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Abstract

This paper studies integrating the crowd workforce into next-day home delivery services. In this
setting, both crowd drivers and contract drivers collaborate in making deliveries. Crowd drivers
have limited capacity and can choose not to deliver if the presented tasks do not align with their
preferences. The central question addressed is: How can the platform minimize the total task
fulfilment cost, which includes payouts to crowd drivers and additional payouts to contract drivers
for delivering the unselected tasks by customizing task displays to crowd drivers? To tackle this
problem, we formulate it as a finite-horizon Stochastic Decision Problem, capturing crowd drivers’
utility-driven task preferences, with the option of not choosing a task based on the displayed options.
An inherent challenge is approximating the non-constant marginal cost of serving orders not chosen
by crowd drivers, which are then assigned to contract drivers. We address this by leveraging a
common approximation technique, dividing the service region into zones. Furthermore, we devise a
stochastic look-ahead strategy that tackles the curse of dimensionality issues arising in dynamic task
display execution and a non-linear (problem specifically concave) boundary condition associated
with the cost of hiring contract drivers. In experiments inspired by Singapore’s geography, we
demonstrate that choice-based crowd shipping can reduce next-day delivery fulfilment costs by up
to 16.9%. The observed cost savings are closely tied to the task display policies and the task choice
behaviors of drivers.
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1. Introduction

The growth of e-commerce has resulted in substantial demands for field operation workforce,
particularly for last-mile delivery. While technologies such as drones, droids, or autonomous vehicles
may well underpin the delivery infrastructure in the future, many e-tailers are presently adopting a
“crowd workforce” model. In crowdshipping, the last-mile delivery tasks are delegated, with the help
of online platforms, to a pool of willing individuals. Sampaio et al. (2019) show that crowdshipping
has the potential to reduce the overall delivery cost by lowering the barriers for individual “workers”
to voluntarily utilize their own resources (time and vehicles) to deliver such packages. Such a
crowdsourced workforce also provides a more elastic labour supply that can efficiently respond to
demand variations; e.g., during holiday season peaks (Einav et al., 2016).

The role of the online platform is critical to the efficiency and viability of this crowd workforce
model, as its task assignment mechanisms directly affect the participation rate of the crowd work-
force (Chen et al., 2014; Kandappu et al., 2016). Broadly speaking, the task assignment mechanism
can either be centralized (where the platform assigns tasks to available individual workers) or de-
centralized (where individual workers select available tasks independently from a pool). The two
strategies illustrate a broad tension between efficiency and autonomy.

In practice, the choice of the task assignment mechanism depends heavily on the nature of the
tasks. For domains such as on-demand transportation or meal delivery, where tasks have short
expiration times, most online platforms (e.g., Uber, DoorDash) centralize task assignment, pairing
drivers and delivery requests quickly without elaborate drivers’ consultation. In such scenarios, the
chance of worker rejection of centralized assignments is lower because the worker’s instantaneous
location drives assignment decisions. The situation is, however, reasonably distinct for next-day
delivery tasks, a dominant fraction of the e-commerce market, where delivery tasks are known in
advance, and the task-worker allocation usually happens over a longer time window. Moreover,
the remaining tasks at the end of the selection period can be serviced by contract drivers, who
could be recruited hourly or payroll employees of shippers to guarantee promised deliveries. In such
a scenario, the decentralized assignment mechanism could be more appealing as it allows crowd
workers to choose preferred tasks based on their anticipated itinerary.

The idea of mixing crowdsourced and contract drivers for next-day delivery tasks comes from our
collaboration with UrbanFox, a mid-size logistics service provider in Southeast Asia. As reported by
NHK (2018), UrbanFox has been a pioneer in Singapore in utilizing crowdsourced workers to sup-
plement their contract workers during peak seasons. However, their fully decentralized/autonomous
matching has some shortcomings, and they have been searching for solutions to match crowdsourced
workers and deliver tasks more effectively.

This paper, therefore, focuses on a next-day last-mile delivery platform and investigates the
development of a decentralized task assignment mechanism that mimics the efficiency of a central-
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ized approach. Our proposed mechanism grants crowd drivers autonomy in task selection while
preserving the benefits of central planning. This is achieved by presenting crowd drivers with effec-
tively curated subsets of available tasks, allowing the central planner to influence drivers towards
service regions with higher clearance probabilities. This, in turn, enables task consolidation and
reduces the cost of engaging contract drivers, which is proportional to the number of service regions
with unselected tasks. To maintain alignment with the overarching objective of minimizing service
regions with unselected tasks, we incorporate a realistic cost approximation method to estimate
the expenses incurred in engaging contract drivers. The subsequent section illustrates how this
approach operates in practice.

1.1. An illustrative example

Assume that we are deciding on the set of tasks to show to the last incoming driver in order to
minimize the platform’s fulfilment cost for Zones 1 and 2, where there are three and one remaining
tasks, respectively. We also assume that this driver chooses at most one task and probabilistically
chooses Zone 1 over Zone 2. There are four possible display scenarios: D1 shows tasks from both
zones, D2 shows tasks from Zone 1, D3 shows tasks from Zone 2, and D4 shows no task. Let p(i|Dj)

be the probability that the driver would choose a task from Zone i given a display set Dj . p(0|Dj)

is the case where the driver chooses not to serve.

Figure 1: An illustrative example how display sets work.

Zone 1 Zone 2

3 tasks 1 task
Disp Set 1:

D1:{1, 2}
Disp Set 2 :

D2:{1}

Disp Set 3:
D3:{2}

Disp Set 4:
D4:∅

D1: p(1|D1) = 0.6, p(2|D1) =0.3, p(0|D1) =0.1

D2: p(1|D2) = 0.85, P (0|D2) =0.15

Task Commitment Probabilities

D3: p(2|D3) = 0.75, p(0|D3) =0.25

The platform aims to minimize the total cost, which includes the cost of engaging contract
drivers. For this example, we assume that the fixed cost of engaging a contract driver is $100 for
any zone with unselected tasks remaining, and the variable cost for serving each additional task in
the same zone is $10/task. The expected costs of contract workers for the three display options are
computed below:

• D1: If the driver picks a task from Zone 1, there are 2 and 1 remaining tasks in Zones 1 and 2
respectively, resulting in a cost of (100+2 ·10)+(100+10) = 230. Similarly, if the driver picks
a task from Zone 2, the resulting cost will be 130. Finally, if the driver chooses not to serve,
the resulting cost will be 240. The expected cost is thus: 0.6 · 230+ 0.3 · 130+ 0.1 · 240 = 201.
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• D2: The expected cost is: 0.85 · 230 + 0.15 · 240 = 231.5.
• D3: The expected cost is: 0.7 · 130 + 0.3 · 240 = 157.5.
• D4: The cost of fulfilment is 240.

In the above example, the use of display set D3 (i.e., showing the crowd driver a task only from
Zone 2) results in the lowest expected cost. This is even though the driver prefers Zone 1 and thus
has a significantly higher probability of not choosing any task in the display set D3. This is caused
by the high fixed cost of engaging a contract driver. Consequently, whenever possible, the platform
would desire to adopt a display set that helps to reduce the number of zones with residual tasks.

Of course, this is an overly simplified example designed only to demonstrate the benefits of
display set customization. The complete model captures the complexity of having more zones, het-
erogeneous driver preferences, and the non-linear cost of engaging contract drivers. Moreover, we
also consider the sequential nature of the decision-making process; i.e., drivers make their selec-
tion asynchronously and sequentially. Therefore, earlier display decisions impact the pool of tasks
available for selection in the latter periods, future drivers’ preferences and hence, the display sets.

1.2. Summary of contributions

We refer to this model of ‘centralized customization, autonomous selection’ as choice-based
crowdshipping for next-day delivery. Thus, this paper’s central theme is to develop and quantify
the significance of such display policies, which strategically incorporate both the choice behaviours of
crowd drivers and the platform’s cost-minimizing objective. To analyze choice-based crowdshipping
in the next-day delivery service, we introduce the Dynamic Task Display Problem (DTDP). In
DTDP, (a) there is a finite duration (Selection Horizon) over which crowd drivers arrive randomly
and request the platform/App to display tasks from which to make a selection, (b) the platform
dynamically determines the subset of displayed tasks for each individually arriving driver, and (c)
the platform hires contract drivers to make the delivery of remaining tasks after the selection period.
We make the following contributions:

• We propose a stochastic look-ahead strategy to solve the computationally intractable dynamic
task display problem in realistic-size instances. Our solution approach is built upon two
pillars:(i) Value Function Approximation to address the state space expansion and (ii) Efficient
Display Sets to address the action space expansion.

• Instances inspired by Singapore’s geographical properties, we numerically show that enabling
choice-based crowdshipping decreases the fulfilment cost of overnight delivery tasks up to
16.9% by balancing the workload between the crowd and contract drivers.

• The experiments exhibit that the chosen display policy significantly influences cost savings that
could be obtained from choice-based crowdshipping. The proposed customized task display
policy consistently outperforms other benchmarks representing fully decentralized (display all
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tasks) and centralized strategies (priority on cost-saving).
• We observe the amount of cost-savings is sensitive to the reward paid to drivers and the

number of arriving crowd drivers. We also observe that the fully decentralized display policy
may increase the total fulfilment cost if the reward amount of the drivers is exceptionally high
or the crowd drivers become picky.

• Our method of customized display policy shows additional benefits when the crowd driver’s
task choice behaviour becomes less predictable. Also, we see that the cost-saving results
remain robust to the parameters of the contract drivers’ cost function.

• For practitioners using or planning to deploy a crowdshipping system for a next-day delivery
service, we highlight the following outcomes from the experiments:

– Setting a crowdshipping system for next-day delivery requires more sophisticated decision
support in comparison to deploying in the on-demand delivery services,

– Prioritizing the crowd driver in task delegating is not always a cost-efficient strategy,

– Choice customization is a more valuable strategy if the reward paid to crowd drivers is
neither too high nor low.

The remainder of this paper is organized as follows. In Section 2, we summarize the relevant
literature for the choice-based crowdshipping. Section 3 begins by describing the conceptual busi-
ness model. In the sequel, the dynamic task display problem is formulated as a Sequential Decision
Problem. In Section 4, we present the solution method for the customized display policy. Sections 5
and 6 consist of computational experiments to quantify the effectiveness of choice-based crowdship-
ping and display policies. Section 7 ends the paper with concluding remarks and some directions
for future research.

2. Literature Review

The DTDP is a crowdshipping problem as its primary purpose is to efficiently integrate willing
crowd drivers to serve a set of logistics and transportation requests. Crowdshipping aims to take
advantage of the under-utilized resources in passenger and/or parcel transportation (Wang and
Yang, 2019; Le et al., 2019; Alnaggar et al., 2021; Savelsbergh and Ulmer, 2022). Initial studies
in the crowdshipping literature have explored the benefits of accommodating crowd drivers into
existing delivery fleets, assuming that these drivers accept any task as long as it is feasible in their
stated preferences. Archetti et al. (2016) and Arslan et al. (2019) contemplate platforms giving
centralized decisions to routing, assignment, and scheduling problems in a setting in which drivers’
journey and time flexibility are informed in advance or dynamically, respectively. Furthermore,
Boysen et al. (2022); Mousavi et al. (2021) consider settings where crowd drivers have priority in
the assignment phase under the assumption that the cost of serving with crowd drivers will always
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be lower than using third-party logistic services. This assumption may hold true for on-demand
deliveries; however, neglecting the consolidation opportunities in next-day delivery services would
lead to suboptimal solutions.

Several extensions to the above crowdshipping problems have been studied in the literature,
including relay-like mechanisms that crowd shippers finish the last leg of delivery using company
vehicles (Kafle et al., 2017), integrating public transit passengers and transfers between crowd
drivers (Yıldız, 2021; Macrina et al., 2020; Kızıl and Yıldız, 2023), using in-store customers and
employees (Dayarian and Savelsbergh, 2020; Dayarian and Pazour, 2022), and bundling of tasks
(Mancini and Gansterer, 2022).

Stochastic crowd driver behaviour creates operational challenges, and several studies have stud-
ied the resulting issues. Gdowska et al. (2018) consider a setting where crowd drivers could decline
the delivery option. Mousavi et al. (2022) integrate stochastic crowd driver participation in mobile
depot location problem. Torres et al. (2022) explore a new crowdshipping variant in which crowd
drivers may not show up after the task allocation phase in a next-day delivery setting. Hence, they
propose a two-stage approach to consider recourse action to keep the service level. Furthermore,
Haferkamp et al. (2024) examines the impact of displaying heat maps where the tasks’ pick-up
density is highlighted, and they show the benefits of using the New York taxi data set.

Centralized task assignment mechanisms are widely used for real-time operations with a few
exceptions. We are aware of the papers by Mofidi and Pazour (2019); Horner et al. (2021); Ausseil
et al. (2022); Karabulut et al. (2022); Yang et al. (2024) studying the concept that platforms offer a
menu of task options to drivers. Mofidi and Pazour (2019) explore a bi-level optimization problem
if a driver chooses a task from a menu. However, the driver’s task selection behaviour is considered
to be deterministic. That is, the platform is assumed to know drivers’ preference rankings among
the revealed tasks and considers that the driver will always choose the top one. In the study by
Horner et al. (2021), authors explicitly consider the driver’s task choice autonomy by introducing a
new mechanism. Following Stackelberg game principles, the platform first displays a curated menu
for each driver in a batch. Then, each driver responds to the menu by revealing which task she
would like to perform (with the possibility of rejecting all). In the last stage, the platform matches
drivers to their preferred tasks to maximize utility. Ausseil et al. (2022) enrich the menu of task
options by analysing the potential conflicts that may arise due to the same task being offered to
different drivers. In both studies by Horner et al. (2021); Ausseil et al. (2022), the driver selection
behaviour is modelled through a utility function taking distance time as inconvenience and driver
choice is derived from the ranking per scenario of the options offered. Karabulut et al. (2022), on the
other hand, specifically concentrate on quantifying the value of adaptive menu sizes in peer-to-peer
platforms with a specific focus on the agent’s behaviour, while learning drivers’ request selection
behaviours through their earlier choices. Yang et al. (2024) similarly develop the utility function
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per driver order combination, taking into account the compensation amount, order type (passenger
or goods delivery), order location’ attractiveness.

The essential difference between supplier menu design studies for on-demand setting and the
menu design for the next-day delivery is the cost structure of unselected tasks. In the on-demand
logistics/transportation setting, the unselected tasks by the crowd are very costly and undesirable
as it is costly to find a back-up service to fulfil it. Nevertheless, in the next-day delivery and the
opportunities of consolidation, tasks nearby can be delivered by a single van or a contract driver.
Hence, the marginal cost of each delivery can be lower than delegating to a crowd driver. As a
result, the allocation of tasks between the crowd and the contract driver is not trivial, especially
since the crowd behaviour is stochastic and the cost of fulfilling not-selected or not-displayed tasks
is not constant or linear in terms of task number but varies with their geographical spread.

After the rapid success of crowdsourced-based transportation and logistics services, a stream of
research explores tactical strategies for self-scheduled drivers (Yildiz and Savelsbergh, 2019; Ulmer
and Savelsbergh, 2020; Gurvich et al., 2019; Dai and Liu, 2020). In contrast to crowd drivers, self-
scheduled drivers form a semi-independent workforce, where they work according to their schedules
by performing tasks without choice autonomy. Therefore, these studies examine customer pricing
and driver compensation schemes to coordinate the friction between transportation demand and
driver supply. This study, however, mainly considers individuals with itineraries instead of scheduled
drivers.

In contrast to these past studies, we are among the first to study crowdshipping in next-day
delivery services. The overnight delivery problem differs substantially from the real-time on-demand
task assignment problems, especially in how the unassigned/not selected orders/tasks are handled
and the cost is accounted for at the end of the selection period. Also, we explicitly model the
stochastic driver choice model and incorporate the drivers’ choice model in our formulation with
the possibility of not making a delivery if the choices are not satisfactory. This setting enables us to
consider the crowdshipping and traditional delivery resources equally without making one another a
priority. Furthermore, in this study, we explicitly study the consolidated delivery opportunities for
contract drivers, which leads us to examine various practical insights for practitioners and present
viable strategies to integrate crowd drivers into next-day delivery services.

3. Problem Definition

This section describes the Dynamic Task Display Problem (DTDP). We first provide an overview
of exactly how our proposed paradigm of choice-based crowdshipping would work in practice. After
the description of the choice-based crowdshipping system, we provide a formal definition of the
DTDP and formulate it as a Markov decision process (MDP).
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3.1. Choice-based Crowdshipping System Architecture

This study’s platform architecture is based on the business model of UrbanFox (Fai, 2019),
a mid-size logistics service provider in Southeast Asia and a research project collaboration with
Singapore Management University, A*STAR and Fujitsu (Fujitsu et al., 2018). The focal platform
engages crowd drivers by asking them to browse and select delivery tasks on a smartphone App
daily. Such browsing is enabled during a Selection Horizon, typically spanning several hours in
the evening before a deadline. During this selection horizon, individual crowd drivers arrive at the
platform randomly. The platform decides which unassigned tasks should be displayed when each
driver arrives. Customizing the set of displayed tasks allows the platform to steer the collective
selection behaviour of crowd drivers.

Figure 2: Operational workflow for an overnight delivery platform that utilizes both crowd and contract drivers.

Day n-1 Day n

Accumulating
tasks

Task arrivals
end Task Display

Drivers’ selection
end

Selection Horizon Fulfilment decisions for
the remaining tasks

Figure 2 visualizes the operational workflow of this platform. All tasks to be delivered in day
n should already arrive in day n − 1 before the first cut-off time, after which the platform decides
which tasks/clusters of tasks should be displayed to a crowd driver whenever such a driver interacts
with the platform. At the selection horizon, the platform terminates delegating tasks to crowd
drivers, and therefore, the remaining orders must be fulfilled by the contract drivers. The platform
aims to minimize the total fulfilment cost, which depends on the crowd driver compensation and
the cost of delivering the remaining tasks using contract drivers. All accumulating tasks should be
fulfilled.

While computing the crowd driver compensation is straightforward due to the predetermined
reward per task delivery, it is complicated to compute the cost of engaging contract drivers. Given
a set of remaining tasks, finding the most cost-effective way to serve them using contract drivers is
essentially a k-travelling salesman problem (k-TSP) (Xu et al., 2013), which involves solving both
the subset selection problem (select subsets of tasks to be served by each driver) and the TSP for
each selected subset. To focus on the crowd worker management problem, we approximate the
contract driver cost using the continuous approximation (CA) by Daganzo (2005). More precisely,
we partition the whole planning region into smaller zones such that a single contract driver can
adequately serve each zone. Our approach is inspired by the widely adopted cluster-first, route-
second approaches in the logistic industry; e.g., see Holland et al. (2017). Furthermore, to reflect
the high fixed cost in engaging contract drivers and the economies of scale in serving tasks within
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each zone, we define the cumulative cost function to be concave and increasing in the number of
tasks delivered for each zone. This setup reflects the impact of the number of tasks and their
spatial distribution realistically in the total cost approximation by contract drivers. Therefore, the
minimization of the fulfilment cost depends not only on the number of residual, unselected tasks
after the selection period, but also on the geographical spread of these tasks; i.e., the number of
zones with tasks in our cost approximation. In the following subsection, the Dynamic Task Display
Problem (DTDP) will be described formally.

3.2. Dynamic Task Display Problem

The DTDP considers a next-day delivery provider, or shortly platform, fulfilling known customer
delivery requests with crowd drivers and contract drivers within a delivery area. The relevant
assumptions and notations for DTDP are as follows.
Selection horizon. We denote the selection horizon when a crowd driver arrives and browses a
delivery task, as T , where t = T is the start of the horizon and t = 0 is the end of the selection
horizon.
Geography and customer orders. The DTDP covers a fixed delivery area. The platform seeks
to deliver a set of customer orders, denoted by O, which are known before the selection horizon, and
all orders are picked up from a single depot. The delivery area is mutually exclusively partitioned
into a set of zones, denoted by Z and Z = |Z|. Each request o ∈ O is part of a single zone z ∈ Z
such that set Oz denotes all the requests in zone z. Furthermore, each zone has area Az and its
distance from the depot βz. Distance between two zones, z1 and z2 denoted by tt(z1, z2).
Contract drivers and recruiting cost. The platform recruits a contract driver for each zone in
the absence or lack of willing crowd drivers to make all deliveries. The cost of engaging a contract
driver is proportional to the total duration of delivery operation including loading/unloading activ-
ities at the depot, time to travel to the zone from the depot, service time per customer, and the
time between two customers in the zone. Hence, we compute the cost of a contract driver serving
zone z ∈ Z with xz = |Oz| as the following equation.

f(xz) = Γ
[
βz + βsxz + βtz

√
Azxz

]
, (1)

where Γ represents the hourly rate of hiring a contract driver, βz is the setup time (loading, unload-
ing, and travelling to zone) for serving the zone, βs is the time of serving a single order(independent
of the zone type), and βtz is the time coefficient for moving between two customers’ location within
the zone z. See the continuous approximation in (Daganzo, 2005) for the derivation of Equation
(1).
Crowd drivers and rewards. Throughout the selection horizon, the arrival times of crowd drivers
follow a stochastic process, denoted by Λ(t), t ∈ T . Each crowd driver is associated with their self-
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declared destination zone m ∈ Z; shortly, we call drivers going to zone m ∈ Z, m type drivers. Also,
let λtm be the arrival rate of a driver with destination to zone m ∈ Z such that

∑
m∈Z λtm = Λ(t),

for each t ∈ T .
Let um(z) be the utility of m type crowd driver deliver a request in zone z ∈ Z. We define the

utility of a driver of type m for serving zone z as the total net payoff obtained from serving that
zone, which is equal to the reward received, minus the penalty of making a stop in zone z rather
than travelling directly to their preferred zone m, plus a random shock that is unobserved by the
decision maker and can be expressed mathematically as follows.

um(z) = rz − βdetour(tt(d, z) + tt(z,m)− tt(d,m)) + εmz, (2)

In Equation (2), rz refers to the reward of serving a task in Zone z, tt(d, z) is the distance from zone
d to zone z and d signifies the zone where the depot is located. βdetour is the disutility coefficient per
unit distance travelled for detour, and εmz is i.i.d. standard Gumbel random variable. Depending
on the driver type m, and the zone z, the disutility of distance travelled can be larger than the
reward for zone z, rz. Therefore, we allow um(z) to take negative values.

Our framework also allows drivers to opt in for an outside option (i.e., do not choose any of the
zones/tasks displayed by the platform). We define the utility of the outside option as um(0). A
common value for the utility of the outside option is 0, which is a result of receiving zero reward by
exerting no effort. However, in cases where the outside option represents switching to a competitor
platform, um(0) may take positive values.

Following the framework by Ben-Akiva and Bierlaire (1999), we model the choice probabilities
when D - set of zones - is displayed to driver type m using the Multinomial Logit (MNL) model
and the choice probabilities can be written as follows.

pm(z|D) =
eαum(z)

eαum(0) +
∑

l∈D eαum(l)
, pm(0|D) =

eαum(0)

eαum(0) +
∑

l∈D eαum(l)
. (3)

The implication of defining the choice probability using (3) is that the likelihood of not serving
increases when the display set size decreases. This is consistent with our modelling assumption
and the empirical studies mentioned in the introduction. Also, the parameter α > 0 enables us to
quantify the choice adherence of the driver to the more favourable task. In the numerical section,
we utilize α to see the impact of the predictability of driver preferences.

3.3. DTDP as a Markov Decision Process

The DTDP operates in a dynamic and stochastic environment due to the uncertain nature of
driver arrivals and the task choices of each driver. Therefore, we present the DTDP as a finite-
horizon stochastic problem with the following Markov Decision Process components.
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Decision epochs. Each driver-arriving epoch t ∈ T is a decision epoch, after which the
platform has to decide which tasks to display to the driver. We regard T as the beginning of the
selection period; hence, period t represents the number of remaining periods before the selection
period terminates, and t = 0 is the terminal epoch.

States. The state of the system at epoch t is represented by a vector of Xt = [xt1, · · · , xtZ ], in
which xtz, z ∈ Z, represents the number of customer requests in zone z at period t.

Actions and costs. The platform decides which set of zones will be displayed after the driver
arrives and her type (destination zone) is revealed at period t. We represent this decision as a
set D ⊂ Z, which includes zones the platform wants to reveal to the driver type m. Let Dt be a
collection of all possible display sets the platform can display at period t.

The platform incurs a cost only if the driver decides to deliver a request in zone z ∈ D ∈ Dt in
period t. In this case, the platform compensates the crowd driver with the reward of rz > 0. Further-
more, as the platform is bound to deliver all customer requests, the remaining unselected customer
requests after the selection horizon terminates should be delivered by the contract drivers. Hence,
the cost paid for all contract drivers recruited will be given as

∑
z∈Z f(x0z) following Equation 1.

Transitions. A new decision epoch is triggered upon the new crowd driver’s arrival. After the
platform takes the action, the system changes as follows:

• System state Xt is updated if the crowd driver at period t chooses to make delivery in zone
z; i.e., Xt − ez, where ez is a unit vector where zth element equals 1.

• The decision epoch becomes t− 1.
Objective function. Let Π be the set of all Markovian deterministic policies and π is a sequence

of decision rules: π : (δπT , · · · , δπt , · · · , δπ0 ), where each decision rule δπt : Dt 7→ D is a function that
specifies the chosen action given that system state is Xt following the policy π. Hence, the DTDP
seeks a policy that minimizes the expected total fulfilment cost for the platform

min
π∈Π

E
[∑
t∈T

R(δπt (Xt)) + F (X0)
]
, (4)

where F (X0) =
∑

z∈Z f(x0z) and R(·) is the function returns the expected reward paid to crowd
drivers under policy π.

The DTDP provides a framework for platforms to deploy a Customized Display (CD) strategy.
That is, the platform can vary the size and contents of the subset of the task to display to the
incoming crowd drivers depending on the current state (i.e., remaining task list) and arriving drivers’
preferences. In Section 5 (computational study), we also experiment with a single-task display policy
(SDP), a specialized version of CD in which the platform is allowed to display at most one task at
a time.
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4. Solution Approach

This section provides methods to solve the DTDP. Let the value function Vt(Xt) denote the
expected cost-to-go at period t (t periods to the termination of the selection period) given the state,
Xt. Theoretically, one can solve the value function defined below to determine the optimal policy
being sought in Equation (4):

Vt(Xt) =
∑
m∈Z

λtm

[
min

Dm∈Dt

{ ∑
z∈Dm

pm(z|Dm)

(
rz + Vt−1(Xt − ez)

)
+ pm(0|Dm)Vt−1(Xt)

}]
. (5)

When the set Dm is displayed to the driver m, and the driver chooses zone z ∈ Dm, the
platform’s cost is the reward paid to the driver, rz, plus the cost of starting the next period with
one less task in zone z. Therefore, the first term inside the minimization calculates the expected
reward plus the cost-to-go when the set Dm is displayed to the driver m. The second term is the
expected cost-to-go when the driver does not choose any of the tasks displayed, which is equal to
the probability of driver m not choosing any of the tasks in Dm times the cost of starting the next
period with the same set of tasks. Note that the driver index in Dm indicates that the display set
depends on the arriving driver type. After obtaining the optimal cost for each driver m, we take an
expectation over the arrival probability of each driver to calculate the expected cost of the starting
period t with inventory vector Xt.

Solving the value function in Equation (5) via backward induction is not possible when the
number of zones, Z, exceeds trivially tiny values due to the exponential growth of state and action
space in Z. In addition, the DTDP involves two additional novel challenges: (i) uncertainty in
drivers’ type and their task selection behaviour during the task selection phase, and (ii) the non-
linear cost structure at the terminal period for computing the fulfilment cost using the contracted
drivers.

To address these challenges, we propose a stochastic look-ahead approach that balances the
computational efficiency concerning the problem size and the solution quality. The look-ahead
method has two essential pillars: (i) Value Function Approximation (VFA) to overcome the state
space explosion and (ii) Efficient Display Sets to reduce the action space.

The VFA eliminates the need to pre-compute the values of each state. In other words, only
states that are encountered throughout the execution will be approximated. The impact of the
Efficient Display Sets is the elimination of some display subsets intelligently without compromising
the solution quality.

The overall architecture of our solution approach is illustrated in Figure 3. Our method executes
two steps at each crowd driver arrival epoch t. In the first step, the associated value function for all
possible states that can be reached from the current state Xt is approximated by a preset display
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policy π̂, which is used throughout the rest of the selection horizon. In the second step, the efficient
display sets are formed considering the approximated value functions. We provide details of these
two steps in the remainder of this section.

Figure 3: Solution approximation architecture: VFA & EDS.
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4.1. Value Function Approximation (VFA)

In this section, we describe how to approximate the value function for a given state, which
involves estimating the total expected fulfilment cost for a given number of tasks and the number of
periods to go until the end of the selection period. The approximation is divided into two phases:
First, we define a display policy π̂. Afterwards, we use the probabilistic information of future driver
arrivals and the structure of the chosen display policy to compute the expected remaining tasks at
the terminal decision epoch to calculate the total expected fulfilment cost under π̂.

Consider a generic single-task display policy that is independent of states, time, and drivers,
and follows a predetermined zone sequence (SDPS). In the SDPS policy, each arriving crowd driver
sees a single task from the highest-ranked zone. When this zone is fully served, the next zone is
chosen following a predetermined sequence, which can be as simple as using zone IDs (i.e., Zones 1,
2, . . . , Z).

The idea of the VFA is to employ the described SDPS policy from period t − 1 until the end
of the selection period, i.e., period 0, and estimate the number of remaining tasks that have to be
fulfilled by the contracted drivers. As the boundary condition is not linear in the total remaining
tasks, it is crucial to estimate how many tasks will remain unselected for each zone to achieve a good
approximation. In the following, we explain how to compute the expected boundary condition. For
ease of exposition, we first introduce a few preliminaries.

Definition. When a display set consists of a single zone z ∈ Z in time t, we define the
probability that a task is chosen as Pzt =

∑
m∈Z λtmpm(z|D = {z}).

This definition shows that for each time epoch in the period of t ∈ T , the probability that a
zone-z task will be chosen follows the Bernoulli distribution with parameter Pzt when only zone z

is displayed.
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Suppose the platform employs an SDPS policy, where the ranking order of the zones to be
displayed is predetermined from the current period t to period 0, the end of the selection phase.
Then, the SDPS policy tells us which zone will be displayed after y − 1 tasks are chosen and let us
denote this zone by the index [y]. Furthermore, let P (y, t) denote the probability of having a total
of y tasks chosen at the end of the selection phase or throughout the last t periods.

Proposition. For a fixed SDPS policy, P (y, t) can be calculated using the following recursive
equation:

P (y, t) = P (y − 1, t− 1)P[y]t + P (y, t− 1)(1− P[y+1]t) (6)

With the following boundary conditions:

P (0, t) =
t∏

n=1

(1− P[1]n) ∀t = 1 · · ·T (6a)

P (y, t) = 0 ∀y > t (6b)

P (1, 1) = P[1]1 (6c)

To explain the intuition behind Equation (6), we first elaborate on the boundary conditions.
Equation (6a) states that the probability of having 0 tasks completed in t epochs is possible only
when the first task on the SDPS policy does not get chosen in the first t epochs. Equation (6b)
implies that since at most one task can be selected in an epoch, the number of selected tasks cannot
exceed the number of epochs. Equation (6c) denotes that having one task completed at the end of
the first epoch implies that the first task in the SDPS policy is chosen in the first epoch. Then,
to complete y tasks in t epochs, one of the following has to happen: i) y − 1 tasks are completed
in t − 1 epochs, and yth task is completed in epoch t, or ii) y tasks are completed in t − 1 epochs
and (y + 1)th task does not get picked in t. This relationship between consecutive time epochs and
completed tasks is illustrated in Equation (6).

The proposition is the core component for computing the value function approximation for state
Xt, or V π̂

t (Xt) using a SDPS policy as a proxy. Now, consider an arbitrary SDPS policy. Let
Y SDPS(i) be the vector consisting of the number of tasks chosen in each zone when a total of i

tasks are chosen by crowd drivers under the SDPS display policy, and Y SDPS
z (i) refers to the zth

index of the vector. Then, the expected total fulfilment cost for when the state is Xt when there
are t periods remaining in the selection horizon, which will serve as an estimate for V π̂

t (Xt) in our
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approach, can be calculated as follows.

V π̂
t (Xt) =

min(
∑

z xzt,t)∑
i=0

P (i, t)

(
F (Xt − Y SDPS(i)) +

Z∑
z=1

rz · Y SDPS
z (i)

)
(7)

To better understand the intuition behind the derivation of Equation (7), let us consider a
fixed value of i. After having i tasks completed by crowd shippers, the system terminates at state
Xt − Y SDPS(i). Therefore the cost of having all the remaining tasks completed by contract drivers
is calculated as F (Xt − Y SDPS(i)) and

∑Z
z=1 rz · Y SDPS

z (i) represents the total reward paid to the
crowd shippers. We then take the expectation over all possible values of i, which can vary between
0 and the minimum of the remaining time periods, and the total number of delivery tasks. The
probability of having i tasks completed at the end of t periods, P (i, t) can be calculated using the
Proposition, the display sequence of the SDPS policy, and the choice probabilities of the drivers.

Setting an SDPS policy: The accuracy of V π̂
t (Xt), and hence the cost benefit of employing

a CD policy will depend on how the SDPS policy is set up. Therefore, an effective ranking of zones
needs to consider the dynamics of the system, such as the arrival mechanism of the drivers, and the
cost benefits of displaying each zone, which depends on the terminal cost structure, arriving drivers’
choice probabilities, and the current state. Moreover, the ranking system should be computationally
efficient to support on-the-fly decision making.

In our approach, given the remaining time periods t and xzt remaining tasks, we rank each zone
z with respect to their expected cost savings, CSzt(xzt) under the condition that only zone z is
displayed from time t to the end of the selection horizon. To compute the CSzt(xzt) we employ the
above Proposition to calculate the probability of having i ∈ {0, 1, . . . , xzt} tasks completed by crowd
drivers and for each i, we arrive at the cost saving by subtracting the cost of having xzt − i tasks
delivered by contract drivers from the cost of having xzt tasks delivered, and adding the reward
paid to the drivers for completing i tasks. Thus, the expected cost saving of displaying solely zone
z for t periods with xzt remaining tasks depends on two factors: (i) the probability distribution of
the remaining tasks in zone z and (ii) the cost saving coming from crowd drivers delivering them
instead of the contract driver. Given the dynamics of the system and the terminal cost function,
we can pre-compute CSzt(x) for each zone z, remaining time periods t, and number of remaining
tasks x. Further details on this procedure can be found in Section 8.2.1 of the Appendices.

Once we have the cost savings pre-calculated, we construct SDPS policies on the fly at each
driver’s arrival to estimate V π̂

t (Xt). Given the state Xt at period t, we rank the zones according
to their expected cost benefit per period in descending order, and start adding zones to the SDPS
policy one by one. While adding zones to the display set, we keep track of their median completion
times, which is the median number of times a zone needs to be displayed in order for all the tasks
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in that zone to be delivered by crowd drivers. We terminate the procedure if: (i) all remaining
zones have negative cost-benefit, or (ii) the median completion time will exceed t when any of the
remaining zones with a cost-benefit is added to the display set. More details on this procedure,
including the pseudo-code, can be found in Section 8.2.2 of the Appendices.

4.2. Efficient Display Sets (EDS)

In this section, we present efficient display sets following Theorem 1 in Talluri and Van Ryzin
(2004) and Lemma 1 in Bernstein et al. (2015) to reduce the action space. These studies examine
assortment problems in airline fare products and substitutable inventory optimization in retail such
that the decision-maker determines to display which air products or which sets of goods to be
retailed among Z options. Similar to their setting, the platform can display 2Z − 1 different zone
combinations when Z zones with tasks to be delivered. Nevertheless, the theorem and the lemma
above show that an optimal display policy exists if the platform shows only Z ordered and nested
sets, called Efficient Display Sets. In the following, we explain how to form Efficient Display Sets
for the DTDP.

Efficient display sets are formed systemically by calculating the marginal cost contribution of
having an additional delivery task in a specific zone. That is, we first define the marginal expected
cost generated by the xth

zt task in zone z at period t, i.e., △z
t−1(Xt) = Vt−1(Xt)− Vt−1(Xt − ez). In

other words, the expected cost difference if xthzt is delegated to a crowd driver or not. Using this
definition and the fact that Pm(0|Dm) = 1 −

∑
z∈Dm

Pm(z|Dm), one can rewrite the optimality
equation in Eq (5) as follows:

Vt(Xt) =
∑
m∈Z

λmt

[
min

Dm⊂Dt

{ ∑
z∈Dm

Pm(z|Dm)

(
rz + Vt−1(Xt − ez)− Vt−1(Xt)

)
+ Vt−1(Xt)

}]

=
∑
m∈Z

λmt

[
min

Dm⊂Dt

{ ∑
z∈Dm

Pm(z|Dm)

(
rz −△z

t−1(Xt)

)}]
+ Vt−1(Xt). (8)

Let rzt (Xt) = rz −△z
t−1(Xt) denote the effective marginal expected cost of a task in zone z at

period t, given that there xzt tasks remaining in the zone. Note that rzt (Xt) can be interpreted
as the expected cost saving if a crowd driver chooses a task to deliver into zone z. Now, consider
an ascending ordering of zones in effective marginal expected cost such that r

[1]
t (Xt) ≤ r

[2]
t (Xt) ≤

. . . ≤ r
[Z]
t (Xt), where [s] returns the zone index in order of sth. Then, we can construct the efficient

display sets starting with a set of a single zone consisting of only zone [1]. To construct the efficient
display set sized s ≤ Z, we consider only the ordered set in the form of {[1], [2], . . . , [s]}. As a result,
the platform will choose among at most Z display sets; each includes a unique number of zones.

It is important to note that displaying solely Efficient Display Sets, introduced in Talluri and
Van Ryzin (2004), produces optimal action when the boundary condition is a linear function. Nev-
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ertheless, the DTDP generalizes the boundary conditions; therefore, the optimality of the efficient
display sets does not hold for the DTDP. However, we show the effectiveness of the Efficient Display
sets with numerical experiments in Appendices8.3.

5. Experimental Setup

In this section, we describe our experimental setup to validate our solution approach outlined in
Section 4, and explain how we generate the instances, including crowd drivers and delivery requests.
We also present benchmark task-display policies to test the proposed customized dynamic task-
display policy. Furthermore, we present the key performance metrics that quantify the performances
of display policies, and we discuss the results in depth.

5.1. Network for delivery requests and crowd drivers

We design experiments that use Singapore as a test bed. We utilize Singapore’s mutually
exclusive planning regions as delivery zones, illustrated in Figure 4 (Wikipedia, 2023). The single
depot is located in Zone 13, which is consistent with the setup of our industry collaborator. We
remove zones with very low population densities (islands, natural reserves, industrial regions, etc.)
and split dense zones into smaller ones to balance the average delivery tasks across zones. As a
result, we proceed with our computational experiments with 36 zones. To calculate the distance
between zones, we employ the Google Maps API using the coordinates of the centroid of each zone.
Furthermore, we set the number of customer orders and the expected number of drivers to be 500.

Figure 4: Planning zones in Singapore.

While constructing the instances, we use the population of each zone and its distance from
the depot as the primary metrics to determine the parameters for each zone. A task is assigned
randomly to zone z proportionately to the population of zone z.
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Each crowd driver is associated with a zone where this driver prefers to end his/her delivery trip.
Similar to delivery tasks, the arrival of crowd drivers who favour a particular zone as the ending
zone is proportional to that zone’s population density.

5.2. Parameters Setup
It is essential to set up parameters realistically to derive insightful analysis. To account for

contract drivers’ expenses, we consider a cost structure that is associated with the time needed to
deliver the number of parcels for a given time period. In Singapore, the working time arrangement
of a contract worker varies between two and six hours, averaging four hours. The current rate of
renting a van with a driver is S$56 per hour, (LCHLogistics, 2023). Therefore, we take Γ = 56. We
assume the service time per delivery, βs, to be five minutes per order (Dalla Chiara et al., 2022). To
determine βz for each zone, we use the travel time from the depot to zone z and assume a loading
time of 10 minutes. Finally, we set βzt = 0.859 for each zone (Franceschetti et al., 2017).

We consider that a crowd driver’s zone selection preferences can be explained through their true
utility function, as explained in Equations (2) and (3) in Section 3. We consider that a crowd driver
receives a zone-independent flat rate of S$7.5 to deliver a parcel in parallel to the average ride-hailing
income of drivers per ride (Agarwal et al., 2022). The cost associated with detour inconvenience is
calculated based on the distance; i.e., for each kilometre of more detour for delivery, the driver’s
perceived utility decreases by βdetour = S$0.20, which is consistent with the fuel cost per kilometre
of travel.

Table 1: Parameters used in the Singapore case study.

Number of zones Z 36
Number of customer orders O 500
Number of expected crowd drivers K 500
No-choice utility for each z ∈ Z uz(0) 0
Reward rz = r, z ∈ Z S$7.5
Cost of non-completed tasks fz(x), z ∈ Z 56[βz + βsx+ βtz

√
Azx]

MNL normalization parameter α 1

A driver chooses a task (zone) among the ones displayed on his/her mobile App; they also have
the option of not selecting any of the displayed zones and simply walking away. We take the no-
choice utility, uz(0), of each arriving driver and for each zone as 0. Table 1 summarizes the values
of all parameters used in our case study.

5.3. Benchmark Policies
In this section, we present two main benchmark policies, namely Display-All and Clearance-L,

to compare the performance of the customized display (CD) policy described in Section 4 and one
special version of the CD policy, Single Best Display (SBD).
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• Display-All. In this policy, the platform displays tasks from all zones with tasks remaining.
This policy can be considered as a fully decentralized display mechanism. Given the remain-
ing time epochs and the number of tasks in each zone, the value function of this policy is
approximated through simulation.

• Clearance-L In this policy, at most L ≤ Z number of zones will be displayed to the crowd
drivers. This policy chooses L zones according to the increasing number of remaining tasks,
starting with the zone with the fewest tasks.

• Single best display (SBD). Single best display is the restricted version of the CD policy
such that the platform follows the same logic, but it only shows at most one task to each
arriving crowd driver. The driver either takes the displayed option and delivers it or leaves
the system.

5.4. Key Performance Indicators

We define three key performance indicators (KPIs) for evaluating competing policies.
• Cost saving. The cost savings are computed as percentages, reflecting costs saved compared

to the case where contracted drivers handle all deliveries.
• Matched tasks. The ratio of delivery tasks served by the crowd drivers.
• Reward ratio. The proportion of the total reward paid to the crowd drivers compared to the

total fulfilment cost.

6. Computational Study

In this section, we computationally compare the customized task display strategy with the Single
Best Display, Display-All, and Clearance-L to quantify its benefit. We then test the choice-based
crowdshipping benefits in different settings, such as varying crowd drivers’ task selection pickiness.

6.1. Results and Discussion

In this section, we compare our Customized Display (CD) method to benchmark policies in-
troduced in Section 5.3. We ran 50 instances varying in the spread of 500 tasks across zones and
the number of arriving drivers. For each of these runs, we calculate the total fulfilment cost, the
total number of requests served by crowd drivers and the total reward amount used to compensate
the crowd drivers for the CD policy and all benchmark policies. We then compare each policy ac-
cording to the KPIs introduced in Section 5.4. Table 2 summarizes comparisons by presenting the
maximum, the average, and the minimum of each metric for each benchmark policy and proposed
CD policy.

The results show that choice-based crowdshipping reaches the highest cost saving with CD
policy, an average of 16.9%, over all runs. These results show that CD policy’s cost saving is better
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Table 2: Choice-based crowdshipping experiments in Singapore (50 replications).

KPI Customized Display SBD Display All Cle-1 Cle-2 Cle-3

Cost Saving
max 18.4% 18.0% 11.4% 15.4% 16.2% 16.1%
average 16.9% 16.6% 9.0% 12.2% 14.0% 13.9%
min 15.3% 14.8% 7.2% 10.0% 11.2% 11.8%

Matched Tasks
max 76.1% 72.8% 92.7% 52.1% 64.5% 76.5%
average 63.6% 61.9% 91.2% 37.5% 56.0% 67.0%
min 53.9% 53.1% 89.5% 27.1% 46.7% 60.4%

Reward Ratio
max 75.0% 71.2% 85.1% 48.2% 61.1% 71.8%
average 63.2% 61.2% 82.7% 35.5% 54.3% 64.3%
min 53.6% 53.0% 80.5% 25.0% 44.6% 57.4%

performing than Display-All, Clearance-1, 2, and 3, which achieve average cost savings of 9%, 12.2%,
14.0%, and 13.9%, respectively. (See Appendices for extended results from the Clearance-L policy.)
A restricted version of CD, allowing the display of only a single best zone (SBD) outperforms the
benchmark policies but brings less cost saving than the CD, an average of 16.6%. Furthermore,
we can observe that the cost-saving performances of CD and SBD are more consistent than others
as the variance of cost savings for these two policies is lower than other benchmarks across all
runs. These results indicate that anticipating the behaviours of arriving crowd drivers, accounting
for future drivers, and considering marginal cost savings against joint contracted driver delivery
are valuable in the choice-based next-day delivery setting. Furthermore, having the flexibility of
displaying multiple options to drivers brings extra cost savings.

When we look at the Display-All and Clearance policies, we see that Display-All performs
worse in terms of cost saving, even though it outperforms all other policies in matched tasks and
reward ratio. This is primarily caused by the cost structure of contracted drivers. Recall that the
majority of savings are achieved if hiring additional contracted drivers is avoided, which is associated
with clearing tasks from as many zones as possible. Display-all does not highlight any zone over
another one. Consequently, this policy increases the chance of ending up with more zones with
positive remaining tasks at the end of the selection period. Clearance policies, on the other hand,
concentrate only on the zone(s) with fewer tasks. As a result, they prioritize clearing as many zones
as possible without considering the drivers’ choice behaviours. Nevertheless, results strengthen the
insight that giving more than one option to drivers is beneficial.

One may expect that the Display-All policy is the most crowd-driver-friendly because an arriving
driver sees all available task options under this policy. The results in Table 2 justify this logic as
the number of matched tasks with crowd drivers (91%) and the total reward paid to crowd drivers
(85.1%) is highest with the Display-All policy. Nevertheless, it is crucial to notice that maximizing
tasks delivered by crowd drivers does not necessarily maximize cost savings; mainly because savings
also depend on the cost structure of contract driver recruitment. As a result, Display-All achieves
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substantially less cost savings (7.9% less than CD and 5% less than Cle-2) than other policies, as
the primary goal is to maximize the crowd drivers’ participation.

6.2. Sensitivity to the Reward and Driver/Task Ratio

This section examines how the varying reward amounts paid to a crowd driver and the average
number of arriving crowd drivers per task influence the performance of display policies. We decrease
and increase the base reward amount S$7.5 to S$7 and S$8. More rewards paid means that drivers
perceive higher utility for making a delivery, increasing the likelihood of choosing one of the displayed
zones, and fewer rewards paid means the opposite. Furthermore, we also change the expected
number of crowd drivers arriving per delivery task. The case in which 0.9 driver arrives per task
represents the scarcity of crowd drivers, whereas the case in which 1.1 drivers arrive per task
represents the extra crowd driver resource availability. Table 3 presents the percentage of cost
savings and the ratio of tasks served by crowd drivers with varying reward, driver-to-task ratio, and
display policies.

Table 3: Impact of varying reward to crowd and driver/task ratio.

Cost Saving Matched Tasks
Driver/Task Ratio Driver/Task Ratio

Reward Policy 0.9 1 1.1 0.9 1 1.1

7

CD 18.5% 19.5% 20.3% 66.3% 71.6% 75.3%
Display All 8.4% 13.0% 15.9% 84.0% 89.6% 93.5%
Clearance-1 11.9% 12.7% 13.4% 27.6% 30.6% 33.5%
Clearance-2 14.7% 15.5% 16.4% 42.9% 47.3% 51.8%
Clearance-3 15.8% 16.6% 17.4% 53.7% 59.5% 65.1%

7.5

CD 16.3% 16.9% 17.5% 59.9% 63.7% 66.6%
Display All 4.7% 9.1% 12.2% 85.3% 91.1% 95.3%
Clearance-1 11.7% 12.3% 12.8% 34.1% 37.2% 40.4%
Clearance-2 13.4% 14.0% 14.5% 50.4% 55.8% 61.2%
Clearance-3 13.5% 13.9% 14.5% 61.0% 67.4% 74.0%

8

CD 14.1% 14.5% 14.8% 54.3% 57.7% 60.4%
Display All 0.7% 4.9% 8.2% 86.3% 92.4% 96.8%
Clearance-1 10.6% 11.1% 11.5% 40.1% 44.3% 48.8%
Clearance-2 11.1% 11.3% 11.4% 57.6% 63.9% 70.2%
Clearance-3 10.3% 10.4% 10.2% 67.3% 74.7% 82.4%

Table 3 shows two general patterns irrespective of the display policies: (i) decreasing the reward
amount paid to the crowd drivers and (ii) increasing the expected arriving crowd driver per task
increases the average cost saving from the choice-based crowdshipping in the next day delivery
service.

On the other hand, the impact of changing rewards on the relative cost savings of different
display policies is not uniform. Notably, the Display-All policy is the most sensitive to the reward
amount. The base average cost savings of 9.1% increases to 13% if the reward amount drops S$7
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and decreases to 4.9% if the reward is S$8. This is an anticipated result as the Display-All policy
gives full autonomy to drivers. In other words, crowd drivers’ willingness to deliver tasks depends
on the attractiveness of the reward. Even though the number of matched tasks increases with more
reward per delivered task, cost saving is not aligned with it. This result is because crowd deliveries
become less advantageous against contract driver fulfilment.

However, the impact of changing rewards on the CD and Clearance policies is distinct compared
to the effects on the Display-All policy. It is key to recognize that CD policy aims to maximize cost
savings; hence, increasing the reward paid per task makes delivering tasks with contracted drivers
relatively cheaper. Consequently, increased reward decreases the ratio of tasks served by crowd
drivers for these policies. Furthermore, we observe that the ranking of Clearance-L policies varies
with reward. For a lower reward, as expected, the Clearance-L policy with a larger menu size leads
to greater cost savings.

The impact of the driver-task ratio shows that more drivers per task increase the cost savings
and the tasks delivered by crowd drivers. However, the display-all policy is again the most sensitive
to this parameter, similar to changing the reward amount.

The joint impact of the reward and driver task ratio variations can also be seen in Table 3. Along
the lines of the isolated impacts of reward and driver/task ratio, we observe the policy Display-All
magnifies the negative impacts of higher rewards and scarce driver cases. In this scenario, the choice-
based cost savings approach zero if the Display-All is chosen. At the same time, they consistently
provide 14% and 10% cost minimization, respectively. This result is another manifestation of
the shortcomings of the decentralized Display-All policy in the next-day crowdshipping setting,
particularly when the reward and expected crowd driver relations are not forecasted accurately.

Note that due to the Markovian property of the MDP, our solution methodology implicitly
assumes that an arriving driver makes a choice before the next driver’s arrival. In a real-world
setting, this may not always be true. To quantify the impact of this assumption on the solution
quality, we conduct a simulation study by assuming the driver’s decision can be delayed by a certain
probability and periods. The results of this experiment show that the variance in the savings is
negligible. We share the details of this study in Section 8.6 of the Appendices.

6.3. Sensitivity to Contract Drivers’ Cost Parameters

This section shows the impact of contract drivers’ cost parameters on the crowdshipping cost
savings. In other words, we test the influence of the cost components of serving a zone by a contract
driver in Equation (1):

cz(x) = Γ ·
[
βzθ

−1 + βsx+ βtz
√

θAzx
]
,
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where θ represents the number of zones a contract driver is responsible for delivery. We vary the
area coverage via θ such that a contract driver can be responsible for two, four, and eight zones.
For example in the case of θ = 4, or a contract driver can serve up to four zones, the total cost will
be different (less) by S$(42βz − βl

√
Azx) for zone z.

Even though this cost perturbation underestimates the total fulfilment cost without crowdship-
ping, it is expected to estimate the contracted driver’s expenses after the crowd drivers’ selection
is over, and a few tasks remain to be delivered. The cost-saving percentages of the CD policy with
different θ, under base rewards S$7.5 and S$5.5 are presented in Figure 5.

Figure 5: Impact of varying contract drivers’ cost parameters.
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In line with the analysis of varying reward amounts to crowd drivers in Section 6.2, Figure 5
shows that a relative decrease in the cost of contracted drivers without an adjustment in the reward
amount leads to a setting where crowdshipping becomes less cost-effective. The cost savings of
crowdshipping with CD policy shrinks to as low as 2.5%. However, with an adjusted reward of
S$5.5, we observe the cost savings remain relatively stable to the changes in the contract driver cost
parameters.

Figure 5 also illustrates the impact of the cost approximation on contract drivers’ expense on
the total fulfilment cost remains limited if the relative attractiveness of delivering tasks by crowd
drivers to the contract drivers does not alter drastically.

6.4. Understanding the Customized Display Policy and Crowd Drivers’ Choices

In this section, we explore the choice-based crowdshipping setting from crowd drivers’ perspective
and demonstrate why CD policy outperforms other policies in terms of total cost savings. Firstly,
we zoom in on the CD policy and present the results showing the varying displayed task sizes
throughout the selection period. Later, we look at the utility of crowd drivers for the displayed
tasks.

Figure 6a presents the evolution of the median number of displayed zones to arriving drivers
and the median number of eligible zones with CD policy. We see that the displayed number of
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Figure 6: Impact of the customized display policy on drivers’ choice.
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zones and the number of zones with a positive task number are strongly correlated. In other words,
CD policy displays more options to an arriving driver when there are more eligible zones. This
pattern of decreasing number of displayed zones exhibits that CD policy seeks the balance between
decreasing the risk of crowd driver attrition by displaying multiple options and concentrating on
zones with higher cost-saving potentials.

In cases where fulfilling tasks in some zones is more cost-efficient with contracted drivers than
delegating to crowd drivers, the platform desires the task display policy to detect and act on this
situation. Figure 6a also shows that CD policy has this feature, and it may opt not to display any
tasks to an arriving crowd driver. For the last 50 periods before the selection period is over (periods
0-50), the CD policy considers the risks and the expected cost savings, and decides not to display
tasks to arriving drivers.

Figure 6b depicts how display policies are perceived by crowd drivers throughout the selection
period. We use the metric “driver’s maximum utility” to measure the driver’s “happiness” through
what tasks are shown to her. For a given time period t in the selection horizon and displayed tasks
(zones) Dt, the driver’s maximum utility equals the utility of choosing a task from the driver type
m’s most preferred zone within the set Dt; i.e., max{um(z), z ∈ Dt} from Equation (2). Recall
that in the Display-All policy, the number of zones displayed always equals the number of zones
with a positive number of tasks. In the Clearance-L policy, on the other hand, at most k zones are
displayed. The CD policy, on the other hand, determines the display set by trying to appeal to
individual drivers.

In Figure 6b, we see that the Display-All policy consistently produces display sets maximizing
the driver’s maximum utility except for the last few periods. This is an expected outcome as the
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number of displayed zones increases, the possibility of having zones that are favourable by the crowd
drivers in the display set increases. On the other hand, the second best-performing policy w.r.t. the
driver’s utility changes with time or, more precisely, with the remaining number of delivery tasks.
At the beginning of the selection period, when the number of tasks is higher, the customized and the
best single-display policies display zone(s) relatively similar according to the driver’s utility metric,
and they perform better than Clearance-2. However, at the end of the selection period, drivers’
maximum utility remained higher with the Clearance-2 policy. Furthermore, we also see that in all
policies except Clearance-2, the driver’s maximum utility gradually falls below zero as fewer tasks
remain to show at the end of the selection horizon.

Figure 6b also helps us understand why CD policy outperforms Single Best Display, i.e., having
the flexibility of displaying multiple zones performs better than displaying at most a single zone.
It is noticeable that for these two policies, a driver’s maximum utility is similar throughout the
selection period. Nevertheless, drivers’ choices also depend on unobservable factors. From the MNL
model, we know that the probability of a driver not choosing a task will be lower when more diverse
task options are displayed to her. Hence, CD policy enables the steering of drivers’ behaviours more
efficiently by exploiting this feature of the choice model.

6.5. Crowd Drivers’ Task Selection Predictability and Pickiness: The Impact of Parameter α and
the No-Choice Utility

This section explores two types of crowd drivers’ selection behaviours: (i) we first investigate
settings in which crowd drivers adhere more or less to their observable utility behaviours when they
select from the displayed set, or in short, crowd driver’s choice predictability, (ii) we also explore
crowd drivers’ willingness to deliver tasks, i.e., driver’s pickiness in participation. We control
drivers’ choice predictability by setting α. With all else being equal, a higher α represents a higher
predictability as increasing (decreasing) α will increase (decrease) the likelihood of a driver choosing
zones with positive (negative) utility, with the steepest increase (decrease) happening to the zone
with the most positive (negative) utility. Moreover, as α → ∞, a driver will deterministically
choose the option with the highest positive utility, or leave the system without choosing any task if
all options yield a negative utility.

We control drivers’ pickiness to participate by setting the no-choice utility um(0). As um(0)

increases, the likelihood of leaving the platform without choosing any of the displayed zones increases
for all display sets.

Figure 7 presents choice-based cost-saving results for additional α values of 0.25, 0.5, 2, and 4,
which represent the cases where drivers are 2 or 4 times less/more predictable than the baseline
cases explored in earlier experiments. Figure 9, on the other hand, shows the cost savings when
crowd drivers’ no-choice utility (utility of not participating) varies from the default S$0 to one, two,

25



three, and four Singapore dollars.

Figure 7: Impact of drivers’ task selection predictability on cost saving.
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Figure 7 shows an overall trend that the cost saving from the choice-based crowdshipping system
decreases as drivers become more predictable. More precisely, when drivers have a strong preferential
perception between delivering tasks into different zones (α is higher), the system-wide cost-saving
decreases, particularly for CD and Clearance policies. For example, the median cost saving is 19.1%
when α is 0.25, but 16% when α is 4 with the CD policy. As expected, Display-All is insensitive
to drivers’ choice predictability. The relative ranking of cost saving remains the same for all α; CD
performs the best, followed by Clearance-2 and Display-All.

Figure 8: The impact of α on customized display policy.
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(b) The driver’s maximum utility.
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Figure 8 zooms in on how CD policy adapts its display set size to changes in drivers’ behaviours.
Figure 8a exhibits the proportion of zones displayed out of the zones with remaining tasks through-
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out the selection period. Note that α = 1 represents the previous experiment. This figure first
reveals that the driver’s choice behaviour influences CD policy actions. For relatively less pre-
dictable drivers (for cases where α < 1), the CD policy displays more options than the opposite
setting. For example, CD displays half of the eligible zones when α = 0.25 at the initial periods,
but this ratio drops to a quarter when α = 4. In other words, CD policy utilizes the driver’s lack of
preferences and steers them easily by showing them more options, which increases the participation
rate.

Figure 8b presents the shifts of the driver’s maximum utility for varying α values. Note that the
drivers’ observed utility remains the same, but the choice behaviours between the displayed options
vary when α takes different values. In this figure, we observe that the driver’s perceived utility is
primarily associated with the display menu size. That is, the CD policy adapts its display menu
sizes in negative correlation to α. As a result of this adaption, the maximum utility of the incoming
driver stays relatively higher when drivers are less predictable (another way to see this is that drivers
are more flexible with smaller α, thus allowing us to show them more options profitably).

Figure 9: Impact of drivers’ task selection pickiness on cost saving.
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Figure 9 shows that the settings with pickier drivers, or the drivers with higher no-choice util-
ity, reduce the cost-saving potential of choice-based crowdshipping regardless of the chosen display
policy. Unlike the driver’s predictability, the decentralized Display-All policy is influenced signifi-
cantly by the picky drivers, as the cost savings reach negative values (choice-based crowdshipping
increases the fulfilment cost). This result stems from the cherry-picking behaviours of picky drivers
in a decentralized setting. In other words, displaying all options will increase participation when
drivers are more selective about participating in crowdshipping. Nevertheless, in this scenario, the
participating crowd drivers choose the tasks that suit their criteria, which leads to a large spread
of remaining tasks to be fulfilled by contracted drivers. On the other hand, CD can regulate un-
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favourable selection by limiting the displayed tasks.

7. Concluding Remarks

In this work, we introduce and study the Dynamic Task Display Problem in a choice-based
crowdshipping setting, where an online platform delegates delivery tasks to dynamically arriving
crowd drivers. We investigate a display mechanism between the two extremes of: (a) purely central-
ized, which suggests only a single task to the driver, and (b) purely decentralized, which displays
all delivery tasks and lets drivers choose freely. We propose a mechanism with customized dis-
play, where individually arriving workers are presented with a collection of carefully chosen tasks
to minimize the total fulfilment cost. We overcome the curse of dimensionality stemming from the
Markov Decision Process formulation by devising a stochastic look-ahead policy. We experiment
the choice-based crowdshipping and various display policies on Singapore-inspired instances.

Our numerical experiments demonstrate that choice-based crowdshipping can achieve significant
cost savings for the overnight delivery problem. This is achieved via carefully curated set of tasks to
be shown to different drivers. The highest cost savings can be achieved by the proposed customized
display policy, which considers the drivers’ choice behaviour, the contracted delivery expenses, and
future drivers. We also show that when drivers become less picky while selecting tasks, choice-
based crowdshipping will dominate, and the customized display policy is the most effective policy
to leverage this feature. It is important to note that our numerical experiments present conservative
savings from crowdshipping due to the restriction of single task selection per crowd driver. Further
studies can explore the impact of multi-selection or the impact of displaying bundled tasks.

Our findings and insights have practical implications for the broader crowdshipping and online
task assignment/selection platform design. In particular, for scenarios where instantaneous match-
ing of tasks and workers is not required, our work demonstrates the benefits of tailoring the list of
tasks displayed to each worker by considering the spatio-temporal features of future worker arrivals.
Our work also suggests the importance of designing an adaptive platform mechanism to balance the
desire for worker autonomy and assignment efficiency, especially for scenarios where task fulfilment
is achieved through a combination of an elastic crowdsourced worker pool and contracted resources
(delivery workers, trucks, etc.).
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8. Appendices

8.1. Notation

For easier reference, we summarize the notations used in the paper in Table 4.

Table 4: Notations for DTDP.

Notation Description

Sets

T Periods/Slots, t = T, T − 1, , · · · , 1, 0
Z Set of zones/clusters, z = 1, 2 · · · , Z
O Set of delivery tasks, o = 1, 2, · · · , O
Oz Set of delivery tasks in zone z ∈ Z

Parameters associated with geography

tt(i, j) Distance between zone i and j
Az Area of zone z

Contract drivers

Γ Hourly rate of hiring a contract driver
βz Duration of travelling to zone z from the depot in hour
βs Duration of serving a single order (independent of a zone)
βtz Coefficient accounting for travel time between two orders in a specific zone
fz(x) Cost of fulfilling x tasks in zone z with a contract driver

Crowd drivers

λtm Arrival rate of driver type m at time t
rz Reward for the crowd driver delivering a task to zone z
um(z) utility of delivering order in zone z for m type driver
βdetour Coefficient accounting for disutility of detour

Modeling

Xt State at time t
Dt Collection of feasible display sets at period t
z Index shows order location in zone z ∈ Z
m Index shows a driver’s destination zone m ∈ Z
π Decision policy
α Normalizing parameter for the choice model

8.2. SDPS Policy Generation

In this section, we detail on the calculation of the cost savings for each zone under SDPS, and
present the pseudo-code of the algorithm to generate the SDPS policy on the fly while implementing
the VFA.
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8.2.1. Expected Cost Saving Calculation

To evaluate the SDPS Policy on-the-fly efficiently, we calculate the expected cost savings for
each possible value of remaining time epoch, and remaining number of tasks for each zone, assuming
that only that zone is shown throughout the remaining of the selection period

To demonstrate, suppose a zone z has xTz number of tasks at the beginning of selection period
that has length T. Fix t ∈ {1, .., T} and x ∈ {1, .., xTz}. Then, we calculate the expected benefit
of solely displaying zone z, and displaying nothing afterwards, given that there are t time epochs
remaining, and x tasks waiting to be delivered at zone z as follows:

CSzt(x) =
x∑

i=0

P (i, t)(cz(x)− cz(x− i) + rzi)

In the above expression, we take expectation over i ∈ {0, ..., x}, the number of tasks that can be
completed until the end of the selection period, given that there are x deliveries remaining in zone z.
P (i, t) represents the probability of having i deliveries completed by crowd drivers in t periods, and
can be calculated using Proposition 1. When i deliveries are completed by the crowd drivers, there
are x− i deliveries remaining in zone z and therefore, fz(x)−fz(x− i)+rzi represents the change in
the terminal cost value for zone z plus the reward paid to the crowd shippers to complete i deliveries.
If CSzt(x) > 0, we deem zone z beneficial to display when there are x deliveries remaining in the
zone, and there are t epochs remaining.

Given the initial state XT = {xT1, ...xTZ}, CSzt(x) can be precomputed for all z ∈ Z, t ∈ T and
x ∈ {1, .., xTz}. For a fixed z, x and t, calculating CSzt(x) requires a single loop over i ∈ {0, ..., x}
and is O(X̄) where X̄ is the largest element in XT . We repeat this procedure for all zones, time
periods and possible values of remaining tasks, and therefore the expected cost saving calculation
for a problem instance is O(ZTX̄2).

8.2.2. SDPS Policy Generation Algorithm

The algorithm takes a state (Xt), the number of remaining time epochs (t), a list of median
completion time of one task in each zone when that zone is displayed exclusively (M), and a 3-
D array that contains the cost savings for each zone, remaining time epochs and inventory level
(CSzt(.)) as an input and returns a list of zones (SDPS).

We start the procedure by creating an empty list, SDPS, which will contain an ordered list of
zones to be displayed in the SDPS policy, given the current state of the system. Then, we determine
the list of candidate zones, Zcand, by identifying zones that with positive number of remaining tasks,
positive cost savings and a median completion time greater than the number of remaining periods.
Then, we identify the zone with the maximum savings per period until completion, z∗, and add
it to the SDPS list, and update t by deducting the median completion time of zone z∗ under the
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Algorithm 1 SDPS Policy Generation
1: Input Xt, t,M,CSzt(.)
2: SDPS ← ∅
3: Zcand ← {z : Xt(z) > 0, CSzt(Xt(z)) > 0, Xt(z)M(z) ≥ t}
4: while Zcand ̸= ∅ do
5: z∗ ← argmaxz∈Zcand

{CSzt(z)/(Xt(z)M(z))}
6: SDPS ← SDPS ∪ {z∗}
7: t← t−Xt(z

∗)M(z∗)
8: Zcand ← {z : Xt(z) > 0, z /∈ SDPS,CSzt(Xt(z)) > 0, Xt(z)M(z) ≥ t}
9: end while

10: Return SDPS

assumption that only zone z∗ is displayed. Next, we determine Zcand the same way described above,
but we exclude zones that are already in SDPS to avoid repetition. We repeat this process until
there are no eligible zones to add to Zcand.

Initial construction of Zcand, and finding the zone with maximum cost savings per period requires
iterating over at most Z zones. Constructing Zcand for the second time and onwards require iterating
over at most Z zones, and the SDPS list, which may contain at most Z zones. All other update
operations require O(1) time. Therefore, the computational complexity of Algorithm 1 is O(Z2).

8.3. Solution Approach Validation

In this section, we test and report the goodness of the stochastic look-ahead (LA) proposed in
Section 4. The proposed LA consists of both state and action space reduction techniques (termed
value function approximation(VFA) and efficient display sets (EDS), respectively). To quantify
the performance of these ideas, we need instances where we can use the backward recursion and
compute the expected fulfilment cost stated in Equation 5. Therefore, we consider 50 randomly
generated instances consisting of eight zones located along the perimeter of a circle and the depot
is situated at the centroid of the circle. For each instance, 20 tasks are distributed randomly to
eight zones with equal probability, implying a finite (albeit small) probability of one or more zones
having no delivery tasks. We set the length of the selection horizon equal to the number of tasks,
which ensures that there will always be at least one zone to display to a driver. The primary goal
of these experiments is to assess the performance of the stochastic look ahead method. Therefore,
the cost savings may not represent the reality due to the artificial instances.

Figure 10 presents the choice-based crowdshipping cost savings for the small instances of five
task display policies: 1 Customized Display-derived optimally (CD-opt), 2 Customized Display-
derived by stochastic look-ahead (CD-SL), 3 Single Best Display-derived by stochastic look-ahead, 4
Display-All, and 5 Clearance-1. We see that the median cost-saving difference between the proposed
stochastic look-ahead method and the optimal policy is less than 1%.
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Figure 10: Cost savings of using varying dynamic task display mechanisms, eight zones and twenty tasks.
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Figure 11: Cost savings for varying menu sizes for clearance policy.
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8.4. Performance of Clearance-L policies

This section presents the impact of varying display menu sizes using Clearance-L. The Clearance-
L policy aims to minimize the fulfilment expenses of engaging contract drivers, but it is allowed to
show up to L zones as a menu size. Note that if the total number of zones with positive inventory
drops below L at some point in the selection horizon, then this policy becomes equivalent to Display
All after that time.

Figure 11 shows the cost savings of the Clearance-L policy for the 50 instances generated using
Singapore data, with L varying from 1 to 36. The results show that for our instance set, average
cost savings increase as L goes from 1 to 2, and start to decrease afterwards, with L = 2 being the
best Clearance policy and L = 3 coming as a close second. Note that these results are specific to
our instance set and cost function and the best-performing Clearance-k policy might differ under
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different termination cost functions or instance sets.

8.5. Impact of request and driver volume

This section examines how the volume of delivery requests and available crowd drivers influence
the benefits of crowd shipping. To explore this aspect, we consider two experimental settings, each
with varying numbers of requests and drivers: 100, 250, 500, 750, and 1000.

In the first setting, we use our original instances inspired by Singapore’s geography while keeping
the number of zones (which corresponds to the maximum number of contract drivers) constant. In
the second or round-shaped setting, we use a fixed-sized circular area but adjust the number of
zones to maintain an average of 25 delivery requests per zone. In other words, while the number of
zones will be 36 in Singapore, regardless of the request volume, it will vary between 4 and 40 for
the second setting.

Figure 12: Round-shaped geography. Zone size changes.
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Figure 12 illustrates the idea behind the round-shaped setting. We set the depot at the centre,
where all requests are to be collected, and crowd and contract drivers originate their journeys. We
consider the destinations of the requests to be distributed uniformly within the area. Depending
on the request volume, we set the zone sizes; i.e., for 100 requests, we partition the area into four
zones or for 250 requests into ten zones.

We keep the monetary compensation paid to crowd drivers and recruitment costs to contract
drivers at the original levels for both settings. Hence, we concentrate on quantifying the impact of
volume changes within the same areas, with and without the ability to rezone. It is crucial to note
that the expenses of contract drivers are closely related to how zones are set and aligned with the
expected number of requests.
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Table 5 illustrates the cost-saving ratios associated with integrating crowdshipping into next-day
delivery operations through various display policies. It is clear that the advantages of crowdshipping
diminish as the volume increases or when delivery requests become more geographically concen-
trated. In other words, the marginal effort required to deliver additional requests is lessened for
contract drivers due to the closer proximity of delivery destinations while compensation per crowd
remains unaffected by the density.

Table 5: Impact of request and crowd driver volume.

Cost Savings(%): Singapore instances. No Re-zoning.

Volume # Zones Customized Display Display-All Cle-2

100 36 59.8% 53.2% 49.8%
250 36 37.2% 30.4% 31.3%
500 36 16.9% 9.0% 14.0%
750 36 7.6% -3.0% 4.5%
1000 36 3.1% -10.8% -1.6%

Cost Savings(%): Round-shaped geography instances. With Re-zoning.

Volume # Zones Customized Display Display-All Cle-2

100 4 18.0% 18.0% 16.7%
250 10 11.5% 8.9% 9.2%
500 20 5.5% 2.8% 3.8%
750 30 3.2% -0.3% 0.9%
1000 40 2.2% -2.3% -1.0%

We also observe that rezoning ability significantly influences cost-saving computations in Table
5. Since contract driver cost estimation depends on the initial zoning setup—the total number of
zones—failing to adjust zones in response to major changes in delivery request volume can lead to
over- or underestimation of contract driver expenses. Simply put, recruiting more than five contract
drivers (i.e., zones) may not be ideal if the expected delivery demand is only 100. To address the
shortcomings of Singapore instances in this aspect, we develop an adaptive zoning policy for round-
shaped geographic instances.

Table 5 presents the volume impact on the display policies. We see that the Display-All policy
performs on par with the customized display when the request density is low. At the same time,
the Display-All fails to facilitate saving when the delivery density increases. Table 5 also reveals
the weight of the adaptive display policy in overnight delivery services. These results contribute
to the overall discussion of how crowdshipping integration into overnight delivery services requires
additional attention in comparison to on-demand delivery services.

8.6. Impact of delay in crowd driver’s choice

In this section, we elaborate on our experiment to quantify the impact of a crowd driver’s delayed
decision (i.e., making a choice after the next driver arrives) on cost savings. In this experiment, each
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arriving crowd driver delays their decision with probability pd, postponing the decision of the driver
by nd periods, allowing subsequent crowd drivers to arrive at the platform before the delayed driver
makes a choice. These delays occur randomly and cannot be observed by the system in advance.
During the decision delay of a driver, any options displayed to the driver are temporarily blocked
to prevent selection conflicts. Consequently, if a displayed zone has only one remaining task and
is shown to a crowd driver, it remains unavailable for later arrivals until the driver finalizes their
decision. We run our experiment by varying nd between one and three and pd between 0.1 and 1,
with increments of 0.1.

Figure 13: The impact of drivers’ delayed choice
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(b) nd = 2
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(c) nd = 3
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Figure 13 shows the percent point (pp) change in average cost savings with respect to the
savings for the base case displayed in Table 2 for the Customized Display policy and all benchmark
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policies. As one would expect, cost savings decrease in the presence of delayed driver decision, and
the magnitude of the decrease increases with i) probability of delayed choice, and ii) length of the
delay, regardless of the policy implemented. Moreover, the impact of delayed decision is the smallest
for all values of nd and pd when the Customized Display policy is implemented. This experiment
concludes that while assuming that a driver makes their choice before the next driver arrives creates
a bias in the results, this bias does not impact the results of this study.
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