
due to Newton’s cooling law with the convection constant ℎ > 0, and the last term
denotes the heat generated by combustion. The function Ψ𝑇 describes this nonlinear
process which depends on the temperature𝑇 . More specifically, with𝐻 : R → {0, 1}
denoting the Heaviside function (𝐻 (𝑢) = 1 if 𝑢 ≥ 0, and 0 otherwise),

Ψ𝑇 (𝑥, 𝑡) = ΨEF (𝑇 (𝑥, 𝑡)) = 𝐴𝐻 (𝑇 (𝑥, 𝑡) − 𝑇) exp
(
− 𝑇ac
𝑇 (𝑥, 𝑡)

)
, (2)

with the activation temperature𝑇ac, the ignition temperature𝑇 , and a pre-exponential
factor 𝐴 > 0 arising from the Arrhenius formula. Model (2) will henceforth be called
the extinguishing fire model or EF since, after ignition, the fire stops if 𝑇 < 𝑇 . The
system (1)–(2) will be called the ADR-EF model. Suitable boundary conditions and
initial conditions (with maximum biomass 𝑌ref > 0) complete the problem (1)–(2).

2.2 Model Variation
In this work, we propose a slight variation of the expression (2) for Ψ𝑇 which we
believe to be more realistic, and which helps in the travelling wave analysis later on.
Let Θ𝑇 (𝑥, 𝑡) := sup{𝑇 (𝑥, 𝜏) | 𝜏 ∈ [0, 𝑡]} be the maximum temperature attained at
𝑥 ∈ R up to time 𝑡 > 0. Then, we take

Ψ𝑇 (𝑥, 𝑡) = ΨPF ({𝑇 (𝑥, 𝜏) | 𝜏 ∈ [0, 𝑡]}) = 𝐴𝐻
(
Θ𝑇 (𝑥, 𝑡) − 𝑇

)
exp

(
− 𝑇ac
𝑇 (𝑥, 𝑡)

)
. (3)

This new expression assumes that the fire remains turned ‘on’ if at least once the
temperature had exceeded 𝑇 at a location, i.e., if Θ𝑇 (𝑥, 𝑡) ≥ 𝑇 . This is in contrast
to (2) which assumes that the fire immediately gets extinguished if 𝑇 < 𝑇 . Hence,
the model (1) using ΨPF (expression (3)) will be called the persistent fire model or
ADR-PF moving forward. This is more physical in our opinion and is supported by
aerial observations of wildfires. Furthermore, [7] assesses the higher importance of
the on-setting of combustion to the travelling wave speed compared to the cooling
processes at the end of the burning (tail region).

Purely for the sake of analysis, we would further assume
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exp
(
−𝑇ac
𝑇

)
≈ Λ(𝑇 − 𝑇∞) (4)

for a constant Λ > 0 that can be obtained by minimizing mean-square difference
between the two sides in (4) in the physically relevant temperature range, see Fig-
ure 1. This linearizes the exponential term, making algebraic manipulation possible.
Moreover, it introduces a relatively small error in the intermediate temperature range
as exp(−𝑇ac/𝑇∞) is small which implies that the zeroth order term can be ignored.
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Fig. 1 The exponential function exp(−𝑇ac/𝑇 ) and its linear approximation Λ(𝑇 − 𝑇∞ ) , where Λ

is obtained by minimizing their square difference in the interval 300 ≤ 𝑇 ≤ 1500. Here 𝑇ac = 400.

2.3 Non-dimensionalization and Effective Model
Observing that the diffusion, convection, and heat production terms have to be
roughly in balance for the formation and propagation of the wildfire, we propose the
following non-dimensionalization. Define the scaled variables

𝑡 :=
𝑡

𝑡ref
, x̃ :=

x
𝐿ref

, 𝑢 :=
𝑇 − 𝑇∞
𝑇 − 𝑇∞

, 𝑣 :=
𝑌

𝑌ref
, (5)

with reference time 𝑡ref := 𝐶
𝐴Λ𝑆

and length 𝐿ref :=
√︃

𝑘
𝜌0𝐴Λ𝑆

resulting in the dimen-
sionless quantities

ℎ̃ :=
ℎ

𝜌0𝐴Λ𝑆
, w̃ :=

𝑡ref w
𝐿ref

, 𝛾 :=
𝐶 (𝑇 − 𝑇∞)

𝑆
, �̃� (𝑢(𝑇)) :=

𝐾 (𝑇)
𝑘

. (6)

With the abuse of notation, dropping the ˜ in the quantities above, we get from (1)
with (3)–(4), the ADR-PF model with linear approximation:{

𝜕𝑡𝑢 + w · ∇𝑢 = ∇ · [𝐾 (𝑢)∇𝑢] − ℎ 𝑢 + 𝑢 𝑣 𝐻 (Θ𝑢 (𝑥, 𝑡) − 1)
𝜕𝑡 𝑣 = −𝛾 𝑢 𝑣 𝐻 (Θ𝑢 (𝑥, 𝑡) − 1)

(7)

3 One-dimensional Fronts and Travelling Waves
In this section, we restrict our discussion to the one-dimensional case. Hence, ∇ in
(7) is replaced by 𝜕𝑥 . We further assume the wind speed to be constant. Without
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loss of generality, let 𝑤 ≥ 0. For analyzing TWs, the natural boundary condition is
to impose that the temperature reaches the atmospheric temperature as 𝑥 → ±∞,
and as a consequence, the diffusive/radiative heat fluxes vanish. On the other hand,
ahead of the fire, the biomass remains constant at 𝑌ref . In dimensionless terms, the
boundary and initial conditions satisfy

𝑢(±∞, 𝑡) = 𝜕𝑥𝑢(±∞, 𝑡) = 0 ∀ 𝑡 > 0, (8a)
𝑢(𝑥, 0) < 1, 𝑣(𝑥, 0) = 1 ∀ 𝑥 > 0 (8b)

with 𝑢(0, 0) = 1 used to fix the fire-front.
The travelling wave ansatz in this case is the assumption that solutions of the form

𝑢(𝑥, 𝑡) = 𝑢(𝜉 (𝑥, 𝑡)), 𝑣(𝑥, 𝑡) = 𝑣(𝜉 (𝑥, 𝑡)) (9)

exists for the travelling wave coordinate 𝜉 = 𝑥 − 𝑐𝑡 with an unknown speed 𝑐 ≠ 0.
The TW ansatz transforms System (7) into

(𝑤 − 𝑐) d𝑢
d𝜉

=
d

d𝜉

(
𝐾 (𝑢) d𝑢

d𝜉

)
− ℎ 𝑢 + 𝑢 𝑣 𝐻 (−𝜉),

𝑐
d𝑣
d𝜉

= 𝛾 𝑢 𝑣 𝐻 (−𝜉).
(10)

with the transformed boundary conditions consistent with (8)

𝑢(±∞) = d𝑢
d𝜉

(±∞) = 0, 𝑢(𝜉) < 1 and 𝑣(𝜉) = 1 ∀ 𝜉 > 0, and 𝑢(0) = 1. (11)

Since the above conditions imply that the fire has been on only in 𝜉 ≤ 0, the Heaviside
term in (7) simply reduces to 𝐻 (−𝜉) in this case.

To reduce (10) further, the total thermal energy is introduced:

𝑧 =
1
𝑐

∫ ∞

𝜉

𝑢(𝜉) d𝜉, ⇒ 𝑐
d𝑧
d𝜉

= −𝑢. (12)

Inserting 𝑧 and the expression of d𝑣
d𝜉 in (10) and integrating in 𝜉, one finds the first

integral (conserved quantity)

𝐾 (𝑢) d𝑢
d𝜉

+ (𝑐 − 𝑤)𝑢 + 𝑐 ℎ 𝑧 + 𝑐

𝛾
𝑣 = 𝐷 (constant independent of 𝜉). (13)

The 𝜉 → ∞ limit yields using the boundary conditions (11) that 𝐷 = 𝑐
𝛾

. Passing the
limit 𝜉 → −∞, one then obtains

𝑣(−∞) =: 𝑟, 𝑧(−∞) = 1
𝛾ℎ

(1 − 𝑟) for some 𝑟 ∈ (0, 1). (14)
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Using the above, rearrangement of (13) yields the dynamical system for the triplet
(𝑢, 𝑣, 𝑧) with unknown wave-speed 𝑐 ≠ 0,

𝐾 (𝑢) 𝑑𝑢
𝑑𝜉

= (𝑤 − 𝑐)𝑢 − 𝑐 ℎ 𝑧 + 𝑐

𝛾
(1 − 𝑣),

𝑐
𝑑𝑣

𝑑𝜉
= 𝛾 𝑢 𝑣 𝐻 (−𝜉),

𝑐
𝑑𝑧

𝑑𝜉
= −𝑢.

(15)

The conditions (11) demand that for an unknown 𝑟 ∈ (0, 1),

(𝑢, 𝑣, 𝑧) →
{
(0, 1, 0) as 𝜉 → +∞,(
0, 𝑟, 1

𝛾ℎ
(1 − 𝑟)

)
as 𝜉 → −∞,

(16)

with the 𝜉-cordinates being shifted so that the supremum of the set {𝜉 : 𝑢(𝜉) > 1} is
0. The points on the right of (16) are the equilibrium points for the semi-autonomous
system (15).

The above system can be investigated numerically as a shooting problem, i.e.
solving (15) backward starting from (0, 1, 0) for different values of 𝑐 to find when
the condition at 𝜉 → −∞ is satisfied. This is precisely what is done in the next
section, see Algorithm 1. Moreover, in a future work, we also conclude the existence
of TWs by analyzing (15)–(16). Here, we summarize our claim without proof:
Claim 1 (Existence of travelling waves for the ADR-PF model). Let ℎ < 1 (necessary
condition). Then under certain parametric constraints involving ℎ and 𝛾, there exists
�̄� > 0 such that for all 𝑤 ∈ [0, �̄�), at least two travelling wave solutions exist of the
System (15)–(16) with 𝑐 = 𝑐+ > 0 and 𝑐 = 𝑐− < 0 respectively (with 𝑐+ + 𝑐− > 0),
whereas for 𝑤 > �̄�, there exist only travelling waves with 𝑐 = 𝑐+ > 0.

The duplicity of the TWs results from the directional symmetry of the system.
For example for 𝑤 = 0, the problem is completely symmetric with respect to the
transformation 𝑥 ↦→ −𝑥, see also the numerical results in [3]. Moreover, we stress
that no TWs exist if ℎ > 1, see (g)-(h) plots of Figure 2.

4 Numerical Results
In this study, the finite-element method (FEM) together with the Strang splitting is
utilized for numerical simulation of the ADR-EF model (i.e. system (1) with ΨEF in
(2), the ADR-PF model (i.e. system (1) with ΨPF in (3)), and the ADR-PF model
with linear approximation (4). The dimensional values of the parameters used in the
simulation are taken from Table 1 of [3], i.e., 𝜌0 = 40𝑘𝑔/𝑚3,𝐶 = 1𝑘𝐽/(𝑘𝑔 ·𝐾), 𝑘 =

2𝑘𝑊/(𝑚 · 𝐾), ℎ = 4𝑘𝑊/(𝑚3 · 𝐾), 𝐴 = 0.05𝑠−1, 𝐻 = 4000𝑘𝐽/𝑘𝑔, and 𝑇ac = 400𝐾 .
The computational domain is the one dimensional domain (−250, 250)𝑚 and the
time step size is Δ𝑡 = 0.4𝑠. For the initial condition, the temperature in (−25, 25)𝑚
is 470𝐾 , which is higher than the ignition temperature 𝑇 = 400𝐾 , while the rest
of the domain is in ambient temperature 𝑇∞ = 300𝐾 . In the beginning, the fuel
concentration 𝑌 is 1 over the entire domain.
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Three main test cases are considered in this work for the TWs: (i) no wind
𝑤 = 0𝑚/𝑠, (ii) mild wind 𝑤 = 0.03𝑚/𝑠, and (iii) strong wind 𝑤 = 0.3𝑚/𝑠. The
evolution of temperature 𝑇 and the fuel concentration 𝑌 profiles are shown in Figure
2 for these three test-cases simulated with the ADR-PF model (1)–(3). They show
that the profiles immediately develop into TWs. For the no wind case, there are
two symmetric TWs as expected. For the mild wind case, they are asymmetric with
𝑐+ + 𝑐− > 0; and for strong wind, there is only one TW with 𝑐+ > 0 due to strong
advection. The TWs speeds are calculated by linear regression on points 𝑥(𝑡) (𝑡 > 0)
for which 𝑇 (𝑥(𝑡), 𝑡) = 𝑇 , see Table 1. The results support our claim in Section 3.
Furthermore, a fourth case is considered where no TWs exist even though there is no
wind. It also agrees with our predictions, since the scaled convection constant ℎ > 1
in this case.

Next, Figure 3 compares three models mentioned in Section 2, i.e. ADR-EF,
ADR-PF, and ADR-PF with the linear approximation (4), for the three test-cases.
It is observed that the profiles for ADR-EF and ADR-PF models coincide until
the tail region, where 𝑇 < 𝑇 is reached. Hence the existence of TWs and their
speeds agree for models using ΨEF or ΨPF confirming the observations in [7] that
the tail-region does not play a crucial role in this regard. However, the residual
fuel 𝑌 differs significantly for ADR-EF and ADR-PF models which exemplifies
why proper modeling is necessary for these cases. On the other hand, the ADR-
PF model with linear approximation (4) results in much higher peak temperatures.
This is because the exponential heat generation factor in (3) plateaus at higher
temperatures, whereas, the linear one in (4) does not. However, this approximate
ADR-PF model still manages to predict the existence and speed of the TWs in all
three cases revealing its usefulness as an analytical tool, see Table 1.

Next, we compare the PDE results of the approximated ADR-PF model (1), (3)–
(4) with solutions of the dynamical system (15) with conditions (16). To find these
ODE solutions, we use
Algorithm 1 (A shooting ODE solver). For a given 𝑐 > 0, let (𝑢𝑐, 𝑣𝑐, 𝑧𝑐) denote
the solution of (15) connecting to (0, 1, 0) as 𝜉 → ∞ with 𝑢𝑐 (0) = 1. Define,
𝑑𝑐 := inf{𝑢𝑐 (𝜉)2 + (ℎ𝑧𝑐 (𝜉) − 𝛾−1 (1 − 𝑣𝑐 (𝜉)))2 : 𝜉 < 0} as the closest approach
of (𝑢𝑐, 𝑣𝑐, 𝑧𝑐) to another equilibrium point of System (15). Then assuming that the
unique minimizer of 𝑐 ↦→ 𝑑𝑐 is in an interval [𝑐, 𝑐] for some 0 < 𝑐 < 𝑐, we employ
a line-search algorithm to find 𝑐 = 𝑐+ such that 𝑑𝑐 ≈ 0.

For finding 𝑐 = 𝑐− < 0, the same process is repeated taking 𝑤′ = −𝑤 due to
symmetry. For the actual ODE simulations, a fourth-order Runge-Kutta scheme has
been used to compute backward from (10−3, 1, 0) (since equilibrium point (0,1,0)
can only be reached as 𝜉 → ∞) with Δ𝜉 = 10−3, and (𝑐, 𝑐) = (0.1, 1.0). Figure 4
shows the comparison of temperature profiles resulting from the PDE (ADR-PF with
linear approximation) and the ODE solutions for the three test cases. The profiles are
a close match to each other until the orbits of the ODE solutions are near the second
equilibrium point. Table 1 shows a comparison between TW speeds for the different
solvers which differ from each other by at most 4%. Overall, we find the matching
to be excellent.
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(a) No wind and TWs exist (b) No wind and TWs exist

(c) Mild wind and TWs exist (d) Mild wind and TWs exist

(e) Strong wind and TW exists (f) Strong wind and TW exists

(g) No wind and no TW (h) No wind and no TW

Fig. 2 The evolution of temperature 𝑇 (left column) and fuel𝑌 (right column) profiles from ADR-
PF model are shown over (part of) the computational domain. The transparency of the profiles
decreases as the time increases (𝑡 ∈ {0, 40, 120, 280, 400}). Here, (a)-(b) represents the no wind
(𝑤 = 0𝑚/𝑠) case; (c)-(d) mild wind (𝑤 = 0.03𝑚/𝑠); (e)-(f) strong wind (𝑤 = 0.3𝑚/𝑠); and
(g)-(h) no wind case where TWs do not exist (dimensional ℎ = 19.85𝑘𝑊/(𝑚3 ·𝐾 ) , dimensionless
ℎ = 1.5).

5 Discussion and Future Directions
We studied an existing advection–diffusion–reaction model for wildfire propagation
and proposed an alteration in which fire persists behind the front. A one-dimensional
version of the model was considered with an approximation used for estimating the
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(a) No wind (b) No wind

(c) Mild wind (𝑤 = 0.03) (d) Mild wind (𝑤 = 0.03)

(e) Strong wind (𝑤 = 0.3) (f) Strong wind (𝑤 = 0.3)

Fig. 3 The comparison between profiles of ADR-EF (black), ADR-PF (blue), and the approximated
(red) models shown at various times (𝑡 ∈ {0, 40, 400} represented by different types of lines).
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(a) no wind 𝑤 = 0
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(b) mild wind 𝑤 = 0.03𝑚/𝑠
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(c) strong wind 𝑤 = 0.3𝑚/𝑠

Fig. 4 Comparison of temperature profiles between the PDE and the ODE simulations of the
approximated ADR-PF model.

Arrhenius factor. Using travelling wave ansatz, we reduced the system to a dynamical
system with boundary values prescribed. This system is easier to analyze and can be
solved using a shooting algorithm (Algorithm 1). It was also hypothesized that the
travelling waves emanate in both directions under mild wind conditions, but only
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Table 1 Comparison of wave-speeds of the numerical solutions of the ADR-PF model (Eqs. (1),
(3), the approximated ADR-PF model (Eqs. (1), (3)–(4)), and Algorithm 1 (ODE solver). All three
test cases (no, mild, and strong wind) are considered.

Case Wind speed 𝑤 ADR-PF (𝑐− , 𝑐+ ) Lin. Approx. (𝑐− , 𝑐+ ) ODE (𝑐− , 𝑐+ )
No wind 0 (−0.1421, 0.1421) (−0.1585, 0.1585) (−0.15196, 0.15196)

Mild wind 0.03 (−0.1112, 0.1781) (−0.1079, 0.1843) (−0.116358, 0.18585)
Strong wind 0.3 (NA, 0.4686) (NA, 0.5264) (NA, 0.4702196)

in the direction of wind provided the wind speed is high enough. Numerical results
corroborated our predictions.

The algorithm can be used to predict the wildfire propagation speed under different
parametric conditions to prevent disasters. The actual proof of the existence of the
travelling waves will be elaborated in a future work.
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