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Preface

The main goal of this text is comprehensive study of time homogeneous Markov
chains on the real line whose drift tends to zero at infinity, we call such pro-
cesses Markov chains with asymptotically zero drift. Traditionally this topic is
referred to as Lamperti’s problem.

Time homogeneous Markov chains with asymptotically zero drift may be
viewed as a subclass of perturbed in space random walks. The latter are of ba-
sic importance in the study of various applied stochastic models, among them
branching and risk processes, queueing systems etc. Random walks generated
by sums of independent identically distributed random variables are well stud-
ied, see e.g. classical textbooks by W. Feller [63], V.V. Petrov [132], or F.
Spitzer [143]; for the recent development of the theory of random walks we
refer to A.A. Borovkov and K.A. Borovkov [22]. There are many monographs
devoted to various applications where random walks play a crucial rôle, let us
just mention books on ruin and queueing processes by S. Asmussen [8, 7]; on
insurance and finance by P. Embrechts, C. Klüppelberg, and T. Mikosch [57],
and T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels [137]; and on stochastic
difference equations by D. Buraczewski, E. Damek, and T. Mikosch [31].

In the same applied stochastic models, if one allows the process considered
to be dependent on the current state of the process, we often get a Markov chain
which has asymptotically zero drift, we demonstrate that in the last chapter,
where we particularly discuss branching and risk processes, stochastic differ-
ence equations and ALOHA network.

The study of processes with asymptotically zero drift was initiated by J.
Lamperti in 1960’s in a series of papers. In particular, he classified such Markov
chains in [111, 113] where conditions for positive recurrence, recurrence, and
transience were derived via martingale technique. In [112], Lamperti discov-
ered a new class of limit theorems for transient Markov chains, including
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iv Preface

weak convergence of properly normalised square of a Markov chain to a Γ-
distribution; the proof is based on the method of moments.

Later the martingale approach for the study of Markov chains with asymp-
totically zero drift was further developed, in each particular problem the main
point is to construct an appropriate test (Lyapunov) function such that being
applied to a Markov chain it produces a sub- or supermartingale. Modern state
of the art of the research in this direction can be found in the recent monograph
by M. Menshikov,. Popov, and A. Wade [121], preceded by monographs by G.
Fayolle, V. Malyshev, and M. Menshikov [61], and A.A. Borovkov [23]. We
have been influenced by these books and by further contacts with their authors.

The main advantage of martingale approach is that the test functions con-
sidered are mostly elementary which on one hand simplifies calculations while
on the other hand allows us to derive deep results.

However it is clear that elementary test functions do not allow us to track
subtle asymptotic behaviour of Markov chains when we are interested in pre-
cise asymptotics, say of the tail invariant measure. For that reason, there is a
necessity for a novel approach to such kind of problems. Our approach de-
veloped in this book includes many novel elements and much of the material
presents original research.The main two ingredients are as follows:

(i) To study tails of recurrence times and tails of invariant measures of recur-
rent chains we follow Cramér’s approach based on an appropriate change
of measure. More precisely, we apply a kind of Doob’s h-transform to the
transition kernel of a chain killed at entering an appropriately chosen set.
This approach differs from the method of Lyapunov test functions, where
one considers functions of Markov chains. The main advantage of Cramér’s
approach consists in the fact that it allows us to work with a new Markov
chain whose jumps are stochastically bounded as the original jumps are, in
contrast to the approach based on consideration of a function of a Markov
chain where—in the case of functions growing faster than linear—the jumps
usually are not stochastically bounded, they blow up at infinity.

To perform a Doob h-transform of a substochastic transition kernel one
needs a positive harmonic function for that kernel. By the definition, ev-
ery harmonic function is a solution to a certain equation. Thus, analytical
properties of the solutions are a-priori unclear and have to be studied. This
problem is very hard in general. In order to overcome this difficulty we sug-
gest the following modification of Doob’s transform: instead of using har-
monic functions with unclear properties we perform change of measure with
a superharmonic function which is chosen to be sufficiently close to a har-
monic one while having needed for our analysis analytical properties. The
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resulting kernel is then substochastic, but the loss of mass can be controlled
effectively.

(ii) We develop an approach that allows us to construct superharmonic func-
tions needed for (i)—starting from the ratio of the drift to the second moment
of jumps—such that after change of measure based on that test function we
get a transition kernel which is almost stochastic far away from the origin.
It turns out that the same approach can be used to construct Lyapunov test
functions for the classification of Markov chains. Of course, the test func-
tions constructed in this way are not that elementary as in martingale ap-
proach, however then we can derive better criteria for transience, recurrence
and positive recurrence and derive precise asymptotics for various charac-
teristics of Markov chains, and that is our main contribution.

In Chapter 2 we provide a basic classification of Markov chains, with many
improvements on the results known in the literature. In Chapter 3 we are inter-
ested in down-crossing probabilities for transient Markov chains. Chapters 4
and 5 of the present monograph deal comprehensively with limit theorems for
transient Markov chains, including convergence to Γ and normal distributions
while Chapter 6 deals with the corresponding renewal measure. Chapter 7 ex-
plains how we can apply Doob’s h-transform to Markov chains. Chapters 8
and 9 develop technique needed for deriving precise tail asymptotics of power
and Weibullian type respectively. In Chapter 10 we demonstrate how power-
ful this approach is by studying Markov chains with asymptotically constant
negative drift. Finally, Chapter 11 presents various applied stochastic models
where Markov chains with asymptotically zero drift naturally arise and hence
the above results for Markov chains are applicable to that models that leads to
novel results.

As discussed in Section 1.3 for random walks delayed at zero and further in
[24] for Markov chains, the invariant measure of a Markov chain with negative
drift bounded away from zero far away from the origin is heavy-tailed—all
positive exponential moments are infinite—if and only if the jumps are so. As
we discuss in this book, Markov chains with asymptotically zero drift give rise
to heavy-tailed invariant measure whatever the distribution of jumps, even if
they are bounded random variables. So, stationary Markov chains with asymp-
totically zero drift provide an important example of a stochastic model where
light-tailed input produces heavy-tailed output.

The most part of this research monograph is based on novel results obtained
following the approach described above. This book may be of interest for PhD
students and researchers in the area of Markov chains and their applications.

We are thankful to many colleagues for helpful discussions, contributions,
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and bibliographical comments notably to D. Buraczewski, S. Foss, M.V. Men-
shikov, and S. Popov.

The authors had started to work on the topic of this book while participating
in the programme on Stochastic Processes in Communication Sciences hold at
the Isaac Newton Institute for Mathematical Sciences in 2010. Later on this
book was mostly written while the authors worked, together or individually, at
Augsburg, Bielefeld, Lancaster, Ludwig-Maximilian, and Manchester Univer-
sities, and the Sobolev Institute of Mathematics in Novosibirsk; we thank our
home institutions for hospitality.

Manchester Denis Denisov
Lancaster Dmitry Korshunov
Bielefeld Vitali Wachtel
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Notation and conventions

Intervals (x,y) is an open, [x,y] a closed interval; half-open intervals are
denoted by (x,y] and [x,y).

Integrals
∫ y

x is the integral over the interval (x,y].
R, R+, Rd stand for the real line, the positive real half-line [0,∞), and

d-dimensional Cartesian space.
Z, Z+ stand for the set of integers and for the set {0,1,2, . . .}.
B(S) stands for the Borel σ -algebra in the space S.

Cγ(R) stands for the class of γ times continuously differentiable func-
tions.

I(A) stands for the indicator function of A, that is I(A) = 1 if A
holds and I(A) = 0 otherwise.

→, ↓, ↑ stand for convergence, monotone decreasing convergence, and
monotone increasing convergence.

O, o, and ∼ Let u and v depend on a parameter x which tends, say, to in-
finity. Assuming that v is positive we write

u(x) = O(v(x)) if limsup
x→∞

|u(x)|/v(x)< ∞;

u(x) = o(v(x)) if u(x)/v(x)→ 0 as x→ ∞;

u(x)∼ v(x) if u(x)/v(x)→ 1 as x→ ∞;

un(x) = o(vn(x)) uniformly for all n

if sup
n

∣∣∣un(x)
vn(x)

∣∣∣→ 0 as x→ ∞.

a∧b, a∨b stand for min(a,b) and max(a,b) respectively.
P{B} stands for the probability (on some appropriate space) of the

event B.
P{B | A} stands for the conditional probability of B given A.

Eξ stands for the mean of the random variable ξ .

1



2 Notation and conventions

E{ξ ;B} stands for the mean of ξ over the event B, Eξ I(B).
ξ+, F+ for any random variable ξ on R with distribution F , ξ+ =

max(ξ ,0) and F+ denotes its distribution.
F ∗G stands for the convolution of distributions F and G.

:= (=:) The quantity on the left (right) is defined to be equal to the
quantity on the right (left).

≤st (≥st) The random variable on the left is stochastically not greater
(not less) than the random variable on the right.

=st the sign of equality in distribution.
⇒ the sign of weak convergence of random variables to a random

variable or distribution.
� indicates the end of a proof.

{Xn} stands for a Markov chain.
P(x,B) stands for the transition probabilities of a chain {Xn}, that is,

for P{Xn+1 ∈ B | Xn = x}.
Px{·} stands for the distribution given X0 = x.
ξ (x) stands for the jump of {Xn} from x.

mk(x) stands for the kth moment of the jump ξ (x), Eξ k(x).
m[s]

k (x) stands for the s-truncated kth moment of the jump ξ (x), that
is, for E{ξ k(x); |ξ (x)| ≤ s}.

τB stands for the time of the first entry of Xn to a Borel set B, that
is, for min{n≥ 1 : Xn ∈ B}.

H(B), Hx(B) stands for the renewal measure of a Borel set B generated by
Xn, that is, for ∑

∞
n=0P{Xn ∈ B}, ∑

∞
n=0Px{Xn ∈ B}.

r(x) stands for a reference function which describes the asymptotic
behaviour of the ratio −2m[s(x)]

1 (x)/m[s(x)]
2 (x) in the case of a

recurrent chain or 2m[s(x)]
1 (x)/m[s(x)]

2 (x) in the case of a tran-
sient chain.

R(x) stands for the integral of a function r(x),
∫ x

0 r(y)dy.
U(x) stands for either

∫ x
0 eR(y)dy or

∫
∞

x e−R(y)dy depending on whether
recurrent or transient chain is considered.

Γk,θ stands for Γ-distribution with shape parameter k and scale pa-
rameter θ , that is, a distribution with probability density func-
tion 1

Γ(k)θ k xk−1e−x/θ , x≥ 0; the expectation is kθ and the vari-

ance kθ 2.
Na,σ2 stands for normal distribution with expectation a and variance

σ2.
Φ(x) stands for the standard normal cumulative distribution func-

tion.
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log(m) x stands for the mth iteration of the logarithm of x, log(m) x =

log log(m−1) x.
e(m) stands for a solution to the equation log(m) x = 1.



1
Introduction

In this chapter we introduce basic notions needed in the sequel. We also discuss
nearest neighbour Markov chains and diffusion processes which represent the
two classes of Markov processes whose either invariant measure in the case
of positive recurrence or Green function in the case of transience are available
in closed form. Closed form makes possible direct analysis of such Markov
processes: classification, tail asymptotics of the invariant probabilities or Green
function. This discussion sheds some light on what we may expect for general
Markov chains.

1.1 Countable Markov chains

Let us start with a simpler process, a countable time-homogeneous Markov
chain X = {Xn,n ≥ 0} which is a stochastic process with a countable state
space which can be always reduced to S = Z+. It is determined by an initial
distribution of X0 and a collection of transition probabilities pxy ≥ 0, x, y ∈ S
such that ∑y∈S pxy = 1 for all x ∈ S and

P{Xn+1 = xn+1 | Xn = xn,Xn−1 = xn−1, . . . ,X0 = x0}
= P{Xn+1 = xn+1 | Xn = xn} = pxnxn+1 , (1.1)

whatever time epoch n and a sequence of states xn+1, xn, . . . , x0 in S. In words,
the probability of moving from one state to another does not depend on the
trajectory how X appeared in current state. This memoryless property can be
equivalently defined as independence of the future and the past given current
state, that is,

P{BA | Xn = xn}= P{B | Xn = xn}P{A | Xn = xn},

whatever n≥ 1 and events B ∈ σ(Xn+1,Xn+2, . . .) and A ∈ σ(X0, . . . ,Xn−1).

4



1.1 Countable Markov chains 5

Definition 1.1. A random variable T taking non-negative integer values, pos-
sibly improper, is called a stopping time if, for all n ∈ Z+, the event {T ≤ n}
belongs to the σ(X0,X1, . . . ,Xn).

The Markov property (1.1) can be extended to stopping times as follows.
If T is a stopping time, then the process {XT+n}n≥0 is again a Markov chain
with initial distribution XT . Moreover, for any x ∈ S, this chain is independent
of X0, X1, . . . , XT−1 given XT = x. This property is called the strong Markov
property.

For any state x ∈ S, denote by τx the first hitting time of x,

τx := inf{n≥ 1 : Xn = x},

with standard convention inf /0 = ∞. For all x, τx is a stopping time.

Definition 1.2. A state x is called positive recurrent if Exτx < ∞.

Definition 1.3. A state x is called non-positive if it is not positive recurrent;
more precisely, if either Px{τx = ∞}> 0, or Px{τx < ∞}= 1 and Exτx = ∞.

Definition 1.4. A state x is called recurrent (persistent) if Px{τx < ∞}= 1.

Definition 1.5. A state x is called null recurrent if Px{τx < ∞} = 1 while
Exτx = ∞.

Definition 1.6. A state x is called transient if Px{τx < ∞}< 1.

By the strong Markov property, the time lengths between consecutive visits
of the chain to a fixed state x are independent identically distributed. Therefore,
a state x is transient if and only if Px{τx < ∞} < 1, which is equivalent to the
convergence of the following series (Green function)

∞

∑
n=0

Px{Xn = x} = Ex

∞

∑
n=0

I{Xn = x} < ∞.

Definition 1.7. The period of state x is defined as

dx := gcd{n≥ 1 : Px{Xn = x}}.

A state x is called aperiodic if dx = 1.

Definition 1.8. A Markov chain Xn is called irreducible if, for all x and y,
Px{Xn = y}> 0 for some n.

Notice that, for an irreducible countable Markov chain, the following soli-
darity properties hold true: positive recurrence, non-positivity, recurrence, null-
recurrence, transience, or aperiodicity of any state implies the same property
for all other states.



6 Introduction

Definition 1.9. A measure {πx}x∈S is called invariant (or stationary) for a
countable Markov chain {Xn} if

π(y) = ∑
j∈S

π(x)pxy for all y ∈ S.

Definition 1.10. A probability distribution {πx}x∈S is called asymptotic (or
limiting) for a countable Markov chain {Xn} if

Px{Xn = y} → π(y) as n→ ∞ whatever x ∈ S.

An asymptotic distribution–if exists–is necessarily an invariant probability
measure, however not vice versa.

Theorem 1.11. Any finite irreducible aperiodic Markov chain possesses an
asymptotic distribution.

For a Markov chain with infinitely many states the last result may fail,
in general. For example, a simple random walk with transition probabilities
px,x+1 = p > 1/2 and px,x−1 = 1− p < 1/2 is irreducible however there is
no convergence to an asymptotic distribution. This Markov chain is transient
which is only possible due to infinite number of states.

Theorem 1.12. Let {Xn} be a countable irreducible Markov chain. Fix some
x ∈ S. If {Xn} is recurrent, then a measure π defined by

µ(y) := Ex

τx

∑
n=1

I{Xn = y} =
∞

∑
n=1

Px{Xn = y,n≤ τx}, y ∈ S, (1.2)

is a σ -finite invariant measure for {Xn}.

Proof. Let us firstly check that µ(y) < ∞ for all y ∈ S. By the definition,
µ(x) = 1. Since {Xn} is irreducible, there exists a state y such that pyx > 0.
Then the random variable

Ex

τx

∑
n=1

I{Xn = y}

is stochastically bounded by a geometric distribution with success probability
pyx > 0, hence µ(y)< ∞. By solidarity property, then µ(z)< ∞ for all z 6= x.
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Now let us show that µ is invariant. Indeed, for z = x,

∑
y∈S

µ(y)pyx = pxx + ∑
y6=x

∞

∑
n=1

Px{Xn = y,n≤ τx}pyx

= pxx +
∞

∑
n=1

∑
y 6=x

Px{Xn = y,n < τx}pyx

= pxx +
∞

∑
n=1

Px{τx = n+1}

= Px{τx < ∞} = 1 = µ(x),

because {Xn} is recurrent. For any z 6= x,

∑
y∈S

µ(y)pyz = pxz +
∞

∑
n=1

∑
y6=x

Px{Xn = y,n < τx}pyz

= pxz +
∞

∑
n=1

Px{Xn+1 = z,n+1 < τx}

=
∞

∑
n=1

Px{Xn = z,n < τx}

= µ(z),

by the definition of µ(z) for z 6= x.

So, any irreducible recurrent Markov chain possesses a σ -finite invariant
distribution. However the existence of a σ -finite invariant distribution does not
guarantee recurrence, as the following example demonstrates. For a simple ran-
dom walk on Z, the Haar measure assigning µ(x) = 1 for all x ∈ Z is invariant
whatever the success probability p.

For positive recurrence there is a criteria in terms of an invariant measure as
follows.

Theorem 1.13. For a countable irreducible Markov chain {Xn}, the following
is equivalent:

(i) some state is positive recurrent;
(ii) all states are positive recurrent;
(iii) the measure µ defined in (1.2) is finite;
(iv) there exists a probability invariant measure π .

Then,

π(y) =
1

Eyτy
for all y ∈ S.
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Proof. The equivalence of (i) or (ii) to (iii) is immediate from the definition
(1.2), because

∑
y∈S

π(y) = ∑
y∈S

Ex

τx

∑
n=1

I{Xn = y}

= Ex

τx

∑
n=1

∑
y∈S

I{Xn = y} = Exτx,

which is only finite if {Xn} is positive recurrent.
The most difficult implication is (iv)→(iii). It follows from the observation

that any invariant measure π satisfies the equalities

π(y) := π(x)Ex

τx

∑
n=1

I{Xn = y} = π(x)
∞

∑
n=1

Px{Xn = y,n≤ τx}, y ∈ S.

For a proof, see e.g. Meyn and Tweedie [126, Theorem 10.4.9].

1.2 Real-valued Markov chains

Now let us proceed with a time homogeneous Markov chain X = {Xn,n≥ 0},
whose state space is a Borel subset S of R, that is, for all x ∈ S and Borel sets
B0, . . . , Bn−1, Bn+1 ∈B(S),

P{Xn+1 ∈ Bn+1 | X0 ∈ B0, . . . ,Xn−1 ∈ Bn−1,Xn = x}
= P{Xn+1 ∈ Bn+1 | Xn = x}.

We usually simply say that Xn takes values in R, keeping in mind that the
corresponding transition probabilities may be only defined on some subset S
of the real line.

Denote by P(·, ·) : S×B(S)→ [0,1] the transition probabilities of {Xn}:

P(x,B) = P{Xn+1 ∈ B | Xn = x};

this function is measurable in x for each fixed B and is a probability measure
for each fixed x, that is, this is a stochastic transition kernel. Then, for all n and
B,

P{Xn+1 ∈ B}=
∫

S
P(y,B)P{Xn ∈ dy}.

Let Px{·}= P{· | X0 = x} and Ex{·}= E{· | X0 = x}.
Denote by ξ (x), x ∈ S, a random variable corresponding to the jump of the
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chain at point x ∈ S, that is, a random variable with distribution

P{ξ (x) ∈ B}= P{Xn+1−Xn ∈ B | Xn = x}
= Px{X1 ∈ x+B}, B ∈B(R).

In the sequel we always assume that S is a right unbounded set. Furthermore,
for ease of notation, we assume that P(x,B) is defined for all x ∈ R.

Denote the kth moment of the jump at point x by

mk(x) := Eξ
k(x).

Definition 1.14. We say that a Markov chain {Xn} has an asymptotically zero
drift if m1(x) = Eξ (x)→ 0 as x→ ∞.

The study of processes with asymptotically zero drift was initiated by Lam-
perti in a series of papers [111, 112, 113].

The first topic of basic importance is classification of Markov chains which
is discussed in detail in Chapter 2. For any Borel set B ⊂ R denote by τB the
time of the first entry of {Xn} to B,

τB := inf{n≥ 1 : Xn ∈ B}.

If B is a singleton, then we can literally repeat the classification of B as in the
previous section. However it does not work well for Markov chains which are
truly real-valued as it could happen that then PB{τB < ∞}= 0. For that reason
we introduce a classification of a general Borel set B with respect to Xn which
reduces to one presented in the last section if B is a singleton.

Definition 1.15. A set B is called positive recurrent if ExτB < ∞ for all x ∈ B.

Definition 1.16. A set B is called non-positive if it is not positive recurrent;
more precisely, if either Px{τB = ∞} > 0, or Px{τB < ∞} = 1 and ExτB = ∞

for some x ∈ B.

Definition 1.17. A set B is called recurrent if τB is finite a.s. for all initial
states x ∈ B.

Definition 1.18. A set B is called null recurrent if τB is finite a.s. and ExτB =∞

for all initial states x ∈ B.

Definition 1.19. A set B is called transient if Px{τB < ∞} < 1 for all initial
states x ∈ B.

Definition 1.20. A measure π is called invariant for {Xn} if

π(B) =
∫

S
P(x,B)π(dx) for all B ∈B(S).
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In [111] Lamperti has shown that if S =R+, limsupXn = ∞ and E|ξ (x)|2+δ

is bounded for some δ > 0 then

• 2xm1(x)≤ m2(x)+O(x−δ ) yields that some neighborhood of zero is recur-
rent,

• 2xm1(x) ≥ (1+ ε)m2(x), for some ε > 0 and all sufficiently large x, yields
that any compact set is transient.

In [113] he has proved that 2xm1(x) +m2(x) ≤ −ε is sufficient for positive
recurrence of any compact set and that 2xm1(x) + m2(x) ≥ ε implies non-
positivity of any compact set (either null-recurrence or transience). These cri-
teria have been improved later by Menshikov, Asymont and Yasnogorodskii
[124]. Instead of the existence of moments of order 2+ δ they assume that
Eξ 2(x) log2+δ (1+ |ξ (x)|) is bounded. Moreover, they have obtained more pre-
cise classification for positive recurrence, null-recurrence and transience which
involves iterated logarithms.

In the next section we discuss classical random walks to show difference
between them and Lamperti’s processes. It is followed by a couple of sections
devoted to two types of specific processes—nearest neighbour Markov chains
and diffusion processes—where many characteristics of interest may be com-
puted in closed form following quite elementary calculations; that provides
basic intuition needed to approach general Markov chains with asymptotically
zero drift.

In Section 1.6 we describe our approach to general Markov chains with
asymptotically zero drift.

1.3 Random walks

Let us consider a fundamental example of Markov chains, random walks. We
get started by recalling some important asymptotic results which will be ex-
tended to Lamperti’s Markov chains later.

Definition 1.21. A random walk with initial state x is a sequence of partial
sums, S0 = x and

Sn := Sn−1 +ξn = x+ξ1 + . . .+ξn, n≥ 1,

where ξn’s are independent identically distributed random variables.

Any random walk is a Markov chain with transition kernel

P(x,B) = P{ξ1 ∈ B− x}, x ∈ R, B ∈B(R).
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It is a space homogeneous Markov chain because all its jumps ξ (x), x ∈R, are
distributed as ξ1. Roughly speaking, it is a process with continuous statistics
in the sense that there are no boundary effects in this model.

If E|ξ1|< ∞ then the Strong Law of Large Numbers holds, that is,

Sn/n → Eξ1 a.s. as n→ ∞.

This implies, in particular, that if Eξ1 > 0 then the set (−∞, x̂] is transient, for
all x̂ ∈ R. If Eξ1 < 0 then the set (−∞, x̂] is positive recurrent. It is also well
known that in the case Eξ1 = 0 the random walk Sn is null recurrent, that is,
any bounded set is null recurrent.

In addition, if Eξ 2
1 < ∞ then the Central Limit Theorem holds, that is,

Sn−nEξ1√
nVarξ1

⇒ N0,1 as n→ ∞.

The simplest process with discontinuous statistics—with boundary effects—
is a random walk delayed at zero which is defined next.

Definition 1.22. A random walk delayed at zero (the Lindley recursion) is a
stochastic process W = {Wn,n≥ 0} such that, for all n≥ 1,

Wn = (Wn−1 +ξn)
+ := max(0,Wn−1 +ξn),

where ξn’s are independent identically distributed random variables indepen-
dent of W0 ≥ 0.

It is a Markov chain with transition kernel

P(x,B) = P{(x+ξ1)
+ ∈ B}, x ∈ R+, B ∈B(R),

which is a particular example of asymptotically homogeneous in space Markov
chain defined below, because its jumps satisfy the following weak (and in total
variation distance) convergence

ξ (x) =st (x+ξ1)
+− x ⇒ ξ1 as x→ ∞.

Definition 1.23. We say that a Markov chain {Xn} is asymptotically homoge-
neous in space if

ξ (x)⇒ ξ as x→ ∞, (1.3)

for some random variable ξ . Equivalently, P(x,x+ ·)⇒ P{ξ ∈ ·}.

Let W0 = 0. Then

Wn = max(0,ξn,ξn +ξn−1,ξn +ξn−1 +ξn−2, . . . ,ξn +ξn−1 + . . .+ξ1),
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hence, for all n, Wn is equal in distribution to the maximum

Mn := max(0,ξ1,ξ1 +ξ2,ξ1 +ξ2 +ξ3, . . . ,ξ1 +ξ2 + . . .+ξn)

= max
0≤k≤n

Sk, where S0 = 0.

One of the applications of the Lindley recursion {Wn} is the waiting time
process in the single server queue system with ξ = σ − τ where σ represents
the typical service time and τ the typical inter-arrival time. Among applications
of the process of maxima Mn is the collective risk process with ξ = X − cτ

where X represents the typical claim size, τ the typical inter-arrival time, and c
is the premium rate; here P{M∞ > x} represents the ruin probability given the
initial reserve x > 0.

If Eξ1 > 0 then {Wn} is a transient Markov chain (any bounded set is tran-
sient), which satisfies the Central Limit Theorem provided Eξ 2

1 < ∞,

Wn−nEξ1√
nVarξ1

⇒ N0,1 as n→ ∞.

If Eξ1 = 0 then {Wn} is null recurrent (any bounded set is null recurrent),
and, by the functional central limit theorem (Donsker’s theorem),

Wn√
nVarξ1

⇒ sup
t≤1

B(t) as n→ ∞,

where B(t) is a Brownian motion, see, e.g. Billingsley [16, Section 10].
If Eξ1 < 0 then {Wn} is positive recurrent (any bounded set is positive re-

current), and possesses a unique invariant probability measure, say πW . This
measure is the distribution of M∞ := maxn≥0 Sn and the distribution of Wn con-
verges to πW in the total variation metric, that is,

sup
B∈B(R)

|P{Wn ∈ B}−πW (B)| → 0 as n→ ∞.

The distribution πW is explicitly known in few cases only. The tail behaviour
of πW has been understood very well and it heavily depends on the existence
of positive exponential moments of ξ1. For that reason the following classes of
distributions are introduced:

Definition 1.24. We say that a distribution F is light-tailed if∫
R

eλxF(dx)< ∞ for some λ > 0.

A random variable ξ is called light-tailed if its distribution is so.
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Definition 1.25. We say that a distribution F is heavy-tailed if∫
R

eλxF(dx) = ∞ for all λ > 0.

A random variable ξ is called heavy-tailed if its distribution is so.

Definition 1.26. We say that a function g(x) is long-tailed if, for any fixed y,
g(x+ y) ∼ g(x) as x→ ∞. A distribution F with right-unbounded support is
called long-tailed if F(x,∞) is a long-tailed function.

Any long-tailed distribution is necessarily heavy-tailed.

Definition 1.27. A distribution F on R+ is called subexponential if

(F ∗F)(x,∞)∼ 2F(x,∞) as x→ ∞.

A distribution F of a random variable ξ is called subexponential if the distri-
bution of ξ+ is so.

Any subexponential distribution is necessarily long-tailed and hence heavy-
tailed, see e.g. [67, Lemma 3.2].

In order to describe the tail behaviour of πW , let us introduce ϕ(λ ) = Eeλξ1

and β = sup{λ ≥ 0 : ϕ(λ )≤ 1}. Given P{ξ1 > 0}> 0, β < ∞. It turns out that
the asymptotic behavior of P{M∞ > x} heavily depends on the values of β and
ϕ(β ); the following three different cases are considered:

(i) β > 0 and ϕ(β ) = 1, the Cramér case;
(ii) β = 0, the heavy-tailed case where all positive exponential moments of ξ1

are infinite;
(iii) β > 0 and ϕ(β )< 1, the intermediate case.

In the Cramér case, under the additional assumption ϕ ′(β−0)<∞, for some
c ∈ (0,1),

P{M∞ > x} ∼ ce−βx as x→ ∞;

this result goes back to H. Cramér, see e.g. [38] or [63, Chapter XII]. In Chapter
10, a similar exponential asymptotics of invariant probabilities of this type
is proven for a broad class of asymptotically homogeneous in space Markov
chains on R with asymptotically negative drift.

In the heavy-tailed case, the tail asymptotics for M∞ is only available under
subexponential type conditions, namely,

P{M∞ > x} ∼ 1
|Eξ1|

∫
∞

x
P{ξ1 > y}dy as x→ ∞



14 Introduction

if and only if the integrated tail distribution FI on R+ defined by its tail

F I(x) := min
(

1,
∫

∞

x
P{ξ1 > y}dy

)
is subexponential, see e.g. [67, Theorem 5.12].

In the intermediate case, we have EeβM∞ < ∞. In addition, if the function
eβxP{ξ1 > x} is long-tailed, then

P{M∞ > x} ∼ cP{ξ1 > x} as x→ ∞,

for some c ∈ (0,∞) (in the lattice case x must be taken as a multiple of the
lattice step), if and only if the distribution of the random variable ξ

+
1 belongs

to the so-called class S(β ), see [14, Theorem 1] and [101, Theorem 2]. In that
case c = EeβM∞/(1−ϕ(β )).

So the invariant measure of {Wn} is light-tailed if and only if the distribution
of ξ1 is so. As we will see in the sequel, for Markov chains with asymptoti-
cally zero drift the situation is very different—the invariant measure is always
heavy-tailed apart from degenerate cases.

1.4 Nearest neighbour Markov chains

In this section we discuss nearest neighbour Markov chains which represent
one of the two classes of Markov chains whose either invariant measure in
the case of positive recurrence or Green function in the case of transience is
available in closed form. Closed form makes possible direct analysis of such
Markov chains: classification, tail asymptotics of the invariant probabilities or
Green function. This discussion sheds some light on what we may expect for
general Markov chains. Another class is provided by diffusion processes which
are discussed in the next section.

Definition 1.28. A Markov chain {Xn} on Z+ is called a nearest neighbour
(skip-free or continuous) Markov chain, if ξ (x) only takes values −1, 1 or 0,
with probabilities p−(x), p+(x) and p0(x) = 1− p−(x)− p+(x) respectively,
p−(0) = 0.

Let

p+(x) = p+ ε+(x) and p−(x) = p− ε−(x), p≤ 1/2,

where all probabilities are assumed to be neither 0 nor 1 in order to get an
irreducible Markov chain.
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Assume that ε±(x)→ 0 as x→ ∞ which corresponds to the case of asymp-
totically zero drift, m1(x) = ε+(x) + ε−(x)→ 0 as x→ ∞. Then the second
moment of jumps is convergent, m2(x)→ 2p as x→ ∞.

1.4.1 Positive recurrence

To find a sufficient condition for positive recurrence of {Xn}, let us consider a
test function L(y) = y2. Its drift at all states x≥ 1 equals

EL(x+ξ (x))−L(x) = 2xEξ (x)+Eξ
2(x)

= 2(ε+(x)+ ε−(x))x+2p+ ε+(x)− ε−(x),

so the chain is positive recurrent if

limsup
x→∞

(ε+(x)+ ε−(x))x <−p, (1.4)

see, e.g. Lamperti [111] or Section 2.2. Then let us denote the stationary prob-
abilities of {Xn} by π(x), x ∈ Z+.

Proposition 1.29. Under the condition (1.4), for some c1 ∈ R,

π(x)∼ e
1
p ∑

x
k=1(ε+(k)+ε−(k))+c1 as x→ ∞, (1.5)

provided

∞

∑
k=0

ε
2(k)< ∞, (1.6)

where ε(k) := max(|ε−(k)|, |ε+(k)|).

Proof. If the chain {Xn} is positive recurrent, then its stationary probabilities
π(x), x ∈ Z+, satisfy the equations

π(0) = π(0)p0(0)+π(1)p−(1),

π(x) = π(x−1)p+(x−1)+π(x)p0(x)+π(x+1)p−(x+1), x≥ 1,

which is equivalent to

π(0)p+(0) = π(1)p−(1),

π(x+1)p−(x+1)−π(x)p+(x) = π(x)p−(x)−π(x−1)p+(x−1)
...

= π(1)p−(1)−π(0)p+(0) = 0,
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which yields π(x)p−(x) = π(x− 1)p+(x− 1) for all x ≥ 1. Hence we obtain
the following solution:

π(x) = π(0)
x

∏
k=1

p+(k−1)
p−(k)

, x≥ 1, (1.7)

where

π(0) =
(

1+
∞

∑
x=1

x

∏
k=1

p+(k−1)
p−(k)

)−1

.

So X is positive recurrent if and only if
∞

∑
x=1

x

∏
k=1

p+(k−1)
p−(k)

< ∞;

see Harris [77] or Karlin and Taylor [87, pp. 86–87] where these calculations
are carried out for the case where p0(k) = 0 for all k ≥ 1.

Since ε±(k)→ 0,
x

∏
k=1

p+(k−1)
p−(k)

=
p+(0)
p+(x)

x

∏
k=1

1+ ε+(k)/p
1− ε−(k)/p

∼ p+(0)
p

x

∏
k=1

1+ ε+(k)/p
1− ε−(k)/p

as x→ ∞.

The logarithm of the product on the right hand side equals
x

∑
k=1

(
log(1+ ε+(k)/p)− log(1− ε−(k)/p)

)
=

1
p

x

∑
k=1

(
ε+(k)+ ε−(k)

)
+

x

∑
k=1

δ (k), (1.8)

where δ (k) = O(ε2(k)) as k→ ∞, for ε(k) := max(|ε−(k)|, |ε+(k)|). Hence,
for some c1 ∈ R,

π(x) = π(0)
x

∏
k=1

p+(k−1)
p−(k)

∼ e
1
p ∑

x
k=1(ε+(k)+ε−(k))+c1 as x→ ∞,

provided (1.6).

Let us consider a couple of examples with specific ε’s. Hereinafter we need
the following result on the harmonic and generalised harmonic series.

Proposition 1.30. For the truncated harmonic series,
n

∑
x=1

1
x
= logn+ γ +O(1/n) as n→ ∞, (1.9)
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where γ is the Euler constant.
For the truncated generalised harmonic series, for any α ∈ (0,1),

n

∑
x=1

1
xα

=
n1−α

1−α
+ γα +O(1/nα) as n→ ∞. (1.10)

The first example of ε’s concerns the drift of order −µ/x.

Example 1.31. If ε+(x) ∼ −µ+/x and ε−(x) ∼ −µ−/x as x→ ∞ in such a
way that

∞

∑
x=0

∣∣∣ε+(x)+ ε−(x)+
µ++µ−

x

∣∣∣< ∞,

then (1.4) yields positive recurrence of the chain provided µ := µ++ µ− > p
and (1.5) implies an asymptotic equivalence, for some c2 ∈ R,

π(x)∼ e−(µ/p) logx+c2 =
ec2

xµ/p as x→ ∞. (1.11)

In Chapter 8 power asymptotics of invariant probabilities of this type are
extended to a broad class of Markov chains on R with asymptotically zero
drift of order −µ/x.

The second example concerns the drift of order −µ/xα , α ∈ (0,1).

Example 1.32. If ε+(x)∼−µ+/xα and ε−(x)∼−µ−/xα as x→ ∞ for some
µ+, µ− > 0 and α ∈ (1/2,1), in such a way that

∞

∑
x=0

∣∣∣ε+(x)+ ε−(x)+
µ++µ−

xα

∣∣∣< ∞,

then the series ∑ε2(x) is convergent again and we observe a Weibullian asymp-
totic behaviour of invariant probabilities,

π(x)∼ c3e−(µ++µ−)x1−α/p(1−α) as x→ ∞. (1.12)

If now α ∈ (1/3,1/2], then the series (1.6) diverges and quadratic terms in
(1.8) make a significant contribution to the asymptotic behaviour of invariant
probabilities,

π(x)∼ c4 exp
(
− µ++µ−

p(1−α)
x1−α +

µ2
−−µ2

+

(2α−1)2p2 x1−2α

)
as x→ ∞.

If α ∈ (1/4,1/3] then we need to keep cubic terms in Taylor’s expansion of
the logarithm which adds a further correction term of order x1−3α to the expo-
nential function, and so on.
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General Markov chains on R with asymptotically zero drift of order−µ/xα ,
α ∈ (0,1), are considered in Chapter 9 where Weibullian type asymptotics of
invariant probabilities are proven.

1.4.2 Transience

Let a nearest neighbour Markov chain {Xn} be irreducible and transient. Then
Px{τx < ∞}< 1 for all x and hence the renewal measure (Green function)

hx0(x) :=
∞

∑
n=0

Px0{Xn = x}

= Ex0

∞

∑
n=0

I{Xn = x}

is finite for all x0, x ∈ Z+, because

hx0(x) = Px0{Xk = x for some k}
∞

∑
n=0

Px{Xn = x}

= Px0{Xk = x for some k} 1
1−Px{τx < ∞}

< ∞.

Since we consider a Markov chain that jumps up by 1 only, hx0(x) = hx(x)
for all x0 ≤ x. In the next result we find hx0(x) in closed form.

Proposition 1.33. Under the condition
∞

∑
u=1

u

∏
z=1

p−(z)
p+(z)

< ∞, (1.13)

the following representations hold true:

hx0(x) =
1

p+(x)

∞

∑
u=x∨x0

u

∏
z=x+1

p−(z)
p+(z)

=
1

p−(x)

∞

∑
u=x∨x0

u

∏
z=x

p−(z)
p+(z)

.

Proof. We first look for a function g(x,z)≥ 0 such that, for all x, the process

Zn = g(x,Xn)−
n−1

∑
k=0

I{Xk = x}, n≥ 0, (1.14)

is a martingale which happens if g satisfies the following system of equations

g(x,0) = p0(0)g(x,0)+ p+(0)g(x,1)− I{x = 0},
g(x,y) = p−(y)g(x,y−1)+ p0(y)g(x,y)+ p+(y)g(x,y+1)− I{y = x},
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for y≥ 1. Take g(x,0) = g(x,1) = . . .= g(x,x) = 0. Then for y = x we get

g(x,x+1) = g(x,x+1)−g(x,x) =
1

p+(x)
,

and, for y≥ x+1,

g(x,y+1)−g(x,y) =
p−(y)
p+(y)

(g(x,y)−g(x,y−1))

=
y

∏
z=x+1

p−(z)
p+(z)

(g(x,x+1)−g(x,x))

=
1

p+(x)

y

∏
z=x+1

p−(z)
p+(z)

.

Therefore, for y≥ x+1,

g(x,y) =
y−1

∑
u=x

(g(x,u+1)−g(x,u)) =
1

p+(x)

y−1

∑
u=x

u

∏
z=x+1

p−(z)
p+(z)

=
1

p−(x)

y−1

∑
u=x

u

∏
z=x

p−(z)
p+(z)

,

which is increasing in y. This sequence is bounded under the condition (1.13).
Then

g(x,∞) := lim
y→∞

g(x,y) =
1

p+(x)

∞

∑
u=x

u

∏
z=x+1

p−(z)
p+(z)

< ∞.

The sequence (1.14) is a martingale, so for all n, x, and x0,

g(x,x0) = Ex0Z0 = Ex0Zn = Ex0g(x,Xn)−Ex0

n−1

∑
k=0

I{Xk = x}

and hence
n−1

∑
k=0

Px0{Xk = x}= Ex0g(x,Xn)−g(x,x0) < g(x,∞) < ∞.

Finiteness of the Green function implies transience of {Xn}, hence Xn→∞ a.s.
as n→ ∞. Thus, we get the following explicit representation for the renewal
measure

hx0(x) = g(x,∞)−g(x,x0) =
1

p+(x)

∞

∑
u=x∨x0

u

∏
z=x+1

p−(z)
p+(z)

=
1

p−(x)

∞

∑
u=x∨x0

u

∏
z=x

p−(z)
p+(z)

.



20 Introduction

Now let us derive some asymptotics for hx0(x) as x→ ∞.

Proposition 1.34. Assume that

2m1(x)
m2(x)

=
2(ε+(x)+ ε−(x))

2p+ ε+(x)− ε−(x)
∼ r(x) as x→ ∞, (1.15)

where r(x) is a differentiable decreasing function such that r′(x)/r2(x) has a
limit at infinity. Then

hx0(x)∼
1

pr(x)
1

1+ limy→∞ r′(y)/r2(y)
as x→ ∞.

Proof. We have

u

∏
z=x

p−(z)
p+(z)

= exp
{ u

∑
z=x

log
1− ε−(z)/p
1+ ε+(z)/p

}
.

The asymptotic equivalence (1.15) is equivalent to

log
1− ε−(x)/p
1+ ε+(x)/p

∼−r(x) as x→ ∞.

Fix an ε > 0. Then for all sufficiently large x we can write

−(1+ ε)r(x) ≤ log
1− ε−(x)/p
1+ ε+(x)/p

≤ −(1− ε)r(x).

Therefore, for such x, we have the following upper bound

hx0(x)≤
1

p−(x)

∞

∑
u=x

exp
{
−(1− ε)

u

∑
z=x

r(z)
}

≤ 1
p−(x)

∞

∑
u=x

exp
{
−(1− ε)

∫ u+1

x
r(z)dz

}
≤ 1

p−(x)

∫
∞

x
exp
{
−(1− ε)

∫ u

x
r(z)dz

}
du,

due to the decrease of r(z). Putting

Uε(x) =
∫

∞

x
exp
{
−(1− ε)

∫ u

0
r(z)dz

}
du

we observe that ∫
∞

x
exp
{
−(1− ε)

∫ u

x
r(z)dz

}
du =

Uε(x)
−U ′ε(x)

.
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By L’Hôpital’s rule and the equality U ′′ε (x) =−(1− ε)r(x)U ′ε(x),

lim
x→∞

Uε(x)
−U ′ε(x)/r(x)

= lim
x→∞

U ′ε(x)
−U ′′ε (x)/r(x)+U ′ε(x)r′(x)/r2(x)

=
1

1− ε + limx→∞ r′(x)/r2(x)
.

Therefore,

limsup
x→∞

hx0(x)r(x)≤
1
p

1
1− ε + limx→∞ r′(x)/r2(x)

.

Similarly, starting from inequalities

hx0(x)≥
1

p+(x)

∞

∑
u=x

exp
{
−(1+ ε)

u

∑
z=x+1

r(z)
}

≥ 1
p+(x)

∞

∑
u=x

exp
{
−(1+ ε)

∫ u

x
r(z)dz

}
≥ 1

p+(x)

∫
∞

x
exp
{
−(1+ ε)

∫ u

x
r(z)dz

}
du,

we get a lower bound

liminf
x→∞

hx0(x)r(x)≥
1
p

1
1+ ε + limx→∞ r′(x)/r2(x)

.

Since ε > 0 is arbitrary we arrive at the conclusion of theorem.

Example 1.35. Assume that ε+(x) ∼ µ+/x and ε−(x) ∼ µ−/x as x→ ∞. If
µ := µ++µ−> p, then (1.15) is valid with r(x)= µ/px, r′(x)/r2(x)→−p/µ ,
and we deduce that

hx0(x)∼
x

µ− p
as x→ ∞.

Example 1.36. Assume that ε+(x) ∼ µ+/xα and ε−(x) ∼ µ−/xα as x→ ∞.
If µ := µ++ µ− > 0 and α ∈ (0,1), then (1.15) is valid with r(x) = µ/pxα ,
r′(x)/r2(x)→ 0, and we deduce a Weibullian asymptotics for the renewal mea-
sure at infinity,

hx0(x)∼
xα

µ
∼ 1

m1(x)
as x→ ∞.

The last two examples demonstrate what kind of asymptotic behaviour of
the renewal measure we could expect for general Markov chains, see Chapters
4 and 6.

We conclude this section by showing that the condition (1.13) is also neces-
sary for transience of nearest neigbour Markov chains. The transience of {Xn}
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implies that, for all x, the sequence ∑
n−1
k=0 I{Xk = x} monotonically converges

almost surely and in L1 as n → ∞. Therefore, the sequence (1.14) satisfies
Eminn Zn >−∞. This allows us to apply the martingale convergence theorem:
Zn converges almost surely to an integrable random variable Z∞. Combining
this with convergence of ∑

n−1
k=0 I{Xk = x}, we infer that g(x,Xn) converges al-

most surely too. If we assume now that (1.13) is not valid, then

g(x,y) ↑ g(x,∞) = ∞ as y→ ∞,

and irreducibility of {Xn} implies that

limsup
n→∞

g(x,Xn) = ∞ almost surely.

This contradicts the convergence of g(x,Xn), so hence (1.13) is necessary for
transience of {Xn}.

An alternative approach to classification of nearest neighbour Markov chains
may be found in Karlin and Taylor [87, Section 3.7].

1.4.3 Harmonic functions and h-transforms

Consider {Xn} killed at hitting zero by setting p−(1) = 0. The corresponding
transition kernel is substochastic which means that each row sums to a value
not greater than 1. Let us construct a harmonic function for this kernel, that is,
a non-negative solution V to the system of linear equations

V (x) = p+(x)V (x+1)+ p0(x)V (x)+ p−(x)V (x−1), x≥ 1, (1.16)

with the initial condition V (0) = 0.

Lemma 1.37. For all x≥ 1,

V (x) =V (1)
x−1

∑
y=0

y

∏
k=1

p−(k)
p+(k)

. (1.17)

Proof. Let τy be the first hitting time of y, that is,

τy := inf{n≥ 1 : Xn = y}.

Then the equations (1.16) with initial condition V (0) = 0 are equivalent to

V (x) = Ex{V (X1); τ0 > 1}, x≥ 1, (1.18)

which defines a harmonic function for the chain {Xn} killed at hitting zero.
It is clear that (1.16) can be rewritten in the form

p+(x)[V (x+1)−V (x)] = p−(x)[V (x)−V (x−1)].
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Consequently,

V (x+1)−V (x) = [V (1)−V (0)]
x

∏
k=1

p−(k)
p+(k)

, x≥ 1. (1.19)

Recalling that V (0) = 0, we then obtain the harmonic function V for the chain
{Xn} killed at hitting zero in closed form

V (x) =
x−1

∑
y=0

[V (y+1)−V (y)] =V (1)
x−1

∑
y=0

y

∏
k=1

p−(k)
p+(k)

.

Existence of a positive harmonic function allows us to transform a strictly
substochastic transition kernel for the chain {Xn} killed at hitting zero into a
stochastic one. For every x≥ 1, define

p̂+(x) :=
V (x+1)

V (x)
p+(x), p̂0(x) = p0(x) and p̂−(x) :=

V (x−1)
V (x)

p−(x).

The new transition kernel P̂ is stochastic because, as follows from (1.16),

p̂−(x)+ p̂0(x)+ p̂+(x) = 1 for all x≥ 1.

This transformation is called Doob’s h-transform, for a Markov chain killed at
hitting zero. Let {X̂n} be a Markov chain on {1,2, . . .} with transition kernel
P̂.

Lemma 1.38. The chain {X̂n} is always transient.

Proof. As shown in the previous subsection, it suffices to show that (1.13)
holds for the transition probabilities P̂. We first apply the definition of P̂:

∞

∑
u=1

u

∏
z=2

p̂−(z)
p̂+(z)

=
∞

∑
u=1

u

∏
z=2

V (z−1)
V (z+1)

p−(z)
p+(z)

=
∞

∑
u=1

V (1)V (2)
V (u)V (u+1)

u

∏
z=2

p−(z)
p+(z)

.

It follows from (1.19) that

1
V (u)

− 1
V (u+1)

=
V (u+1)−V (u)

V (u)V (u+1)
=

V (1)
V (u)V (u+1)

u

∏
z=1

p−(z)
p+(z)

.

Therefore,
∞

∑
u=1

u

∏
z=2

p̂−(z)
p̂+(z)

=
p+(1)
p−(1)

V (2)
∞

∑
u=1

(
1

V (u)
− 1

V (u+1)

)
≤ p+(1)

p−(1)
V (2)
V (1)

< ∞,
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which is equivalent to the transience of the transformed chain {X̂n}.

One of the standard applications of Doob’s h-transform is the random walk
conditioned to stay positive. Let {Xn} be a simple symmetric random walk on
Z, that is, p−(x) = p+(x) = 1/2 for all x ∈ Z. Then it follows from (1.17) that
V (x) = xV (1). As a result the transformed chain {X̂n} has transition probabil-
ities

p̂−(x) =
x−1

2x
=

1
2
− 1

2x
, p̂+(x) =

x+1
2x

=
1
2
+

1
2x

, x≥ 1.

It is immediate from this formula, that the transformed chain has an asymptot-
ically zero drift and unit second moment of jumps.

If the original Markov chain {Xn} is recurrent then one can use the h-
transform to connect the stationary measure π of {Xn} with the Green func-
tion of {X̂n}. The following representation for the invariant measure π via cy-
cle structure (generated by the atom at 0) of the Markov chain {Xn} is well
known—see, e.g. [126, Theorem 10.4.9], for x≥ 1,

π(x) = π(0)
∞

∑
n=1

P0{Xn = x, τ0 > n}

= π(0)p+(0)
∞

∑
n=0

P1{Xn = x, τ0 > n}.

Noting that P1{Xn = x, τ0 > n}= V (1)
V (x)P1{X̂n = x} for all x, n≥ 1, we obtain

π(x) =
π(0)p+(0)V (1)

V (x)
ĥ1(x), (1.20)

where

ĥ1(x) :=
∞

∑
n=0

P1{X̂n = x}, x≥ 1.

Let us consider a couple of examples, we firstly discuss the drift of order
−µ/x.

Example 1.39. Let ε+(x) ∼ −µ+/x and ε−(x) ∼ −µ−/x as x→ ∞ in such a
way that

∞

∑
x=0

∣∣∣ε+(x)+ ε−(x)+
µ++µ−

x

∣∣∣< ∞.

Let µ := µ+ + µ− > p, so the chain is positive recurrent. As follows from
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(1.19), for all x≥ 1,

V (x+1)−V (x) = [V (1)−V (0)]
x

∏
k=1

p−(k)
p+(k)

= [V (1)−V (0)]e∑
x
k=1(log p−(k)−log p+(k))

= [V (1)−V (0)]e∑
x
k=1(log(1−ε−(k)/p)−log(1+ε+(k)/p)).

As in (1.5), we conclude an asymptotic relation, for some c1,

V (x+1)−V (x)∼ [V (1)−V (0)]e−
1
p ∑

x
k=1(ε−(k)+ε+(k))+c1

∼ [V (1)−V (0)]e
µ−+µ+

p logx+c2

∼ c3xµ/p as x→ ∞.

Therefore, as x→ ∞,

V (x+1)
V (x)

= 1+
V (x+1)−V (x)

V (x)
= 1+

µ/p+1
x

+o(1/x),

and

V (x−1)
V (x)

= 1− V (x)−V (x−1)
V (x)

= 1− µ/p+1
x

+o(1/x).

Hence, the transition probabilities of the transformed Markov chain satisfy the
relations

p̂+(x) :=
V (x+1)

V (x)
p+(x) = p+

µ−+ p
x

+o(1/x),

p̂−(x) :=
V (x−1)

V (x)
p−(x) = p− µ++ p

x
+o(1/x).

It follows from Example 1.35 with µ̂+ = µ−+ p and µ̂− = µ++ p that

ĥ1(x)∼
x

µ̂++ µ̂−− p
=

x
µ + p

,

which being substitute into (1.20) implies, as x→ ∞,

π(x) = c3
ĥ1(x)
V (x)

∼ c4

xµ/p ,

which coincides with the answer in (1.11).

This relation between the stationary measure of a nearest neighbour Markov
chain and the Green function of the transformed chain may be extended to
general case. We follow this approach in Chapter 8 to derive power asymptotics
of invariant probabilities of this type for a broad class of Markov chains on R
with asymptotically zero drift of order −µ/x.
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The second example concerns the drift of order −µ/xα , α ∈ (0,1).

Example 1.40. Let ε+(x)∼−µ+/xα and ε−(x)∼−µ−/xα as x→∞ for some
µ+, µ− > 0 and α ∈ (1/2,1), in such a way that

∞

∑
x=0

∣∣∣ε+(x)+ ε−(x)+
µ++µ−

xα

∣∣∣< ∞.

Similarly to the last example, for some c5,

V (x+1)−V (x)∼ [V (1)−V (0)]e−
1
p ∑

x
k=1(ε−(k)+ε+(k))+c5

∼ c6e
µ−+µ+
p(1−α)

x1−α

as x→ ∞.

Therefore, as x→ ∞,

V (x+1)
V (x)

= 1+
µ++µ−

pxα
+o(1/x),

and

V (x−1)
V (x)

= 1− µ++µ−
pxα

+o(1/x).

Hence, the transition probabilities of the transformed Markov chain satisfy the
relations

p̂+(x) :=
V (x+1)

V (x)
p+(x) = p+

µ−
xα

+O(1/x2α),

p̂−(x) :=
V (x−1)

V (x)
p−(x) = p− µ+

xα
+O(1/x2α).

It follows from Example 1.35 with µ̂+ = µ− and µ̂− = µ+ that

ĥ1(x)∼
xα

µ̂++ µ̂−
,

which being substitute into (1.20) implies a Weibullian asymptotic behaviour
of invariant probabilities, as x→ ∞,

π(x) = c7
ĥ1(x)
V (x)

∼ c8e−
µ−+µ+
p(1−α)

x1−α

,

which coincides with the answer in (1.12).

General Markov chains on R with asymptotically zero drift of order−µ/xα ,
α ∈ (0,1), are considered in Chapter 9 where we again follow the approach
above to derive Weibullian type asymptotics of invariant probabilities.
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1.4.4 Down-crossing probabilities for transient chain

Let {Xn} be transient, that is, the probability of hitting the origin, Px{τ0 < ∞},
is less then 1 for all x≥ 1. The goal of the following calculations is to find this
probability.

The function V (x) computed in (1.17) is increasing and bounded provided
the condition (1.13) holds. As it has already been noticed in (1.18), the se-
quence V (Xn∧τ0) is a bounded non-negative martingale, so by the optional
stopping theorem,

V (x) = ExV (X0) = ExV (Xτ0)

=V (0)Px{τ0 < ∞}+V (∞)Px{τ0 = ∞}

and hence

Px{τ0 < ∞}= V (∞)−V (x)
V (∞)−V (0)

=
∑

∞
y=x ∏

y
k=1

p−(k)
p+(k)

∑
∞
y=0 ∏

y
k=1

p−(k)
p+(k)

.

Owing to the left continuity of the Markov chain, similarly we get, for all
0≤ x̂ < x,

Px{τx̂ < ∞}= V (∞)−V (x)
V (∞)−V (x̂)

=
∑

∞
y=x ∏

y
k=1

p−(k)
p+(k)

∑
∞

y=x̂ ∏
y
k=1

p−(k)
p+(k)

. (1.21)

Example 1.41. In the case where ε+(x)∼ µ+/x and ε−(x)∼ µ−/x as x→ ∞,
µ := µ++µ− > p, and

∞

∑
x=0

∣∣∣ε+(x)+ ε−(x)−
µ

x

∣∣∣< ∞,

then similarly to (1.11) we derive that
y

∏
k=1

p−(k)
p+(k)

∼ c5y−µ/p as y→ ∞,

where c5 > 0. Therefore, (1.21) implies that there exists a function c(x̂)→ 1
as x̂→ ∞ such that

Px{τx̂ < ∞} ∼ c(x̂)(x̂/x)µ/p−1 as x→ ∞, uniformly for all x̂ < x.

In particular,

Px{τx̂ < ∞} ∼ (x̂/x)µ/p−1 as x̂, x→ ∞, x > x̂.

Compare to Theorem 3.2 and Corollary 3.3 where a general transient Markov
chain with a drift of order µ/x is studied.
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Example 1.42. Assume that ε+(x)∼ µ+/xα and ε−(x)∼ µ−/xα as x→ ∞. If
µ := µ++µ− > 0, α ∈ (1/2,1), and

∞

∑
x=0

∣∣∣ε+(x)+ ε−(x)−
µ

xα

∣∣∣< ∞,

then the series ∑ε2(x) is convergent and we get that
y

∏
k=1

p−(k)
p+(k)

∼ c6e−µy1−α/p(1−α) as y→ ∞,

where c6 > 0. Therefore, (1.21) implies a Weibullian asymptotic behaviour of
the down-crossing probability, that is, there exists a function c(x̂)→ 1 as x̂→∞

such that

Px{τx̂ < ∞} ∼ c(x̂)
∑

∞
u=x e−µu1−α/p(1−α)

∑
∞
u=x̂ e−µu1−α/p(1−α)

∼ c(x̂)
(x

x̂

)α

eµ(x̂1−α−x1−α )/p(1−α)

as x→ ∞ uniformly for all x̂ < x. In particular,

Px{τx̂ < ∞} ∼
(x

x̂

)α

eµ(x̂1−α−x1−α )/p(1−α) as x̂, x→ ∞, x > x̂.

Compare to Theorem 3.7 where a general transient Markov chain with a drift
of order µ/xα , α ∈ (1/2,1), is studied.

1.5 Heuristics coming from diffusion processes

1.5.1 Diffusions with bounded smooth infinitesimal parameters

Another example where various characteristics are available in closed form is
provided by diffusion processes on R which are continuous-time Markov pro-
cesses with continuous paths. Being sampled at non-random equally spaced
time epochs they give us examples of Markov chains for which some charac-
teristics are explicitly calculable.

Let us start with a result that demonstrates that the existence of an invariant
probability measure for a diffusion process is equivalent to its positive recur-
rence.

Lemma 1.43. For a diffusion process {X(t)} with diffusion coefficient every-
where positive the following is equivalent:

(i) there is a stationary version of the process {X(t)};
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(ii) the process {X(t)} is positive recurrent, that is, Exτy < ∞ for all states x
and y, where τy := inf{t : X(t) = y}.

Proof. Let {X(t)} possess an invariant probability measure π . Then the same
is true for the slotted Markov chain Xn = X(n), n ∈ Z+. Since the diffusion
coefficient is everywhere positive, the jumps of {Xn} are absolutely continuous
with positive density function, so the chain {Xn} is ψ-irreducible, see [126,
Proposition 4.2.2]. Therefore, the existence of invariant probability measure
for {Xn} implies positive recurrence of any compact set B of positive Lebesgue
measure in the sense that ExτB < ∞ for all x. Hence, B is positive recurrent for
{X(t)} too which implies positive recurrence of the diffusion process due to
the continuity of its paths.

Vice versa, let {X(t)} be positive recurrent. Then, for any two fixed distinct
states x and y, the stopping time

τ := min{t : X(t) = x and X(s) = y for some s < t},

is finite on average given X(0) = x, Exτ < ∞. In addition, τ > 0. For that
reasons a measure

µ(B) := Ex

∫
τ

0
I{X(t) ∈ B}dt

=
∫

∞

0
Px{X(t) ∈ B, τ > t}dt

is non-zero and finite, µ(R) = Exτ ∈ (0,∞). Let us show it is invariant for
{X(t)}, that is, for any s > 0 and any bounded continuous function ϕ : R→R,∫

R
ϕ(z)µ(dz) =

∫
R
E{ϕ(X(s)) | X(0) = z}µ(dz).

Indeed, the difference between the right and left hand side integrals equals to∫
R
E{ϕ(X(s))−ϕ(z) | X(0) = z}µ(dz)

=
∫
R
E{ϕ(X(t + s))−ϕ(X(t)) | X(t) = z}

∫
∞

0
Px{X(t) ∈ dz, τ > t}dt

=
∫

∞

0
Ex{ϕ(X(t + s))−ϕ(X(t)), τ > t}dt,

because {τ > t}= {τ ≤ t} ∈ σ(Xu, u≤ t). Since∫
∞

0
Ex{ϕ(X(t + s)), τ > t}dt = Ex

∫
τ

0
ϕ(X(t + s))dt

= Ex

∫
τ+s

s
ϕ(X(t))dt,
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we get ∫
∞

0
Ex{ϕ(X(t + s))−ϕ(X(t)), τ > t}dt

= Ex

∫
τ+s

s
ϕ(X(t))dt−Ex

∫
τ

0
ϕ(X(t))dt

= Ex

∫
τ+s

τ

ϕ(X(t))dt−Ex

∫ s

0
ϕ(X(t))dt

= 0,

by the Markov property, due to X(τ) = x.

Consider a diffusion process X = {X(t)} on R with smooth drift µ(x) and
diffusion coefficient σ2(x) > 0. In the case of stationary diffusion process,
the invariant density function p(x) solves the stationary Kolmogorov forward
equation

0 =− d
dx

(µ(x)p(x))+
1
2

d2

dx2 (σ
2(x)p(x)),

which has the following solution:

p(x) =
c

σ2(x)
e
∫ x

0
2µ(y)
σ2(y)

dy
, c > 0. (1.22)

It follows that a diffusion process possesses a probabilistic invariant distribu-
tion—is positive recurrent—if and only if

the function
1

σ2(x)
e
∫ x

0
2µ(y)
σ2(y)

dy
is integrable at ±∞. (1.23)

It is also known that the half-line (−∞,0] is recurrent for a diffusion process
in the sense that Px{X(t)≤ 0 for some t}= 1 for all x > 0, if

the function e
−
∫ x

0
2µ(y)
σ2(y)

dy
is not integrable at ∞; (1.24)

see, e.g. [88, Ch. 15, Theorem 7.3] or [34, Section 4.1]; and the other way
around, it is transient in the sense that Px{X(t) > 0 for all t > 0} > 0 for all
x > 0, if

the function e
−
∫ x

0
2µ(y)
σ2(y)

dy
is integrable at ∞, (1.25)

see, e.g. [88, Ch. 15, Lemma 6.1].
As one can see, the classification of diffusion processes heavily relies on the

asymptotic behaviour of the ratio 2µ(x)/σ2(x) at infinity. In particular, if

µ(x) ∼ −µ/x and σ
2(x)→ σ

2 > 0 as x→ ∞ (1.26)
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for some µ ∈ R and σ2 > 0, then

• integrability at infinity in (1.23) holds for 2µ > σ2;
• non-integrability at infinity in (1.24) holds for 2µ >−σ2;
• integrability at infinity in (1.25) holds for 2µ <−σ2.

The knowledge of the invariant probability density function in closed form
(1.22) allows us to analyse its asymptotic behaviour under various regularity
conditions of the drift and diffusion coefficients at infinity.

Example 1.44. Let {X(t)} possess a probabilistic invariant measure and let
(1.26) hold with 2µ > σ2. If∫

∞

1

∣∣∣ µ(x)
σ2(x)

+
µ

σ2x

∣∣∣dx < ∞,

then (1.22) yields the following asymptotic equivalence, for some c1 > 0,

p(x)∼ c1

x2µ/σ2 as x→ ∞.

Example 1.45. Let {X(t)} possesses a probabilistic invariant measure. If µ(x)∼
−µ/xα and σ2(x)→ σ2 > 0 as x→ ∞ for some µ > 0 and α ∈ (0,1), in such
a way that ∫

∞

1

∣∣∣ µ(x)
σ2(x)

+
µ

σ2xα

∣∣∣dx < ∞,

then

p(x)∼ c2e−2µx1−α/σ2(1−α) as x→ ∞.

Let {X(t)} be a diffusion process satisfying the condition (1.25), so the neg-
ative half-line (−∞,0] is transient. A harmonic function h(x) for such a diffu-
sion process with transition kernel P(t,x,dy), that is, a solution to the equation(

σ2(x)
2

d2

dx2 +µ(x)
d
dx

)
h(x) = 0, (1.27)

is computable in a closed form as follows

h(x) =
∫

∞

x
e
−
∫ z

0
2µ(y)
σ2(y)

dy
dz, x ∈ R. (1.28)

It is a positive decreasing function. By Itô’s formula, the process {h(X(t))}
is a martingale, hence we can apply Doob’s h-transform which returns a new
stochastic transition kernel

P̂(t,x,dy) :=
h(y)
h(x)

P(t,x,dy).



32 Introduction

Let us consider a diffusion process X̂ = {X̂(t)} with this transition kernel. The
drift coefficient of X̂ equals

µ̂(x) = lim
t→0

1
t

∫
(y− x)

h(y)
h(x)

P(t,x,dy)

= lim
t→0

1
t

∫
(y− x)

(
1+

h′(x)
h(x)

(y− x)+O((y− x)2)
)

P(t,x,dy)

= µ(x)+
h′(x)
h(x)

σ
2(x), (1.29)

and since h′(x) < 0, µ̂(x) < µ(x). The diffusion coefficient does not change,
σ̂2(x) = σ2(x).

If, for some c̃ > 3,

2µ(x)
σ2(x)

≥ c̃
x

ultimately in x,

then under some mild additional condition,

−h′(x)≥ c2h(x)/x for some c2 > 0,

and the set (−∞,0] is positive recurrent for the transformed chain {X̂(t)}. In-
deed, in this case

h(x)≤
∫

∞

x
ec3−

∫ z
1

c̃
y dydz = c4x1−c̃,

hence the function

e
∫ x

0
2µ̂(y)
σ̂2(y)

dy
= e

∫ x
0

2µ(y)
σ2(y)

dy+
∫ x

0 2 h′(y)
h(y) dy

=
h2(x)
h2(0)

e
∫ x

0
2µ(y)
σ2(y)

dy
= −h2(x)

h′(x)
1

h2(0)

≤ xh(x)
c2

≤ c4xx1−c̃/c2

is integrable at infinity because c̃ > 3 and the condition (1.23) for positive
recurrence is met.

If, for some c̃ ∈ (1,3] and an absolutely integrable at infinity function p(x),

2µ(x)
σ2(x)

=
c̃
x
+ p(x),

then the diffusion process {X(t)} is transient by the criterion (1.25) and the
transformed process {X̂(t)} is null recurrent because in this case

h′(x) ∼ −ec5−
∫ x

1
c̃
y dy =−ec5x−c̃ and h(x) = −

∫
∞

x
h′(z)dz ∼ c6x1−c̃,
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so, the function

e
∫ x

0
2µ̂(y)
σ̂2(y)

dy
=−h2(x)

h′(x)
∼ c7x2−c̃

is not integrable at infinity because c̃ ∈ (1,3] and hence {X̂(t)} is not positive
recurrent by (1.23) but is still recurrent by (1.24) because the function

e
−
∫ x

0
2µ̂(y)
σ̂2(y)

dy
=− h′(x)

h2(x)
∼ xc̃−2/c7

is not integrable at infinity too.
The other way around, let us consider a recurrent diffusion process {X(t)},

when τ = τ(−∞,0] = min{t ≥ 0 : X(t)≤ 0} is finite with probability 1. Consider
the process Y (t) := X(t ∧ τ) which is the original process stopped at time of
leaving the positive half line. Its harmonic function solves (1.27) with h(0)= 1,

h(x) = 1+
∫ x

0
e
−
∫ z

0
2µ(y)
σ2(y)

dy
dz, x≥ 0. (1.30)

It is an increasing function tending to infinity as x→ ∞, due to the recurrence
condition (1.24). By Itô’s formula, the process {h(Y (t))} is a martingale, hence
we can apply Doob’s h-transform which returns a new stochastic transition
kernel

P̂Y (t,x,dy) :=
h(y)
h(x)

PY (t,x,dy).

Let us consider a diffusion process {Ŷ (t)} with this transition kernel. The drift
coefficient of {Ŷ (t)} is calculated in (1.29). Since the function h(x) increases,
µ̂(x) > µ(x). The increase of the drift is so strong that the process {Ŷ (t)} is
transient. Indeed, the function

e
−
∫ x

0
2µ̂(y)
σ̂2(y)

dy
= e
−
∫ x

0
2µ(y)
σ2(y)

dy−
∫ x

0 2 h′(y)
h(y) dy

=
1

h2(x)
e
−
∫ x

0
2µ(y)
σ2(y)

dy

=
h′(x)
h2(x)

=
( −1

h(x)

)′
is integrable at infinity because h(x)→ ∞ and, therefore, the condition (1.25)
for transience is met, ∫

∞

z
e
−
∫ x

0
2µ̂(y)
σ̂2(y)

dy
dx =

1
h(z)

< ∞.

We follow the idea of these calculations related to harmonic functions and
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change of measure for diffusion processes in our tail analysis of invariant mea-
sures of Markov chains in Chapters 8 and 9.

1.5.2 Green function for transient diffusion

Let {X(t)} be a transient diffusion on R (or R+) with the following generator

A = µ(x)
d
dx

+
σ2(x)

2
d2

dx2 .

We consider a regular diffusion, in the sense of properties (i)-(iii) of [135,
Chapter VII.3]. For the transience it is sufficient to assume that the following
function

U(x) :=
∫

∞

x
exp
{
−
∫ v

0

2µ(y)
σ2(y)

dy
}

dv (1.31)

is finite for all x, see (1.25); this function solves the homogeneous equation

AU = 0. (1.32)

In this case X(t)→∞ a.s. and we are interested in the continuous time analogue
of the renewal (Green) function,

Hy(x,x+h] :=
∫

∞

0
Py{X(t) ∈ (x,x+h]}dt, h > 0.

By Proposition 1.6 in Revuz and Yor [135, Ch. VII.1], the process

f (X(t))− f (X(0))−
∫ t

0
A f (X(s))ds

is a local martingale for a wide class of functions f . This suggests the following
idea of computation of the renewal measure of X(t). Fix x and h. Suppose we
can find a bounded function f (z) = fh,x(z) such that f (z)→ 0 as z→ ∞ and

A f (z) =−I{z ∈ (x,x+h]}. (1.33)

Then the optional stopping theorem and a.s. convergence X(t)→ ∞ as t → ∞

give us an equality

f (y) = Ey f (X(0)) = Ey

[∫
∞

0
I{X(t) ∈ (x,x+h]}dt

]
= Hy(x,x+h],

which allows us to analyse Hy.
So, we need to solve the ordinary differential equation (1.33). To this end,

consider

m(x) :=
∫ x

0

2dv
−U ′(v)σ2(v)

=
∫ x

0

2
σ2(v)

exp
{∫ v

0

2µ(y)
σ2(y)

dy
}

dv
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and then

Gx(z) :=

{
U(z)m(z)+

∫ x
z U(v)m(dv), z≤ x,

U(z)m(x), z > x.

We have

d
dz

Gx(z) =

{
U ′(z)m(z), z≤ x,

U ′(z)m(x), z > x,

and

d2

dz2 Gx(z) =

{
U ′′(z)m(z)−2/σ2(z), z≤ x,

U ′′(z)m(x), z > x,

where we consider the left second derivative at z = x, which together with
(1.32) implies that

AGx(z) =

{
−1, z≤ x,

0, z > x,

and hence the function

f (z) = Gh,x(z) := Gx+h(z)−Gx(z) (1.34)

solves (1.33).
Alternatively, one can notice that U(x) is the scale function and m(x) corre-

sponds to the speed measure and that (see [135, Chapter VII, Theorem 3.12])

AGx(z) =
d

dm(z)

(
dGx(z)
−dU(z)

)
.

Thus, if follows from (1.34) that for y < x,

Hy(x,x+h] = f (y) =
∫ x+h

x
U(v)m(dv) =

∫ x+h

x

2U(v)dv
−U ′(v)σ2(v)

.

More formally one can obtain the last equality from Corollary 3.8 and Exercise
3.20 in [135, Ch. VII.3].

If the function W (v) :=U(v)/U ′(v)σ2(v) is long-tailed at infinity, see Def-
inition 1.26, then we get the following local renewal theorem for X(t) starting
at y,

Hy(x,x+h] ∼ 2U(x)
−U ′(x)σ2(x)

h as x→ ∞.

Assume that

2µ(x)/σ
2(x)∼ r(x) as x→ ∞, (1.35)

for some differentiable function r(x) such that the quotient r′(x)/r2(x) has a
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limit at infinity. Hence, we can apply L’Hôpital’s rule and the equality U ′′ =
−rU ′ to obtain

lim
x→∞

U(x)
−U ′(x)/r(x)

= lim
x→∞

U ′(x)
−U ′′(x)/r(x)+U ′(x)r′(x)/r2(x)

=
1

1+ limx→∞ r′(x)/r2(x)
.

Therefore, for any fixed h > 0,

Hy(x,x+h]∼ 2
σ2(x)r(x)

1
1+ limy→∞ r′(y)/r2(y)

h as x→ ∞.

Example 1.46. If µ(x) ∼ µ/x and σ2(x)→ σ2 > 0 as x→ ∞ with 2µ > σ2,
then (1.35) is satisfied with r(x) = 2µ/σ2x, r′(x)/r2(x)→−σ2/2µ , and we
get

Hy(x,x+h]∼ 2h
2µ−σ2 x as x→ ∞.

Example 1.47. If µ(x) ∼ µ/xα , µ > 0, α ∈ (0,1), and σ2(x)→ σ2 > 0 as
x→ ∞, then (1.35) is satisfied with r(x) = 2µ/σ2xα , r′(x)/r2(x)→ 0, and we
get

Hy(x,x+h]∼ h
µ

xα ∼ h
µ(x)

as x→ ∞.

Note that this asymptotic behaviour of the renewal function does not depend
on the diffusion coefficient, as if it was a process with constant positive drift.

1.5.3 Bessel processes

A Bessel process is an important example of diffusion processes with asymp-
totically zero drift whose various probabilistic characteristics can be calculated
in closed form, which provides some intuition for what can be expected for
Markov chains. The simplest version of a Bessel process is defined as the Eu-
clidean norm ‖B(d)(t)‖ of a d-dimensional Brownian motion B(d)(t) and solves
a stochastic differential equation

dX(t) = dY (t)+
d−1

2
dt

X(t)
= dY (t)+

2ν +1
2

dt
X(t)

, (1.36)

where the process Y (t) is a one-dimensional Brownian motion. The parameter
ν = (d − 2)/2 is called the index of X . By the same stochastic differential
equation we define a Bessel process with an arbitrary index ν ∈ R. A Bessel
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process with a non-integer dimension naturally appears as the norm of a multi-
dimensional Brownian motion in a cone and the dimension is determined by
the cone geometry, see Corollary 3 in [54] and its proof.

In other words, X is a diffusion with drift (2ν +1)/2x and diffusion coeffi-
cient 1. The intrinsic property of a Bessel process is that its drift is singular at
the origin which makes it impossible to apply the results of the last subsection.

The drift of the squared Bessel process X2(t) at any state equals 2ν + 2
which gives rise to the following classification, see e.g. [21, Appendix 1.21].

• If ν > 0 then the process {X(t)} is transient and there is a unique strong
solution to the equation (1.36). The case of index ν = 0 corresponds to the

process
√

B2
1 +B2

2 which is null recurrent but the origin is never visited,
hence there is again a unique strong solution to the equation (1.36).

• If −1 ≤ ν < 0 then the hitting time of the origin from any state x > 0 is
finite with probability 1 and has infinite mean. In the case −1 < ν < 0,
the origin is a repelling (instantaneously reflecting) state for X , so there is
a weak solution to the equation (1.36) which is not unique. In the case of
index −1 the origin is an absorbing state.

• If ν < −1 then the hitting time of the origin from any state x > 0 has finite
mean x2/|2ν +2| and the origin is an absorbing state for {X(t)}, so there is
no weak solution to the equation (1.36).

In the first case where ν ≥ 0 the transition density of {X(t)} is well known,
see e.g. [21, Appendix 1.21], and given by the equality

pt(x,y) =
1
t

yν+1

xν
e−(x

2+y2)/2t Iν(xy/t), (1.37)

pt(0,y) =
y2ν+1

2ν tν+1Γ(ν +1)
e−y2/2t ,

where Iν(z) is a modified Bessel function. The same formula is still valid for
ν ∈ (−1,0) if we reflect the process {X(t)} each time it reaches the origin.

In the positive recurrent case ν < −1 or in the null recurrent case ν ∈
(−1,0), if we kill the process at 0, the transition probability density function
of {X(t)} equals

pt(x,y) =
1
t

yν+1

xν
e−(x

2+y2)/2t I|ν |(xy/t).

If ν ≥ 0 or ν ∈ (−1,0) and the process {X(t)} is reflected each time it
reaches the origin, the probability density function of X(t) given X(0) = 0
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equals

pt(x) = pt(0,x) =
1

2ν Γ(ν +1)
x2ν+1

tν+1 e−x2/2t . (1.38)

In both cases the probability density function of X2(t)/t equals

1
2ν+1Γ(ν +1)

xν e−x/2,

which is a Gamma density function with mean 2(ν +1) and variance 4(ν +1).
In the transient case ν > 0 we can write down the Green function h0 of

{X(t)} in closed form by integration of (1.38):

h0(y) =
∫

∞

0
pt(0,y)dt =

y2ν+1

2ν Γ(ν +1)

∫
∞

0

1
tν+1 e−y2/2tdt =

y
ν
,

which indicates what asymptotic behaviour of the renewal measure we can ex-
pect for transient Markov chains with drift of order c/x at infinity, see Section
4.8 for results in this direction.

It follows from the representation of the α-potential density Gα of X in [21,
Appendix 1.21] that, for all x≥ 0,

hx(y) =
∫

∞

0
pt(x,y)dt =

1
ν

y2ν+1

max(x,y)2ν
,

which implies that the first hitting time τ[0,y] for the compact set [0,y] is finite
with probability

Px{τ[0,y] < ∞}= Px{X(t) = y for some t}

=
hx(y)
hy(y)

=
(y

x

)2ν

for x > y; (1.39)

such kind of results for transient Markov chains are discussed in Chapter 3.
For any ν , the function h(x) = x−2ν is harmonic for {X(t)} as it solves the

equation (1
2

d2

dx2 +
2ν +1

2x
d
dx

)
h(x) = 0.

By Itô’s formula, the process {h(X(t))} is a local martingale. Let y > 0. If
ν > 0, then h(x) is bounded on [y,∞) and if ν < 0 then it is bounded on [0,y]. So
in either case we can apply the optional stopping time theorem for martingales
and to conclude that, for ν > 0 and x > y,

h(x) = h(y)Px{X(t) = y for some t}+h(∞)Px{X(t) 6= y for all t}
= h(y)Px{τ[0,y] < ∞},
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which agrees with (1.39).
If ν ≤ −1 which corresponds to the origin is an absorbing state, then, for

x < y,

h(x) = h(y)Px{X(t) = y for some t}+h(0)Px{X(t) 6= y for all t}

= h(y)Px

{
sup
t≥0

X(t)≥ y
}
,

which implies that

Px

{
sup
t≥0

X(t)≥ y
}
=

h(x)
h(y)

=
(x

y

)2|ν |
.

For recurrent Markov chains, the tail distribution of the trajectory supremum
until the time of the first entry to a neighborhood of the origin is described in
Theorem 8.26.

In conclusion, let us establish a link to Markov chains by sampling the pro-
cess {X(t)} at integer time epochs and getting a Markov chain Xn := X(n) in
this way; in null recurrent case we assume reflecting boundary condition. This
Markov chain is of Lamperti’s type with the mean drift m1(x) and the second
moment of jumps m2(x) satisfying the relations

m1(x) ∼
ν +1/2

x
=:

c
x

and m2(x) → 1 as x→ ∞. (1.40)

Indeed, it follows from (1.37) that

ExX(1) =
∫

∞

0

yν+2

xν
e−(x

2+y2)/2Iν(xy)dy

=
e−x2/2

xν

∫
∞

0
yν+2e−y2/2Iν(xy)dy

=
e−x2/2

xν

Γ(ν +3/2)
x
2 Γ(ν +1)

ex2/42ν/2M−ν/2−1,ν/2(x
2/2),

where M·(·) is the Whittaker function, see [74, Formula 6.643(2)]. As x→ ∞,

M−ν/2−1,ν/2(x
2/2) =

Γ(ν +1)
Γ(ν +3/2)

ex2/4(x2/2)ν/2+1
(

1+
2ν +1

2x2 +O(1/x4)
)
,

which gives

ExX(1) = x
(

1+
2ν +1

2x2 +O(1/x4)
)

as x→ ∞,

which in its turn yields the first relation in (1.40). In a similar way we conclude
the asymptotic behaviour of higher moments of jumps, for any fixed j ≥ 1,

ExX2 j(1) = x2 j +2 j(ν + j)x2 j−2 +O(x2 j−4) as x→ ∞. (1.41)
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Choosing here j = 1 and using the formula for the fist moment of X(1) one
gets the second convergence in (1.40).

If the Bessel process {X(t)} is transient or null recurrent, that is, if ν >−1,
then it follows from the distribution property of the Bessel process {X(t)}
discussed above that, for all n, X2

n /n has a Γ-distribution with mean 2(ν + 1)
and variance 4(ν +1). In Sections 4.5 and 4.6 we discuss convergence of X2

n /n
to a Γ-distribution for a general transient or null-recurrent Markov chain with
asymptotic drift of order c/x.

1.6 General approach to Markov chains with asymptotically
zero drift and plan of the book

One of the most popular examples of Markov chains with asymptotically zero
drift is a driftless random walk conditioned to stay positive. This process is
an h-transform of a random walk killed at leaving R+. If the second moment
of the original random walk is finite then the transformed process has drift of
order 1/x, that is, xm1(x)→ c1 > 0. But the second moment of the transformed
process is finite if and only if the third moment of the original walk is so, see
calculations in Section 11.1. Therefore, Lamperti’s criterion for transience is
not always applicable to this chain.

This observation motivated us to look for appropriate conditions for tran-
sience, null-recurrence and positive recurrence in terms of truncated moments
and tail probabilities of jumps ξ (x). For any s > 0 we denote s-truncation of
the kth moment of jump at state x by

m[s]
k (x) := E{ξ k(x); |ξ (x)| ≤ s}.

Another reason for considering truncated moments comes from the case where
the drift function decays slower than 1/x, say as 1/xβ with β between 0 and 1.
In that case it is not practical to assume boundedness or even existence of full
second moment of jumps whereas an appropriate restriction on the growth of
a truncated second moment is rational, see e.g. Section 5.1.

In Chapter 2 we introduce a classification of Markov chains with asymptoti-
cally zero drift, which relies on relations between m[s(x)]

1 and m[s(x)]
2 . Additional

assumptions are expressed in terms of truncated moments of higher orders
and tail probabilities of jumps. Another, more important, contrast to previous
results on recurrence/transience is the fact that we do not use concrete Lya-
punov test functions (like x2, loga x or x2 logx log logx). Instead, we construct
an abstract Lyapunov function which is motivated by the harmonic function of
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diffusion process with drift m1(x) and diffusion coefficient m2(x), see Section
1.5 above.

Asymptotic behaviour of transient Markov chains and tail analysis of re-
current ones is discussed in Chapters 3–6 and 8–9 respectively. In Chapter 7,
motivated by exponential change of measure approach suggested by Cramér in
1920’s for study of large deviations of sums of independent random variables
in the context of risk processes, we suggest the following general strategy for
study of positive recurrent Markov chains with asymptotically zero drift:

• Firstly, apply an appropriate Doob’s h-transform to {Xn} killed at time of
entry to the half-line (−∞, x̂] for some x̂ ∈ R in order to change the sign
of the drift from negative to positive one so that we get a transition kernel
that generates a transient embedded Markov chain; with necessity an appro-
priate change of measure is generated by a subexponential function, either
regularly varying or Weibullian-type at infinity;

• Secondly, apply limit results to a transient Markov chain obtained;
• Thirdly, apply the inverse change of measure which makes it possible to

identify tail and local asymptotics of both stationary and pre-stationary dis-
tributions of the original positive recurrent Markov chain.

In Chapter 10 we show that our approach also works for Markov chains with
asymptotically negative drift bounded away from zero. We consider asymptoti-
cally homogeneous in space Markov chains, that is, Markov chains with jumps
satisfying ξ (x)⇒ ξ as x→ ∞. This means that far away from the origin one
can approximate {Xn} by a random walk which makes it natural to apply an
exponential change of measure similarly to how it is done for sums of indepen-
dent random variables. We study the tail asymptotic behaviour of the stationary
and pre-stationary distributions of {Xn} in the case where the limiting random
variable ξ has negative mean and satisfies the Cramér condition. It turns out
that the tail behaviour of these distributions depends on the rate of convergence
of ξ (x) to ξ .

In the last chapter we consider some important applications of our results.
Processes with asymptotically zero drift naturally appear in various stochastic
models like random billiards, see Menshikov et al. [125], and random poly-
mers, see Alexander [5], Alexander and Zygouras [6], De Coninck et al. [41]).

Such chains appear when we study critical and near-critical branching pro-
cesses. In critical branching processes one typically observes a linearly grow-
ing second moment of jumps, but considering the square root of the process
one gets bounded second moments and decreasing to zero drift. Then we can
apply our theorems to this transformation. As a result we get limit theorems for
population size-dependent processes with migration of particles. To the best of
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our knowledge, there are no papers in the literature, where a combination of
size dependence and migration has been considered.

We have also found out that processes with asymptotically zero drift can
be used in the study of risk processes with reserve-dependent premium rate.
More precisely, we have derived upper and lower bounds for ruin probabilities
in the case when the premium rate approaches from above—as the risk reserve
growths—the critical value for the model with constant rate.

Besides these two main examples we consider also random walk conditioned
to stay positive and reflected random walk.



2
Lyapunov functions and classification of

Markov chains

As one can see from results for diffusion processes in Section 1.5, their classi-
fication heavily relies on the asymptotic behaviour of the ratio 2m1(x)/m2(x)
at infinity. Roughly speaking,

• If 2m1(x)/m2(x)≤−(1+ ε)/x for all sufficiently large x, then some neigh-
borhood of zero is positive recurrent;

• If 2m1(x)/m2(x) ≤ (1− ε)/x for all sufficiently large x, then some neigh-
borhood of zero is recurrent;

• If 2m1(x)/m2(x) ≥ (1+ ε)/x for all sufficiently large x, then any compact
set is transient.

For diffusion processes, the necessary and sufficient conditions for positive
recurrence/recurrence/transience involving the ratio 2m1(x)/m2(x) are avail-
able, see (1.23)–(1.25). For Markov chains, similar necessary and sufficient
conditions in terms of the ratio 2m1(x)/m2(x) are not available as it is for dif-
fusion processes.

In this chapter we introduce criteria for transience, recurrence and positive
recurrence of discrete time Markov chains by constructing Lyapunov functions
which depend on the ratio of truncated moments of the chain which are mo-
tivated by functions (1.23)–(1.25). Let us recall standard sufficient conditions
for positive recurrence, recurrence, and transience in terms of test functions.

Theorem 2.1 ([126, Theorem 11.0.1]). Let L(x) be a non-negative test func-
tion such that, for some x∗ and ε > 0,

E{L(X1)−L(x) | X0 = x} ≤ −ε for all x > x∗, (2.1)

and let

E{L(X1) | X0 = x}< ∞ for all x≤ x∗. (2.2)

43
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Then the set (−∞,x∗] is positive recurrent.

Theorem 2.2 ([126, Theorem 8.0.2]). Let L(x) be a non-negative unbounded
at infinity test function such that, for some x∗,

E{L(X1)−L(x) | X0 = x} ≤ 0 for all x > x∗. (2.3)

Then the set (−∞,x∗] is recurrent.

Theorem 2.3 ([126, Theorem 8.0.2]). Let L(x) be a non-negative bounded test
function such that, for some x∗,

E{L(X1)−L(x) | X0 = x} ≤ 0 for all x > x∗. (2.4)

Then the set (−∞,x∗] is transient.

Here we refer to the book by Meyn and Tweedie [126], for some bibliogra-
phy notes see comments to this chapter.

2.1 Reference drift function

In this chapter, r(x) > 0 is a reference drift function. It is always assumed to
be a decreasing continuous function which is non-integrable at infinity, that is,
for x≥ 0,

R(x) :=
∫ x

0
r(y)dy→ ∞ as x→ ∞; (2.5)

hereinafter we define R(x) = 0 for x < 0. The function R(x) is concave on
the positive half-line because r(x) is assumed decreasing. Therefore, for all
h >−xr(x),

R(x+h/r(x))≤ R(x)+R′(x)h/r(x)

= R(x)+h. (2.6)

If, in addition, r(x) is differentiable and, for some c > 0,

0 ≥ r′(x)≥−cr2(x) for all x≥ 0, (2.7)

then, for all x≥ 0 and h > 0,

1
r(x)
− 1

r(x+h/r(x))
=
∫ x+h/r(x)

x

r′(y)
r2(y)

dy

≥−c
∫ x+h/r(x)

x
dy = −c

h
r(x)

.
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Therefore,

r(x+h/r(x))≥ r(x)
1+ ch

, h > 0. (2.8)

Similarly, for h ∈ (0,1/c) and x such that x−h/r(x)≥ 0,

r(x−h/r(x))≤ r(x)
1− ch

. (2.9)

The lower bound (2.8) implies that, for all h > 0,

R(x+h/r(x)) = R(x)+
∫ x+h/r(x)

x
r(y)dy

≥ R(x)+
h

r(x)
r(x+h/r(x))

≥ R(x)+
h

1+ ch
. (2.10)

Together with the upper bound (2.6) it gives a two-sided bound

R(x)+
h

1+ ch
≤ R(x+h/r(x)) ≤ R(x)+h for all h > 0. (2.11)

Similarly,

R(x)− h
1− ch

≤ R(x−h/r(x)) ≤ R(x)−h, (2.12)

where the first inequality is valid for h ∈ (0,1/c), while the second one for
h ∈ (0,xr(x)).

So, 1/r(x) is a natural x-step responsible for the constant increase of the
function R(x). Moreover, (2.11) and (2.12) imply that, for any increasing func-
tion s(x) of order o(1/r(x)),

R(x± s(x)) = R(x)+o(1) as x→ ∞. (2.13)

Notice also that (2.8) and (2.9) yield a similar relation for r(x),

r(x± s(x))∼ r(x) as x→ ∞. (2.14)

2.2 Positive recurrence

2.2.1 Positive recurrence criteria motivated by diffusion processes

In this section we are interested in sufficient conditions under which the set
(−∞,x∗] is positive recurrent for some x∗, that is, Exτ(−∞,x∗] < ∞ for all x≤ x∗.
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Conditions below are formulated in terms of truncated moments of jumps,

m[s]
k (x) := E{ξ k(x); |ξ (x)| ≤ s}.

Let x0 be such that

2m[x]
1 (x)

m[x]
2 (x)

≤−r(x) for all x > x0. (2.15)

For r(x) decreasing not too fast—roughly speaking, if r(x)> 1/x—this means
that the drift towards the origin dominates the diffusion and the corresponding
Markov chain X is positive recurrent.

In the theorem below it is shown that—similarly to diffusion processes—the
chain {Xn} is positive recurrent provided

the function
1

b(x)
e−R(x) =

1
b(x)

e−
∫ x

0 r(y)dy is integrable, (2.16)

where b(x)> 0 is a differentiable function such that

liminf
x→∞

m[x]
2 (x)
b(x)

> 0. (2.17)

For Markov chains, we also need to impose some technical conditions on r(x)
and on the function

W (x) := eR(x)
∫

∞

x

1
b(y)

e−R(y)dy,

which is a well defined function due to (2.16).
In the next theorem sufficient conditions are given that guarantee that the

test function

L(x) :=
∫ x

0
W (y)dy, x > 0, (2.18)

and L(x) = 0 on R−, is appropriate for application of Theorem 2.1. In par-
ticular, it agrees with the case r(x) ≡ ε > 0 where the most natural choice of
the test function is a linear one; and with the case r(x) = c/x where the most
effective test function is x2.

Theorem 2.4. Let the drift condition (2.15) hold with some decreasing func-
tion r(x)> 0 such that the conditions (2.16) and (2.17) are satisfied and

E{ξ (x)W (ξ (x)); ξ (x)> 0}< ∞ for all x. (2.19)

Let the following integrability conditions on positive jumps hold,

E{ξ 3(x); ξ (x) ∈ (0,x]} = o(x2/W (x)), (2.20)

E{ξ (x)W (ξ (x)); ξ (x)> x}→ 0 as x→ ∞. (2.21)
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Assume that the function W (x) is increasing and convex, and satisfies the fol-
lowing conditions, for some constants c1, c2,

W (2x)≤ c1W (x) for all x > 0, (2.22)

|W ′(x+ y)−W ′(x)| ≤ c2
W (x)

x2 |y| for all x > 0, y ∈ [−x/2,x]. (2.23)

Then there exists an x∗ such that the set (−∞,x∗] is positive recurrent.

The conditions (2.20) and (2.21) are fulfilled if, for example, the function
x2/W (x) increases and

the family
{

ξ
+(x)W (ξ+(x)), x≥ 0

}
is uniformly integrable; (2.24)

justification follows from Lemmas 2.24 and 2.26.

Corollary 2.5. Let, for some ε > 0 and x0 > 0,

2m[x]
1 (x)

m[x]
2 (x)

≤−1+ ε

x
for all x > x0,

and let E{ξ 2(x);ξ (x)> 0}< ∞ for all x. Let the truncated second moments of
jumps E{ξ 2(x); |ξ (x)| ≤ x} be bounded away from zero,

E{ξ 3(x), ξ (x) ∈ [0,x]} = o(x), (2.25)

E{ξ 2(x), ξ (x)> x}→ 0 as x→ ∞. (2.26)

Then there exists an x∗ such that the set (−∞,x∗] is positive recurrent.

Notice that both (2.25) and (2.26) hold provided the family of random vari-
ables {(ξ+(x))2, x > 0} is uniformly integrable.

Proof of Corollary 2.5. It follows from Theorem 2.4 if we take r(x) = 1+ε

1+x
for x > 0 and b(x) = 1, then

R(x) = (1+ ε) log(1+ x),

e−R(x) = 1/(1+ x)1+ε ,

W (x) = (1+ x)/ε.

This leads to the test function L(x) = ((1+ x)2− 1)/2ε for x > 0. Notice in
passing that then L(x) = x2I{x > 0} is also an appropriate test function.

Notice that the last corollary relates to a quadratic Lyapunov function and its
assumptions on jumps are too restrictive compared to the classical Lamperti’s
criterion that guarantees positive recurrence of the set (−∞,x0] under the con-
dition 2xm1(x)+m2(x)≤−ε for x > x0 only. On the other hand, Corollary 2.5
imposes no conditions on the left tail distribution of ξ (x) below the level −x.
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Let log(m) x denote the mth iteration of the logarithm of x,

log(m) x = log log(m−1) x.

Corollary 2.6. Let, for some m ∈ N and ε > 0,

2m[x]
1 (x)

m[x]
2 (x)

≤−1
x
− 1

x logx
− . . .− 1

x logx · . . . · log(m−1) x
− 1+ ε

x logx · . . . · log(m) x

for all sufficiently large x, and let

E{ξ 2(x) logξ (x) · . . . · log(m) ξ (x); log(m) ξ (x)> 0}< ∞ for all x.

Let the truncated second moment E{ξ 2(x); |ξ (x)| ≤ x} be bounded away from
zero, let

E{ξ (x)3; ξ (x) ∈ [0,x]}= o
( x

logx · . . . · log(m) x

)
, (2.27)

and let

E{ξ 2(x) logξ (x) · . . . · log(m) ξ (x); ξ (x)> x}→ 0. (2.28)

Then there exists an x∗ such that the set (−∞,x∗] is positive recurrent.

Notice that both (2.27) and (2.28) hold provided the family

{ξ 2(x) logξ (x) · . . . · log(m) ξ (x)I{log(m) ξ (x)> 0}, x > 0}

is uniformly integrable.

Proof of Corollary 2.6. Let x= e(m) be a solution to the equation log(m) x= 1.
Consider

r(x) :=
(1

y
+

1
y logy

+ . . .

+
1

y logy · . . . · log(m−1) y
+

1+ ε

y logy · . . . · log(m) y

)∣∣∣
y=e(m)+x

and b(x) = 1; then

R(x) =
(

logy+ log logy+ . . .+ log(m) y+(1+ ε) log(m+1) y
)∣∣∣

y=e(m)+x

−
(
e(m−1)+ e(m−2)+ . . .+1

)
,

e−R(x) =
e(m)e(m−1) · . . . ·1

y · logy · . . . · log(m−1) y · log1+ε

(m)
y

∣∣∣
y=e(m)+x

,
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W (x) =
1
ε

y logy · . . . · log(m−1) y · log(m) y
∣∣∣
y=e(m)+x

,

L(x)∼ 1
2ε

x2 logx · . . . · log(m−1) x · log(m) x.

The next corollary deals with the case when the second moment of jumps is
vanishing at infinity.

Corollary 2.7. Let, for some α > 0, c1, c2 > 0, and x0 > 0,

m[x]
1 (x)≤−c1/x1+α for all x > x0,

m[x]
2 (x)∼ c2/xα as x→ ∞,

E{ξ 2+α(x); ξ (x)> 0}< ∞ for all x.

Let

E{ξ 3(x); ξ (x) ∈ [0,x]} = o(x1−α), (2.29)

E{ξ 2+α(x); ξ (x)> x}→ 0 as x→ ∞, (2.30)

If 2c1/c2 > 1+α , then there exists an x∗ such that the set (−∞,x∗] is positive
recurrent.

In the case α ∈ (0,1), both (2.29) and (2.30) hold provided the family of
random variables {(ξ+(x))2+α , x > 0} is uniformly integrable.

Proof of Corollary 2.7. It follows if we take c ∈ (1+α,2c1/c2), r(x) = c
1+x

for x > 0 and b(x) = 1/(1+x)α , then R(x) = c log(1+x), e−R(x) = 1/(1+x)c,

W (x) = (1+ x)c
∫

∞

x

(1+ y)α

(1+ y)c dy =
(1+ x)α+1

α− c+1
,

and

L(x) =
(1+ x)2+α −1

(α− c+1)(2+α)
.

The advantage of Theorem 2.4 is that it covers all functions considered in
the corollaries above in a unified way; the main condition (2.16) is motivated
by the existence condition (1.23) for stationary density of a diffusion process.
But at the same time this link to diffusion processes results in necessity of
finite second moments which is natural in Corollaries 2.5 and 2.6 while there
are other examples where the existence of second moments of jumps is clearly
excessive. In the next subsection we discuss amended moment conditions for
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drifts like −1/xα , 0 < α < 1, that may be characterised by the convergence
xm1(x)→ ∞ as x→ ∞.

Proof of Theorem 2.4. We consider the test function (2.18) for which we need
to show (2.1) and (2.2). Since W (x) is assumed increasing,

L(x)≤ xW (x) for all x > 0, (2.31)

hence (2.2) follows from the condition (2.19), and it remains to show (2.1). By
the construction, L′(x) =W (x) and

L′′(x) =W ′(x) = r(x)W (x)−1/b(x). (2.32)

Let us prove that the mean drift of L(x) is negative and bounded away from
zero for all sufficiently large x. First we analyse Taylor’s expansion for the
function L, with the Lagrange form of the remainder, here x, x+ y > 0:

L(x+ y)−L(x) = L′(x)y+L′′(x+θy)y2/2

=W (x)y+W ′(x+θy)y2/2, (2.33)

where 0 ≤ θ = θ(x,y) ≤ 1. Since W (x) is assumed convex, W ′ is increasing,
hence, for all y ∈ [−x,0],

L(x+ y)−L(x)≤W (x)y+W ′(x)y2/2

=W (x)y+ r(x)W (x)
y2

2
− y2

2b(x)
, (2.34)

as follows from (2.32). Next, by the condition (2.23), for y ∈ [0,x],

W ′(x+θy)≤W ′(x)+ c2
W (x)

x2 y. (2.35)

Substituting this into (2.33) we get, for all y ∈ [0,x],

L(x+ y)−L(x)≤W (x)y+ r(x)W (x)
y2

2
− y2

2b(x)
+ c3

W (x)
x2 y3. (2.36)

Using the fact that L is increasing and the inequalities (2.31) and (2.22), we
deduce that

L(x+ y) ≤ L(2y)≤ 2yW (2y) ≤ 2c1yW (y) for all y > x. (2.37)

Now we are ready to bound the mean drift of {L(Xn)}. We start with the
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following upper bound

EL(x+ξ (x))−L(x)≤ E{L(x+ξ (x))−L(x); ξ (x)≥−x}
≤ E{L(x+ξ (x))−L(x); ξ (x) ∈ [−x,0]}

+E{L(x+ξ (x))−L(x); ξ (x) ∈ [0,x]}
+E{L(x+ξ (x)); ξ (x)> x}. (2.38)

It follows from (2.34) that

E{L(x+ξ (x))−L(x); ξ (x) ∈ [−x,0]}

≤W (x)E{ξ (x); ξ (x) ∈ [−x,0]}+ 1
2

r(x)W (x)E{ξ 2(x); ξ (x) ∈ [−x,0]}

− 1
2b(x)

E{ξ 2(x); ξ (x) ∈ [−x,0]}. (2.39)

It follows from (2.36) that

E{L(x+ξ (x))−L(x); ξ (x) ∈ [0,x]}

≤W (x)E{ξ (x); ξ (x) ∈ [0,x]}+ 1
2

r(x)W (x)E{ξ 2(x); ξ (x) ∈ [0,x]}

− 1
2b(x)

E{ξ 2(x); ξ (x) ∈ [0,x]}+ c3
W (x)

x2 E{ξ 3(x); ξ (x) ∈ [0,x]}

≤W (x)E{ξ (x); ξ (x) ∈ [0,x]}+ 1
2

r(x)W (x)E{ξ 2(x); ξ (x) ∈ [0,x]}

− 1
2b(x)

E{ξ 2(x); ξ (x) ∈ [0,x]}+o(1) as x→ ∞, (2.40)

due to the condition (2.20). Finally, it follows from (2.37) by the condition
(2.21) that

E{L(x+ξ (x)); ξ (x)> x} ≤ 2c1E{ξ (x)W (ξ (x)); ξ (x)> x}
→ 0 as x→ ∞. (2.41)

Substituting the upper bounds (2.39)–(2.41) into (2.38) we deduce that

E{L(x+ξ (x))−L(x)}

≤W (x)E{ξ (x); |ξ (x)| ≤ x}+ 1
2

r(x)W (x)E{ξ 2(x); |ξ (x)| ≤ x}

− 1
2b(x)

E{ξ 2(x); |ξ (x)| ≤ x}+o(1)

=W (x)
m[x]

2 (x)
2

(2m[x]
1 (x)

m[x]
2 (x)

+ r(x)
)
− 1

2b(x)
m[x]

2 (x)+o(1)

≤− 1
2b(x)

m[x]
2 (x)+o(1) as x→ ∞,
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owing to (2.15). Then (2.17) implies (2.1) for all sufficiently large x and the
proof is complete.

2.2.2 Non-diffusive positive recurrence criteria in the case
xm1(x)→−∞

If the drift approaches zero value at rate slower than 1/x, say 1/xα with α ∈
(0,1), then it is possible to relax positive recurrence conditions inspired by
diffusion processes.

Let, for some decreasing function r(x) and x0 > 0,

m[x/2]
1 (x)≤−r(x) for all x≥ x0. (2.42)

Define

W (x) :=
∫ x

0
min
(

1,
1

yr(y)

)
dy, x > 0.

Let xr(x) be increasing to infinity, then W is concave and

W (x)≥ 1
r(x)

ultimately in x. (2.43)

Consider a test function L defined as L(x) = 0 for all x≤ 0 and

L(x) :=
∫ x

0
W (y)dy for x > 0.

Since the second moment of jumps is not assumed finite, there is no diffusion
motivated intuition behind the last test function.

Theorem 2.8. Let the drift condition (2.42) hold with some decreasing func-
tion r(x) > 0 such that xr(x) is increasing to infinity. Assume that the jumps
satisfy the following integrability conditions:

E{ξ (x)W (ξ (x)); ξ (x)> x/2}→ 0, (2.44)

E{ξ 2(x); |ξ (x)| ≤ x/2} = o(xr(x)) as x→ ∞. (2.45)

Let

E{ξ (x)W (ξ (x)); ξ (x)> 0}< ∞ for all x. (2.46)

Then there exists an x∗ such that the set (−∞,x∗] is positive recurrent.

Due to (2.43), the conditions (2.44) and (2.45) are fulfilled if, for example,

the family
{
|ξ (x)|W (|ξ (x)|), x≥ 0

}
is uniformly integrable; (2.47)

justification follows from Lemmas 2.24 and 2.26.
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Corollary 2.9. Let, for some α ∈ (0,1), ε > 0 and x0 > 0,

E{ξ (x); |ξ (x)| ≤ x/2} ≤ −ε/xα for all x > x0.

Let also, as x→ ∞,

E{ξ 1+α(x); ξ (x)> x/2}→ 0, (2.48)

E{ξ 2(x); |ξ (x)| ≤ x/2} = o(x1−α), (2.49)

and

E{ξ 1+α(x); ξ (x)> 0}< ∞ for all x. (2.50)

Then there exists an x∗ such that the set (−∞,x∗] is positive recurrent.

Notice that both (2.49) and (2.48) hold provided the family of random vari-
ables {|ξ (x)|1+α , x > 0} is uniformly integrable.

Proof of Corollary 2.9. It follows if we take r(x) = ε/(1+x)α for x > 0, then
W (x)∼ c1xα and L(x)∼ c2x1+α .

Proof of Theorem 2.8. By the construction, L′(x) =W (x) and

L′′(x) = W ′(x) = min
(

1,
1

xr(x)

)
> 0 is decreasing; (2.51)

in particular, W (x) is a concave function.
Since W is increasing, L(x)≤ xW (x) for x > 0, hence (2.2) follows from the

concavity of W and the condition (2.46), and it remains to show that the mean
drift of L(x) is negative and bounded away from zero for all sufficiently large
x. We start with the following upper bound

EL(x+ξ (x))−L(x) ≤ E{L(x+ξ (x))−L(x); ξ (x)≥−x/2}
≤ E{L(x+ξ (x))−L(x); |ξ (x)| ≤ x/2}

+E{L(x+ξ (x)); ξ (x)> x/2}
=: E1(x)+E2(x). (2.52)

Let us estimate the first term on the right hand side via Taylor’s expansion:

E1(x)

= L′(x)E{ξ (x); |ξ (x)| ≤ x/2}+ 1
2
E{L′′(x+θξ (x))ξ 2(x); |ξ (x)| ≤ x/2}

=W (x)E{ξ (x); |ξ (x)| ≤ x/2}+ 1
2
E{W ′(x+θξ (x))ξ 2(x); |ξ (x)| ≤ x/2},

where 0≤ θ = θ(x,ξ (x))≤ 1. Since W ′ decreases and

W ′(x/2) =
2

xr(x/2)
≤ 2

xr(x)
,
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we deduce

E1(x)≤W (x)E{ξ (x); |ξ (x)| ≤ x/2}+ 1
2

W ′(x/2)E{ξ 2(x); |ξ (x)| ≤ x/2}

≤W (x)E{ξ (x); |ξ (x)| ≤ x/2}+ 1
xr(x)

E{ξ 2(x); |ξ (x)| ≤ x/2}.

The condition (2.45) allows us to conclude that

E1(x)≤W (x)E{ξ (x); |ξ (x)| ≤ x/2}+o(1) as x→ ∞. (2.53)

In order to estimate the second expectation on the right hand side of (2.52)
first notice that, since the function min(1,1/yr(y)) is decreasing, we get

W (3x)≤ 3W (x),

and therefore

L(3x)≤ 9xW (x),

because L(x)≤ xW (x). Hence,

E2(x)≤ E{L(3ξ (x)); ξ (x)> x/2}
≤ 9E{ξ (x)W (ξ (x)); ξ (x)> x/2} → 0 as x→ ∞, (2.54)

owing to the condition (2.44). Substituting (2.53) and (2.54) into (2.52) we get

EL(x+ξ (x))−L(x)≤W (x)E{ξ (x); |ξ (x)| ≤ x/2}+o(1)

≤−W (x)r(x)+o(1) as x→ ∞,

by (2.42). The inequality (2.43) implies that the drift of {L(Xn)} is negative
and bounded away from zero for all sufficiently large x.

2.3 Non-positivity

In this section we are interested in conditions that provide a kind of non-
positivity of a Markov chain {Xn}, that is, conditions for existence of x∗ such
that Exτ(−∞,x∗] = ∞ for some x ≤ x∗. Below we show even stronger result that
Eyτ(−∞,x∗] = ∞ for all y > x∗.

As follows from the condition (1.23) for positive recurrence of a diffusion
process, the condition for non-positivity of a diffusion process just negates
(1.23), so it happens when

the function
1

m2(x)
e
∫ x

0
2m1(y)
m2(y)

dy
is not integrable at infinity. (2.55)



2.3 Non-positivity 55

One could expect that, in terms of test functions, the existence of a non-
negative function L such that, for some x∗ and ε > 0, E{L(X1)−L(X0) | X0 =

x}≥ ε for all x> x∗ would imply non-positivity of {Xn}; however just negation
of (2.1) does not imply that as follows from the following counterexample. Let
{Xn} be a Markov chain on Z+ with transition probabilities

p(x,y) :=
{

1/2 if y = 2(x+1),
1/2 if y = 0.

Then m1(x) = 1 whatever x, while this chain is geometrically ergodic, since
the returning time to zero is geometrically distributed with success probability
1/2. This simple counterexample of Doeblin type shows that to conclude non-
positivity we need to ensure some compactness conditions on the jumps, see
below.

Fix an increasing function s(x)≤ x/2. Let

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥−r(x) for all x > x0, (2.56)

for a decreasing function r(x)> 0. In the next theorem we show that the chain
{Xn} is not positive recurrent provided

the function e−R(x) = e−
∫ x

0 r(y)dy is not integrable at infinity, (2.57)

which is motivated by the condition (2.55) for non-positivity of diffusion pro-
cesses. It turns out to be very close to guarantee non-positivity of {Xn} but we
still need some additional technical conditions on r(x) and on the function

W (x) := eR(x)
∫ x

0
e−R(y)dy,

which grows as x at least. Proving non-positivity seems to be the hardest prob-
lem we consider in this chapter.

Theorem 2.10. Let the drift condition (2.56) hold with some differentiable
decreasing function r(x) = O(1/x) such that the condition (2.57) is satisfied.
Assume that the twice differentiable function W (x) is convex and satisfies the
conditions (2.22) and (2.23). Let negative jumps satisfy the following integra-
bility conditions:

E{|ξ (x)|3, ξ (x) ∈ [−s(x),0]}= o(x2/W (x)), (2.58)

P{ξ (x)≤−s(x)}= o(1/xW (x)) as x→ ∞, (2.59)

and, additionaly,

m1(x)≥−c3/x, c3 ∈ (0,∞), for all x > x0, (2.60)
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c4 := sup
x>0

m2(x)< ∞, (2.61)

liminf
x→∞

m[s(x)]
2 (x)> 0. (2.62)

Then there is an x∗ such that Exτ(−∞,y] = ∞ for all x > y > x∗.

We require the bounds (2.60) and (2.61) on the full moments of jumps to
derive a square integrable martingale from {Xn}, which is needed for our proof.

The conditions (2.58) and (2.59) are fulfilled for some s(x) = o(x) if, for ex-
ample, the function W (x) is regularly varying at infinity and the family of ran-
dom variables {ξ−(x)W (ξ−(x)), x ≥ 0} is uniformly integrable, sufficiency
follows from Lemmas 2.24 and 2.26.

Corollary 2.11. Let, for some ε > 0 and x0 > 0,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥−1− ε

x
for all x > x0.

Let the conditions (2.60)–(2.62) hold,

E{ξ 3(x), ξ (x) ∈ [−s(x),0]}= o(x), (2.63)

P{ξ (x)≤−s(x)}= o(1/x2) as x→ ∞, (2.64)

Then there is an x∗ such that Exτ(−∞,y] = ∞ for all x > y > x∗.

Notice that both (2.63) and (2.64) hold for some s(x) = o(x) provided the
family of random variables {(ξ−(x))2, x > 0} is uniformly integrable.

Proof of Corollary 2.11. It follows from Theorem 2.10 that if we take r(x) =
1−ε

1+x for x > 0, then

R(x) = (1− ε) log(1+ x),

e−R(x) = 1/(1+ x)1−ε ,

W (x) = (1+ x)/ε,

which implies the test function L(x) = ((1+x)2−1)/2ε , see the proof of The-
orem 2.10 below.

Corollary 2.12. Let, for some m ∈ N and ε > 0,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥−1
x
− 1

x logx
− . . .− 1

x logx · . . . · log(m−1) x
− 1− ε

x logx · . . . · log(m) x
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for all sufficiently large x. Let the conditions (2.60)–(2.62) hold, let

E{ξ (x)3; ξ (x) ∈ [−s(x),0]}= o(x/ logx · . . . · log(m) x), (2.65)

and let

P{ξ (x)≤−s(x)}= o(1/x2 logx · . . . · log(m) x). (2.66)

Then there is an x∗ such that Exτ(−∞,y] = ∞ for all x > y > x∗.

Notice that both (2.65) and (2.66) hold provided the family of random vari-
ables

{(ξ−(x))2 logξ
−(x) · . . . · log(m) ξ

−(x)I{log(m) ξ
−(x)> 0}, x > 0}

is uniformly integrable.

Proof of Corollary 2.12. Consider

r(x) :=
(1

y
+

1
y logy

+ . . .

+
1

y logy · . . . · log(m−1) y
+

1− ε

y logy · . . . · log(m) y

)∣∣∣
y=e(m)+x

;

where log(m) e(m) = 1. Then

R(x) =
(

logy+ log logy+ . . .+ log(m) y+(1− ε) log(m+1) y
)∣∣∣

y=e(m)+x

−e(m−1)− e(m−2)− . . .−1,

e−R(x) =
e(m) · e(m−1) · . . . ·1

y · logy · . . . · log(m−1) y · log1−ε

(m)
y

∣∣∣
y=e(m)+x

,

W (x) =
1
ε

y logy · . . . · log(m−1) y · log(m) y
∣∣∣
y=e(m)+x

,

L(x)∼ 1
2ε

x2 logx · . . . · log(m−1) x · log(m) x.

Proof of Theorem 2.10. Consider a non-negative test function L(x) defined
zero on the negative half-line and

L(x) :=
∫ x

0
W (y)dy for all x≥ 0.

First let us prove that the mean drift of L(x) is positive and bounded away from
zero for all sufficiently large x, more precisely, let us prove that, for some x∗
and ε > 0,

E{L(x+ξ (x))−L(x); ξ (x)≤ s(x)} ≥ ε for all x > x∗. (2.67)
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Having this in mind, we analyse Taylor’s expansion for the function L with the
Lagrange form of the remainder, here x, x+ y > 0:

L(x+ y)−L(x) = L′(x)y+L′′(x+θy)y2/2

=W (x)y+W ′(x+θy)y2/2, (2.68)

where 0≤ θ = θ(x,y)≤ 1. Since W (x) is assumed to be convex, W ′ is increas-
ing, hence

L(x+ y)−L(x)≥W (x)y+W ′(x)y2/2

=W (x)y+ r(x)W (x)
y2

2
+

y2

2
for all y > 0.

(2.69)

We deduce from (2.23) that

W ′(x+θy) ≥ W ′(x)− c2W (x)|y|/x2 for y ∈ [−x/2,0],

hence it follows from (2.68) that

L(x+ y)−L(x)

≥W (x)y+ r(x)W (x)
y2

2
+

y2

2
− c2

W (x)
x2 |y|

3 for all y ∈ [−x/2,0]. (2.70)

Now we are ready to estimate the mean drift of L(X). Since L is non-negative
and non-decreasing, the following lower bound holds

EL(x+ξ (x))−L(x)≥−L(x)P{ξ (x)≤−s(x)}
+E{L(x+ξ (x))−L(x); ξ (x) ∈ [−s(x),0]}
+E{L(x+ξ (x))−L(x); ξ (x) ∈ [0,s(x)]}. (2.71)

It follows from (2.69) that

E{L(x+ξ (x))−L(x); ξ (x) ∈ [0,s(x)]}

≥W (x)E{ξ (x); ξ (x) ∈ [0,s(x)]}+ 1
2

r(x)W (x)E{ξ 2(x); ξ (x) ∈ [0,s(x)]}

+
1
2
E{ξ 2(x); ξ (x) ∈ [0,s(x)]}. (2.72)
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It follows from (2.70) that

E{L(x+ξ (x))−L(x); ξ (x) ∈ [−s(x),0]}

≥W (x)E{ξ (x); ξ (x) ∈ [−s(x),0]}+ 1
2

r(x)W (x)E{ξ 2(x); ξ (x) ∈ [−s(x),0]}

+
1
2
E{ξ 2(x); ξ (x) ∈ [−s(x),0]}− c2

W (x)
x2 E{|ξ (x)|3; ξ (x) ∈ [−s(x),0]}

≥W (x)E{ξ (x); ξ (x) ∈ [−s(x),0]}+ 1
2

r(x)W (x)E{ξ 2(x); ξ (x) ∈ [−s(x),0]}

+
1
2
E{ξ 2(x); ξ (x) ∈ [−s(x),0]}+o(1) as x→ ∞, (2.73)

due to the condition (2.58). Finally, it follows from (2.59) and inequality L(x)≤
xW (x) that the first term on the right of (2.71) tends to zero as x→∞. Together
with the lower bounds (2.72) and (2.73) it implies that

E{L(x+ξ (x))−L(x); ξ (x)≤ s(x)}

≥W (x)m[s(x)]
1 (x)+

1
2

r(x)W (x)m[s(x)]
2 (x)+

1
2

m[s(x)]
2 (x)+o(1)

≥ m[s(x)]
2 (x)/2+o(1) as x→ ∞,

owing to (2.56). Then (2.62) implies (2.67) for all sufficiently large x, say for
x > x∗.

Let x0 > x∗ and let x1 > x0+s(x0). Consider an auxiliary Markov chain {Yn}
living on (−∞,x1 + s(x1)] whose jumps η(x) satisfy

x+η(x) = min{x+ξ (x),x1 + s(x1)},

so the trajectories of {Xn} and {Yn} coincide until the first time when {Xn}
leaves the set (−∞,x1]. By the construction of {Yn} and because s(x) increases,
we also have

E{L(x+η(x))−L(x); η(x)≤ s(x)} ≥ ε for all x ∈ (x∗,x1]. (2.74)

Consider the following stopping time:

θ := min{n≥ 1 : Yn ≤ x∗ or Yn > x1}
= min{n≥ 1 : Xn ≤ x∗ or Xn > x1},

and define one more auxiliary Markov chain Zn which equals Yn for all n ≤ θ

and Zn =Yθ for all n > θ ; as follows from (2.74), the process L(Zn)−ε(θ ∧n)
is a submartingale. It follows from the optional stopping time theorem that

E{θ | Y0 = x0} ≤
L(x1 + s(x1))−L(x0)

ε
< ∞.
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Then, since the submartingale {L(Zn)} is bounded,

E{L(Zθ ) | Y0 = x0} ≥ E{L(Z0) | Y0 = x0} = L(x0).

On the other hand,

E{L(Zθ ) | Y0 = x0}
≤ L(x∗)P{Zθ ≤ x∗ | Y0 = x0}+L(x1 + s(x1))P{Zθ > x1 | Y0 = x0}
≤ L(x∗)+L(x1 + s(x1))P{Zθ > x1 | Y0 = x0}.

Therefore,

P{Zθ > x1 | Y0 = x0} ≥
L(x0)−L(x∗)
L(x1 + s(x1))

.

The condition (2.22) implies that

L(2x) =
∫ 2x

0
W (y)dy = 2

∫ x

0
W (2y)dy

≤ 2c1

∫ x

0
W (y)dy = 2c1L(x) for all x > 0, (2.75)

hence

P{Zθ > x1 | Y0 = x0} ≥
L(x0)−L(x∗)

2c1L(x1)
.

So, for all x1 > x0 + s(x0),

P{Xθ > x1 | X0 = x0} ≥
L(x0)−L(x∗)

2c1L(x1)
; (2.76)

in words, starting at point x0, the chain {Xn} exceeds the level x1 before touch-
ing the set (−∞,x∗] with probability not less than the ratio on the right hand
side of (2.76).

Consider now a starting state x1 > 2x∗, a stopping time

τ = τ(−∞,x1/2] = min{n : Xn ≤ x1/2},

and a stopped Markov chain X̂n =Xn∧τ with initial state X̂0 = x1 and with jumps
ξ̂ (x) defined as ξ̂ (x) = ξ (x) for all x > x1/2 and ξ̂ (x) = 0 for all x ≤ x1/2.
Denote m̂1(x) := Eξ̂ (x); by the condition (2.60) we have

m̂1(x)≥−2c3/x1 for all x ∈ R. (2.77)

Given X̂0 = x1, the process

Mn := X̂n− x1−
n−1

∑
k=0

m̂1(X̂k) =
n−1

∑
k=0

(ξ (X̂k)− m̂1(X̂k))
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is a square integrable—by (2.61)—martingale, M0 = 0. Then, by (2.77),

X̂n = x1 +Mn +
n−1

∑
k=0

m̂1(X̂k) ≥ x1 +Mn−2c3n/x1,

which implies, for n≤ x2
1/8c3,

P{X̂n ≤ x1/2 | X̂0 = x1}= P{Mn ≤−x1/2+2c3n/x1}
≤ P{Mn ≤−x1/4}

≤ 16
EM2

n

x2
1
≤ 16c4

n
x2

1
,

owing to Chebyshev’s inequality and the upper bound for the second moment
of square integrable martingale, EM2

n ≤ c4n, which follows from (2.61). Hence,
for n≤ x2

1/32c4,

P{X̂n > x1/2 | X̂0 = x1} ≥ 1/2.

Since {X̂n} is {Xn} stopped when it enters (−∞,x1/2], the event X̂n > x1/2
yields τ ≥ n, so

P{τ(−∞,x1/2] ≥ x2
1/32c4 | X0 = x1} ≥ 1/2.

So, starting at point x0, with probability estimated from below in (2.76), {Xn}
reaches level x1 before it enters (−∞,x∗], and then does not drop below level
x1/2 within time interval of length [x2

1/32c4] with probability at least 1/2.
Therefore,

P{τ(−∞,x∗] ≥ x2
1/32c4 | X0 = x0} ≥

L(x0)−L(x∗)
4c1L(x1)

.

Thus, due to (2.75),

P{τ(−∞,x∗] ≥ j | X0 = x0} ≥
L(x0)−L(x∗)
4c1L(

√
32c4 j)

≥ c5
L(x0)−L(x∗)

L(
√

j)
, c6 < ∞.

It remains to prove that the function 1/L(
√

x) is not integrable. Indeed, since
L(y)≤ yW (y),∫

∞

1

1
L(
√

x)
dx = 2

∫
∞

1

y
L(y)

dy ≥ 2
∫

∞

1

1
W (y)

dy.

Taking into account that

1
W (y)

=
e−R(y)∫ y

0 e−R(z)dz
=

d
dy

log
∫ y

0
e−R(z)dz,



62 Classification of Markov chains

we conclude non-integrability of 1/L(
√

x) from (2.57). Therefore
∞

∑
j=1

P{τ(−∞,x∗] ≥ j | X0 = x0}= ∞,

hence Ex0τ(−∞,x∗] cannot be finite.

2.4 Recurrence and null recurrence

2.4.1 Recurrence

Assume that, for some decreasing function r(x) ↓ 0,

2m[x]
1 (x)

m[x]
2 (x)

≤ r(x) for all x > x0. (2.78)

The main condition for recurrence is that the function

e−R(x) = e−
∫ x

0 r(y)dy is non-integrable at infinity, (2.79)

it is motivated by the recurrence condition (1.24) for diffusion processes and
turns out to be very close to guarantee recurrence of {Xn}. Similarly to positive
recurrence, proving recurrence of a Markov chain is more difficult than for a
diffusion process and it requires some additional regularity conditions on r(x)
and moment-like conditions on jumps.

In the next theorem we formulate conditions for recurrence in terms of a
decreasing function r̃(x) dominating r(x), r̃(x) > r(x), such that the function
e−R̃(x) is also non-integrable where

R̃(x) :=
∫ x

0
r̃(y)dy. (2.80)

Consider the function L̃(x) which is zero for negative x and

L̃(x) :=
∫ x

0
e−R̃(y)dy for all x≥ 0,

which is an unboundedly increasing function because e−R̃(x) is assumed non-
integrable at infinity. When we apply the next general theorem to particular
regular function r in Corollaries 2.14 and 2.15 below, we need to choose r̃ suf-
ficiently greater than r in order to increase the difference r̃−r and to satisfy the
conditions (2.82) and (2.83); on the other hand a larger function r̃(x) produces
smaller values of e−R̃(x), so the choice of a suitable r̃ is a rather delicate task in
each particular case.
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Theorem 2.13. Let the drift condition (2.78) hold. Let

r̃ ′(x) = O(1/x2) as x→ ∞. (2.81)

Let positive jumps satisfy the following integrability conditions: as x→ ∞,

E{ξ 3(x); ξ (x) ∈ (0,x]}= o
(
x2(r̃(x)− r(x))m[x]

2 (x)
)

(2.82)

E{L̃(ξ (x)); ξ (x)≥ x}= o
(
(r̃(x)− r(x))e−R̃(x)m[x]

2 (x)
)
. (2.83)

If the function L̃(x)→ ∞ as x→ ∞, then there exists an x∗ such that the set
(−∞,x∗] is recurrent.

Corollary 2.14. Let, for some ε > 0 and x0 > 0,

2m[x]
1 (x)

m[x]
2 (x)

≤ 1− ε

x
for all x > x0.

Let, as x→ ∞,

E{ξ 3(x); ξ (x) ∈ [0,x]}= o(xm[x]
2 (x)), (2.84)

E{ξ ε/2(x); ξ (x)≥ x}= o(m[x]
2 (x)/x2−ε/2). (2.85)

Then there exists an x∗ such that the set (−∞,x∗] is recurrent.

As follows from Lemmas 2.24 and 2.26, both (2.84) and (2.85) hold pro-
vided the family of random variables {(ξ+(x))2, x > 0} is uniformly inte-
grable. As far as it concerns applications, we apply this result to show recur-
rence of state-dependent near-critical branching processes with migration in
Theorem 11.4.

Proof of Corollary 2.14. It follows if we take r̃(x) = 1−ε/2
1+x for x > 0 which

dominates r(x) = (1− ε)/x, then

R̃(x) = (1− ε/2) log(1+ x),

e−R̃(x) = 1/(1+ x)1−ε/2,

which implies the test function L̃(x) = 2((1+ x)ε/2−1)/ε .

Corollary 2.15. Let, for some m ∈ N and ε > 0,

2m[x]
1 (x)

m[x]
2 (x)

≤ 1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

1− ε

x logx · . . . · log(m) x
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for all sufficiently large x. Let, as x→ ∞,

E{ξ (x)3; ξ (x) ∈ [0,x]}= o
( xm[x]

2 (x)
logx · . . . · log(m) x

)
, (2.86)

and

E{logε/2
(m)

ξ (x); ξ (x)> x
}
= o
( m[x]

2 (x)

x2 · logx · . . . · log(m−1) x · log1−ε/2
(m)

x

)
.

(2.87)

Then there exists an x∗ such that the set (−∞,x∗] is recurrent.

Notice that both (2.86) and (2.87) hold provided the family of random vari-
ables

{ξ 2(x) logξ (x) · . . . · log(m) ξ (x)I{log(m) ξ (x)> 0}, x > 0}

is uniformly integrable, see Lemmas 2.24 and 2.26 for justification.

Proof of Corollary 2.15. Consider

r̃(x) :=
(1

y
+

1
y logy

+ . . .

+
1

y logy · . . . · log(m−1) y
+

1− ε/2
y logy · . . . · log(m) y

)∣∣∣
y=e(m)+x

;

where log(m) e(m) = 1. Then

R̃(x) =
(

logy+ log logy+ . . .+ log(m) y+(1−ε/2) log(m+1) y
)∣∣∣

y=e(m)+x

−e(m−1)− e(m−2)− . . .−1,

r(x)− r̃(x) = O
( 1

x logx · . . . · log(m) x

)
,

e−R̃(x) =
e(m) · e(m−1) · . . . ·1

y · logy · . . . · log(m−1) y · log1−ε/2
(m)

y

∣∣∣
y=e(m)+x

,

L̃(x) =
2
ε

(
logε/2

(m)
(e(m)+ x)−1

)
.

Proof of Theorem 2.13. Following Theorem 2.2, we construct a non-negative
increasing unbounded test function whose mean drift is non-positive outside
the set (−∞,x∗], for some x∗.
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Let us prove that the increasing Lyapunov function L̃(x) constructed above
is appropriate. Since L̃(x) is increasing, for x > 0,

EL̃(x+ξ (x))− L̃(x)

≤ E{L̃(x+ξ (x))− L̃(x); ξ (x)≥−x}
≤ E{L̃(x+ξ (x))− L̃(x); |ξ (x)| ≤ x}+E{L̃(x+ξ (x)); ξ (x)> x}

≤ L̃′(x)m[x]
1 (x)+

1
2

L̃′′(x)m[x]
2 (x)+

1
6
E{ξ 3(x)L̃′′′(x+θξ (x)); |ξ (x)| ≤ x}

+E{L̃(2ξ (x)); ξ (x)> x}, (2.88)

where 0≤ θ = θ(x,ξ (x))≤ 1, by Taylor’s expansion with the remainder in the
Lagrange form.

The derivative L̃′(x) = e−R̃(x) is decreasing, so L̃(x) is concave on R+. Thus
L̃(2x)≤ 2L̃(x) and hence the fourth term on the right hand side of (2.88) may
be bounded above as follows:

E{L̃(2ξ (x)); ξ (x)> x}= o
(
(r(x)− r̃(x))e−R̃(x)m[x]

2 (x)
)
, (2.89)

owing to the condition (2.83).
By the construction, L̃′(x) = e−R̃(x) and L̃′′(x) =−r̃(x)e−R̃(x), so the sum of

the first and second terms on the right hand side of (2.88) equals

1
2

e−R̃(x)m[x]
2 (x)

(2m[x]
1 (x)

m[x]
2 (x)

− r̃(x)
)
≤−1

2
e−R̃(x)(r̃(x)− r(x)

)
m[x]

2 (x), (2.90)

owing to (2.78). Again by the construction of L̃,

L̃′′′(x) = (−r̃ ′(x)+ r̃2(x))e−R̃(x),

hence L̃′′′(x)≥ 0 for all x due to r̃′ ≤ 0 and, for all x and y > 0,

L̃′′′(x+ y)≤ (−r̃ ′(x+ y)+ r̃2(x))e−R̃(x)

≤ (c1/x2 + r̃2(x))e−R̃(x)

≤ c2e−R̃(x)/x2,

due to (2.81), which particularly implies r̃(x) = O(1/x). Hence,

E{L̃′′′(x+θξ (x))ξ 3(x); |ξ (x)| ≤ x} ≤ E{L̃′′′(x+θξ (x))ξ 3(x); ξ (x) ∈ [0,x]}

≤ c2
e−R̃(x)

x2 E{ξ (x)3; ξ (x) ∈ [0,x]}

= o
(
e−R̃(x)(r̃(x)− r(x))m[x]

2 (x)
)
, (2.91)
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by the condition (2.82). Substituting (2.89)–(2.91) into (2.88) we finally get

EL̃(x+ξ (x))− L̃(x)≤−1+o(1)
2

e−R̃(x)(r̃(x)− r(x)
)
m[x]

2 (x) as x→ ∞,

where the right hand side is negative for all sufficiently large x, say for x > x∗.
Hence, Theorem 2.3 applies, as required.

2.4.2 Null recurrence

Combining Corollaries 2.14 and 2.11 we get the following conditions for null
recurrence.

Corollary 2.16. Let, for some ε > 0 and x0 > 0,∣∣∣∣2m[s(x)]
1 (x)

m[s(x)]
2 (x)

∣∣∣∣≤ 1− ε

x
for all x > x0.

Let the conditions (2.60) and (2.62) hold, and let the family of random vari-
ables {(ξ 2(x)), x > 0} be uniformly integrable. Then there is an x∗ such that
Px{τ(−∞,x∗] < ∞} but Exτ(−∞,x∗] = ∞ for all initial states x > x∗.

Combining Corollaries 2.15 and 2.12 we get another set of conditions for
null recurrence. As far as it concerns applications, we apply this result to show
null recurrence of state-dependent near-critical branching processes with mi-
gration in Theorem 11.5, null recurrence of stochastic difference equations in
Theorem 11.17, and null recurrence of ALOHA network in Theorem 11.18.

Corollary 2.17. Let, for some m ∈ N and ε > 0,∣∣∣∣2m[x]
1 (x)

m[x]
2 (x)

∣∣∣∣≤ 1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

1− ε

x logx · . . . · log(m) x

for all sufficiently large x. Let the conditions (2.60) and (2.62) hold, and let the
family

{ξ 2(x) logξ (x) · . . . · log(m) ξ (x), x > 0} be uniformly integrable.

Then there is an x∗ such that Px{τ(−∞,x∗] < ∞} is finite a.s. but Exτ(−∞,x∗] = ∞

for all initial states x > x∗.

2.5 Transience
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2.5.1 Condition motivated by diffusions

Fix an increasing function s(x)→ ∞ as x→ ∞ such that s(x) = o(x). Assume
that, for some decreasing function r(x)> 0,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ r(x) for x > x0; (2.92)

in general, this means that the drift to the right dominates the diffusion and
then the Markov chain {Xn} is transient provided r(x) decreases sufficiently
slow—roughly speaking, if r(x)> 1/x.

The main condition in the next theorem is that the function

e−R(x) = e−
∫ x

0 r(y)dy is integrable, (2.93)

it is motivated by the transience condition (1.25) for a diffusion process and
turns out to be very close to guarantee the transience of {Xn}. Similarly to
positive recurrence, proving transience of a Markov chain is more complicated
than for a diffusion process and it requires some additional regularity condi-
tions on r(x) together with moment-like conditions on jumps.

Theorem 2.18. Let the drift condition (2.92) hold with a decreasing function
r(x) > 0, r(x) = O(1/x), such that the condition (2.93) is satisfied. Let a de-
creasing differentiable function r̃(x)≤ r(x) be such that

r̃ ′(x) = O(1/x2), (2.94)

R̃(x) :=
∫ x

0
r̃(y)dy→ ∞ as x→ ∞, (2.95)

e−R̃(x−s(x)) = O
(
e−R̃(x)) as x→ ∞, (2.96)

and let the function e−R̃(x) be integrable. Let negative jumps satisfy the follow-
ing conditions: as x→ ∞,

E{|ξ (x)|3; ξ (x) ∈ [−s(x),0]}= o
(
x2(r(x)− r̃(x))m[s(x)]

2 (x)
)
, (2.97)

P{ξ (x)≤−s(x)}= o
(
(r(x)− r̃(x))e−R̃(x)m[s(x)]

2 (x)
)
. (2.98)

Then, for all x ∈ R,

Py{Xn > x for all n≥ 0}→ 1 as y→ ∞. (2.99)

If, in addition, for some x0 ∈ R,

Px0

{
limsup

n→∞

Xn = ∞

}
= 1, (2.100)
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then

Px0

{
lim
n→∞

Xn = ∞

}
= 1. (2.101)

The condition (2.100) (which was first proposed in this framework by Lam-
perti [111]) can be equivalently restated as follows: for any N the exit time
from the set (−∞,N] is finite with probability 1. In this way it is clear that,
for a countable Markov chain, the irreducibility implies (2.100). For a Markov
chain on general state space, the related topic is ψ-irreducibility, see [126,
Sections 4 and 8].

If, for instance, r(x) = 1/xα for some α ∈ (0,1), then e−R(x) = e−x1−α/(1−α)

and the condition (2.96) fails for s(x) growing faster than xα . Hence (2.96)
allows us to consider an arbitrary s(x) of order o(x) in the only case where
the drift is of order O(1/x), see corollaries below. In the next subsection we
present conditions that are more appropriate for a drift characterised by the
convergence xm1(x)→ ∞ as x→ ∞.

Corollary 2.19. Let, for some ε > 0,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ 1+ ε

x

for all sufficiently large x. Let the truncated second moments m[s(x)]
2 (x) be

bounded away from zero and infinity, let

E{|ξ (x)|3; ξ (x) ∈ [−s(x),0]}= o(x) as x→ ∞, (2.102)

and let

P{ξ (x)≤−s(x)}= o(1/x2 log1+ε x) as x→ ∞. (2.103)

Then (2.99) holds and the condition (2.100) implies (2.101).

As follows from Lemma 2.24, both (2.102) and (2.103) hold for some s(x) =
o(x) provided

sup
x>0

E{ξ 2(x) log1+2ε |ξ (x)|; ξ (x)<−1}< ∞.

As far as it concerns applications, we apply this result to show transience of
ALOHA network in Theorem 11.18.

Proof of Corollary 2.19. It follows if we take

r(x) :=
1+ ε

1+ x
and r̃(x) :=

1
1+ x

+
1+ ε

(1+ x) log(1+ x)
;
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then

R̃(x) = log(1+ x)+(1+ ε) log log(1+ x)

e−R̃(x) = 1/(1+ x) log1+ε(1+ x),

while r(x)− r̃(x) = O(1/x).

Corollary 2.20. Let, for some m ∈ N and ε > 0,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ 1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

1+ ε

x logx · . . . · log(m) x

for all sufficiently large x. Let the truncated second moments m[s(x)]
2 (x) be

bounded away from zero and infinity, let, as x→ ∞,

E{|ξ (x)|3; ξ (x) ∈ [−s(x),0]}= o
( x

logx · . . . · log(m) x

)
, (2.104)

and let

P{ξ (x)≤−s(x)}= o
( 1

x2 · log2 x · . . . · log2
(m) x · log1+ε

(m+1) x

)
.

(2.105)

Then (2.99) holds and the condition (2.100) implies (2.101).

As follows from Lemma 2.24, both conditions (2.104) and (2.105) hold for
some s(x) = o(x) if

sup
x>0

Eξ
2(x) log2 |ξ (x)| . . .

log2
(m) |ξ (x)| log1+2ε

(m+1) |ξ (x)|I{log(m+1)(−ξ (x))> 0} < ∞.

Proof of Corollary 2.20. Consider

r(x) :=
(1

y
+

1
y logy

+ . . .+
1+ ε

y logy · . . . · log(m) y

)∣∣∣
y=e(m)+x

and

r̃(x) :=
(1

y
+

1
y logy

+ . . .

+
1

y logy · . . . · log(m) y
+

1+ ε

y logy · . . . · log(m+1) y

)∣∣∣
y=e(m)+x

;
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where log(m) e(m) = 1. Then

r(x)− r̃(x) = O
( 1

x logx · . . . · log(m) x

)
,

R̃(x) =
(

logy+ log logy+ . . .+ log(m+1) y+(1+ε) log(m+2) y
)∣∣∣

y=e(m)+x

−e(m−1)− e(m−2)− . . .−1,

and

e−R̃(x) =
e(m) · e(m−1) · . . . ·1

y · logy · . . . · log(m) y · log1+ε

(m+1) y

∣∣∣
y=e(m)+x

.

Proof of Theorem 2.18. We follow Theorem 2.3 to prove transience, so we
construct a nonnegative bounded test function L∗(x) ↓ 0 such that {L∗(Xn)} is
a supermartingale.

Consider a decreasing function

L̃(x) :=
∫

∞

x
e−R̃(y)dy for all x≥ 0,

L̃(x) := L̃(0) for all x < 0,

which is well-defined due to the assumption that e−R̃(x) is integrable; this func-
tion is bounded, L̃(x)≤ L̃(0)< ∞.

Let us prove that the mean drift of L̃(x) is negative for all sufficiently large
x. Since L̃(x) is decreasing, we have

EL̃(x+ξ (x))− L̃(x)

≤ E{L̃(x+ξ (x))− L̃(x); ξ (x)≤ s(x)}
≤ L̃(0)P{ξ (x)<−s(x)}+E{L̃(x+ξ (x))− L̃(x); |ξ (x)| ≤ s(x)}

= L̃(0)P{ξ (x)<−s(x)}+ L̃′(x)m[s(x)]
1 (x)+

1
2

L̃′′(x)m[s(x)]
2 (x)

+
1
6
E{L̃′′′(x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)},

where 0≤ θ = θ(x,ξ (x))≤ 1, by Taylor’s expansion with the remainder in the
Lagrange form. By the construction, L̃′(x)=−e−R̃(x)< 0, L̃′′(x)= r̃(x)e−R̃(x)>

0, and

L̃′′′(x+ y) = (r̃ ′(x+ y)− r̃2(x+ y))e−R̃(x+y) < 0 (2.106)

due to r′ ≤ 0, and

L̃′′′(x+ y) = O
(
e−R̃(x)/x2) (2.107)
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as x → ∞ uniformly for all |y| ≤ s(x) = o(x), due to (2.94), r̃(x) ≤ r(x) =
O(1/x), and (2.96). Hence,

E{L̃′′′(x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)}
≤ E{L̃′′′(x+θξ (x))ξ 3(x);ξ (x) ∈ [−s(x),0]}

≤ c1
e−R̃(x)

x2 E{|ξ (x)|3;ξ (x) ∈ [−s(x),0]}

= o
(
e−R̃(x)(r(x)− r̃(x))m[s(x)]

2 (x)
)
,

by the condition (2.97), and therefore,

EL̃(x+ξ (x))− L̃(x)

≤ L̃(0)P{ξ (x)≤−s(x)}− e−R̃(x)
(

m[s(x)]
1 (x)− 1

2
r̃(x)m[s(x)]

2 (x)
)

+o
(
e−R̃(x)(r(x)− r̃(x))

)
m[s(x)]

2 (x)

≤ L̃(0)P{ξ (x)≤−s(x)}− e−R̃(x) m[s(x)]
2 (x)

2
(1+o(1))

(
r(x)− r̃(x)

)
,

by (2.92) and r(x)− r̃(x)≥ 0. Applying now the condition (2.98) we conclude
that the right hand side is negative for all sufficiently large x, so there exists a
sufficiently large x∗ such that

EL̃(x+ξ (x))− L̃(x)≤ 0 for all x≥ x∗.

Now take L∗(x) := min(L̃(x), L̃(x∗)). Then

EL∗(x+ξ (x))−L∗(x)≤ EL̃(x+ξ (x))− L̃(x)≤ 0

for all x≥ x∗ and

EL∗(x+ξ (x))−L∗(x) = E{L̃(x+ξ (x))− L̃(x∗);x+ξ (x)≥ x∗} ≤ 0

for all x < x∗. Therefore, {L∗(Xn)} constitutes a positive bounded supermartin-
gale. Thus Doob’s inequality for nonnegative supermartingales (see, e.g. [63,
Chap. VII.9]) implies (2.99).

For (2.101), we apply Doob’s convergence theorem, by which L∗(Xn) has an
a.s. limit as n→ ∞. Due to the condition (2.100), this limit equals L∗(∞) = 0,
and the proof is complete.

2.5.2 An alternative approach to transience

Again let us fix some increasing function s(x) = o(x).
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Theorem 2.21. Let, for some ε > 0 and x0 > 0, the drift satisfy

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ 1+ ε

x
for all x > x0, (2.108)

and negative jumps be such that

P{ξ (x)<−s(x)} ≤ p(x)m[s(x)]
1 (x), (2.109)

where a decreasing function p(x)> 0 is integrable. Then (2.99) follows. If, in
addition, the irreducibily condition (2.100) holds, then (2.101) is valid.

Clearly the condition (2.109) is weaker than (2.103). As far as it concerns
applications, we apply this result to show transience of a random walk con-
ditioned to stay positive in Section 11.1; transience of state-dependent near-
critical branching processes with migration in Theorem 11.3; transience of
level-dependent collective risk processes in Theorem 11.10.

Corollary 2.22. Let, for some α ∈ (0,1), ε > 0 and x0 > 0,

E{ξ (x); |ξ (x)| ≤ s(x)} ≥ ε

xα
for all x > x0.

Let also, as x→ ∞,

P{ξ (x)≤−s(x)}= o(p(x)/xα), (2.110)

E{ξ 2(x), |ξ (x)| ≤ s(x)}= o(x1−α), (2.111)

where a decreasing function p(x)> 0 is integrable. Then (2.99) follows. If, in
addition, the irreducibily condition (2.100) holds, then (2.101) is valid.

Notice that both (2.110) and (2.111) hold for some s(x) = o(x) provided
the family of random variables {|ξ (x)|1+α , x > 0} possesses an integrable
majorant, see Lemmas 2.33 and 2.26.

Proof of Theorem 2.21. By Lemma 2.28, there exists a slower decreasing func-
tion p1(x) which is still integrable and p1(x)/p(x)→ ∞, so we can strengthen
the condition (2.109) to the following one

P{ξ (x)<−s(x)}= o
(

p(x)m[s(x)]
1 (x)

)
as x→ ∞. (2.112)

Since p(x) is decreasing and integrable at infinity, by Lemma 2.29, there exists
a continuous decreasing integrable regularly varying at infinity with index −1
function V1(x) such that p(x)≤V1(x). Take

V (x) :=
∫

∞

x
V2(y)dy, where V2(x) :=

∫
∞

x

V1(y)
y

dy.
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By Theorem 1(a) from [63, Ch VIII, Sec 9] we know that V2 is regularly vary-
ing at infinity with index−1 and V2(x)∼V1(x) as x→∞. Since V1 is integrable,
the nonnegative decreasing function V (x) is bounded, V (0) < ∞, and V (x) is
slowly varying by the same reference.

Let us prove that the mean drift of V (x) is negative for all sufficiently large
x. Since V (x) is decreasing, we have

EV (x+ξ (x))−V (x) ≤ E{V (x+ξ (x))−V (x);ξ (x)≤ s(x)}
≤V (0)P{ξ (x)<−s(x)}+E{V (x+ξ (x))−V (x); |ξ (x)| ≤ s(x)}
=V (0)P{ξ (x)<−s(x)}+V ′(x)E{ξ (x); |ξ (x)| ≤ s(x)}

+
1
2
E{V ′′(x+θξ (x))ξ 2(x); |ξ (x)| ≤ s(x)},

where 0≤ θ = θ(x,ξ (x))≤ 1, by Taylor’s expansion with the remainder in the
Lagrange form. By the construction, V ′(x) =−V2(x) and

V ′′(x+ y) =
V1(x+ y)

x+ y
= (1+o(1))

V1(x)
x

as x→ ∞ uniformly for |y| ≤ s(x). Hence,

EV (x+ξ (x))−V (x)

≤V (0)P{ξ (x)≤−s(x)}−V2(x)m
[s(x)]
1 (x)+(1+o(1))

V1(x)
2x

m[s(x)]
2 (x).

The first term on the right hand side is of order o(V1(x)m
[s(x)]
1 (x)) by (2.112)

and the inequality p(x)≤V1(x). The third term is not greater than

(1+o(1))V1(x)
m[s(x)]

1 (x)
1+ ε

because of the condition (2.108). Then

EV (x+ξ (x))−V (x)≤−V1(x)m
[s(x)]
1 (x)+V1(x)

m[s(x)]
1 (x)
1+ ε

+o(V1(x)m
[s(x)]
1 (x)).

This yields that there exists a sufficiently large x∗ such that

EV (x+ξ (x))−V (x)≤− ε

1+2ε
m[s(x)]

1 (x)V1(x) for all x≥ x∗.

Then the rest of the proof is the same as of the proof of Theorem 2.18.
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2.6 Auxiliary lemmas on dominating functions and random
variables

We repeatedly need to construct some majorants for functions or random vari-
ables that satisfy certain properties. In this section we collect all results in this
direction required in our calculations.

Definition 2.23. A family {ξθ , θ ∈ Θ} of positive random variables is called
uniformly integrable if

sup
θ∈Θ

E{ξθ ; ξθ > A} → 0 as A→ ∞.

Equivalently, {ξθ , θ ∈Θ} is called uniformly integrable if

sup
θ∈Θ

Eξθ < ∞

and, for any ε > 0 there exists a δ > 0 such that

sup
θ∈Θ

E{ξθ ; B} ≤ ε whenever P{B} ≤ δ .

Lemma 2.24. Let ξθ ≥ 0, be a family of positive random variables indexed by
θ ∈Θ. Then the following statements are equivalent:

(i) the family {ξθ , θ ∈Θ} is uniformly integrable;
(ii) there exists an increasing non-negative function g(x)→ ∞ such that

sup
θ∈Θ

Eξθ g(ξθ ) < ∞.

Proof. (i)⇒(ii). Uniform integrability implies existence of an increasing se-
quence nk→ ∞, k ≥ 0, such that n0 = 0 and

E{ξθ ; ξθ > nk} ≤ 1/k2 for all θ ∈Θ and k ≥ 1.

Define an increasing unbounded function g(x) as g(0) = 0 and

g(x) :=
∞

∑
k=0

(k+1)I{x ∈ (nk,nk+1]}, x > 0. (2.113)

The expectation of ξθ g(ξθ ) may be bounded as follows:

Eξθ g(ξθ ) =
∞

∑
k=0

(k+1)E{ξθ ; ξθ ∈ (nk,nk+1]}

=
∞

∑
k=0

E{ξθ ; ξθ > nk} ≤ Eξθ +
∞

∑
k=1

1/k2,

where the right hand side is uniformly bounded for all θ ∈Θ which completes
the proof of the direct implication.
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The implication (ii)⇒(i) is immediate.

Lemma 2.25. Let Fθ ,n be a filtration indexed by θ ∈ Θ. Let Yθ ,n, n ≥ 0, be a
family of increasing processes, Yθ ,n+1≥Yθ ,n for all n and θ , while Yθ ,0 = 0. Let
the family of conditional distributions of Yθ ,n+1−Yθ ,n given Fθ ,n be uniformly
integrable a.s. for all n ≥ 0, θ ∈ Θ. Let τθ be a family of stopping times with
respect to Fθ ,n. Then the following holds true:

(i) If

the family {τθ , θ ∈Θ} is uniformly integrable, (2.114)

then the family of random variables Yθ ,τθ
, θ ∈ Θ, is uniformly integrable

too.
(ii) If, for some Eθ ,

the family {τθ/Eθ , θ ∈Θ} is uniformly integrable, (2.115)

then the family of random variables Yθ ,τθ
/Eθ , θ ∈Θ, is uniformly integrable

too.

Proof. Firstly let us show that

EYθ ,τθ
≤CEτθ , (2.116)

where

C := sup
n,θ ,ω

E{Yθ ,n+1−Yθ ,n | Fθ ,n} < ∞.

Indeed,

EYθ ,τθ
= E

∞

∑
k=0

(Yθ ,k+1−Yθ ,k)I{k < τθ}

= E
∞

∑
k=0

E{(Yθ ,k+1−Yθ ,k)I{k < τθ} | Fθ ,k}

= E
∞

∑
k=0

I{k < τθ}E{Yθ ,k+1−Yθ ,k | Fθ ,k},

because {k < τθ}= {k ≥ τθ} ∈ Fθ ,k. Hence,

EYθ ,τθ
≤CE

∞

∑
k=0

I{k < τθ} = CEτθ ,

and (2.116) follows. Similarly, for any natural N,

E{Yθ ,τθ
−Yθ ,N ; τθ > N} ≤CE{τθ −N; τθ > N}, (2.117)
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because

E{Yθ ,τθ
−Yθ ,N ; τθ > N}= E

∞

∑
k=N

(Yθ ,k+1−Yθ ,k)I{k < τθ}

= E
∞

∑
k=N

E{(Yθ ,k+1−Yθ ,k)I{k < τθ} | Fθ ,k}

= E
∞

∑
k=N

I{k < τθ}E{Yθ ,k+1−Yθ ,k | Fθ ,k}

≤C
∞

∑
k=N

P{k < τθ} = CE{τθ −N; τθ > N}.

Under the uniform integrability condition (2.114), it follows from (2.116)
that EYθ ,τθ

is bounded. Further, for any natural N and event B,

E{Yθ ,τθ
; B}= E{Yθ ,τθ

; τθ ≤ N, B}+E{Yθ ,N ; τθ > N, B}
+E{Yθ ,τθ

−Yθ ,N ; τθ > N, B}
≤ 2E{Yθ ,N ; B}+E{Yθ ,τθ

−Yθ ,N ; τθ > N}, (2.118)

by the increase of the process Yθ . For any fixed N, the first expected value on
the right hand side tends to zero as P{B} → 0 due to the uniform integrability
of the jumps of Yθ , because

sup
θ

EYθ ,N ≤CN < ∞,

due to (2.116) with τ = N, and

E{Yθ ,N ; B}=
N−1

∑
k=0

E{Yθ ,k+1−Yθ ,k; B}.

The second expected value on the right hand side of (2.118) tends to zero as
N→∞ uniformly for all θ due to (2.117) and the uniform integrability of {τθ}.

Under the condition (2.115), (2.116) implies that EYθ ,τθ
/Eθ is bounded.

Further, for any natural N and event B,

E
{

Yθ ,τθ

Eθ

; B
}
≤ 2E

{
Yθ ,NEθ

Eθ

; B
}
+E
{

Yθ ,τθ
−Yθ ,NEθ

Eθ

; τθ > NEθ

}
, (2.119)

by the increase of the process Yθ . For any fixed N, the first expected value on
the right hand side tends to zero as P{B} → 0 due to the uniform integrability
of the jumps of Yθ , because

sup
θ

EYθ ,NEθ
/Eθ ≤CN < ∞,
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due to (2.116) with τ = NEθ , and

E
{

Yθ ,NEθ

Eθ

; B
}
=

NEθ−1

∑
k=0

E
{

Yθ ,k+1−Yθ ,k

Eθ

; B
}
.

The second expected value on the right hand side of (2.119) tends to zero as
N → ∞ uniformly for all θ due to (2.117) and the uniform integrability of
{τθ/Eθ}.

Lemma 2.26. Let p > 0 and V (x)≤ xp be a function such that both functions
V (x) and xp/V (x) are increasing and unbounded. If the family of random vari-
ables {V (|ξθ |), θ ∈Θ} is uniformly integrable then

sup
θ∈Θ

E{|ξθ |p; |ξθ | ≤ x}= o
(

xp

V (x)

)
as x→ ∞.

Proof. Fix an A < x. Then, for all θ ∈Θ,

E{|ξθ |p; |ξθ | ≤ x} ≤ Ap +E{|ξθ |p; A < |ξθ | ≤ x}

= Ap +E
{
|ξθ |p

V (|ξθ |)
V (|ξθ |); A < |ξθ | ≤ x

}
≤ Ap +

xp

V (x)
E{V (|ξθ |); |ξθ |> A},

due to the increase of the function yp/V (y). Since xp/V (x)→ ∞, for any fixed
A,

limsup
x→∞

V (x)
xp sup

θ∈Θ

E{|ξθ |p; |ξθ | ≤ x} ≤ sup
θ∈Θ

E{V (|ξθ |); |ξθ |> A},

and the conclusion follows by letting A→∞, owing to the uniform integrability
of the family {V (|ξθ |), θ ∈Θ} and the convergence V (y) ↑ ∞.

Lemma 2.27. Let α ∈ (0,1] and γ ≥ α . Let a family of positive random vari-
ables {ξθ , θ ∈Θ} possess a majorant Ξ with γ +1−α moment finite, that is,
EΞγ+1−α < ∞ and

ξθ ≤st Ξ for all θ ∈Θ.

Then there exists a decreasing integrable at infinity function p(x) such that

sup
θ∈Θ

E{ξ γ+1
θ

; ξθ ≤ x}= o(x1+α p(x)) as x→ ∞.
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Proof. Fubini’s theorem yields that

E{ξ γ+1
θ

; ξθ ≤ x}=
∫ x

0
P{ξθ ∈ du}

∫ u

0
(γ +1)yγ dy

= (γ +1)
∫ x

0
yγP{ξθ ∈ (y,x]}dy

≤ (γ +1)
∫ x

0
yγP{Ξ > y}dy,

by the majorisation condition. Therefore, by the Markov inequality,

E{ξ γ+1
θ

; ξθ ≤ x} ≤ (γ +1)
∫ x

0
yαE{Ξγ−α ; Ξ > y}dy

= (γ +1)x1+α p(x),

where

p(x) :=
1

x1+α

∫ x

0
yαE{Ξγ−α ; Ξ > y}dy.

The finiteness of EΞγ+1−α implies integrability at infinity of p(x). Indeed,∫
∞

0
p(x)dx =

∫
∞

0

dx
x1+α

∫ x

0
yαE{Ξγ−α ; Ξ > y}dy

=
∫

∞

0
yαE{Ξγ−α ; Ξ > y}dy

∫
∞

y

dx
x1+α

=
1
α

∫
∞

0
E{Ξγ−α ; Ξ > y}dy

=
EΞγ+1−α

α
< ∞,

by the moment condition on Ξ. In addition, the function p(x) is decreasing
because

d
dx

1
x1+α

∫ x

0
yαE{Ξγ−α ; Ξ > y}dy

= −1+α

x2+α

∫ x

0
yαE{Ξγ−α ; Ξ > y}dy+

1
x
E{Ξγ−α ; Ξ > x}

≤ −1+α

x2+α
E{Ξγ−α ; Ξ > x}

∫ x

0
yα dy+

1
x
E{Ξγ−α ; Ξ > x}

= 0.

The proof is complete due to the next Lemma 2.28.

Lemma 2.28. Let p(x) > 0 be a decreasing function which is integrable at
infinity. Then there exists a decreasing integrable at infinity function p1(x)> 0
such that p1(x)/p(x)→ ∞ as x→ ∞.
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Proof. Without loss of generality we assume that p is a left-continuous func-
tion. Since p(x) is integrable at infinity, there exists an increasing sequence
xk→ ∞, k ≥ 0, such that x0 = 0 and∫

∞

xk

p(y)dy ≤ 1/k3 for all k ≥ 1.

Since p(x) decreases, a sequence xk may be chosen in such a way that

(k+2)p(xk+1)< (k+1)p(xk) for all k ≥ 1,

Due to this condition the following sequence yk such that xk < yk < xk+1 for
all k is well-defined:

yk := sup{x≥ xk : (k+1)p(x)≥ (k+2)p(xk+1)}.

Define a function p1(x) as follows:

p1(x) :=
{

(k+1)p(x) for x ∈ [xk,yk],

(k+2)p(xk+2) for x ∈ (yk,yk+1],

which is decreasing by construction. Since

p1(x)≥ (k+1)p(x) for all x ∈ [xk,xk+1],

the function p1(x) satisfies the condition p1(x)/p(x)→∞ as x→∞. Lastly, its
integral may be bounded as follows:∫

∞

x1

p1(x)dx =
∞

∑
k=1

∫ xk+1

xk

p1(x)dx

=
∞

∑
k=1

(k+1)
∫ yk

xk

p(x)dx+
∞

∑
k=1

(k+2)p(xk+1)(xk+1− yk)

≤
∞

∑
k=1

(k+2)
∫ xk+1

xk

p(x)dx

≤
∞

∑
k=1

k+2
k3 < ∞,

where the last bound is due to the choice of xk, which completes the proof.

Lemma 2.29 (Denisov [46]). Let p(x) > 0 be a decreasing function which
is integrable at infinity. Then there exists a decreasing integrable at infinity
function p1(x) > 0 which dominates p(x) and is regularly varying at infinity
with index −1.
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Lemma 2.30. Let p(x) > 0 be a decreasing function which is integrable at
infinity. Then, for any k ≥ 1, there exists a decreasing integrable at infinity
function pk(x)≥ p(x) such that it is k times differentiable and, for all j ≤ k,

d j

dx j pk(x) = O(1/x1+ j) as x→ ∞.

Proof. Consider a decreasing function pk(x) defined by the equality

pk(x) := 2k
∫

∞

x/2
dyk

∫
∞

yk/2
dyk−1 . . .

∫
∞

y3/2
dy2

∫
∞

y2/2

p(y1)

yk
1

dy1.

Firstly, since the function p(x)/xk decreases,∫
∞

y2/2

p(y1)

yk
1

dy1 ≥
∫ y2

y2/2

p(y1)

yk
1

dy1 ≥
y2

2
p(y2)

yk
2

=
1
2

p(y2)

yk−1
2

,

so repetition of this lower bound eventually leads to the inequalities

pk(x)≥ 2k
∫ x

x/2

1
2k−1

p(yk)

yk
dyk ≥ 2k x

2
1

2k−1
p(x)

x
= p(x).

Secondly, pk(x) is integrable at infinity because∫
∞

y2/2

p(y1)

yk
1

dy1 ≤ p(y2/2)
∫

∞

y2/2

1
yk

1
dy1 = O

( p(y2/2)
yk−1

2

)
,

and hence after k−1 steps we arrive at upper bound

pk(x)≤ c
∫

∞

x/2

p(yk/2k−1)

yk
dyk, c < ∞,

where the integral on the right hand side is integrable with respect to x, since∫
∞

0
dx
∫

∞

x/2

p(y/2k−1)

y
dy =

∫
∞

0

p(y/2k−1)

y
dy
∫ 2y

0
dx

= 2
∫

∞

0
p(y/2k−1)dy < ∞.

Thirdly,

dk

dxk pk(x) = −
2k

2
dk−1

dxk−1

∫
∞

x/4
dyk−1 . . .

∫
∞

y3/2
dy2

∫
∞

y2/2

p(y1)

yk
1

dy1

. . .

= (−1)k 2k

2 ·4 · . . . ·2k
p(x/2k)

(x/2k)k = O(p(x/2k)/xk) as x→ ∞.

Since p(x) is decreasing and integrable at infinity, p(x) = O(1/x) as x→∞, so
p(k)k (x) = O(1/x1+k). Integrating the kth derivative k− j times we get that the
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jth derivative of pk(x) is not greater than (k− j)th integral of c/x1+k which is
of order O(1/x1+ j). This completes the proof.

Lemma 2.31. Let r(x) > 0 be a decreasing function such that xr(x)→ ∞ as
x→∞. Then there exists a decreasing function r̃(x)≤ r(x) such that xr̃(x)→∞

and

d
dx

r̃(x)≥−cr̃(x)/x for some c < ∞. (2.120)

Proof. Since xr(x)→∞, there exists a function a(x)→∞ as x→∞ such that
a(x) increases, while a(x)/x decreases, and

xr(x)≥ a(x) for all x > 0. (2.121)

Consider the following function

r̃(x) := x
∫

∞

x

a(y)
y3 dy

≤ x
∫

∞

x

r(y)
y2 dy

≤ xr(x)
∫

∞

x

1
y2 dy = r(x),

which is decreasing because

d
dx

r̃(x) =
∫

∞

x

a(y)
y3 dy− a(x)

x2

≤ a(x)
x

∫
∞

x

1
y2 dy− a(x)

x2 ≤ 0,

due to the decrease of a(y)/y. On the other hand, due to the increase of a(y),

r̃(x)≥ xa(x)
∫

∞

x

1
y3 dy =

a(x)
2x

,

so,

d
dx

r̃(x)≥−a(x)
x2 ≥ −2

r̃(x)
x

,

hence (2.120) follows.

Lemma 2.32. Let ξ ≥ 0 be a random variable and let V (x)≥ 0 be an increas-
ing function such that EV (ξ ) < ∞. Let U(x) ≥ 0 be a function such that the
function f (x) :=V (x)/xU(x) increases and satisfies the condition

sup
x>1

f (2x)
f (x)

< ∞. (2.122)
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Then there exists an increasing function s(x)→ ∞ of order o(x) such that

E{U(ξ ); ξ > s(x)}= o(p(x)xU(x)/V (x)) as x→ ∞,

where p(x) is a decreasing integrable at infinity function which is only deter-
mined by ξ and V (x).

Proof. Since EV (ξ )< ∞, the decreasing function

p1(x) := E{V (ξ )/ξ ; ξ > x}

is integrable at infinity. Then by Lemmas 2.28 and 2.29,

E{V (ξ )/ξ ; ξ > x} = o(p(x)) as x→ ∞,

where a decreasing function p(x) is integrable and regularly varying at infinity
with index −1. Hence, due to the increase of V (x)/xU(x),

E{U(ξ ); ξ > x}= E
{U(ξ )ξ

V (ξ )
V (ξ )/ξ ; ξ > x

}
≤ E{V (ξ )/ξ ; ξ > x}

V (x)/xU(x)
= o(p(x)xU(x)/V (x)) as x→ ∞.

Therefore, for any n ∈ N,

E{U(ξ ); ξ > x/n} = o(p(x)xU(x)/V (x)) as x→ ∞

because the function p(x) is regularly varying at infinity and owing to (2.122).
Hence, there exists an increasing sequence xn→ ∞ such that

E{U(ξ ); ξ > x/n} ≤ p(x)xU(x)/nV (x) for all x≥ xn.

Then the level function s(x) = x
n I{x ∈ (xn,xn+1]} is of order o(x) and delivers

the stated result.

Lemma 2.33. Let ξ ≥ 0 be a random variable with finite γth moment for
some γ ∈ [1,∞). Let α ∈ [1/γ,1]. Then, for all β ∈ [0,γ−1/α], there exists an
increasing function s(x)→ ∞ of order o(xα) such that

E{ξ β ; ξ > s(x)}= o(p(x)/xα(γ−β )−1) as x→ ∞,

where p(x) is a decreasing integrable at infinity function which is only deter-
mined by ξ , γ , and α .

Proof. Put η = ξ 1/α and V (x) = xαγ . As follows from Lemma 2.32 with
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U(x) = xαβ , since Eξ γ = EV (η)< ∞, there exists a regularly varying at infin-
ity with index −1 function p(x) which is integrable at infinity and a function
s(x) = o(x) such that

E{ηαβ ; η > s(x)}= o(p(x)xU(x)/V (x))

= o(p(x)/xα(γ−β )−1) as x→ ∞,

which can be rewritten as

E{ξ β ; ξ > sα(x)}= o(p(x)/xα(γ−β )−1) as x→ ∞,

and the proof is complete.

We also need a generalisation of the last result onto levels s(x) of more
general form. To this end we prove the following result.

Lemma 2.34. Let ξ ≥ 0 be a random variable and let V (x) ≥ 0, V (x)→ ∞,
be a strictly increasing function such that EV (ξ )< ∞ and

cV := sup
x>1

V (2x)/V (x)< ∞. (2.123)

Let g(x)≥ 0, g(x)→ ∞, be an increasing function such that

sup
x>1

g(2x)/g(x)< ∞. (2.124)

Then there exists an increasing function s(x)→∞ of order o(V−1(xg(x))) such
that

P{ξ > s(x)}= o(p(x)/g(x)) as x→ ∞,

where p(x) is a decreasing integrable at infinity function.

Proof. Since V is strictly increasing and g is increasing, the function f (x) :=
V−1(xg(x)) is strictly increasing too and, owing to the condition (2.123),

f (x/cV )

f (x)
=

V−1(xg(x/cV )/cV )

V−1(xg(x))
≤ V−1(xg(x)/cV )

V−1(xg(x))
≤ 1

2
. (2.125)

Let us define a random variable η such that f (η) = ξ . Then the probability
under question may be represented as

P{ξ > f (x)}= P{ f (η)> f (x)} = P{η > x}.

Since V (ξ ) =V ( f (η)) = ηg(η) and EV (ξ )< ∞, Eηg(η)< ∞ too. Hence,

p1(x) := E{g(η); η > x}
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is integrable at infinity. Then by Lemmas 2.28 and 2.29,

E{g(η); η > x} = o(p(x)) as x→ ∞,

where a decreasing function p(x) is integrable and regularly varying at infinity
with index −1. Therefore,

P{η > x} ≤ E{g(η); η > x}
g(x)

= o(p(x)/g(x)) as x→ ∞.

This implies that, for any n ∈ N,

P{η > x/n}= o(p(x/n)/g(x/n)) = o(p(x)/g(x)), as x→ ∞

because the function p(x) is regularly varying at infinity and due to the condi-
tion (2.124). Equivalently, for any n ∈ N,

P{ξ > f (x/n)}= o(p(x)/g(x)) as x→ ∞.

Together with (2.125) this implies existence of a level s(x) = o( f (x)) which
completes the proof.

Taking V (x) = x2 we get the following corollary.

Corollary 2.35. Let ξ ≥ 0 be a random variable with finite second moment.
Let g(x) ≥ 0, g(x) → ∞, be an increasing function satisfying the condition
(2.124). Then there exists an increasing function s(x)→∞ of order o(

√
xg(x))

such that

P{ξ > s(x)}= o(p(x)/g(x)) as x→ ∞,

where p(x) is a decreasing integrable at infinity function.

Lemma 2.36. Let ξ ≥ 0 be a random variable and let V (x) be a non-negative
function such that EV (ξ ) log(1+ξ )< ∞. Then there exists an increasing func-
tion s(x)→ ∞ of order o(x) such that,

E{V (ξ ); ξ > s(x)}= o(p(x)x) as x→ ∞,

where p(x) is a decreasing integrable at infinity function.

Proof. It follows almost immediately because∫
∞

1

E{V (ξ ); ξ > x}
x

dx =
∫

∞

1

dx
x

∫
∞

x
V (y)P{ξ ∈ dy}

=
∫

∞

1
V (y)P{ξ ∈ dy}

∫ y

1

dx
x

=
∫

∞

1
V (y)(logy)P{ξ ∈ dy} < ∞.
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Hence, by Lemmas 2.28 and 2.29,

E{V (ξ ); ξ > x}= o(p(x)x) as x→ ∞,

where a decreasing function p(x) is integrable and regularly varying at infinity
with index −1. Then concluding arguments as in Lemma 2.32 complete the
proof.

Lemma 2.37. Let ξ1, . . . , ξn be independent random variables with zero mean
and finite variance. Denote Sn := ξ1 + . . .+ξn. Then, for all x, y > 0,

P{Sn > x} ≤ ex/y
(VarSn

xy

)x/y
+

n

∑
i=1

P{ξi > y}, (2.126)

and, for all x > max(y,2
√
VarSn),

E{S2
n; Sn > x}

≤ ex/y
(VarSn

xy

)x/y
x2 +

n

∑
i=1

E{ξ 2
i ; ξi > y}+VarSn

n

∑
i=1

P{ξi > y}. (2.127)

Proof. The inequality (2.126) is due to Fuk and Nagaev, see e.g. Corollary
1.11 in [129], Theorem 4 in [70].

This inequality (2.126) allows us to get a bound similar to (2.127) as follows.
For any x > y, the function z1−2x/y is integrable at infinity with respect to z, so

E{S2
n; Sn > x}= x2P{Sn > x}+2

∫
∞

x
zP{Sn > z}dz

≤ ex/y(VarSn)
x/y
[( 1

xy

)x/y
+2

∫
∞

x
z
( 1

z2y/x

)x/y
dz
]

+
n

∑
i=1

[
x2P{ξi > y}+2

∫
∞

x
zP
{

ξi > z
y
x

}
dz
]

= ex/y
(VarSn

xy

)x/y( x2

x/y−1
+1
)
+(x/y)2

n

∑
i=1

E{ξ 2
i ; ξi > y}.

Let us now prove (2.127) following the idea of the proof of (2.126) from
[70, Theorem 4]. We start with the following upper bounds

E{S2
n; Sn > x}

≤ E{S2
n; Sn > x, ξi ≤ y for all i≤ n}+

n

∑
i=1

E{S2
n; Sn > x, ξi > y}

≤ E{T 2
n ; Tn > x}+

n

∑
i=1

E{S2
n; Sn > x, ξi > y}, (2.128)

where Tn =η1+ . . .+ηn, and ηi = ξiI{ξi≤ y}, so Eηi≤ 0. Since Tn is bounded
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by ny, all its positive exponential moments are finite, hence for all λ > 0,

E{T 2
n ; Tn > x}= E

{ eλTn

eλTn/T 2
n

; Tn > x
}

≤ EeλTn

eλx/x2 for all x≥ 2/λ ,

because the function eλx/x2 is increasing in the range x≥ 2/λ . Further,

Eeληi = 1+λEηi +E(eληi −1−ληi)

≤ 1+λEηi +
eλy−1−λy

y2 Eη
2
i ,

since ηi ≤ y and the function (ez−1− z)/z2 is increasing in z ∈ R. Thus,

Eeληi ≤ 1+
eλy−1−λy

y2 Varξi

≤ e
eλy−1−λy

y2 Varξi ≤ e
eλy−1

y2 Varξi
,

and then

EeλTn ≤ e
eλy−1

y2 VarSn
,

Take

λ =
1
y

log
( xy
VarSn

+1
)
,

so that x > 2/λ because it is equivalent to

xy
VarSn

+1 > e2y/x,

which is satisfied due to x > max(y,2
√
VarSn). Then EeλTn ≤ ex/y, so

EeλTn

eλx ≤ ex/ye−
x
y log(xy/(VarSn)+1)

≤ ex/y
(VarSn)

xy

)x/y
. (2.129)

By the independence of ξi’s,

E{S2
n; Sn > x, ξn > y} ≤ E{(Sn−1 +Xn)

2; ξn > y}
= E{E{(Sn−1 +ξn)

2 | ξn}; ξn > y}
= E{VarSn−1 +ξ

2
n ; ξn > y}.
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Therefore,

E{S2
n; Sn > x, ξn > y} ≤ VarSn−1P{ξn > y}+E{ξ 2

n ; ξn > y},

which implies that
n

∑
i=1

E{S2
n; Sn > x, ξi > y} ≤ VarSn

n

∑
i=1

P{ξi > y}+
n

∑
i=1

E{ξ 2
i ; ξi > y}. (2.130)

Substituting (2.129) and (2.130) into (2.128) we conclude the proof of the
upper bound for the tail second moment of Sn.

Lemma 2.38. Let ξ1, . . . , ξn be independent random variables with zero mean
and finite absolute moments of order p≥ 2. Denote Sn := ξ1 + . . .+ξn. Then,
for some Cp which only depends on p,

E|Sn|p ≤Cpnp/2−1
n

∑
i=1

E|ξi|p. (2.131)

If Varξi < ∞ for all i, then for all p≤ 2,

E|Sn|p ≤
( n

∑
i=1

Varξi

)p/2
. (2.132)

In particular, if ξi’s are independent identically distributed random variables
with finite moment of order p∨2, then

E|Sn|p ≤Cnp/2 for all n≥ 1 and p > 0, (2.133)

where

C = C(p,ξ1) =

{
CpEξ

p
1 if p > 2,

(Varξ1)
p/2 if p≤ 2.

Proof. For p ≥ 2, it goes back to Dharmadhikari and Jogdeo [48, Theorem
2].

For p≤ 2, the function xp/2 is concave, so

E|Sn|p ≤ (ES2
n)

p/2 =
( n

∑
i=1

Varξi

)p/2
,

by the independence of ξi’s.

2.7 Comments to Chapter 2

The Lyapunov function approach for proving positive recurrence, recurrence,
or transience of countable Markov chains goes back to Foster [68], and was
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also re-discovered by Moustafa in [127]. A state-dependent variation is given
by Malyshev and Menshikov in [119].

First classification of nearest-neighbour Markov chains with drift of order
c/x goes back to Harris [77] and to Hodges and Rosenblatt [79].

A regular study of processes with asymptotically zero drift on R+ was initi-
ated by Lamperti in a series of papers [111, 112, 113]. In [111, Theorem 2.2]
he showed that if limsupXn =∞ and E|ξ (x)|2+δ are bounded for some positive
δ then

• 2xm1(x)≤ m2(x)+O(x−δ ) yields recurrence of Xn,
• 2xm1(x)≥ (1+ ε)m2(x) yields transience of Xn.

In [113, Theorem 2.1] he proved that 2xm1(x)+m2(x)≤−ε is sufficient for the
positive recurrence of {Xn}. It was shown in [111, Theorem 3.1] that 2xm1(x)+
m2(x)≥ ε implies that {Xn} is non-positive (either null-recurrent or transient)
provided xm1(x) and m2(x) are bounded and m4(x) = o(x2).

These criteria were improved later by Menshikov, Asymont and Yasno-
gorodskii [124]. Instead of the existence of 2+ δ bounded moment they as-
sume that Eξ 2(x) log2+δ (1+ |ξ (x)|) is bounded. Moreover, they established
more precise classification for positive recurrence, null-recurrence and tran-
sience based on iterated logarithms which are improved further in Corollaries
2.6, 2.12, 2.15 and 2.20.

Corollary 2.7 on positive recurrence in the absence of second moments goes
back to Korshunov [104, Theorem 5]. Corollary 2.19 on transience in the ab-
sence of the second moments is due to Menshikov and Wade [123, Theorem
2.1]; we prove it under minimal moment conditions. Sandrić [139, Theorem
1.3] has managed to suggest some sufficient condition for recurrence of a chain
with drift of order c/xβ where jumps have moment of order 1+β infinite, so
results like Corollary 2.9 do not work; it is only done under the assumption
that the tails of jumps are regularly varying.

We are aware of two different approaches to proving non-positivity, one is
due to Lamperti [113] and another one goes back to Asymont et al. [124]. In
Theorem 2.10 we follow the first approach significantly improving the non-
positivity results from both [113] and [124].



3
Down-crossing probabilities
for transient Markov chain

In this chapter we consider a (right) transient Markov chain {Xn} taking values
in R, that is, for any fixed x̂ ∈ R,

Px{τB < ∞}→ 0 as x→ ∞,

where τB := min{n ≥ 1 : Xn ∈ B}, B := (−∞, x̂]. We are interested in the rate
of convergence to zero of this probability as x→ ∞. It clearly depends on the
asymptotic properties of the drift of {Xn} at infinity.

Standard approach to the understanding of the rate of decay of down-crossing
probabilities for transient chains is via construction of a bounded decreasing
function U such that {U(Xn)} is a supermartingale outside B. Then there is an
upper bound on the down-crossing probability:

Px{τB < ∞} ≤ U(x)
U(x̂)

, x > x̂.

Therefore, the results available in the literature (see, e.g. [61] or [121]) where
one finds a Lyapunov function that proves transience, automatically provide
some upper bounds on the down-crossing probabilities, while they are not ex-
plicitly stated there. However the upper bounds obtained this way would be
quite rough.

The down-crossing probability, as a function of x, is a harmonic function
for the chain {Xn} killed at hitting the set B. So, the aim of this chapter is
to find functions U± such that {U+(Xn)} is a bounded submartingale while
{U−(Xn)} is a bounded supermartingale and such that both U+ and U− are as
close to the function Px{τB < ∞} as possible, hence both are asymptotically
harmonic. That allows us to derive upper and lower bounds for down-crossing
probabilities which are precise up to a constant factor, see Theorem 3.2 for the
case m1(x)∼ c/x and Theorems 3.7 and 3.10 for the case m1(x)x→ ∞ below.

89
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3.1 Markov chains with asymptotically zero drift: slow
decay of down-crossing probability

We start with the following result which states that, for almost any Markov
chain with asymptotically zero drift, the down-crossing probability decays
slower than any exponential function.

Theorem 3.1. Let a Markov chain {Xn} on R be such that

limsup
x→∞

E{ξ (x); ξ (x)>−x} ≤ 0 (3.1)

and, in addition,

liminf
x→∞

E{ξ 2(x); ξ (x) ∈ (−x,0)}> 0. (3.2)

Then there exists an x̂ such that, for B := (−∞, x̂] and all λ > 0,

eλxPx{τB < ∞} → ∞ as x→ ∞.

Proof. Let λ > 0. Consider a bounded decreasing function

Uλ (x) := min(e−λx,1).

For all x > 0,

E(Uλ (x+ξ (x))−Uλ (x))≥ E{e−λ (x+ξ (x))− e−λx; x+ξ (x)> 0}
= e−λxE{e−λξ (x)−1; x+ξ (x)> 0}.

Since e−y ≥ 1− y for all y and e−y ≥ 1− y+ y2/2 for all y < 0,

E{e−λξ (x)−1; x+ξ (x)> 0}

≥ −λE{ξ (x); x+ξ (x)> 0}+ λ 2

2
E{ξ 2(x); ξ (x) ∈ (−x,0)}.

Then, due to the conditions (3.1) and (3.2), there exists a sufficiently large
x̂λ > 0 such that

E(Uλ (x+ξ (x))−Uλ (x))≥ 0 for all x > x̂λ .

Therefore, the process {Uλ (Xn∧τB
λ
)} is a bounded submartingale, where Bλ :=

(−∞, x̂λ ]. Hence by the optional stopping theorem, for z > x̂λ and x ∈ (x̂λ ,z),

ExUλ (XτB
λ
∧τ(z,∞)

) ≥ ExUλ (X0) = Uλ (x).
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Letting z→ ∞ we conclude that

Ex{Uλ (XτB
λ
); τBλ

< ∞}
= lim

z→∞
Ex{Uλ (XτB

λ
); τBλ

< τ(z,∞)}

= lim
z→∞

ExUλ (XτB
λ
∧τ(z,∞)

)− lim
z→∞

Ex{Uλ (Xτ(z,∞)
); τBλ

> τ(z,∞)}

≥Uλ (x)−0 = Uλ (x).

On the other hand, since Uλ is bounded by 1,

Ex{Uλ (XτB
λ
); τBλ

< ∞} ≤ Px{τBλ
< ∞}.

This allows us to deduce the lower bound

Px{τBλ
< ∞} ≥Uλ (x) = e−λx for all x > x̂λ ,

and hence the theorem conclusion follows with x̂ = x̂1 and B := (−∞, x̂1], be-
cause by the Markov property, for all λ < 1 and x > x̂1,

Px{τB1 < ∞} ≥ Px{τBλ
< ∞} inf

y∈(x̂1,x̂λ ]
Py{τB1 < ∞},

and

Py{τB1 < ∞} ≥U1(y) = e−y

≥ e−x̂λ > 0 for all y ∈ (x̂1, x̂λ ].

Let us show by example that the condition (3.2) which is a kind of non-
degeneracy of jumps is essential for the conclusion to hold. Consider a skip-
free Markov chain {Xn} on Z+ described in Section 1.4, that is, ξ (x) takes
values −1, 1 or 0 only, with probabilities p−(x), p+(x) and p0(x) respectively,
p−(0) = 0. The hitting zero probability is computed in (1.21),

Px{τ0 < ∞}=
∑

∞
y=x ∏

y
k=1

p−(k)
p+(k)

∑
∞
y=0 ∏

y
k=1

p−(k)
p+(k)

for all x > 0.

Consider the case where p+(x) := 1/(x+1) and p−(x) := 1/2(x+1). In this
case the drift is asymptotically zero while the probability of hitting zero is
exponentially decreasing, 1/2x. Clearly, the condition (3.2) fails here.
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3.2 Drift of order 1/x

In this section r(x)> 0 is a bounded decreasing differentiable function satisfy-
ing (2.7) with c = 1, that is,

0 ≥ r′(x)≥−r2(x) for all x≥ 0, (3.3)

which yields

r(x)≥ 1
c1 + x

for all x≥ 0,

where c1 = 1/r(0). Then, in particular,

R(x) :=
∫ x

0
r(y)dy→ ∞ as x→ ∞; (3.4)

hereinafter we define R(x) = 0 for x < 0. The increasing function R(x) is con-
cave on the positive half line because r(x) is decreasing. As shown in (2.11)
and (2.12),

R(x)+
h

1+h
≤ R(x+h/r(x)) ≤ R(x)+h, (3.5)

R(x)− h
1−h

≤ R(x−h/r(x)) ≤ R(x)−h. (3.6)

Then, as already discussed in Section 2.1, 1/r(x) is a natural x-step responsible
for constant increase of the function R(x) and, for any increasing function s(x)
of order o(1/r(x)),

R(x± s(x)) = R(x)+o(1), (3.7)

r(x± s(x))∼ r(x) as x→ ∞. (3.8)

Fix an increasing function s(x)→ ∞ as x→ ∞ such that x− s(x) increases
and s(x) = o(x).

Specifically, in this section we consider a transient Markov chain {Xn}whose
jumps are such that

m[s(x)]
2 (x) → b > 0 and m[s(x)]

1 (x) ∼ µ/x as x→ ∞, (3.9)

where µ ≥ b/2. If µ > b/2 then {Xn} is transient, under some minor additional
conditions, see Theorem 2.21. If µ = b/2 then {Xn} can still be transient, pro-
vided there exists an appropriate logarithmic expansion of the first two trun-
cated moments of jumps, see Corollary 2.20 for details. In addition, we assume
that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

= r(x)+o(p(x)) as x→ ∞ (3.10)
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for some decreasing positive function r(x)→ 0 satisfying r(x)x→ 2µ/b ≥ 1
as x → ∞ and some decreasing integrable function p(x) ≥ 0. Since p(x) is
decreasing and integrable, p(x)x→ 0 as x→ ∞. We also assume that

r′(x)∼−r(x)/x ∼ −(b/2µ)r2(x) and p′(x) = O(r2(x)). (3.11)

It follows from Lemma 2.30 that the condition on p′(x) is always satisfied for
a properly chosen function p. Since xr(x)∼ 2µ/b≥ 1,

R(x) =
∫ x

0
r(y)dy∼ 2µ

b
logx as x→ ∞.

Assume that the function e−R(x) is integrable at infinity, which automatically
holds if 2µ/b > 1. It allows us to define the following bounded decreasing
function which plays the most important rôle in our analysis of the down-
crossing probability for a transient Markov chain:

U(x) :=
∫

∞

x
e−R(y)dy for x≥ 0; (3.12)

and U(x) = U(0) for x ≤ 0. As follows from the sequel, U(Xn) is almost a
martingale, see Corollary 3.6 below.

We have U(x)→ 0 as x→ ∞. According to our assumptions,

r(x) =
2µ

b
1
x
+

ε(x)
x

,

where ε(x)→ 0 as x→ ∞. In view of the representation theorem for slowly
varying functions, there exists a slowly varying at infinity function `(x) such
that e−R(x) = x−ρ−1`(x) and U(x)∼ x−ρ`(x)/ρ where ρ := 2µ/b−1≥ 0.

The main result in this subsection is the following theorem that provides
lower and upper bounds for the down-crossing probability of transient Markov
chains with asymptotically zero drift described above.

Theorem 3.2. Let the drift conditions (3.9) and (3.10) be valid with µ ≥ b/2
and r(x) satisfying the regularity condition (3.11). Let the function e−R(x) be
integrable at infinity and {Xn} be a transient Markov chain. Let, for some
increasing s(x) = o(x), the following integrability condition hold

E
{
|ξ (x)|3; |ξ (x)| ≤ s(x)

}
= o(p(x)/r2(x)) as x→ ∞. (3.13)

If the right jump tails satisfy an upper bound

P{ξ (x)> s(x)}= o(p(x)e−R(x)/U(x)) as x→ ∞, (3.14)

then there exist a constant c1 > 0 and a level x̂ such that

Px{Xn ≤ x0 for some n} ≥ c1
U(x)
U(x0)

for all x > x0 ≥ x̂
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and, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ≥ (1+o(1))
U(x)
U(x0)

as x0→ ∞.

If the negative jumps satisfy the following condition

E
{

U(x+ξ (x)); ξ (x)<−s(x)
}
= o(p(x)e−R(x)) as x→ ∞, (3.15)

then there exist a constant c2 < ∞ and a level x̂ such that

Px{Xn ≤ x0 for some n} ≤ c2
U(x)
U(x0)

for all x > x0 ≥ x̂

and, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ≤ (1+o(1))
U(x)
U(x0)

as x0→ ∞.

Compare to results on down-crossing probabilities for Bessel processes, see
(1.39); or for nearest-neighbour Markov chains, see Section 1.4.4.

As far as it concerns applications, we apply the last result to derive bounds
for the ruin probability of level-dependent collective risk processes in Theorem
11.10.

In the case ρ = 2µ/b−1 > 0 the last asymptotic results may be specified as
follows.

Corollary 3.3. Let {Xn} be a transient Markov chain. Let the drift conditions
(3.9) and (3.10) be valid with µ > b/2 and r(x) satisfying the regularity con-
dition (3.11). Let, for some increasing s(x) = o(x), the following integrability
condition hold

E
{
|ξ (x)|3; |ξ (x)| ≤ s(x)

}
= o(p(x)x2) as x→ ∞.

If the right jump tails satisfy an upper bound

P{ξ (x)> s(x)}= o(p(x)/x) as x→ ∞,

and the negative jumps satisfy the condition

E
{

U(x+ξ (x)); ξ (x)<−s(x)
}
= o(p(x)e−R(x)) as x→ ∞,

then, for any ε > 0,

Px{Xn ≤ γx for some n} → γ
ρ as x→ ∞

uniformly for all γ ∈ (ε,1).
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To specify the asymptotics in the case ρ = 2µ/b−1= 0, we need to consider
the logarithmic expansions of the first two truncated moments of jumps. We
assume that, for some m ∈ N and ε > 0,

r(x) =
(

1
y
+

1
y logy

+ . . .

+
1

y logy · . . . · log(m−1) y
+

1+ ε

y logy · . . . · log(m) y

)∣∣∣∣
y=x+e(m)

. (3.16)

Then

R(x) =
(
logy+ log logy+ . . .+ log(m) y+(1+ ε) log(m+1) y

)∣∣
y=x+e(m)

−
(
e(m−1)+ e(m−2)+ . . .+1

)
,

and

U(x) =
e(m)e(m−1) . . .1

ε logε

(m)(x+ e(m))
.

Corollary 3.4. Let the drift conditions (3.9) and (3.10) be valid with µ = b/2
and r(x) satisfying (3.16) and the regularity condition (3.11). Let {Xn} be a
transient Markov chain. Let, for some increasing s(x) = o(x), the following
integrability condition hold

E
{
|ξ (x)|3; |ξ (x)| ≤ s(x)

}
= o(p(x)x2) as x→ ∞.

If the right jump tails satisfy an upper bound

P{ξ (x)> s(x)}= o(p(x)/x logx · . . . · log(m) x) as x→ ∞,

and the negative jumps satisfy the condition

E
{

1/ logε

(m)(x+ξ (x)); ξ (x)<−s(x)
}
= o(p(x)/x logx · . . . · log1+ε

(m) x)

as x→ ∞, then, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ∼
( log(m) x0

log(m) x

)ε

as x0→ ∞.

To prove Theorem 3.2, first let us prove some auxiliary results. We start by
defining decreasing Lyapunov functions needed. Without loss of generality we
assume that p(x)≤ r(x) for all x. Consider the functions r+(x) := r(x)+ p(x)
and r−(x) := r(x)− p(x) and let

R±(x) :=
∫ x

0
r±(y)dy,

U±(x) :=
∫

∞

x
e−R±(y)dy, x≥ 0, (3.17)
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and U±(x) =U±(0) for x≤ 0. We have 0≤ r−(x)≤ r(x)≤ r+(x), 0≤ R−(x)≤
R(x)≤ R+(x) and U−(x)≥U(x)≥U+(x)> 0. Since

Cp :=
∫

∞

0
p(y)dy is finite,

we have

R±(x) = R(x)±Cp +o(1) as x→ ∞. (3.18)

Therefore,

U±(x)∼ e∓CpU(x)→ 0 as x→ ∞. (3.19)

Lemma 3.5. If the integrability conditions (3.13) and (3.14) hold, then, as
x→ ∞,

E{U+(x+ξ (x))−U+(x); ξ (x)≥−s(x)} ≥ p(x)(1+o(1))e−R+(x).

(3.20)

If the integrability conditions (3.13) and (3.15) hold, then, as x→ ∞,

EU−(x+ξ (x))−U−(x)≤−p(x)(1+o(1))e−R−(x). (3.21)

Since the function U+ is decreasing, the lower bound (3.20) yields that

EU+(x+ξ (x))−U+(x)≥ p(x)(1+o(1))e−R+(x),

which is symmetric to (3.21). However it is stated as in (3.20) because we
apply it to truncated Markov chains, see the proof of Theorem 3.2 in its part
concerning the lower bound.

Proof of Lemma 3.5. We start with the following decomposition:

EU±(x+ξ (x))−U±(x) = E{U±(x+ξ (x))−U±(x); ξ (x)<−s(x)}
+E{U±(x+ξ (x))−U±(x); |ξ (x)| ≤ s(x)}
+E{U±(x+ξ (x))−U±(x); ξ (x)> s(x)}. (3.22)

Here the third term on the right hand side is negative because U± decreases
and it may be bounded below as follows:

E{U±(x+ξ (x))−U±(x); ξ (x)> s(x)} ≥ −U±(x)P{ξ (x)> s(x)}
= o
(

p(x)e−R±(x)
)
, (3.23)

provided the condition (3.14) holds and due to the relations (3.18) and (3.19).
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Further, the first term on the right hand side of (3.22) is positive and possesses
the following upper bound:

E{U±(x+ξ (x))−U±(x); ξ (x)<−s(x)}
≤ E{U±(x+ξ (x)); ξ (x)<−s(x)}

= o
(

p(x)e−R±(x)
)
, (3.24)

provided the condition (3.15) holds and due to the relations (3.18) and (3.19).
To estimate the second term on the right hand side of (3.22), we make use of
Taylor’s expansion:

E{U±(x+ξ (x))−U±(x); |ξ (x)| ≤ s(x)}

= U ′±(x)E{ξ (x); |ξ (x)| ≤ s(x)}+ 1
2

U ′′±(x)E{ξ 2(x); |ξ (x)| ≤ s(x)}

+
1
6
E
{

U ′′′± (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)
}
, (3.25)

where 0≤ θ = θ(x,ξ (x))≤ 1. By the construction of U±,

U ′±(x) =−e−R±(x), U ′′±(x) = r±(x)e−R±(x) = (r(x)± p(x))e−R±(x). (3.26)

Then it follows that

U ′±(x)m
[s(x)]
1 (x)+

1
2

U ′′±(x)m
[s(x)]
2 (x)

= e−R±(x)
(
−m[s(x)]

1 (x)+(r(x)± p(x))
m[s(x)]

2 (x)
2

)
=

m[s(x)]
2 (x)

2
e−R±(x)

(
−

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

+ r(x)± p(x)
)

= ±
m[s(x)]

2 (x)
2

e−R±(x)p(x)(1+o(1)), (3.27)

by (3.10). Finally, let us estimate the last term in (3.25). Notice that by the
condition (3.11) on the derivative of r(x) and p(x),

U ′′′± (x) =
(
r′(x)± p′(x)− (r(x)± p(x))2)e−R±(x)

= O(r2(x))e−R±(x),

hence, due to (3.7) and (3.8),

U ′′′± (x+ y) = O(r2(x))e−R±(x)

as x→ ∞ uniformly for |y| ≤ s(x) which implies∣∣E{U ′′′± (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)
}∣∣

≤ c1r2(x)E
{
|ξ 3(x)|; |ξ (x)| ≤ s(x)

}
e−R±(x).
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Then, in view of (3.13),∣∣E{U ′′′± (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)
}∣∣= o

(
p(x)e−R±(x)

)
. (3.28)

Substituting (3.27) and (3.28) into (3.25), we obtain that

E{U±(x+ξ (x))−U±(x); |ξ (x)| ≤ s(x)}

= ±m[s(x)]
2 (x)p(x)(1+o(1))e−R±(x). (3.29)

Substituting (3.23)—or (3.24)—and (3.29) into (3.22), we finally come to the
desired conclusions.

Lemma 3.5 implies the following result.

Corollary 3.6. Under the conditions of Lemma 3.5, there exists an x̂ such that,
for all x > x̂,

EU−(x+ξ (x))−U−(x)≤ 0,

E{U+(x+ξ (x))−U+(x); ξ (x)≥−s(x)} ≥ 0.

Proof of Theorem 3.2. The process U−(Xn) is bounded above by U−(0). Let
x̂ be any level guaranteed by the last corollary, x0 ≥ x̂, B = (−∞,x0] and τB =

min{n≥ 1 : Xn ∈ B}.
By Corollary 3.6, U−(Xn∧τB) is a bounded supermartingale. Hence by the

optional stopping theorem, for z > x̂ and x ∈ (x̂,z),

ExU−(XτB∧τ(z,∞)
) ≤ ExU−(X0) = U−(x).

Letting z→ ∞ we conclude that

Ex{U−(XτB); τB < ∞}
= lim

z→∞
Ex{U−(XτB); τB < τ(z,∞)}

= lim
z→∞

ExU−(XτB∧τ(z,∞)
)− lim

z→∞
Ex{U−(Xτ(z,∞)

); τB > τ(z,∞)}

≤U−(x)−0 = U−(x).

On the other hand, since U− is decreasing,

Ex{U−(XτB); τB < ∞} ≥U−(x0)Px{τB < ∞}.

Therefore,

Px{τB < ∞} ≤ U−(x)
U−(x0)

, (3.30)

which implies both upper bounds of the theorem, by (3.19).
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On the other hand, let

U+0(x) :=
{

U+(x0− s(x0)) if x≤ x0− s(x0);
U+(x) if x > x0− s(x0).

Due to the increase of x− s(x),

E{U+0(x+ξ (x)); ξ (x)≥−s(x)} = E{U+(x+ξ (x)); ξ (x)≥−s(x)}

for all x > x0. Therefore the process {U+0(Xn∧τB)} is a bounded submartingale
due to the lower bound provided by Corollary 3.6. Hence again by the optional
stopping theorem, for x > x0,

Ex{U+0(XτB); τB < ∞} ≥ ExU+0(X0) = U+(x).

On the other hand, since U+0 is bounded by U+(x0− s(x0)),

Ex{U+0(XτB); τB < ∞} ≤ U+(x0− s(x0))Px{τB < ∞}.

This allows us to deduce a lower bound

Px{τB < ∞} ≥ U+(x)
U+(x0− s(x0))

,

which completes the proof of both lower bounds, due to (3.7) and (3.19).

3.3 The case where xm1(x)→ ∞ but m1(x) = o(1/
√

x)

In this section we consider a transient Markov chain {Xn} whose jumps are
such that

m[s(x)]
2 (x) → b > 0 and xm[s(x)]

1 (x) → ∞ as x→ ∞, (3.31)

for some increasing function s(x) = o(x), which implies transience subject to
some minor additional conditions, see Theorem 2.21. In addition, we assume
that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

= r(x)+o(p(x)) as x→ ∞ (3.32)

for a decreasing positive differentiable function r(x)→ 0 satisfying r(x)x→
∞ as x→ ∞ and some decreasing differentiable function p(x) ≥ 0 which is
assumed to be integrable,

Cp :=
∫

∞

0
p(x)dx < ∞. (3.33)

Since p(x) is decreasing and integrable, p(x)x→ 0 as x→ ∞.
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In this subsection we consider the case where r(x) = o(1/
√

x), more pre-
cisely,

r2(x) = o(p(x)) as x→ ∞. (3.34)

We also assume that

p′(x) = o(r2(x)) and r′(x) = o(r2(x)) as x→ ∞. (3.35)

In view of (3.31), the condition (3.32) is equivalent to

−m[s(x)]
1 (x)+

m[s(x)]
2 (x)

2
r(x) = o(p(x)) as x→ ∞. (3.36)

Define the increasing function R(x) as in (3.4). Since xr(x)→∞, the function
e−R(x) is integrable at infinity. It allows us to define the decreasing function
U(x) as in (3.12) which plays a key rôle in the next result.

Theorem 3.7. Let {Xn} be a transient Markov chain whose first two moments
of jumps truncated at some level s(x) = o(1/r(x)) satisfy (3.31) and (3.32)
while r(x) satisfies (3.34). Assume the regularity condition (3.35). Let the fol-
lowing integrability condition on jumps hold,

E
{
|ξ (x)|3; |ξ (x)| ≤ s(x)

}
= o(p(x)/r2(x)) as x→ ∞. (3.37)

If the right jump tails satisfy an upper bound

P{ξ (x)> s(x)}= o(p(x)r(x)) as x→ ∞, (3.38)

then there exist a constant c1 > 0 and a level x̂ such that

Px{Xn ≤ x0 for some n} ≥ c1
U(x)
U(x0)

for all x > x0 ≥ x̂

and, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ≥ (1+o(1))
U(x)
U(x0)

as x0→ ∞.

If the negative jumps satisfy the following condition

E
{

U(x+ξ (x)); ξ (x)<−s(x)
}
= o
(

p(x)e−R(x)) as x→ ∞, (3.39)

then there exist a constant c2 < ∞ and a level x̂ such that

Px{Xn ≤ x0 for some n} ≤ c2
U(x)
U(x0)

for all x > x0 ≥ x̂

and, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ≤ (1+o(1))
U(x)
U(x0)

as x0→ ∞.
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Notice that the right hand side of (3.37) may be bounded away from 0 in the
only case where p(x)/r2(x)→ ∞, which is equivalent to the condition (3.34).

To prove the last theorem, we consider the same functions r±(x), R±(x) and
U±(x) as in the previous subsection. The only difference is that, due to (3.35),

U ′(x)
( 1

r(x)e−R(x))′
=

−e−R(x)

(−r′(x)/r2(x)−1)e−R(x)
→ 1 as x→ ∞,

so L’Hôpital’s rule yields

U(x)∼ 1
r(x)

e−R(x) as x→ ∞. (3.40)

Then similarly to Lemma 3.5 the following result holds.

Lemma 3.8. If the integrability conditions (3.37) and (3.38) hold, then, as
x→ ∞,

E{U+(x+ξ (x))−U+(x); ξ (x)≥−s(x)} ≥ b+o(1)
2

p(x)e−R+(x). (3.41)

If the integrability conditions (3.37) and (3.39) hold, then

EU−(x+ξ (x))−U−(x)≤−
b+o(1)

2
p(x)e−R−(x) as x→ ∞. (3.42)

Proof. The calculations are the same as in Lemma 3.5 apart from the estima-
tion of the third derivative of U±. By the condition (3.35) on the derivatives of
r(x) and p(x),

U ′′′± (x) =
(
r′(x)± p′(x)+(r(x)± p(x))2)e−R±(x)

= O
(
r2(x)e−R±(x)

)
.

As is shown in (3.7), R(x + s(x)) = R(x) + o(1) for any s(x) = o(1/r(x)).
Therefore,∣∣E{U ′′′± (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)

}∣∣
≤ c1r2(x)E

{
|ξ 3(x)|; |ξ (x)| ≤ s(x)

}
e−R±(x)

= o
(

p(x)e−R±(x)
)
, (3.43)

owing to the condition (3.37) on the third absolute moment.
This upper bound makes it possible to conclude the desired results in the

same way as it is done in Lemma 3.5.

Lemma 3.8 implies the following result.
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Corollary 3.9. There exists an x̂ such that, for all x > x̂,

EU−(x+ξ (x))−U−(x)≤ 0,

E{U+(x+ξ (x))−U+(x); ξ (x)≥−s(x)} ≥ 0.

The last corollary allows us to conclude the proof of Theorem 3.7 in the
same way as that of Theorem 3.2.

3.4 General case where xm1(x)→ ∞

If r(x) decreases slower than 1/
√

x, then the function r2(x) is not integrable
and, since U ′′′± (x) is of order r2(x)e−R±(x), it does not possess a bound like
o
(

p(x)e−R±(x)
)
. So, the last term in Taylor’s expansion (3.25) is not negligible

and instead it makes a significant contribution to the drift of U±. If r(x) is sand-
wiched between 1/

√
x and 1/ 3

√
x, then we need to consider Taylor’s expansion

that includes the forth derivative of U± and, consequently, the forth moment
of jumps. More slower decreasing r(x) is, the higher moments of jumps are
required.

So, in this subsection we consider the same setting as in the last one but now
we consider a general case and do not assume that r(x) = o(1/

√
x). Instead,

we assume that, for some γ ∈ {2,3,4, . . .},

rγ(x) = o(p(x)) as x→ ∞ (3.44)

and

−m[s(x)]
1 (x)+

γ

∑
j=2

(−1) j m[s(x)]
j (x)

j!
r j−1(x) = o(p(x)) as x→ ∞, (3.45)

where p(x) is a decreasing integrable function. We further assume that the
function r(x) is γ times differentiable and, for all 1≤ k ≤ γ−1,

r(k)(x) = o(rγ(x)), p(k)(x) = o(rγ(x)) as x→ ∞. (3.46)

If r(x)∼ c/xα where γα < 2, then it follows from Lemma 2.30 that the condi-
tion on the derivatives of p(x) is always satisfied for a properly chosen function
p, so the condition (3.46) on the derivatives of p does not restrict generality un-
der this specific choice of r(x).

In the next result, we consider the same functions R(x) and U(x) as in the
previous subsection.

Theorem 3.10. Let {Xn} be a transient Markov chain whose first γ moments
of jumps truncated at some level s(x) = o(1/r(x)) satisfy the conditions (3.31)
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and (3.45) where γ is defined in (3.44). Assume the regularity condition (3.46)
and the integrability condition

E
{
|ξ (x)|γ+1; |ξ (x)| ≤ s(x)

}
= o(p(x)/rγ(x)) as x→ ∞. (3.47)

If the right jump tails satisfy an upper bound

P{ξ (x)> s(x)}= o(p(x)r(x)) as x→ ∞, (3.48)

then there exist a constant c1 > 0 and a level x̂ such that

Px{Xn ≤ x0 for some n} ≥ c1
U(x)
U(x0)

for all x > x0 ≥ x̂

and, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ≥ (1+o(1))
U(x)
U(x0)

as x0→ ∞.

If the negative jumps satisfy the following condition

E
{

U(x+ξ (x)); ξ (x)<−s(x)
}
= o
(

p(x)e−R(x)) as x→ ∞, (3.49)

then there exist a constant c2 < ∞ and a level x̂ such that

Px{Xn ≤ x0 for some n} ≤ c2
U(x)
U(x0)

for all x > x0 ≥ x̂

and, uniformly for all x > x0,

Px{Xn ≤ x0 for some n} ≤ (1+o(1))
U(x)
U(x0)

as x0→ ∞.

Notice that the right hand side of (3.47) may be bounded away from 0 in the
only case where p(x)/rγ(x)→ ∞ which is equivalent to the condition (3.44).

As far as it concerns applications, we apply the last result to derive bounds
for the ruin probability in level-dependent collective risk processes in Theorem
11.12. We consider there the case where r(x)∼ θ/xal pha for some α ∈ (0,1)
and assume asymptotic expansions for the first γ moments of jumps with re-
spect to the powers of 1/xα and show that then U(x) is a product of Weibull-
type functions.

We consider the same functions r±(x), R±(x) and U±(x) as in the previous
subsection and similarly to Lemma 3.8 we get the following result.

Lemma 3.11. If the integrability conditions (3.47) and (3.48) hold, then, as
x→ ∞,

E{U+(x+ξ (x))−U+(x); ξ (x)≥−s(x)} ≥ b+o(1)
2

p(x)e−R+(x). (3.50)
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If the integrability conditions (3.47) and (3.49) hold, then

EU−(x+ξ (x))−U−(x)≤−
b+o(1)

2
p(x)e−R−(x) as x→ ∞. (3.51)

Proof. We start with the decomposition (3.22), where the first and third terms
on the right hand side possess the same bounds as in the proof of Lemma 3.8.

To estimate the second term on the right hand side of (3.22), we make use
of Taylor’s expansion with γ +1 terms:

E{U±(x+ξ (x))−U±(x); |ξ (x)| ≤ s(x)}

=
γ

∑
k=1

U (k)
± (x)
k!

m[s(x)]
k (x)+E

{U (γ+1)
± (x+θξ (x))

(γ +1)!
ξ

γ+1(x); |ξ (x)| ≤ s(x)
}
,

(3.52)

where 0≤ θ = θ(x,ξ (x))≤ 1. By the construction of U±,

U ′±(x) =−e−R±(x), U ′′±(x) = r±(x)e−R±(x) = (r(x)± p(x))e−R±(x), (3.53)

and, for k = 3, . . . , γ +1,

U (k)
± (x) =−(e−R±(x))(k−1)

= (−1)k(rk−1
± (x)+o(p(x))

)
e−R±(x) as x→ ∞,

where the remainder terms in the parentheses on the right are of order o(p(x))
by the conditions (3.46) and (3.44). By the definition of r±(x),

rk−1
± (x) = (r(x)± p(x))k−1 = rk−1(x)+o(p(x)) for all k ≥ 3,

which implies the relation

U (k)
± (x) = (−1)k(rk−1(x)+o(p(x))

)
e−R±(x) as x→ ∞. (3.54)

It follows from the equalities (3.53) and (3.54) that

γ

∑
k=1

U (k)
± (x)
k!

m[s(x)]
k (x)

= e−R±(x)
( γ

∑
k=1

(−1)k rk−1(x)
k!

m[s(x)]
k (x)+o(p(x))± p(x)

m[s(x)]
2 (x)

2

)

= e−R±(x)
(

o(p(x))± p(x)
m[s(x)]

2 (x)
2

)
, (3.55)

by the condition (3.45). Owing to the condition (3.46) on the derivatives of
r(x) and (3.44),

U (γ+1)
± (x) = (−1)γ+1(rγ(x)+o(rγ(x)))e−R±(x).
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Then, similarly to (3.43), the last term in (3.52) possesses the following bound:∣∣∣E{U (γ+1)
± (x+θξ (x))

(γ +1)!
ξ

γ+1(x); |ξ (x)| ≤ s(x)
}∣∣∣

≤ O
(
rγ(x)e−R±(x)

)
E
{
|ξ (x)|γ+1; |ξ (x)| ≤ s(x)

}
= o
(

p(x)e−R±(x)
)
,

by the condition (3.47). Therefore, it follows from (3.52) and (3.55) that

E{U±(x+ξ (x))−U±(x); |ξ (x)| ≤ s(x)}

=±p(x)
m[s(x)]

2 (x)
2

e−R±(x)+o
(

p(x)e−R±(x)
)
.

Together with (3.23), (3.24), and (3.22) this completes the proof.

Lemma 3.11 implies an analogue of Corollary 3.9 which allows us to con-
clude the proof of Theorem 3.10 in the same way as of Theorem 3.2.

3.5 Upper bound for down-crossing probability

Now we produce some upper bounds for the down-crossing probability for
a transient Markov chain which are rough versions of more precise bounds
derived in the previous sections. The main goal is to have upper bounds under
weaker moment conditions than above.

Assume that there exists an x̂ such that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ r(x) >
1
x

for all x > x̂, (3.56)

where a decreasing differentiable function r(x) satisfies the condition

r′(x)≥−(1− ε)r2(x), ε > 0, for all x > x̂. (3.57)

Then the drift to the right dominates the diffusion and the corresponding Markov
chain X is typically transient, see Theorem 2.21.

Theorem 3.12. Assume that the drift of {Xn} possesses the lower bound (3.56),
with some r(x) satisfying the condition (3.57), and s(x) = o(1/r(x)). Let, for
some δ < ε ,

E{e−δR(x+ξ (x)); ξ (x)<−s(x)}= o
(
r2(x)e−δR(x)m[s(x)]

2 (x)
)

as x→ ∞. (3.58)

Then there exists an x∗ such that, for all y > x≥ x∗,

Py{Xn ≤ x for some n≥ 1} ≤ eδ (R(x)−R(y)).



106 Down-crossing probabilities

In particular, due to (3.6), for any fixed h > 0,

Px{Xn ≤ x−h/r(x) for some n≥ 1} ≤ e−δh/2 ultimately in x.

The condition (3.57) is satisfied for r(x) = (1+2ε)/(1+ x), hence the fol-
lowing corollary.

Corollary 3.13. Assume that the drift of {Xn} possesses the lower bound
(3.56) with r(x) = (1+ 2ε)/x for some ε ∈ (0,1/2], and s(x) = o(x). Let, for
some δ ∈ (0,ε),

E{(x+ξ (x))−δ ; ξ (x)<−s(x)}= o
(
m[s(x)]

2 (x)/x2+δ
)

as x→ ∞. (3.59)

Then there exists an x∗ such that, for all y > x≥ x∗,

Py{Xn ≤ x for some n≥ 1} ≤
(

1+ x
1+ y

)δ

.

The condition (3.57) is also satisfied for r(x) = c/(1+x)β , c > 0, β ∈ (0,1),
with any ε ∈ (0,1). Thus the following corollary holds true.

Corollary 3.14. Assume that the drift of {Xn} possesses the lower bound
(3.56) with r(x) = c/(1+ x)β for some c > 0, β ∈ (0,1), and s(x) = o(xβ ).
Let, for some δ > 0,

E{e−δ (x+ξ (x))1−β

; ξ (x)<−s(x)}= o
(
m[s(x)]

2 (x)e−δx1−β )
as x→ ∞. (3.60)

Then there exists an x∗ such that, for all y > x≥ x∗,

Py{Xn ≤ x for some n≥ 1} ≤ eδ (x1−β−y1−β ).

Proof of Theorem 3.12. Consider a decreasing test function W (x) := e−δR(x),
which is bounded by 1. Let us prove that the mean drift of W (x) is negative for
all sufficiently large x. Indeed, since the function W (x) decreases,

EW (x+ξ (x))−W (x) ≤ E{W (x+ξ (x))−W (x); ξ (x)≤ s(x)}
≤ E{W (x+ξ (x)); ξ (x)<−s(x)}

+W ′(x)E{ξ (x); |ξ (x)| ≤ s(x)}

+
1
2

W ′′(x+θξ (x))E{ξ 2(x); |ξ (x)| ≤ s(x)}

=: E1 +E2 +E3, (3.61)

where 0≤ θ = θ(x,ξ (x))≤ 1, by Taylor’s expansion. By the condition (3.58),
the first term on the right hand side is of order

E1 = o
(
r2(x)W (x)m[s(x)]

2 (x)
)

as x→ ∞. (3.62)
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The second term on the right hand side of (3.61) equals

E2 =−δ r(x)W (x)m[s(x)]
1 (x)

≤−δ

2
r2(x)W (x)m[s(x)]

2 (x) for x≥ x̂, (3.63)

due to (3.56). In order to bound the third term on the right hand side of (3.61),
we first notice that, due to (3.57),

W ′′(x) = δ
(
δ r2(x)− r′(x)

)
W (x)

≤ δ (δ +1− ε)r2(x)W (x) for x≥ 0.

By (3.8) and (3.7),

W ′′(x+ y)≤ δ (δ +1− ε)(1+o(1))r2(x)W (x)

as x→ ∞ uniformly for all |y| ≤ s(x) = o(1/r(x)). Thus

E3 ≤
δ

2
(δ +1− ε)(1+o(1))r2(x)W (x)m[s(x)]

2 (x) as x→ ∞. (3.64)

Substituting (3.62)–(3.64) into (3.61) we deduce that

EW (x+ξ (x))−W (x)≤ δ

2
(
δ − ε +o(1)

)
r2(x)W (x)m[s(x)]

2 (x) as x→ ∞.

Then there exists a sufficiently large x∗ such that

EW (x+ξ (x))−W (x)< 0 for all x≥ x∗.

Now take W∗(x) := min(W (x),W (x∗)) so that {W∗(Xn)} constitutes a positive
bounded supermartingale with respect to the filtration {Fn}= {σ(Xk,k ≤ n)}.
Hence we may apply Doob’s inequality for nonnegative supermartingales and
deduce that, for all y≥ x≥ 0 (so that W∗(y)≤W∗(x)),

P
{

sup
n≥1

W∗(Xn)≥W∗(x)
∣∣∣X0 = y

}
≤

EyW∗(X0)

W∗(x)
= eδ (R∗(x)−R∗(y)),

which is equivalent to the first conclusion of the theorem.

Notice that the condition (3.57) fails for functions r(x) asymptotically equiv-
alent to 1/x which arise when we consider the case of iterated logarithms, see
e.g. Corollary 2.20. To cope with such functions, we introduce a decreasing
twice differentiable function r̃(x)> 0 such that r̃ ≤ r, and, for some ε > 0,

r̃′(x)≥−r̃2(x)
( r(x)

r̃(x)
− ε

)
for x≥ x̂, (3.65)
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which, in particular, implies r̃′(x)≥−r̃(x)r(x). Notice that, for r̃(x) = r(x), the
condition (3.65) reduces to (3.57). We also assume that

r̃′′(x) = O(r̃(x)r2(x)) as x→ ∞. (3.66)

Denote

R̃(x) :=
∫ x

0
r̃(y)dy for all x > 0,

and R̃(x) := 0 for all x≤ 0.

Theorem 3.15. Assume that the drift of {Xn} possesses the lower bound (3.56)
with function r(x) satisfying (3.3), r̃(x) satisfies (3.65)–(3.66), and s(x)= o(r̃(x)/r2(x)).
Let, for some δ < ε ,

E{e−δ R̃(x+ξ (x)); ξ (x)<−s(x)}= o
(
r̃2(x)e−δ R̃(x)m[s(x)]

2 (x)
)

as x→ ∞. (3.67)

Then there exists an x∗ such that, for all y > x≥ x∗,

Py{Xn ≤ x for some n≥ 1} ≤ eδ (R̃(x)−R̃(y)).

The condition (3.65) is satisfied for

r(x) =
(1

y
+ . . .+

1
y logy · . . . · log(m−1) y

+
1+ ε

y logy · . . . · log(m) y

)∣∣∣
y=e(m)+x

,

for some ε > 0, m≥ 1, and

r̃(x) =
1

y logy · . . . · log(m) y

∣∣∣
y=e(m)+x

.

In this case

R̃(x) = log(m+1)(e
(m)+ x),

and hence the following corollary holds true.

Corollary 3.16. Assume that the drift of {Xn} possesses the lower bound
(3.56) with r(x) defined above, and s(x) = o(x/ logx · . . . · log(m) x). Let, for
some δ ∈ (0,ε), as x→ ∞,

E{log−δ

(m)(x+ξ (x)); ξ (x)<−s(x)}= o
(
m[s(x)]

2 (x)/x2 log2 x · . . . · log2+δ

(m) x
)
.

(3.68)

Then there exists an x∗ such that, for all y > x≥ x∗,

Py{Xn ≤ x for some n≥ 1} ≤
( log(m)(e

(m)+ x)

log(m)(e(m)+ y)

)δ

.
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Proof of Theorem 3.15. Let us consider a decreasing test function W̃ (x) :=
e−δ R̃(x), which is bounded by 1 and let us prove that the mean drift of W̃ (x) is
negative for all sufficiently large x. Indeed, since the function W̃ (x) decreases,

EW̃ (x+ξ (x))−W̃ (x) ≤ E{W̃ (x+ξ (x))−W̃ (x); ξ (x)≤ s(x)}
≤ E{W̃ (x+ξ (x)); ξ (x)<−s(x)}

+W̃ ′(x)E{ξ (x); |ξ (x)| ≤ s(x)}

+
1
2

W̃ ′′(x)E{ξ 2(x); |ξ (x)| ≤ s(x)}

+
1
6
E{W̃ ′′′(x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)}

=: E1 +E2 +E3 +E4, (3.69)

where 0≤ θ = θ(x,ξ (x))≤ 1, by Taylor’s expansion. By the same arguments
as in the last proof, as x→ ∞,

E1 = o
(
r̃2(x)W̃ (x)m[s(x)]

2 (x)
)
, (3.70)

E2 ≤−
δ

2
r̃(x)r(x)W (x)m[s(x)]

2 (x), (3.71)

E3 =
δ

2
(δ r̃2(x)− r̃′(x))W̃ (x)m[s(x)]

2 (x). (3.72)

Next, owing to (3.65), (3.66), and the inequality r̃ ≤ r,

|W̃ ′′′(x)|= δ
∣∣−δ

2r̃3(x)+3δ r̃(x)r̃′(x)− r̃′′(x)
∣∣W̃ (x)

≤ cr̃(x)r2(x)W̃ (x) for some c < ∞.

By (3.3), r(x+ y)∼ r(x), and by (3.66), r̃(x+ y)∼ r̃(x), R̃(x+ y)∼ R̃(x), and
W̃ (x+y)∼ W̃ (x) as x→∞ uniformly for all |y| ≤ s(x) = o(r̃(x)/r2(x)), which
implies

|W̃ ′′′(x+ y)| ≤ c1r̃(x)r2(x)W̃ (x)

as x→ ∞ uniformly for all |y| ≤ s(x). Then

|E4| ≤ c1r̃(x)r2(x)W̃ (x)E{|ξ 3(x)|; |ξ (x)| ≤ s(x)}

≤ c1s(x)r̃(x)r2(x)W̃ (x)m[s(x)]
2 (x)

= o
(
r̃2(x)

)
W̃ (x)m[s(x)]

2 (x) as x→ ∞, (3.73)

since s(x) = o(r̃(x)/r2(x)). Substituting (3.70)–(3.73) into (3.69) we deduce
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that

EW̃ (x+ξ (x))−W̃ (x)

≤ δ

2
(
−r(x)r̃(x)+δ r̃2(x)− r̃′(x)+o(r̃2(x))

)
W̃ (x)m[s(x)]

2 (x)

≤ δ

2
(
(δ − ε)r̃2(x)+o(r̃2(x))

)
W̃ (x)m[s(x)]

2 (x) as x→ ∞.

due to the condition (3.65). Then there exists a sufficiently large x∗ such that

EW̃ (x+ξ (x))−W̃ (x)< 0 for all x≥ x∗,

which concludes the proof in the same way as in Theorem 3.12.

3.6 Comments to Chapter 3

The only asymptotic result on down-crossing probabilities for transient Markov
chains with asymptotically zero drift we are aware of was obtained by Vatutin
[144] in the context of critical branching processes with immigration. He de-
rived asymptotics for the probability of hitting zero for such processes, which
agrees with our lower and upper bounds presented in Theorem 3.2 for general
Markov chains. A reduction of a critical branching process with immigration to
a Markov chain with drift of order c/x and bounded second moment of jumps
via
√

x-transform is discussed in Section 11.3.



4
Limit theorems for transient and null-recurrent
Markov chains with drift proportional to 1/x

Assume that the first two moments of jumps of a Markov chain {Xn} demon-
strate regular behaviour at infinity, namely

m1(x)∼ µ/x, m2(x)→ b > 0 as x→ ∞.

Then, as follows from Corollaries 2.16 and 2.19, under additional technical
conditions,

• if µ ∈ (−b/2,b/2) then {Xn} is null recurrent and Xn→ ∞ in probability as
n→ ∞, say if X is countable;

• if µ > b/2 then {Xn} is transient and Xn→ ∞ with probability 1 as n→ ∞.

It turns out that in both cases Xn increases at rate
√

n, more precisely, the
following weak convergence is observed:

X2
n

bn
⇒ Γ1/2+µ/b,2 as n→ ∞.

This is the main topic we discuss in this chapter, including results concerning
the renewal function, which is well defined in the transient case.

4.1 Truncation of jumps

In the sequel, we repeatedly make use of the truncation technique for proving
various limit theorems. The idea behind this is that if we truncate jumps at
sufficiently high level, then we get a new Markov chain whose trajectories
agree to that of the original chain with high probability.

Let {B(x)⊆ R, x ∈ R} be a collection of Borel sets. Given a Markov chain
{Xn} with jumps ξ (x), consider a modified Markov chain {X̃n} whose jumps

111
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ξ̃ (x) are defined as

ξ̃ (x) =
{

ξ (x) if ξ (x) ∈ B(x);
any value if ξ (x) 6∈ B(x).

In the sequel our standard choice is either B(x) = [−s(x),s(x)] or [−s(x),∞)

and ‘any value’ is 0 which corresponds to the truncation of the original jumps
ξ (x) at levels −s(x) or s(x).

In this section, we prove a coupling that allows us to compare two Markov
chains which have asymptotically equal jumps. The following result is repeat-
edly used each time we want to simplify our calculations related to the charac-
teristics of {Xn}. We formulate this result in a more general setting as follows.

Let Y = {Yn} and Z = {Zn} be two Markov chains with jumps η(x) and ζ (x)
respectively. Denote by HZ

y the renewal measure generated by the chain Z with
initial state Z0 = y, that is,

HZ
y (A) :=

∞

∑
n=0

Py{Zn ∈ A}, A ∈B(R).

Lemma 4.1. Assume that the random variables η(x) and ζ (x) can be con-
structed on the same probability space in such a way that

P{η(x) 6= ζ (x)} ≤ p(x)v(x) for all x, (4.1)

where v(x) > 0 and p(x) > 0 are decreasing functions and p(x) is integrable
at infinity. Let also, for all z ∈ R,

P{Zn > z for all n≥ 0 | Z0 = y}→ 1 as y→ ∞, (4.2)

and, for some c<∞ and an increasing function l(x)> 0 satisfying l(x+ l(x))≤
c1l(x) for all x,

HZ
y (x,x+ l(x)]≤ c

l(x)
v(x)

for all y and x. (4.3)

Then, for any ε > 0 there exists an xε such that the chains {Yn} and {Zn} can
be constructed on the same probability space in such a way that

P{Yn = Zn for all n≥ 0} ≥ 1− ε provided Y0 = Z0 ≥ xε . (4.4)

Proof. Let us construct a probability space and sequences of independent
random fields {ηn(x),x ∈R}n≥0 and {ζn(x),x ∈R}n≥0 on this space such that

P{ηn(x) 6= ζn(x)} ≤ p(x)v(x) for all x ∈ R and n≥ 0, (4.5)

which is possible due to (4.1). Then let us define Markov chains {Yn} and {Zn}
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as follows: Y0 = Z0,

Yn+1 = Yn +ηn+1(Yn), Zn+1 = Zn +ζn+1(Zn), n≥ 0.

Fix an ε > 0. For any z,

P{Yn 6= Zn for some n | Z0 = y}
≤ P{Zn ≤ z+ l(z) for some n | Z0 = y}

+P{Yn 6= Zn for some n,Zn > z+ l(z) for all n | Z0 = y}.

Owing to (4.2), there exists an y1(z) such that

P{Zn ≤ z+ l(z) for some n | Z0 = y} ≤ ε/2 for all y > y1(z).

Given Y0 = Z0 > z+ l(z),

P{Yn 6= Zn for some n, Zn > z+ l(z) for all n | Z0 = y}
≤ P{ηn+1(Yn) 6= ζn+1(Zn), Yn = Zn for some n,

Zn > z+ l(z) for all n | Z0 = y}.

The probability on the right hand side does not exceed the following sum

∞

∑
n=0

P{ηn+1(Yn) 6= ζn+1(Zn), Yn = Zn > z+ l(z) | Z0 = y}

=
∫

∞

z+l(z)
P{η(x) 6= ζ (x)}HZ

y (dx)

≤
∫

∞

z+l(z)
p(x)v(x)HZ

y (dx),

by the condition (4.1). The last integral tends to 0 as z → ∞. Indeed, both
functions p(z) and v(x) are decreasing, hence

∫
∞

z+l(z)
p(x)v(x)HZ

y (dx)≤
∞

∑
i=1

p(xi)v(xi)HZ
y (xi,xi+1],

where x0 := z and xi+1 := xi + l(xi) for i ≥ 0. Then, by the condition (4.3) on
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HZ
y and the property l(x+ l(x))≤ c1l(x),∫

∞

z+l(z)
p(x)v(x)HZ

y (dx)≤ c
∞

∑
i=1

p(xi)l(xi)

= c
∞

∑
i=1

p(xi)l(xi−1 + l(xi−1))

≤ cc1

∞

∑
i=1

p(xi)l(xi−1)

= cc1

∞

∑
i=1

p(xi)(xi− xi−1).

The function p(x) is decreasing, therefore
∞

∑
i=1

p(xi)(xi− xi−1)≤
∫

∞

z
p(u)du → 0 as z→ ∞,

because p(x) is integrable. Hence,∫
∞

z+l(z)
p(x)v(x)HZ

y (dx)→ 0 as z→ ∞ uniformly for all y, (4.6)

which implies convergence to 0 of the integral from z to ∞. Then the integral
from z to ∞ is less than ε/2 for a sufficiently large z = z(ε) which concludes
the proof with xε = y1(z(ε)).

Assume that

P
{

limsup
n→∞

Yn = ∞

}
= 1 (4.7)

and, for any distribution of Z0,

Zn
a.s.→ ∞ as n→ ∞. (4.8)

Then, under the conditions of Lemma 4.1,

Yn
a.s.→ ∞ as n→ ∞. (4.9)

Indeed, given any ε ∈ (0,1), by Lemma 4.1 there exists a level xε such that
(4.4) holds. By the condition (4.7), the stopping time

τε := min{n≥ 0 : Yn ≥ xε} (4.10)

is finite with probability 1. Set Z0 = Yτε
. Since then Z0 ≥ xε , it follows from

(4.4) that, for all A,

P
{

liminf
n→∞

Yτε+n > A
}
≥ P

{
liminf

n→∞
Zn > A

}
− ε,
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which due to (4.8) implies that, for all A,

P
{

liminf
n→∞

Yτε+n > A
}
≥ 1− ε.

Therefore, due to the finiteness of τε ,

P
{

liminf
n→∞

Yn > A
}
≥ 1− ε,

for all ε > 0 and A < ∞. Due to the arbitrary choice of ε > 0,

P
{

liminf
n→∞

Yn > A
}
= 1 for all A < ∞,

hence (4.9) follows.
If, instead of (4.8), for any distribution of Z0,

Zn
p→ ∞ as n→ ∞, (4.11)

then

Yn
p→ ∞ as n→ ∞. (4.12)

To show this convergence, we again consider the stopping time (4.10) and
define the same Z0 = Yτε

. Since τε is finite, there exists an N such that

P{τε > N} ≤ ε.

Then, for n > N,

P{Yn > A} ≥ 1−P{τε > N}−P{τε ≤ N, Yn ≤ A}

≥ 1− ε−
N

∑
k=0

P{τε = k, Zn−k ≤ A}− ε,

owing to (4.4). Therefore,

P{Yn > A} ≥ 1−2ε−
N

∑
k=0

P{Zn−k ≤ A},

where each of the probabilities P{Zn−k ≤ A} tends to zero as n→∞ uniformly
for all k ≤ N. Thus,

liminf
n→∞

P{Yn > A} ≥ 1−2ε

and (4.12) follows because of the arbitrary choice of ε > 0.
In particular, if for some function V (x), a centring sequence an, and a nor-

malising sequence cn,

V (Zn)−an

cn
converges as n→ ∞ a.s. or weakly,
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then

V (Yn)−an

cn
converges as n→ ∞ a.s. or weakly.

4.2 Upper bound for average up-crossing time for transient
chain

Let us define

L(x,n) :=
n−1

∑
k=0

I{Xk ≥ x}. (4.13)

The next theorem is devoted to the properties of L(x,T (t)), where T (t) is the
first up-crossing time

T (t) := min{n≥ 1 : Xn > t}.

Let v(z) ↓ 0 be a decreasing function. Denote

V (u) :=
∫ u

0

1
v(z)

dz for u≥ 0, (4.14)

and V (u) = 0 for u < 0. Since the function 1/v(z) increases, V is convex.

Theorem 4.2. Let, for some increasing function s(x)> 0 and for some x̂≥ 0,

E{ξ (x); ξ (x)≤ s(x)} ≥ v(x) for all x≥ x̂. (4.15)

Then, for all t ≥ y≥ x̂,

EyL(x̂,T (t))≤V (t + s(t))−V (y) =
∫ t+s(t)

y

1
v(z)

dz. (4.16)

Further, the family of random variables

1
V (t + s(t))−V (x)

L(x,T (t)), t ≥ y≥ x≥ x̂, X0 = y, (4.17)

is uniformly integrable.

Proof. Let us consider the following continuous test function

V̂ (u) := V (x̂∨u) =

{
V (x̂) if u < x̂,
V (u) if u≥ x̂.

This function is convex as V is, so

Eu{V̂ (X1)−V̂ (u); X1−u≤ s(u)} ≥ V̂ ′(u)E{ξ (u); ξ (u)≤ s(u)},
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where the right derivative of V̂ equals

V̂ ′(u) =
{

0 if u < x̂,
1/v(u) if u≥ x̂.

Therefore,

Eu{V̂ (X1)−V̂ (u); X1−u≤ s(u)} ≥
{

1 if u≥ x̂,
0 if u < x̂,

by the condition (4.15). Since the function u+ s(u) is increasing,

Eu{V̂ (X1)−V̂ (u); X1 ≤ t + s(t)} ≥
{

1 if u ∈ [x̂, t],
0 if u < x̂,

(4.18)

Therefore, the process Yn := V̂ (Xn∧(t+s(t))) satisfies the following inequality

EyYT (t) ≥V (y)+Ey

T (t)−1

∑
k=0

I{Xk ≥ x̂}, y ∈ [x̂, t], (4.19)

due to the following adapted version of the proof of Dynkin’s formula (see,
e.g. [126, Theorem 11.3.1]):

EyYT (t) = EyY0 +Ey

∞

∑
n=1

I{n≤ T (t)}(Yn−Yn−1)

=V (y)+Ey

∞

∑
n=1

E{I{n≤ T (t)}(Yn−Yn−1) | Fn−1}

=V (y)+Ey

∞

∑
n=1

I{T (t)≥ n}E{Yn−Yn−1 | Fn−1},

because {n≤ T (t)}= {T (t)≤ n−1} ∈ Fn−1. Hence, (4.18) implies that

EyYT (t) ≥V (y)+Ey

∞

∑
n=1

I{T (t)≥ n,Xn−1 ≥ x̂}

=V (y)+Ey

T (t)

∑
n=1

I{Xn−1 ≥ x̂},

and the inequality (4.19) follows.
On the other hand, YT (t) ≤V (t + s(t)), by the construction of {Yn}. Hence,

EyYT (t) ≤ V̂ (t + s(t)) = V (t + s(t)), (4.20)

because t > x̂, which together with (4.19) yields

EyL(x̂,T (t))≤V (t + s(t))−V (y),

and the upper bound (4.16) follows.
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Now let us proceed with the proof of the uniform integrability in (4.17)
which is equivalent to the following convergence

sup
x̂≤x≤y≤t

Ey

{ L(x,T (t))
V (t + s(t))−V (x)

;
L(x,T (t))

V (t + s(t))−V (x)
> A

}
→ 0 (4.21)

as A→ ∞. For N ∈ N, define θN to be the following stopping time

θN = θN(x) := inf
{

n : L(x,n) =
n−1

∑
k=0

I{Xk ≥ x}= N
}
−1.

Similarly to (4.19),

EyYT (t) ≥ EyYθN∧T (t)+Ey

T (t)−1

∑
n=θN+1

I{Xn ≥ x}

= EyYθN∧T (t)+Ey{L(x,T (t))−N; L(x,T (t))> N}. (4.22)

Therefore,

Ey{L(x,T (t))−N; L(x,T (t))> N}
≤ Ey(YT (t)−YθN∧T (t))

= Ey{YT (t)−YθN ; T (t)> θN}

≤ Ey{V̂ (XT (t))−V̂ (XθN )); T (t)> θN},

by the definition of {Yn}. Taking into account that XT (t) ≤ t + s(t) and XθN ≥
x≥ x̂, we deduce that

Ey{L(x,T (t)); L(x,T (t))> N}
≤ (V (t + s(t))−V (x))Py{L(x,T (t))> N}. (4.23)

Taking

N := [A(V (t + s(t))−V (x))],

we get from (4.23) that the mean in (4.21) is not greater than

Py{L(x,T (t))> N},

which in its turn is not greater than

EyL(x,T (t))
N +1

,

by the Markov inequality. Due to the upper bound (4.16) already proven, for
y≥ x,

EyL(x,T (t))
N +1

≤ V (t + s(t))−V (y)
A(V (t + s(t))−V (x))

≤ 1
A
,
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and the proof of the uniform integrability (4.17) is complete.

4.3 Transient chain: integro-local upper bound for renewal
function

A transient Markov chain {Xn} visits any bounded set finitely many times only.
As noticed in Section 1.4.2, then for countable Markov chains the renewal
functions

Hy(x,x+h] := Ey

∞

∑
n=0

I{x < Xn ≤ x+h} =
∞

∑
n=0

Py{x < Xn ≤ x+h},

H(x,x+h] :=
∞

∑
n=0

P{x < Xn ≤ x+h}=
∫

∞

0
Hy(x,x+h]P{X0 ∈ dy},

are well-defined for all x ∈ R and h > 0. For general Markov chains, they are
also well-defined under some minor technical conditions. In the next result
we derive upper bounds for these renewal functions. As shown in the sequel,
under some regularity conditions, the upper bounds derived are asymptotically
correct up to a constant multiplier.

Theorem 4.3. Let the drift of {Xn} possess the lower bound (3.56) with some
r(x) satisfying (3.57) and increasing function s(x) = o(1/r(x)). Assume (4.15)
for some decreasing v(x) satisfying

cv := sup
x>0

v(x)
v(x+1/r(x))

< ∞. (4.24)

Assume also an upper bound for the left tail

P{ξ (x)≤−s(x)} ≤ p(x)v(x) for all x≥ x̂, (4.25)

where a decreasing function p(x)> 0 is integrable at infinity. Then the family
of random variables

v(x)r(x)
∞

∑
n=0

I{x < Xn ≤ x+1/r(x)}, x≥ x̂, X0 = y,

is uniformly integrable.
In particular, there exists a c1 < ∞ such that

Hy(x,x+1/r(x)]≤ c1

v(x)r(x)
,

for all x≥ x̂ and y, and further,

Hy(x̂,x]≤ c1

∫ x+1/r(x)

x̂

dz
v(z)

.
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These upper bounds are rather accurate for y≤ x. In the opposite case y > x
sharper bounds can be obtained by combining the upper bounds for the renewal
function in Theorem 4.3 with estimates for down-crossing probabilities, that is
either with Theorem 3.12 or exact asymptotic results in Chapter 3.

Proof. Considering the first entry of {Xn} into the segment (x,x+1/r(x)] we
see that the first conclusion is equivalent to the uniform integrability of the
family

v(x)r(x)
∞

∑
n=0

I{x < Xn ≤ x+1/r(x)},x≥ x̂,X0 = y,y ∈ (x,x+1/r(x)]. (4.26)

First let us consider a Markov chain {Yn} with jumps

η(x) := max(ξ (x), −s(x)).

This Markov chain satisfies the conditions (3.58), because η(x) ≥ −s(x), and
(3.56). So Theorem 3.12 applies to the chain {Yn} with δ < ε where ε is de-
fined in(3.57), hence

P{Yn ≤ x for some n≥ 1 | Y0 = y} ≤ eδ (R(x)−R(y)) for all y > x≥ x∗, (4.27)

where x∗ is delivered by Theorem 3.12. Without loss of generality we assume
that x∗ > x̂. Consider a stopping time

TY (t) = min{n≥ 1 : Yn > t},

where

t :=
{

x+2/r(x) for x≥ x∗,
x∗+2/r(x∗) for x ∈ [x̂,x∗].

For any Y0 = y ∈ (x,x+1/r(x)],

v(x)r(x)
TY (t)−1

∑
n=0

I{x < Yn ≤ x+1/r(x)} ≤ v(x)r(x)
TY (t)−1

∑
n=0

I{Yn > x}. (4.28)

It follows from the convexity of the function V (x) defined in (4.14) that

V (t + s(t))−V (x)≤V ′(t + s(t))(t + s(t)− x)

=
t + s(t)− x
v(t + s(t))

.

Thus,

1
V (t + s(t))−V (x)

≥ v(t + s(t))
t + s(t)− x

.
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For all sufficiently large x, s(x)≤ 1/r(x) and hence s(t)≤ 1/r(t). In addition,
t ≤ x+2/r(x) for x≥ x∗. Therefore, for all sufficiently large x,

v(x)
v(t + s(t))

=
v(x)

v(x+1/r(x))
v(x+1/r(x))

v(t)
v(t)

v(t + s(t))

≤ v(x)
v(x+1/r(x))

v(x+1/r(x))
v(x+2/r(x))

v(t)
v(t +1/r(t))

≤ c3
v , (4.29)

by (4.24). Further,

r(x)(t + s(t)− x) = r(x)(2/r(x)+ s(t))→ 2 as x→ ∞. (4.30)

Therefore, there exists a γ > 0 such that

1
V (t + s(t))−V (x)

≥ γv(x)r(x) for all x≥ x̂,

which being applied to (4.28) yields that

v(x)r(x)
TY (t)−1

∑
n=0

I{x < Yn ≤ x+1/r(x)}

≤ 1
γ

1
V (t + s(t))−V (x)

TY (t)−1

∑
n=0

I{Yn > x}.

Finally, the family with respect to x ≥ x̂, Y0 = y, y ∈ (x,x+1/r(x)] of random
variables on the right hand side is uniformly integrable, due to Theorem 4.2
applied to the chain {Yn}. So, the family of random variables

v(x)r(x)
TY (t)−1

∑
n=0

I{x < Yn ≤ x+1/r(x)}, x≥ x̂,

is uniformly integrable too.
Further, after the stopping time TY (t) the chain {Yn} falls down below the

level

t1 :=
{

x+1/r(x) for x≥ x∗,
x∗+1/r(x∗) for x ∈ [x̂,x∗]

with probability eδ (R(t1)−R(t)) at the most, see (4.27) which is applicable be-
cause t1 > x∗. Since the function R(x) is concave,

eδ (R(x+1/r(x))−R(x+2/r(x))) ≤ e−δR′(x+2/r(x))/r(x) = e−δ r(x+2/r(x))/r(x).

As is shown in (2.8), r(x+2/r(x))/r(x) ≥ 1/(1+2c) for all x ≥ 0, hence we
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conclude that

sup
x≥0

eδ (R(x+1/r(x))−R(x+2/r(x))) ≤ e−δ/(1+2c) < 1.

Therefore, for all y≥ t,

P{Yn ≤ t1 for some n≥ 1 | Y0 = y} ≤ e−δ/(1+2c) < 1.

Hence, we obtain by the Markov property that the family

v(x)r(x)
∞

∑
n=0

I{x < Yn ≤ x+1/r(x)}

is dominated by a geometric number at the most of summands taken from a
uniformly integrable family of random variables, which yields the first con-
clusion of theorem for the chain {Yn}, by Lemma 2.25(i) with σ -algebra Fn

generated by the history of the chain up to nth falling down below the level t1.
In particular, for some c3 < ∞,

HY
y (x,x+1/r(x)]≤ c3

v(x)r(x)
for all x≥ x̂ and y. (4.31)

Further, in order to pass from {Yn} to {Xn} we first notice that these two
chains may be constructed on the same probability space as described in the
beginning of the proof of Lemma 4.1. This makes possible the following cal-
culations: for all x < y,

P{Xn ≤ x for some n≥ 1 | X0 = Y0 = y}
≤ P{Yn ≤ x for some n≥ 1 | Y0 = y}
+P{Xn 6= Yn for some n≥ 1, Yk > x for all k ≥ 1 | X0 = Y0 = y}
≤ P{Yn ≤ x for some n≥ 1 | Y0 = y}

+P{Xn 6= Yn for some n≥ 1 | X0 = Y0 = y}.

The second probability on the right hand side tends to 0 as y→ ∞, by Lemma
4.1 which is applicable due to (4.25) and because the upper bound (4.27) im-
plies (4.2) and (4.31) implies (4.3) with l(x) = 1/r(x), due to (2.8). Together
with (4.27) it yields that

P{Xn ≤ x for some n≥ 1 | X0 = y} ≤ eδ (R(x)−R(y))+o(1) (4.32)

as x→ ∞ uniformly for all y > x. In particular, there exists a sufficiently large
x0 ≥ x∗ such that, for some q < 1,

P{Xn ≤ x+1/r(x) for some n≥ 1 | X0 = y} ≤ q (4.33)

for all x≥ x0 and y≥ x+2/r(x).
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In the same way as it was done for {Yn}, we now consider a stopping time

T (t) = min{n≥ 1 : Xn > t},

where

t :=
{

x+2/r(x) for x≥ x0,

x0 +2/r(x0) for x ∈ [x̂,x0].

Similarly to the chain {Yn}, the family with respect to x≥ x̂, X0 = y, y∈ (x,x+
1/r(x)] of random variables

v(x)r(x)
T (t)−1

∑
n=0

I{x < Xn ≤ x+1/r(x)}

is uniformly integrable too, due to Theorem 4.2 applied to {Xn}.
Further, after the stopping time T (t) the chain {Xn} falls down below the

level

t1 :=
{

x+1/r(x) for x≥ x0,

x0 +1/r(x0) for x ∈ [x̂,x0]

with probability q < 1 at the most, see (4.33) which is applicable because t1 ≥
x0. By the same reasons as for the Markov chain {Yn},

v(x)r(x)
∞

∑
n=0

I{x < Xn ≤ x+1/r(x)}

is majorised by a geometric number at the most of summands taken from a
uniformly integrable family of random variables, which yields the first theorem
conclusion for the chain {Xn}, by Lemma 2.25(i) with σ -algebra Fn generated
by the history of the chain up to nth falling down below the level t1.

The second conclusion of the theorem follows if we consider the points
x0 := x̂, xn+1 := xn +1/r(xn) and then, by the first result,

Hy(x̂,x]≤
N−1

∑
n=0

Hy(xn,xn+1] ≤ c1

N−1

∑
n=0

1
v(xn)r(xn)

,

where N := min{n ≥ 1 : xn > x}, so xN ≤ x+ 1/r(x). Since 1/v(z) increases,
we finally get

N−1

∑
n=0

1
v(xn)r(xn)

≤
N−1

∑
n=0

∫ xn+1/r(xn)

xn

dz
v(z)

=
∫ xN

x̂

dz
v(z)

≤
∫ x+1/r(x)

x̂

dz
v(z)

.
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Now consider the case where the iterated logarithms play a rôle. Assume
that there exist ε > 0, m≥ 1, and x̂ such that, for all x > x̂,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ r(x)

=
(1

y
+ . . .+

1
y logy · . . . · log(m−1) y

+
1+ ε

y logy · . . . · log(m) y

)∣∣∣
y=e(m)+x

. (4.34)

Theorem 4.4. Let the drift of {Xn} possess the lower bound (4.34) with some
increasing function s(x) = o(x/ logx · . . . · log(m) x). Assume (4.15) holds for
v(x) = γ/x, γ > 0. Assume also an upper bound for the left tail, for some δ < ε ,

P{ξ (x)≤−s(x)}= o(m[s(x)]
2 /x2 log2 x · . . . · log2+δ

(m) x) for all x≥ x̂. (4.35)

Then the family of random variables

1
x2 logx · . . . · log(m) x

∞

∑
n=0

I{x̂ < Xn ≤ x}, x > x̂, X0 = y,

is uniformly integrable. In particular, there exists a c < ∞ such that

Hy(x̂,x]≤ c1x2 logx · . . . · log(m) x for all x > x̂ and y.

Proof. By the same arguments as in the last proof, we see that the first con-
clusion is equivalent to the uniform integrability of the family

1
x2 logx · . . . · log(m) x

∞

∑
n=0

I{x < Xn ≤ 2x}, x > x̂, X0 = y, y ∈ (x,2x]. (4.36)

The Markov chain {Xn} satisfies the conditions (3.68) due to (4.35). So
Corollary 3.16 applies, hence

P{Xn ≤ x for some n≥ 1 | X0 = y} ≤
( log(m)(e

(m)+ x)

log(m)(e(m)+ y)

)δ

(4.37)

for all y > x ≥ x∗, where x∗ is delivered by Corollary 3.16. Without loss of
generality we assume that x∗ > x̂. Similarly to how it was introduced for the
Markov chain {Yn} in the last proof, let us consider the stopping time

T X (t) = min{n≥ 1 : Xn > t},

where

t :=
{

3x for x≥ x∗,
3x∗ for x ∈ [x̂,x∗].
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As concluded in the last proof for {Yn}, the family of random variables

1
x2

T X (t)−1

∑
n=0

I{x < Xn ≤ 2x}, x > x̂,

is uniformly integrable.
Further, after the stopping time T X (t) the chain {Xn} falls down below the

level

t1 :=
{

2x for x≥ x∗,
2x∗ for x ∈ [x̂,x∗]

with probability (4.27) at the most, which is applicable because t1 > x∗. Ob-
serve that, for x > x∗,( log(m)(e

(m)+2x)

log(m)(e(m)+3x)

)δ

≤ 1− c2

logx · . . . · log(m) x
for some c2 > 0.

Therefore, for all y≥ t,

P{Xn ≤ t1 for some n≥ 1 | X0 = y} ≤ 1− c2

logx · . . . · log(m) x
.

Hence, we obtain by the Markov property that the family

1
x2

∞

∑
n=0

I{x < Xn ≤ 2x}

is dominated by a geometric number—with success probability c2/ logx · . . . ·
log(m) x—at the most of summands taken from a uniformly integrable family
of random variables, which yields the first conclusion of theorem, by Lemma
2.25(ii) with Ex = logx · . . . · log(m) x. In particular, for some c3 < ∞,

HX
y (x,2x]≤ c3x2 logx · . . . · log(m) x for all x > x̂ and y.

4.4 Factorisation result for renewal function with weights

In this section, either n(x)≡∞ or n(x)→∞ as x→∞. Let A(x)⊂R be a family
of Borel sets.

For a function q(z)≥ 0 on R, we look at the impact of q(z) on the asymptotic
behaviour of the partial renewal measure with weights

n(x)

∑
n=0

E
{

e−∑
n−1
k=0 q(Xk); Xn ∈ A(x)

}
, (4.38)
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compared to that of

n(x)

∑
n=0

P{Xn ∈ A(x)}.

Lemma 4.5. Let a(x) > 0 be a function on R+. Let the family of random
variables

a(x)
n(x)

∑
n=0

I{Xn ∈ A(x)}, x > 0, X0 = z, (4.39)

be uniformly integrable and let there exist a c > 0 such that, for all N ∈ Z+

and z ∈ R,

a(x)
n(x)

∑
n=N

Pz{Xn ∈ A(x)}→ c as x→ ∞. (4.40)

If q(z)≥ 0, then

a(x)
n(x)

∑
n=0

E
{

e−∑
n−1
k=0 q(Xk); Xn ∈ A(x)

}
→ cEe−∑

∞
k=0 q(Xk) as x→ ∞.

Proof. The conditions (4.39) and (4.40) imply that

a(x)
n(x)

∑
n=N

P{Xn ∈ A(x)}→ c as x→ ∞

for any distribution of X0 and for all N. Therefore, for any fixed N ∈ N,

a(x)
N−1

∑
n=0

P{Xn ∈ A(x)}→ 0 as x→ ∞.

Then

a(x)
n(x)

∑
n=0

E
{

e−∑
n−1
k=0 q(Xk); Xn ∈ A(x)

}
− cEe−∑

∞
k=0 q(Xk)

= a(x)
(n(x)

∑
n=0

E
{

e−∑
n−1
k=0 q(Xk); Xn ∈ A(x)

}
−Ee−∑

∞
k=0 q(Xk)

n(x)

∑
n=0

P{Xn ∈ A(x)}
)
+o(1)

= a(x)
(
E

n(x)

∑
n=N

(
e−∑

n−1
k=0 q(Xk)−Ee−∑

∞
k=0 q(Xk)

)
I{Xn ∈ A(x)}

)
+o(1).
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In its turn, the mean on the right hand side equals the sum of the mean values
of the following random variables:

n(x)

∑
n=N

= ζ1(x,N)+ζ2(x,N)+ζ3(x,N),

where

ζ1(x,N) :=
n(x)

∑
n=N

(
e−∑

N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
I{Xn ∈ A(x)},

ζ2(x,N) :=
n(x)

∑
n=N

(
e−∑

n−1
k=0 q(Xk)− e−∑

N−1
k=0 q(Xk)

)
I{Xn ∈ A(x)},

ζ3(x,N) :=
n(x)

∑
n=N

(
Ee−∑

N−1
k=0 q(Xk)−Ee−∑

∞
k=0 q(Xk)

)
I{Xn ∈ A(x)}.

By the condition (4.39), both families of random variables {a(x)ζ2(x,N), x >
0, N ≥ 1} and {a(x)ζ3(x,N), x > 0, N ≥ 1} are uniformly integrable. Then,
taking into account that q(z)≥ 0 implies the convergence

e−∑
N−1
k=0 q(Xk) a.s.→ e−∑

∞
k=0 q(Xk) as N→ ∞, (4.41)

we conclude that both supx a(x)|Eζ2(x,N)| and supx a(x)|Eζ3(x,N)| go to 0 as
N→∞. This proves the required result when we show in addition that, for any
fixed N,

a(x)Eζ1(x,N)→ 0 as x→ ∞. (4.42)

Indeed, conditioning on X0, . . . , XN−1 leads to the equality

Eζ1(x,N)

= E
{(

e−∑
N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
E
{n(x)

∑
n=N

I{Xn ∈ A(x)}
∣∣∣X0, . . . ,XN−1

}}
= E

{(
e−∑

N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
EXN−1

n(x)

∑
n=N

I{Xn ∈ A(x)}
}
,

by the Markov property. By the uniform integrability (4.39), the family of ran-
dom variables

a(x)
(

e−∑
N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
EXN−1

n(x)

∑
n=N

I{Xn ∈ A(x)}, x > 0,
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is uniformly integrable too. By the condition (4.40),

a(x)EXN−1

n(x)

∑
n=N

I{Xn ∈ A(x)} a.s.→ c as x→ ∞.

This allows us to conclude that

a(x)Eζ1(x,N)→ cE
(

e−∑
N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
= 0 as x→ ∞,

and (4.42) follows which completes the proof.

Lemma 4.6. Let gn : Rn+1→R be a sequence of uniformly bounded functions
and let E ∈ R be a number such that, for all N ∈ N and z0, . . . , zN ,

E{gn(X0, . . . ,Xn) | X0 = z0, . . . ,XN = zN}→ E as n→ ∞. (4.43)

If q(z)≥ 0, then

Ee−∑
n−1
k=0 q(Xk)gn(X0, . . . ,Xn)→ E ·Ee−∑

∞
k=0 q(Xk) as n→ ∞.

Proof. Fix any N ∈ N. Then∣∣∣Ee−∑
n−1
k=0 q(Xk)gn(X0, . . . ,Xn)−Egn(X0, . . . ,Xn)Ee−∑

∞
k=0 q(Xk)

∣∣∣
≤
∣∣∣E(e−∑

N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
gn(X0, . . . ,Xn)

∣∣∣
+‖gn‖∞E

∣∣∣e−∑
n−1
k=0 q(Xk)− e−∑

N−1
k=0 q(Xk)

∣∣∣
+‖gn‖∞

∣∣∣Ee−∑
N−1
k=0 q(Xk)−Ee−∑

∞
k=0 q(Xk)

∣∣∣
=: |E1(N,n)|+E2(N,n)+E3(N).

We have E2(N,n)→ 0 and E3(N)→ 0 as n, N→ ∞ by the dominated conver-
gence in (4.41) because q(z)≥ 0. Further, conditioning on X0, . . . , XN−1 leads
to the equality and the convergence

E1(N,n)

= E
{(

e−∑
N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
E{gn(X0, . . . ,Xn) | X0, . . . ,XN−1}

}
→ E ·E

(
e−∑

N−1
k=0 q(Xk)−Ee−∑

N−1
k=0 q(Xk)

)
as n→ ∞,

by the condition (4.43), which allows us to conclude that, for any fixed N,

E1(N,n)→ 0 as n→ ∞,

and the proof is complete.
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Lemma 4.7. Let p be a number between 0 and 1 and An ⊂R be a sequence of
Borel sets such that, for all z,

Pz{Xn ∈ An}→ p as n→ ∞. (4.44)

If q(z)≥ 0, then

Ee−∑
n−1
k=0 q(Xk)I{Xn ∈ An}→ pEe−∑

∞
k=0 q(Xk) as n→ ∞.

Proof. Take gn(X0, . . . ,Xn) = I{Xn ∈ An} which is a bounded function satis-
fying the condition (4.43) with E = p because

P{Xn ∈ A | X0, . . . ,XN}= P{Xn ∈ A | XN},

by the Markov property and because

P{Xn ∈ A | XN}
a.s.→ p as n→ ∞,

by the condition (4.44).

4.5 Convergence to Γ-distribution for transient chain

In this section we are interested in the growth rate of a Markov chain {Xn} on
R that tends to infinity with probability 1 as n→ ∞ which happens when the
chain is transient.

Theorem 4.8. Suppose there exist b > 0 and µ > b/2 such that, for some
increasing function s(x) = o(x),

m[s(x)]
1 (x)∼ µ/x and m[s(x)]

2 (x)→ b as x→ ∞, (4.45)

and there exists an x̂ such that, for all x > x̂,

P{|ξ (x)|> s(x)} ≤ p(x)/x, (4.46)

E{|ξ (x)|; ξ (x)≤−s(x)} ≤ p(x), (4.47)

where a decreasing function p(x)> 0 is integrable at infinity. If

limsup
n→∞

Xn = ∞ with probability 1, (4.48)

then X2
n /nb converges weakly to a Γ1/2+µ/b,1/2-distribution with mean 1 +

2µ/b and variance 2(1+2µ/b) whose probability density function is

1
Γ(1/2+µ/b)21/2+µ/b xµ/b−1/2e−x/2, x > 0.
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As far as it concerns applications, we apply this result to show convergence
to Γ distribution for a random walk conditioned to stay positive in Section 11.1
and convergence to Γ distribution for state-dependent branching processes with
migration in Theorem 11.6.

Let us give a sufficient condition for (4.46) and (4.47) to hold. If the family
{|ξ (x)|, x≥ 0}, possesses a majorant Ξ, that is, |ξ (x)| ≤st Ξ for all x, which is
square integrable, EΞ2 <∞, then there exists an increasing function s(x)= o(x)
such that (4.46) and (4.47) hold, see Lemma 2.33 with γ = 2, α = 1, and β = 0,
1. Hence the following result.

Corollary 4.9. Assume that, for some b > 0 and µ > −b/2, m1(x) ∼ µ/x
and m2(x)→ b as x→ ∞. Assume that the family {|ξ (x)|, x ∈ R} possesses a
square integrable majorant Ξ, that is, EΞ2 < ∞ and ξ 2(x)≤st Ξ for all x. If the
condition (4.48) holds, then X2

n /nb converges weakly to a Γ-distribution with
mean 1+2µ/b and variance 2(1+2µ/b).

Proof of Theorem 4.8. The proof is based on the method of moments, see e.g.
Durrett [56, Theorem 3.3.26].

Consider a modified Markov chain {X̃n} on the same probability space as
X with jumps ξ̃ (x) = ξ (x)I{|ξ (x)| ≤ s(x)}. If {X̃n} does not satisfy the weak
irreducibility condition (4.48), then we can increase the value of s(x) on some
set bounded above in such a way that then {X̃n} does satisfy (4.48). Indeed,
it follows from the condition (4.45) that there exist a sufficiently high level
x0 and an ε > 0 such that P{ξ (x) ≥ ε} > 0 for all x ≥ x0. Then it suffices to
increase s(x) on the set (−∞,x0] to ensure the condition (4.48) for {X̃n}.

Since (4.45) holds with µ > b/2, {X̃n} satisfies the condition (2.108) for
any ε ∈ (0,2µ/b−1). Moreover, (4.46) implies (2.109) with a possibly slower
decreasing p(x) which is still integrable. Therefore, Theorem 2.21 is applicable
to {X̃n}, so we conclude the transience and the convergence, for all z,

P{X̃n > z for all n≥ 0 | X0 = y}→ 1 as y→ ∞.

By Theorem 4.3, there exist c and x∗ such that

H X̃
y (x,2x)≤ cx2 for all x > x∗.

So, all the conditions of Lemma 4.1 are satisfied for the chains Y = X and
Z = X̃ . By Theorem 2.21, the chain Z = X̃ tends to infinity as n→ ∞, so it
suffices to prove weak convergence to the same Γ-distribution for the process
{Zn} with jumps ζ (x) = ξ (x)I{|ξ (x)| ≤ s(x)}, see the discussion at the end of
Section 4.1. That is, it is sufficient to show that

Z2
n

nb
⇒ Γ(2µ+b)/2b,2 as n→ ∞. (4.49)
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For all x,

Eζ (x) = m[s(x)]
1 (x) and Eζ

2(x) = m[s(x)]
2 (x). (4.50)

In addition, the inequality |ζ (x)| ≤ s(x) = o(x) implies that, for all j ≥ 3,

|Eζ
j(x)| ≤ m[s(x)]

2 (x)s j−2(x) = o(x j−2) as x→ ∞. (4.51)

Let us compute the mean of the increment of Z2i
n . For i = 1 we have

E{Z2
n+1−Z2

n | Zn = x}= E(2xζ (x)+ζ
2(x))

= 2µ +b+o(1) as x→ ∞,

by (4.50) and (4.45). Applying now the convergence of Zn to infinity we get

E(Z2
n+1−Z2

n)→ 2µ +b as n→ ∞.

Hence,

EZ2
n ∼ (2µ +b)n as n→ ∞. (4.52)

For i≥ 2, we have

E{Z2i
n+1−Z2i

n | Zn = x}

= E

(
2ix2i−1

ζ (x)+ i(2i−1)x2i−2
ζ

2(x)+
2i

∑
l=3

x2i−l
ζ

l(x)
(

2i
l

))

= i[2µ +(2i−1)b+o(1)]x2i−2 +
2i

∑
l=3

x2i−lEζ
l(x)
(

2i
l

)
(4.53)

as x→ ∞, by (4.50). Owing to (4.51),

2i

∑
l=3

x2i−lEζ
l(x)
(

2i
l

)
=

2i

∑
l=3

x2i−lo(xl−2) = o(x2i−2) as x→ ∞.

Substituting this into (4.53) with x = Zn and taking into account convergence
Zn→ ∞, we deduce that

E{Z2i
n+1−Z2i

n }= i[2µ +(2i−1)b+o(1)]EZ2i−2
n as n→ ∞. (4.54)

In particular, for i = 2 we get

E{Z4
n+1−Z4

n}= 2(2µ +3b+o(1))EZ2
n

∼ 2(2µ +3b)(2µ +b)n as n→ ∞,

due to (4.52). This implies that

EZ4
n ∼ (2µ +3b)(2µ +b)n2 as n→ ∞.
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By induction, we deduce from (4.54) that, for all i≥ 1,

EZ2i
n ∼ (nb)i

i

∏
k=1

(2µ/b+2k−1) as n→ ∞,

which yields convergence of all moments of Z2
n/nb to that of Gamma distribu-

tion with mean 1+ 2µ/b and variance 2(1+ 2µ/b), as any Gamma distribu-
tion is uniquely determined by all its moments. Hence (4.49) is proven and the
proof is complete.

4.6 Convergence to Gamma distribution for non-positive
chain

The next result is on the convergence to a Γ-distribution covers both transient
and null-recurrent chains.

Theorem 4.10. Assume that, for some b > 0 and µ >−b/2,

m1(x)∼ µ/x and m2(x)→ b as x→ ∞ (4.55)

and that the family {ξ 2(x), x ∈ R} possesses an integrable majorant Ξ, that
is, EΞ < ∞ and

ξ
2(x)≤st Ξ for all x. (4.56)

If Xn → ∞ in probability as n → ∞, then X2
n /nb converges weakly to a Γ-

distribution with mean 1+2µ/b and variance 2(1+2µ/b).

The main difference between this result and Theorem 4.8 is that here we
impose conditions on the asymptotic behaviour of the first two full moments
of jumps, m1(x) and m2(x). Further, as we have commented after Theorem 4.8,
(4.56) implies (4.46). The rationale behind these more restrictive assumptions
is that the renewal function of any null-recurrent chain is infinite, hence we
cannot use time homogeneous truncations as it has been done in the proof of
Theorem 4.8. In order to prove Theorem 4.10 we introduce truncation of jumps
which depends not only on the spatial coordinate x but also on time n.

As far as it concerns applications, we apply this result to show convergence
to Γ-distribution for state-dependent branching processes with migration in
null-recurrent case in Theorem 11.7 convergence to Γ-distribution for null-
recurrent stochastic difference equations in Theorem 11.16, and convergence
to Γ-distribution for ALOHA network in Theorem 11.18.
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Proof. For any n ∈ N, consider a new Markov chain Yk(n), k = 0, 1, 2, . . . ,
with transition probabilities depending on the parameter n, whose jump η(n,x)
is just the original jump ξ (x) truncated at levels ±(x∨

√
n) depending on both

point x and time n, that is,

η(n,x) =
{

ξ (x) if |ξ (x)| ≤ x∨
√

n
0 else.

Given Y0(n) = X0, the probability of discrepancy between the trajectories of
{Yk(n)} and {Xk} by time n is at the most

P{Yk(n) 6= Xk for some k ≤ n} ≤
n−1

∑
k=0

P{|Xk+1−Xk| ≥
√

n}

≤ nP{Ξ≥ n}
≤ E{Ξ;Ξ≥ n}→ 0 as n→ ∞. (4.57)

Since Xn→ ∞ in probability, (4.57) implies that, for every c,

inf
n>n0,k∈[n0,n]

P{Yk(n)> c}→ 1 as n0→ ∞. (4.58)

By the choice of the truncation level,

|ξ (x)−η(n,x)| ≤ |ξ (x)|I{|ξ (x)|> x}.

Therefore, by the condition (4.56),

Eη(n,x) = Eξ (x)+o(1/x) as x→ ∞ uniformly for all n (4.59)

and

Eη
2(n,x) = Eξ

2(x)+o(1) as x→ ∞ uniformly for all n. (4.60)

In addition, the inequality |η(n,x)| ≤ x∨
√

n and the condition (4.56) imply
that, for all j ≥ 3,

Eη
j(n,x) = o(x j−2 +n( j−2)/2) as x→ ∞ uniformly for all n. (4.61)

Let us evaluate the mean of the increment of Y j
k (n). For j = 2 we have

E{Y 2
k+1(n)−Y 2

k (n)|Yk(n) = x}= E(2xη(n,x)+η
2(n,x))

= 2µ +b+o(1)

as x→∞ uniformly for all n, by (4.59) and (4.60). Applying now (4.58) we get

E(Y 2
k+1(n)−Y 2

k (n))→ 2µ +b as k,n→ ∞, k ≤ n.

Hence,

EY 2
n (n)∼ (2µ +b)n as n→ ∞. (4.62)
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Let now j = 2i, i≥ 2. We have

E{Y 2i
k+1(n)−Y 2i

k (n)|Yk(n) = x}

= E

(
2ix2i−1

η(n,x)+ i(2i−1)x2i−2
η

2(n,x)+
2i

∑
l=3

x2i−l
η

l(n,x)
(

2i
l

))

= i[2µ +(2i−1)b+o(1)]x2i−2 +
2i

∑
l=3

x2i−lEη
l(n,x)

(
2i
l

)
(4.63)

as x→ ∞ uniformly for all n, by (4.59) and (4.60). Owing to (4.61),

2i

∑
l=3

x2i−lEη
l(n,x)

(
2i
l

)
=

2i

∑
l=3

x2i−lo(xl−2 +n(l−2)/2)

= o(x2i−2)+
2i

∑
l=3

x2i−lo(n(l−2)/2)

as x→ ∞ uniformly for all n. Substituting this into (4.63) with x = Yk(n) and
taking into account (4.58), we deduce that

E{Y 2i
k+1(n)−Y 2i

k (n)}= i[2µ +(2i−1)b+o(1)]EY 2i−2
k (n)

+
2i

∑
l=3

EY 2i−l
k (n)o(n(l−2)/2). (4.64)

In particular, for j = 2i = 4 we get

E{Y 4
k+1(n)−Y 4

k (n)}= 2(2µ +3b)EY 2
k (n)+EYk(n)o(

√
n)+o(n)

∼ 2(2µ +3b)(2µ +b)n,

due to (4.62). It implies that

EY 4
n (n)∼ (2µ +3b)(2µ +b)n2 as n→ ∞.

By induction, we deduce from (4.64) that

EY 2i
n (n)∼ (nb)i

i

∏
k=1

(2µ/b+2k−1) as n→ ∞,

which yields—by the method of moments—that Y 2
n (n)/nb converges weakly

to a Γ-distribution with mean 1+ 2µ/b and variance 2(1+ 2µ/b). Together
with (4.57) this completes the proof.
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4.7 Functional convergence to Bessel process for
non-positive chain

Once the weak convergence of X2
n /n to a Γ-distribution is proven, it is natural

to guess diffusion approximation to X2
n /n by a Bessel process. This question

was originally positively answered by Lamperti in [112]. In the next theorem
the result of Lamperti is given under minimal moment conditions; our proof
is based on the method of moments as the proof of the weak convergence to a
Γ-distribution.

Introduce a family of piece-wise constant processes

X (n)(t) =
X[tn]√

bn
, t ∈ [0,1],

so X (n)(t) ∈D[0,1] where D[0,1] is the space of real-valued functions on [0,1]
which are right continuous with left limits.

Theorem 4.11. Suppose that either µ > b/2 and the conditions of Theorem 4.8
hold or µ >−b/2 and the conditions of Theorem 4.10 hold. Then the process
{X (n)(t)} converges weakly in D[0,1] to a Bessel process Bes(t) starting at
zero, with reflecting boundary condition in null-recurrent case, with drift µ/bx
and diffusion coefficient 1, that is, f (X (n)(·))⇒ f (Bes(·)) as n→ ∞ for all
bounded functionals f : D[0,1]→ R continuous in the Skorokhod topology.

Notice that since the limiting process is continuous, the last result is equiv-
alent to the weak convergence in the space C[0,1] if we define {X (n)(t)} as
a continuous piece-wise linear process whose trajectory connects the points
(k/n,Xk/

√
bn) by segments, for justification see, e.g. Ethier and Kurtz [60,

Proposition 10.4].
All the arguments in the proof below are still valid if we consider a triangular

array setting where the initial distribution of the chain depends on n in such a
way that, for some x0 ∈ R+,

X (n)
0 /
√

bn
p→ x0 as n→ ∞.

Then the process {X (n)(t)} converges weakly in D[0,1] to a Bessel process
Bes(t) with starting point x0, drift µ/bx and diffusion coefficient 1. In its turn,
this implies that, if

X (n)
0 /
√

bn⇒ ν as n→ ∞

for some probability distribution ν on R+, then the process {X (n)(t)} con-
verges weakly in D[0,1] to a Bessel process Bes(t) with initial distribution ν .

As far as it concerns applications, we apply this result to show convergence
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to Bessel process for a random walk conditioned to stay positive in Section
11.1, convergence to Bessel process for state-dependent branching processes
with migration in Theorems 11.3 and 11.7, convergence to Bessel process for
null-recurrent stochastic difference equations in Theorem 11.16, and conver-
gence to Bessel process for ALOHA network in Theorem 11.18.

Proof. Let the conditions of Theorem 4.8 hold, then as in the proof of that
theorem it is sufficient to prove weak convergence to a Bessel process of the
sequence of D[0,1]-processes {Z(n)(t)} which are defined as

Z(n)(t) =
Z[tn]√

bn
, t ∈ [0,1],

where the process {Zk} is defined in Section 4.1.
By Prokhorov’s Theorem, we need to prove weak convergence of finite di-

mensional distributions and tightness in D[0,1]. We start with finite-dimen-
sional distributions. By the method of moments, it suffices to prove that, for
any sequence of time epochs t1 < t2 < .. . < tk and natural numbers i1, i2, . . . ,
ik, the mixed moment

EZ(n)(t1)2i1 . . .Z(n)(tk)2ik (4.65)

converges to that of the Bessel process Bes, that is, to

EBes2i1(t1) . . .Bes2ik(tk). (4.66)

Indeed, conditioning on Z(n)(t1), . . . , Z(n)(tk−1) yields an equality

E{Z(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1

×[Z(n)(tk)2ik −Z(n)(tk−1)
2ik +Z(n)(tk−1)

2ik ] | Z(n)(t1), . . . ,Z(n)(tk−1)}
= Z(n)(t1)2i1 . . .Z(n)(tk−1)

2ik−1+2ik

+Z(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1E

{Z2ik
[ntk]
−Z2ik

[ntk−1]

(nb)ik

∣∣∣∣ Z[ntk−1]

}
.

The conditional expectation in the second term on the right hand side equals

[ntk]−1

∑
j=[ntk−1]

E
{Z2ik

j+1−Z2ik
j

(nb)ik

∣∣∣∣ Z[ntk−1](n)
}
,

where the jth term in the sum, by (4.54), may be evaluated as follows

E
{Z2ik

j+1−Z2ik
j

(nb)ik

∣∣∣∣ Z[ntk−1](n)
}
= (cik +o(1))E

{Z2ik−2
j

(nb)ik

∣∣∣∣ Z[ntk−1]

}
,
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where ci = i(2µ +(2i−1)b). In the case ik = 1 we get

E
{Z2

j+1−Z2
j

nb

∣∣∣∣ Z[ntk−1]

}
=

c1 +o(1)
nb

as n→ ∞ uniformly for all j,

so

E
{Z2

[ntk]
−Z2

[ntk−1]

nb

∣∣∣∣ Z[ntk−1]

}
→ c1(tk− tk−1)

b
as n→ ∞,

and hence

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1Z(n)(tk)2

= EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1+2

+
c1(tk− tk−1)

b
EZ(n)(t1)2i1 . . .Z(n)(tk−1)

2ik−1 +o(1).

In the case ik = 2 we get, as in the proof of Theorem 4.8,

E
{Z4

j+1−Z4
j

(nb)2

∣∣∣∣ Z[ntk−1]

}
= (c2 +o(1))E

{ Z2
j

(nb)2

∣∣∣∣ Z[ntk−1]

}
= (c2 +o(1))E

{Z2
j −Z2

[ntk−1]

(nb)2

∣∣∣∣ Z[ntk−1]

}
+(c2 +o(1))

Z2
[ntk−1]

(nb)2

=
c2c1 +o(1)

(nb)2 ( j− [ntk−1])+(c2 +o(1))
Z2
[ntk−1]

(nb)2 ,

so, as n→ ∞,

E
{Z4

[ntk]
−Z4

[ntk−1]

(nb)2

∣∣∣∣ Z[ntk−1]

}
= (c2c1 +o(1))

(tk− tk−1)
2

2b2 +(c2 +o(1))
tk− tk−1

b

Z2
[ntk−1]

nb
, (4.67)

and hence

lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1Z(n)(tk)4

= lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1+4

+c2
tk− tk−1

b
lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1+2

+c2c1
(tk− tk−1)

2

2b2 lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1 .
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Similar relations hold for all ik ∈N, with clear pattern; for instance, for ik = 3,

lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1Z(n)(tk)6

= lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1+6

+c3
tk− tk−1

b
lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1+4

+c3c2
(tk− tk−1)

2

2b2 lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1+2

+c3c2c1
(tk− tk−1)

3

3!b3 lim
n→∞

EZ(n)(t1)2i1 . . .Z(n)(tk−1)
2ik−1 .

Now let us show how to approximate the mixed even moments (4.66) via
slotting the Bessel process Bes(t), for any µ >−b/2. Consider a Markov chain
Bes j defined as a skeleton of Bes(t), Bes j := Bes( j). On the one hand, by the
self-similarity and continuity of a Bessel process,

(Bes([nt1]), . . . ,Bes([ntk])√
n

=st (Bes([nt1]/n), . . . ,Bes([ntk]/n))

⇒ (Bes(t1), . . . ,Bes(tk)) as n→ ∞,

which implies convergence of mixed even moments

E
(

Bes[nt1]√
n

)2i1
. . .

(
Bes[ntk]√

n

)2ik
→ EBes2i1(t1) . . .Bes2ik(tk)

as n→∞. On the other hand, the mean drift of the chain Besn is of order µ/bx
and the second moment of jumps converges to 1 as x→ ∞, see (1.40); in the
null recurrent case (1.40) is applicable because we assume reflecting boundary
condition for X(t). In addition, (1.41) holds. Therefore, a relation similar to
(4.54) follows, for all i≥ 1,

E{Bes2i
n+1−Bes2i

n }= i[2µ +(2i−1)b+o(1)]EBes2i−2
n .

So, all the calculations carried out for evaluation of mixed even moments of
Z(n)(t) are applicable to that of Besn. Therefore, the mixed even moments
(4.65) of {Z(n)(t)} converge to the corresponding mixed even moments (4.66)
of the Bessel process Bes(t), hence the weak convergence of finite dimensional
distributions of {Z(n)(t)} follows by the method of moments.

Now it only remains to prove tightness. For that it is enough to show that
there exists a c < ∞ such that, for all 0≤ t1 < t2 < t3 ≤ 1

E(Z(n)(t2)2−Z(n)(t1)2)2(Z(n)(t3)2−Z(n)(t2)2)2 ≤ c(t3− t1)2, (4.68)

see, e.g. Billingsley [16, Theorem 15.6]. Let us bound this expectation. Since
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we can always modify the chain {Zn} below any specific level, there is no loss
of generality if we assume that, for all x,

E{Z2
1 −Z2

0 | Z0 = x}> 0, (4.69)

E{Z4
1 −Z4

0 | Z0 = x}> 0. (4.70)

Conditioning on Z(n)(t1) and Z(n)(t2) yields the following expression for the
left hand side of (4.68)

E(Z(n)(t2)2−Z(n)(t1)2)2E{(Z(n)(t3)2−Z(n)(t2)2)2 | Z(n)(t1),Z(n)(t2)}
= E(Z(n)(t2)2−Z(n)(t1)2)2E{(Z(n)(t3)2−Z(n)(t2)2)2 | Z(n)(t2)}.

In its turn, the conditional expectation may be bounded as follows:

E{(Z(n)(t3)2−Z(n)(t2)2)2 | Z(n)(t2)}
= E{Z(n)(t3)4−Z(n)(t2)4 | Z(n)(t2)}

−2Z(n)(t2)2E{Z(n)(t3)2−Z(n)(t2)2 | Z(n)(t2)}
≤ E{Z(n)(t3)4−Z(n)(t2)4 | Z(n)(t2)},

owing to (4.69). The calculations leading to (4.67) also imply that, for some
c1 < ∞,

E{Z(n)(t3)4−Z(n)(t2)4 | Z(n)(t2)} ≤ c1(t3− t2)Z(n)(t2)2.

Therefore,

E{(Z(n)(t3)2−Z(n)(t2)2)2 | Z(n)(t2)} ≤ c1(t3− t2)Z(n)(t2)2. (4.71)

Further,

E(Z(n)(t2)2−Z(n)(t1)2)2Z(n)(t2)2

= E(Z(n)(t2)6−Z(n)(t1)6)−E(Z(n)(t2)4−Z(n)(t1)4)Z(n)(t1)2

−E((Z(n)(t2)2−Z(n)(t1)2)2Z(n)(t1)2−E(Z(n)(t2)2−Z(n)(t1)2)Z(n)(t1)4

≤ E(Z(n)(t2)6−Z(n)(t1)6)−E(Z(n)(t2)4−Z(n)(t1)4)Z(n)(t1)2

−E(Z(n)(t2)2−Z(n)(t1)2)Z(n)(t1)4

≤ E(Z(n)(t2)6−Z(n)(t1)6),

because the second and third terms on the right hand side of the first inequality
are negative due to the assumptions (4.70) and (4.69). Hence,

E(Z(n)(t2)2−Z(n)(t1)2)2Z(n)(t2)2 ≤ c2(t2− t1),

which together with (4.71) implies (4.68). Hence diffusion approximation fol-
lows under the conditions of Theorem 4.8.
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Under the conditions of Theorem 4.10 the proof is the same but starts with
time-dependent truncation of jumps.

4.8 Integral renewal theorem for transient chain with
Gamma limit

The next result determines the asymptotic behaviour of the renewal functions
Hy(x) and H(x) in the case of convergence to a Γ-distribution in the transient
case. The proof is based on preliminary upper bound delivered in Theorem 4.3.

Theorem 4.12. Under the conditions of Theorem 4.8, for any initial distribu-
tion of the chain {Xn},

[Bx2]

∑
n=0

P{Xn ∈ (x̂,x]}= (I(B)+o(1))x2

as x→ ∞ uniformly for all B≥ 0, where

I(B) :=
∫ B

0
Γ(1/z)dz = BΓ(1/B)+

∫
∞

1/B

1
z

γ(z)dz, I(∞) =
1

2µ−b
,

x̂ is defined in Theorem 4.8, and Γ(t) and γ(t) denote the cumulative dis-
tribution function and the probability density function respectively of the Γ-
distribution with mean 2µ +b and variance (2µ +b)2b. In particular,

H(x̂,x]∼ 1
2µ−b

x2 as x→ ∞. (4.72)

As far as it concerns applications, we apply this result to derive asymptotics
of the renewal measure for a random walk conditioned to stay positive in Sec-
tion 11.1; transience of state-dependent branching processes with migration in
Theorem 11.3; transience of level-dependent collective risk processes in The-
orem 11.10.

Proof. By Theorem 4.8, for every fixed B > 0,

[Bx2]

∑
n=0

P{Xn ∈ (x̂,x]}=
[Bx2]

∑
n=0

(Γ(x2/n)+o(1))

=
[Bx2]

∑
n=0

Γ(x2/n)+o(x2) as x→ ∞.
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Due to

[Bx2]

∑
n=0

Γ(x2/n)∼ x2
∫ B

0
Γ(1/z)dz as x→ ∞,

we conclude that, for any fixed B > 0,

[Bx2]

∑
n=0

P{Xn ∈ (x̂,x]} ∼ I(B)x2 as x→ ∞. (4.73)

Since the sum is increasing in B, it remains to prove that (4.72) holds. Firstly,
since ∫ B

0
Γ(1/z)dz→ 1

2µ−b
as B→ ∞,

we conclude a lower bound

liminf
x→∞

H(x̂,x]
x2 ≥ 1

2µ−b
. (4.74)

Secondly, for an arbitrary y, let us now prove the matching upper bound,

limsup
x→∞

Hy(x̂,x]
x2 ≤ 1

2µ−b
. (4.75)

For any A > 1, T (Ax) is the first up-crossing time of the level Ax. By the
Markov property,

Hy(x̂,x]≤ Ey

T (Ax)−1

∑
n=0

I{Xn ∈ (x̂,x]}

+P{Xn ≤ x for some n | X0 > Ax}sup
z≤x

Hz(x̂,x]

≤ Ey

T (Ax)−1

∑
n=0

I{Xn ∈ (x̂,x]}

+
(
eδ (R(x)−R(Ax))+o(1)

)
sup
z≤x

Hz(x̂,x] (4.76)

as x→ ∞ uniformly for all A > 1, due to (4.32) where R(x) is determined by
r(x) = γ/x with γ ∈ (0,2µ/b), hence

eδ (R(x)−R(Ax)) = 1/Aδγ .

Thus, applying the upper bound proven in Theorem 4.3 on the right hand side
of (4.76) we deduce that, for some c < ∞,

Hy(x̂,x]≤ Ey

T (Ax)−1

∑
n=0

I{Xn ∈ (x̂,x]}+
(
c/Aδγ +o(1)

)
x2 (4.77)
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as x→∞ uniformly for all A > 1. The expectation of the sum on the right hand
side of (4.77) may be estimated as follows: for C > 1,

Ey

T (Ax)−1

∑
n=0

I{Xn ∈ (x̂,x]} ≤ Ey

[CA2x2]

∑
n=0

I{Xn ∈ (x̂,x]}

+Ey

{T (Ax)−1

∑
n=0

I{Xn > x̂};T (Ax)>CA2x2
}
.

The second term on the right hand side is not greater than

Ey

{
L(x̂,T (Ax)); Xn ≤ x̂ for some n≥ A2x2

}
+Ey

{
L(x̂,T (Ax)); Xn > x̂ for all n ∈ [A2x2,T (Ax)−1], T (Ax)>CA2x2

}
≤ Ey

{
L(x̂,T (Ax)); Xn ≤ x̂ for some n≥ A2x2

}
+Ey

{
L(x̂,T (Ax)); L(x̂,T (Ax))> (C−1)A2x2

}
.

Since conditions of Theorem 4.2 are met with v(x) = µ/2x, the family of ran-
dom variables

L(x̂,T (Ax))
(Ax)2

is uniformly integrable, so, for any fixed A > 1,

sup
x>x̂, y

1
x2Ey

{
L(x̂,T (Ax)); L(x̂,T (Ax))> (C−1)A2x2

}
≤ ψ(C),

where ψ(C)→ 0 as C→ ∞. Since Xn→ ∞ with probability 1,

P{Xn ≤ x̂ for some n≥ A2x2}→ 0 as x→ ∞.

Therefore, again by the uniform integrability,

1
x2Ey

{
L(x̂,T (Ax)); Xn ≤ x̂ for some n≥ A2x2

}
→ 0 as x→ ∞.

Altogether yields

limsup
x→∞

sup
y

1
x2Ey

{T (Ax)−1

∑
n=0

I{Xn > x̂};T (Ax)>CA2x2
}
≤ ψ(C),

hence, uniformly for all y,

limsup
x→∞

1
x2Ey

T (Ax)−1

∑
n=0

I{Xn ∈ (x̂,x]} ≤ Ey

[CA2x2]

∑
n=0

I{Xn ∈ (x̂,x]}+ψ(C),
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which being substituted into (4.77) gives

limsup
x→∞

Hy(x̂,x]
x2 ≤ limsup

x→∞

1
x2Ey

[CA2x2]

∑
n=0

I{Xn ∈ (x̂,x]}+ψ(C)+ c/Aδγ .

As has already been shown,

1
x2

[CA2x2]

∑
n=0

Py{Xn ∈ (x̂,x]}→ I(CA2) as x→ ∞,

which implies the following upper bound, for each fixed A, C > 1,

limsup
x→∞

Hy(x̂,x]
x2 ≤ I(CA2)+ψ(C)+ c/Aδγ .

Letting now first C→ ∞ and then A→ ∞, we get the required upper bound
(4.75). The lower (4.74) and upper (4.75) bounds yield the equivalence, for
every fixed y,

Hy(x̂,x]∼
1

2µ−b
x2 as x→ ∞.

Together with the uniform in y bound of Theorem 4.3 this completes the proof
of (4.72) and hence the result follows.

The next result will be used later to find tail asymptotics for the stationary
measure when {Xn} is recurrent.

Theorem 4.13. Let the conditions of Theorem 4.8 hold. Then, for q(z)≥ 0 and
any distribution of X0,

[Bx2]

∑
n=0

E
{

e−∑
n−1
k=0 q(Xk); Xn ∈ (x̂,x]

}
= (I(B)+o(1))x2 Ee−∑

∞
k=0 q(Xk)

as x→ ∞ uniformly for all B ∈ [0,∞], where I(B) is defined in Theorem 4.12.

Proof. We may apply Lemma 4.5 because its condition (4.39) is guaranteed
by Theorem 4.3, while the condition (4.40) by Theorem 4.12.

4.9 Local renewal theorem for transient chain on Z with
Gamma limit

In this section we discuss a local version of the renewal theorem in the case of
convergence to a Γ-distribution. In this section we do this for a lattice Markov
chain. Without loss of generality, let the minimal lattice where {Xn} is living
on be Z. It is unclear whether the local renewal theorem would be valid if we
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only assumed a regular asymptotic behaviour of moments of jumps. It is very
likely that it can be only proven for an asymptotically homogeneous in space
Markov chain as it is defined in Definition 1.23, that is, if we assume weak
convergence of jumps ξ (x) to some random variable ξ on Z, that is,

ξ (x)⇒ ξ as x→ ∞. (4.78)

Theorem 4.14. Let there exist b > 0 and µ > b/2 such that

m1(x)∼ µ/x and m2(x)→ b as x→ ∞, (4.79)

and

limsup
n→∞

Xn = ∞ with probability 1.

Furthermore we assume the convergence (4.78). Let Z be the minimal lattice
for ξ , and let the limit ξ satisfy

Eξ = 0, Eξ
2 = b. (4.80)

In addition, let the jumps ξ (x) be bounded below and above by J uniformly for
all x ∈ Z+, that is,

|ξ (x)| ≤ J for all x ∈ Z+. (4.81)

Then

h(x) := H{x} ∼ 2
2µ−b

x as x→ ∞. (4.82)

Moreover,

P
{ ∞

∑
n=0

I{Xn = x}> N
}
= c1(x)

(
1− c2(x)

x

)N
, (4.83)

where c1(x)→ 1 and c2(x)→ µ−b/2 > 0 as x→ ∞, so the family of random
variables

1
x

∞

∑
n=0

I{Xn = x}, x ∈ {1,2,3, . . .}, (4.84)

is uniformly integrable.

More general results are derived in Chapter 6, via different technique based
on the martingale approach.

Proof. Consider a stopping time

τ(x) := inf{n≥ 1 : Xn ≤ x}.
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Since {Xn} is transient, Px+k{τ(x) = ∞} > 0 for all k ≥ 1. First let us under-
stand the asymptotic behaviour of this probability as x grows. To this end, let
us fix a δ ∈ (0,2µ/b−1) and define two decreasing functions

U±(x) :=
1

(2µ/b−1±δ )x2µ/b−1±δ
, x≥ 1.

By the mean value theorem, for all x and j ∈ Z there is a θ ∈ (0,1) such that

U±(x+ j)−U±(x) =−
j

(x+θ j)2µ/b±δ
∼ − j

x2µ/b±δ
as x→ ∞,

which implies

U±(x+ j)−U±(x)∼− j(2µ/b−1±δ )
U±(x)

x
.

Then, since ξ (x) are bounded below, we get for all fixed k ≥ 1 that

Ex+k
{

U±(Xτ(x))−U±(x+ k); τ(x)< ∞
}

∼ (2µ/b−1±δ )
U±(x+ k)

x
Ex+k{x+ k−Xτ(x); τ(x)< ∞}.

(4.85)

Let us compute the drift of U±(Xn). Since the jumps are bounded, by Tay-
lor’s expansion,

E(U±(x+ξ (x))−U±(x))

= U ′±(x)m1(x)+
1
2

m2(x)U ′′±(x)m2(x)+O(U ′′′± (x))

= −x−2µ/b∓δ m1(x)+(µ/b±δ/2)x−2µ/b−1∓δ m2(x)+O(x−2µ/b−2∓δ )

= ±(δb/2+o(1))x−2µ/b−1∓δ as x→ ∞.

Therefore, the sequence U−(Xn∧τ(x)) is a supermartingale for all sufficiently
large x. Then, by the optional stopping theorem,

Ex+k{U−(Xτ(x)); τ(x)< ∞} ≤U−(x+ k).

This is equivalent to

Ex+k
{

U−(Xτ(x))−U−(x+ k); τ(x)< ∞
}
≤U−(x+ k)Px+k{τ(x) = ∞}.

Using now (4.85), we get, for all sufficiently large x,

Px+k{τ(x) = ∞} ≥ 2µ/b−1−2δ

x
Ex+k{x+ k−Xτ(x); τ(x)< ∞}. (4.86)

Since {U+(Xn∧τ(x))} is a submartingale for all sufficiently large x,

Ex+k{U+(Xτ(x)); τ(x)< ∞} ≥U+(x+ k).
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This implies that, for all sufficiently large x,

Px+k{τ(x) = ∞} ≤ 2µ/b−1+2δ

x
Ex+k{x+ k−Xτ(x); τ(x)< ∞}.

Combining this lower bound with (4.86) and due to the arbitrary choice of
δ > 0, we conclude that, as x→ ∞,

Px+k{τ(x) = ∞} =
2µ/b−1+o(1)

x
Ex+k{x+ k−Xτ(x); τ(x)< ∞}. (4.87)

Now let us determine the limit of Ex+k{x+ k−Xτ(x); τ(x) < ∞}. Let ξk,
k ≥ 1, be independent copies of the random variable ξ . Define S0 = 0, Sk :=
Sk−1 +ξk for k ≥ 1, and

θ j := min{k ≥ 1 : Sk <− j}, ψ j =−Sθ j .

Assumption (4.78) implies that, for every n≥ 1, (X1−X0,X2−X0, . . .Xn−X0)

converges weakly, as X0→ ∞, to (S1,S2, . . . ,Sn). In particular,

Ex+k{x+ k−Xτ(x); τ(x)≤ n} → E{ψk−1; θk ≤ n}, n≥ 1.

Noting that both x+ k−Xτ(x) and ψk−1 are bounded, we conclude that

lim
x→∞

Ex+k{x+ k−Xτ(x); τ(x)< ∞} = Eψk−1.

Plugging this into (4.87), we get for all k ≥ 1

Px+k{τ(x) = ∞} ∼ 2µ−b
bx

Eψk−1 as x→ ∞. (4.88)

We now use these asymptotics to study asymptotic behaviour of the renewal
mass function h(x). Choose any j0 ∈ [1,J] such that

P{ξ = j0}> 0 (4.89)

and consider the following upcrossing stopping times:

σ(x) := min{n≥ 1 : Xn−1 ≤ x, Xn > x},
γ(x) := min{n≥ 1 : Xn−1 ≤ x, Xn = x+ j0},

and let us evaluate the probabilities

pi(x) := Px+i{γ(x) = ∞}

for i = 1, . . . , J, and large values of x. For all i≤ J, the Markov property leads
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to the equation

Px+i{γ(x) = ∞}

= Px+i{σ(x) = ∞}+
J

∑
j=1, j 6= j0

Px+i{σ(x)< ∞,Xσ(x) = x+ j}Px+ j{γ(x) = ∞}

= Px+i{τ(x) = ∞}+
J

∑
j=1, j 6= j0

Px+i{τ(x)< ∞,Xσ(x) = x+ j}Px+ j{γ(x) = ∞},

because the transience of {Xn} implies

Px+i{τ(x)< ∞,σ(x) = ∞} = 0.

Hence, the (J−1)-dimensional vector

p(x) := (p1(x), . . . , p j0−1(x), p j0+1(x), . . . , pJ(x))>

satisfies the equation

p(x) = q(x)+A(x)p(x),

where

qi(x) = Px+i{σ(x) = ∞} = Px+i{τ(x) = ∞}

and A(x) is a matrix with entries Ai j(x), i, j ∈ {1, . . . , j0 − 1, j0 + 1, . . . ,J},
where

Ai j(x) = Px+i{σ(x)< ∞,Xσ(x) = x+ j}.

Therefore, provided the matrix I−A(x) is invertible,

p(x) = (I−A(x))−1q(x). (4.90)

In view of P{ξ = j0}> 0—see (4.89)—and because Z is the minimal lattice
for ξ , it follows that there exists an ε > 0 such that

Ai j0 := P{Sσ = j0 | S0 = i} > 2ε for all i≤ J,

where σ := inf{n≥ 1 : Sn−1 ≤ 0, Sn > 0} is finite a.s. By the condition (4.78),

P{Xσ(x) = x+ j0,σ(x)< ∞ | X0 = x+ i}→ P{Sσ = j0 | S0 = i}

as x→ ∞, hence there is an x0 such that, for all x≥ x0,

Ai j0(x) = P{Xσ(x) = x+ j0,σ(x)< ∞ | X0 = x+ i}> ε for all i≤ J.

Then each row of the matrix A(x) sums to a number less than 1− ε , hence the
matrix I−A(x) is invertible and

(I−A(x))−1 → (I−A)−1 as x→ ∞,
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where

Ai j = P{Sσ = j | S0 = i},

and it follows from (4.90) and (4.88) that, as x→ ∞,

p(x) ∼ 2µ−b
bx

(I−A)−1(Eψ1, . . . ,Eψ j0−1,Eψ j0+1, . . . ,EψJ)
>

=:
1
x
(c1, . . . ,c j0−1,c j0+1, . . . ,cJ)

>.

Thus,

p j0(x) = Px+ j0{γ(x) = ∞} (4.91)

= Px+ j0{τ(x) = ∞}+
J

∑
j=1, j 6= j0

A j0 j(x)p j(x)

∼ 1
x

(2µ−b
b

Eψ j0−1 +
J

∑
j=1, j 6= j0

A j0 jc j

)
as x→ ∞. (4.92)

Denote by N(x) the number of visits of {Xn} to the state x. We have

h(x) = E
γ(x)−1

∑
n=1

I{Xn = x}+Ex+ j0N(x)P{γ(x)< ∞}. (4.93)

Since the random variable

γ(x)−1

∑
n=1

I{Xn = x}

is stochastically dominated by a geometric random variable with parameter
1−P{ξ (x) = j0} and P{ξ (x) = j0} → P{ξ = j0}> 0 as x→ ∞, there exists
a sufficiently large x1 ∈ Z+ such that the first term on the right hand side of
(4.93) is bounded above for all x≥ x1,

sup
x≥x1

E
γ(x)−1

∑
n=1

I{Xn = x}< ∞. (4.94)

In addition, since all pi(x)→ 0,

P{γ(x)< ∞}→ 1 as x→ ∞. (4.95)

Further, by the Markov property,

Ex+ j0N(x) = Ex+ j0

γ(x)−1

∑
n=1

I{Xn = x}+Px+ j0{γ(x)< ∞}Ex+ j0N(x),
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which yields, by (4.91),

Ex+ j0N(x) =
1

p j0(x)
Ex+ j0

γ(x)−1

∑
n=1

I{Xn = x}

∼ cxEx+ j0

γ(x)−1

∑
n=1

I{Xn = x}.

Taking into account that

Ex+ j0

γ(x)−1

∑
n=1

I{Xn = x}→ E
γ−1

∑
n=1

I{Sn = 0 | S0 = j0} as x→ ∞,

where

γ := inf{k : Sk−1 ≤ 0, Sk = j0},

we conclude

Ex+ j0N(x)∼ ĉx as x→ ∞.

Substituting this together with (4.94) and (4.95) into (4.93) we deduce that
h(x) ∼ ĉx as x→ ∞. Then it follows from the integral renewal Theorem 4.12
that necessarily ĉ = 2/(2µ−b) and (4.82) is proven.

To prove (4.83), let us first notice that the Markov property implies

P
{ ∞

∑
n=1

I{Xn = x}> N
}

= P{Xn = x for some n≥ 0}PN{Xn = x for some n≥ 1 | X0 = x}.

We take

c1(x) := P{Xn = x for some n≥ 0};

it tends to 1 as x→ ∞ because, by the boundedness of jumps from above—see
(4.81), for X0 < x,

1 = P{Xn ∈ [x,x+ J] for some n}
= P{Xn = x for some n}

+ P{Xn ∈ [x+1,x+ J] for some n, Xn 6= x for all n},

and because the second probability on the right hand side tends to zero as
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x→ ∞. Indeed, it is not greater than

J

∑
i=1

P{Xn = x+ i for some n, Xn 6= x for all n}

≤
J

∑
i=1

P{Xn 6= x for all n | X0 = x+ i}

and the ith probability on the right hand side converges as x→ ∞ to

P{Sn 6= 0 for all n | S0 = i}= 0,

due to Eξ = 0. Then (4.83) holds with

c2(x) = xP{Xn 6= x for all n≥ 1 | X0 = x}

because

E
∞

∑
n=1

I{Xn = x}= c1(x)
1−P{Xn = x for some n≥ 1 | X0 = x}

∼ 2x
2µ−b

as x→ ∞, by (4.82).

Theorem 4.15. Let the conditions of Theorem 4.14 hold. Then, for q(z) ≥ 0
and any distribution of X0,

∞

∑
n=0

E
{

e−∑
n−1
k=0 q(Xk); Xn = x

}
∼ 2x

2µ−b
Ee−∑

∞
k=0 q(Xk) as x→ ∞.

Proof. We may apply Lemma 4.5 whose all conditions are satisfied by The-
orem 4.14.

We now turn to the case when (4.79) holds with µ = b/2. In this case we
prove the following result.

Theorem 4.16. Let there exists an γ > 0 such that

2m1(x)
m2(x)

=
1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

γ +1+o(1)
x logx · . . . · log(m) x

(4.96)

as x→ ∞ and

limsup
n→∞

Xn = ∞ with probability 1.

Furthermore we assume the convergence (4.78) and that the limit ξ satisfies
(4.80) In addition, let the jumps ξ (x) are bounded below and above by J uni-
formly for all x ∈ Z+, that is,

|ξ (x)| ≤ J for all x ∈ Z+.
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Then there exists a positive constant c such that

h(x) := H{x} ∼ cx logx · . . . · log(m) x as x→ ∞. (4.97)

Moreover,

P
{ ∞

∑
n=0

I{Xn = x}> N
}
= c1(x)

(
1− c2(x)

x logx · . . . · log(m) x

)N
, (4.98)

where c1(x)→ 1 and c2(x)→ 1/c as x→ ∞, hence the family of random vari-
ables

1
x logx · . . . · log(m) x

∞

∑
n=0

I{Xn = x}, x ∈ {1,2,3, . . .}, (4.99)

is uniformly integrable.

Proof. We first derive an asymptotic formula for the probability Px+k{τ(x) =
∞}. We define functions U± by the relations

U±(x) =
1

(γ±δ )(log(m) x)γ±δ
.

It is easy to see that

U ′±(x) =−
1

x logx · . . . · log(m−1) x · (log(m) x)γ+1±δ
(4.100)

and

U ′′±(x)
U ′±(x)

=−1
x
− 1

x logx
− . . .− 1

x logx · . . . · log(m−1) x

− (γ +1±δ )

x logx · . . . · log(m−1) x · log(m) x
. (4.101)

Let us compute the drift of U±(Xn). Since the jumps are bounded, by Taylor’s
expansion,

E(U±(x+ξ (x))−U±(x)) = U ′±(x)m1(x)+
1
2

m2(x)U ′′±(x)m2(x)+O(U ′′′± (x))

=
U ′±(x)m2(x)

2

[
2m1(x)
m2(x)

+
U ′′±(x)
U ′±(x)

]
+O

(
1
x3

)
.

Taking into account (4.96), (4.100) and (4.101), we infer that

E(U±(x+ξ (x))−U±(x))∼±
bδ

2
1

(x logx · . . . · log(m) x)2(log(m) x)γ+2±δ
.

In particular, the sequences {U−(Xn∧τ(x))} and {U+(Xn∧τ(x))} are super- and
submartingale respectively for all sufficiently large x.
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Furthermore, it follows from the definition of U± and from (4.100) that

U±(x+ j)−U±(x)∼− jU ′±(x) ∼ − j(γ±δ )
U±(x)

x logx · . . . · log(m) x
.

Using this relation and repeating the arguments from the derivation of (4.88),
we obtain, for every k ≥ 1,

Px+k{τ(x) = ∞} ∼ γ

x logx · . . . · log(m) x
Eψk−1 as x→ ∞. (4.102)

The remaining part of the proof coincides with that of Theorem 4.14.

4.10 Comments to Chapter 4

First time a limit theorem for Markov chains with asymptotically zero drift was
produced by Lamperti in [112], where the convergence to a Γ-distribution was
proven for null-recurrent and transient Markov chains with jumps whose all
moments are finite. His proof was based on the method of moments. He also
claimed that his proof combined with truncation argument for jumps continues
to work for chains if we only assume that supxEξ 4(x) < ∞, but no proof was
provided.

This result was also proven later by Klebaner [99] for a more general ran-
dom sequences of martingale type with jumps satisfying the following condi-
tion: for all k ≥ 3, E|ξ (x)|k = o(xk−2) as x→ ∞. The corresponding result is
restricted to transient sequences.

Later the convergence to a Γ-distribution was extended by Kersting [94] to
martingale-type transient random sequences with jumps having moments of
order 2+ δ bounded for some δ > 0 and under some additional smoothness
conditions on the drift.

Diffusion approximation by a Bessel process was originally proven by Lam-
perti in [112] again under the condition that absolute moments of jumps of any
order are bounded. His proof is based on the method of moments as the proof
of weak convergence to a Γ-distribution.

Convergence to the three-dimensional Bessel process for a simple sym-
metric random walk conditioned to stay non-negative has been known for a
long time from the classic paper by Pitman [133]. Bryn-Jones and Doney [30]
proved this convergence to the three-dimensional Bessel process for a general
random walk on the lattice conditioned to stay non-negative under minimal
moment conditions; see also Caravenna and Chaumont [32] for general results
in this area. In our text application of functional results to random walk condi-
tioned to stay non-negative is discussed in Section 11.1.
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For a general lattice Markov chain with drift proportional to c/x and the
2+ δ moment of jumps bounded, the weak convergence to a Bessel process
was only proven by Bertoin and Kortchemski [15] for a high level initial state,
X0 =

√
n.

Csáki et al. [39] proved a strong approximation of certain nearest neighbour
random walk by a transient Bessel process that was constructed from the latter
by using stopping times.

Rosenkrantz [138] considered the following nearest neighbour Markov chain
with special transition probabilities: p(0,1) = 1,

p(x,x−1) =
1
2

(
1− λ

x+λ

)
, p(x,x+1) = 1− p(x,x−1), x≥ 1, (4.103)

where λ > −1/2. This Markov chain was introduced by Karlin and McGre-
gor [86] who managed to compute the n-step transition probabilities using the
theory of orthogonal polynomials. Using orthogonal polynomials Rosenkrantz
proved a local version of Lamperti’s result on convergence to a Γ-distribution
and estimated large deviation probabilities P{X2

n /nb > x} in the range x =

o(
√

n) where Γ-tail approximation still works.
In [27], Brézis, Rosenkrantz and Singer again considered a nearest neigh-

bour Markov chain with transition probabilities similar to (4.103), for which
they have got a large deviation result in the range where x2− (logn)/2→−∞

by a different techniques based on estimation of how close are expected val-
ues of a smooth function of the original scaled process and that of the limiting
diffusion. This result allowed them to prove the law of the iterated logarithm,
that is,

P0

{
limsup

n→∞

X2
n

2n log logn
≤ 1
}
= 1.

Guivarc’h et al. [76, Theorems 42 and 43] obtained the weak convergence to
a Γ-distribution in the transient case and the local renewal theorem in that case,
for the nearest neighbour chain with transition probabilities (4.103). They used
the orthogonal polynomials technique, as Rosenkrantz [138].

The orthogonal Laguerre polynomials technique was used by Voit in [149]
for proving convergence to a Γ-distribution for critical branching processes
with immigration.

A local version of Lamperti’s Γ-convergence [112] was proven by Alexander
in [5, Theorem 2.4] for a nearest neighbour null-recurrent Markov chain with
transition probabilities

p(x,x−1) = 1/2−λ/x+o(1/x), p(x,x+1) = 1− p(x,x−1), x≥ 1.

An integral (elementary) renewal theorem for a transient Markov chain with
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drift m1(x) asymptotically proportional to 1/x at infinity was proved in [42]; it
was shown there that then the renewal function behaves as cx2 for large values
of x.



5
Limit theorems for transient Markov chains with

drift decreasing slower than 1/x

As in the last chapter we again assume that the first two moments of jumps
of a Markov chain {Xn} demonstrate regular behaviour at infinity but now we
consider the case where the drift decreases at a rate slower than 1/x, that is,

xEξ (x) → ∞ as x→ ∞.

A particular example is if, for some c, b > 0 and β ∈ (0,1),

m1(x)∼ c/xβ , m2(x)→ b > 0 as x→ ∞.

Then clearly {Xn} escapes to infinity at a faster rate than it happens in the
case of drift of order 1/x, and, in contrast to the case of convergence to a Γ-
distribution, the law of large numbers holds,

X1+β
n

n
p→ c(1+β ) as n→ ∞.

The asymptotic behaviour of the renewal measure is as follows

∞

∑
n=0

P{Xn ≤ x} ∼ x1+β

c(1+β )
as x→ ∞.

In addition, the following weak convergence to a normal distribution holds

Xn− (c(1+β )n)1/(1+β )√
b 1+β

1+3β
n

⇒ N1/2+µ/b,2 as n→ ∞.

In this chapter, we study such kind of results.

155
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5.1 Law of Large Numbers

As seen from the results discussed in the last chapter, in the case of a drift of
order 1/x there is no law of large numbers for Xn with a positive limit. In this
section we show that a drift approaching zero slower than 1/x gives rise to a
law of large numbers for Xn.

Let v(x)> 0 be a decreasing differentiable function such that

xv(x)→ ∞ as x→ ∞, (5.1)

which is equivalent to 1/v(x) = o(x) and thus

V (x)≤ x/v(x) = o(x2) as x→ ∞, (5.2)

where a convex function V is defined as

V (x) :=
∫ x

0

1
v(y)

dy for x > 0;

V (x) = 0 for x ≤ 0. In this chapter, the function v(x) is responsible for the
drift of the chain, it describes the asymptotic behaviour of the truncated drift
function, that is,

m[s(x)]
1 (x)∼ v(x) as x→ ∞. (5.3)

In the previous chapter we have considered the case where the second trun-
cated moment m[s(x)]

2 (x) is convergent to a positive constant, so the drift func-
tion m[s(x)]

1 (x) and the quotient 2m[s(x)]
1 (x)/m[s(x)]

2 (x) are asymptotically propor-
tional to each other which means that v(x) is typically asymptotically propor-
tional to the reference function r(x) describing the latter quotient.

In this chapter we do not assume convergence of the second moment, it is
allowed to grow unboundedly as x tends to infinity in which case the quotient
2m[s(x)]

1 (x)/m[s(x)]
2 (x) decays faster than the drift. We only assume that

2xm[s(x)]
1 (x)

m[s(x)]
2 (x)

→ ∞ as x→ ∞. (5.4)

Throughout this chapter we assume some regular behaviour of v(x). We as-
sume that the function v(x) is differentiable and

v′(x) = O(v(x)/x) as x→ ∞. (5.5)

Then the function v(x) is o(x)-insensitive, that is,

v(x±o(x))∼ v(x) as x→ ∞, (5.6)
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and hence, for any function s(x) of order o(x) and n≥ 1,

V (x)≥
∫ x

x−ns(x)

1
v(y)

dy ≥ ns(x)
v(x−ns(x))

∼ ns(x)
v(x)

and

V (x± s(x)) =V (x)+
∫ x±s(x)

x

1
v(y)

dy = V (x)± s(x)(1+o(1))
v(x)

,

which yield, respectively,

V (x)v(x)/s(x)→ ∞ as x→ ∞ (5.7)

and

V (x± s(x))∼V (x) as x→ ∞. (5.8)

Theorem 5.1. Let, for some increasing function s(x) of order o(x) as x→ ∞,
the drift conditions (5.3) and (5.4) hold. Let the following conditions hold

E{|ξ (x)|; ξ (x)<−s(x)}= o(v(x)), (5.9)

P{|ξ (x)|> s(x)} ≤ p(x)v(x), (5.10)

where p(x) is a decreasing integrable at infinity function. Assume also that

limsup
n→∞

Xn = ∞ with probability 1. (5.11)

Then

V (Xn)

n
p→ 1 as n→ ∞.

Since the function V is convex, its inverse V−1 is concave and hence

Xn

V−1(n)
p→ 1 as n→ ∞. (5.12)

Let us give a sufficient condition for (5.9) and (5.10). If the family {|ξ (x)|,
x ≥ 0} possesses a majorant Ξ satisfying EV (Ξ)< ∞, that is, |ξ (x)| ≤st Ξ for
all x, then there exists a function s(x) of order o(x) such that (5.9) and (5.10)
hold, the second one follows from Lemma 2.32 with U(x) ≡ 1. Here Lemma
2.32 applies because V (x)/x is increasing due to the inequality V (x)< x/v(x)
which implies positive derivative of V (x)/x.
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Proof. By the condition (5.4), there exists a decreasing function r(x)> 0 such
that xr(x)→ ∞ and, for all sufficiently large x,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ r(x), (5.13)

and s(x) = o(1/r(x)). Due to Lemma 2.31, we can assume that

r′(x) = O(r(x)/x) = o(r2(x)) as x→ ∞. (5.14)

As in the proof of Theorem 4.8, we consider a modified Markov chain
{X̃n} on the same probability space as {Xn} with truncated jumps ξ̃ (x) =
ξ (x)I{|ξ (x)| ≤ s(x)}, and, as explained there, we can assume that {X̃n} sat-
isfies the unboundedness of trajectories condition (5.11).

Due to (5.13) and the convergence xr(x)→ ∞,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ 2
x

for all sufficiently large x,

so the condition (2.108) is satisfied and Theorem 2.21 implies a.s. convergence
X̃n→ ∞ as n→ ∞.

The chain {X̃n} satisfies all the conditions of Theorem 4.3, hence

H X̃
y (x,x+1/r(x)]≤ c

v(x)r(x)
for some c < ∞.

Therefore, Lemma 4.1 is applicable to the chains Y = X and Z = X̃ with l(x) =
1/r(x) and then it suffices to prove that

V (Zn)

n
p→ 1 as n→ ∞. (5.15)

Let us evaluate the expectation of the increment of V 1+α(Zn), α ≥ 0: for all
sufficiently large x,

E{V 1+α(Zn+1)−V 1+α(Zn) | Zn = x}
= E{V 1+α(x+ξ (x))−V 1+α(x); |ξ (x)| ≤ s(x)}

= (V 1+α)′(x)m[s(x)]
1 (x)+E{(V 1+α)′′(x+θξ (x))ξ 2(x)/2; |ξ (x)| ≤ s(x)}

= (1+α)V α(x)
1

v(x)
m[s(x)]

1 (x)

+(1+α)E
{(

αV α−1 1
v2 −V α v′

v2

)
(x+θξ (x))ξ 2(x)/2; |ξ (x)| ≤ s(x)

}
.

(5.16)
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Owing to the condition (5.3), the first term on the right hand side equals

(1+α)V α(x)
1

v(x)
m[s(x)]

1 (x) = (1+α +o(1))V α(x) as x→ ∞.

By (5.5) and (5.7) with s = 1/r,

α
V α−1(x+ y)

v2(x+ y)
−V α(x+ y)

v′(x+ y)
v2(x+ y)

= V α(x+ y)
(

α

V (x+ y)v2(x+ y)
+o(1)

r(x+ y)
v(x+ y)

)
= o(V α(x+ y)r(x+ y)/v(x+ y))

= o(V α(x)r(x)/v(x)) (5.17)

as x→ ∞ uniformly on the set |y| ≤ s(x) = o(1/r(x)), due to the insensitivity
conditions (5.6) and (5.8). Since the drift condition (5.13) may be rearranged
as

m[s(x)]
2 (x)≤

2m[s(x)]
1 (x)
r(x)

∼ 2v(x)
r(x)

, (5.18)

the relation (5.17) implies that the second term on the right hand side of (5.16)
is of order o(V α(x)) as x→ ∞. Substituting altogether into (5.16) we finally
deduce that, as x→ ∞,

E{V 1+α(Zn+1)−V 1+α(Zn) | Zn = x}= (1+α +o(1))V α(x). (5.19)

Setting now α = 0 we get

E{V (Zn+1)−V (Zn) | Zn = x}→ 1 as x→ ∞. (5.20)

Applying here the a.s. convergence Zn→ ∞, we conclude that

EV (Zn)∼ n as n→ ∞. (5.21)

Next take α = 1 in (5.19). Then

E{V 2(Zn+1)−V 2(Zn)}= (2+o(1))EV (Zn) ∼ 2n as n→ ∞.

Therefore,

E
(V (Zn)

n

)2
→ 1 as n→ ∞.

Together with (5.21) it yields convergence of variances

Var
V (Zn)

n
→ 0 as n→ ∞

which in its turn implies the desired convergence (5.15).
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5.2 Strong Law of Large Numbers

As usual, the strong law of large numbers requires stronger assumptions than
the law of large numbers. Below we assume a stronger condition on m[s(x)]

2 (x)

than the drift condition (5.4) which can be seen as an upper bound on m[s(x)]
2 (x),

see (5.18).

Theorem 5.2. Let the conditions of Theorem 5.1 hold. In addition, let

m[s(x)]
2 (x) = o

( xv(x)
f (V (x))

)
as x→ ∞, (5.22)

for some increasing function f : R+→ R+ such that both functions f (x) and
x/ f (x) are concave and

∞

∑
n=1

1
n f (n)

< ∞. (5.23)

Then

V (Xn)

n
a.s.→ 1 as n→ ∞.

As for Theorem 5.1, this convergence, due to the concavity of the inverse
V−1, implies

Xn

V−1(n)
a.s.→ 1 as n→ ∞.

Corollary 5.3. Let the condition (5.11) hold. Let Eξ (x) ∼ c/xβ , where c > 0
and β ∈ [0,1), and

sup
x

E|ξ (x)|1+β log1+δ (1+ |ξ (x)|)< ∞ for some δ > 0.

Then

X1+β
n

n
a.s.→ c(1+β ) as n→ ∞. (5.24)

Proof of Corollary 5.3. Here v(x) = c/xβ and V (x) = x1+β/c(1 + β ). Ob-
serve that

m[s(x)]
2 (x) = E{ξ 2(x); |ξ (x)| ≤ s(x)}

≤ s1−β (x)

log1+δ s(x)
E|ξ (x)|1+β log1+δ (1+ |ξ (x)|).

Consider a truncation level s(x) = x/ logδ/4 x and a function f (x) = log1+δ (1+
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x), then the conditions (5.22) and (5.23) are satisfied. The conditions (5.3),
(5.13), (5.9) and (5.10) are satisfied too because

E{|ξ (x)|; |ξ (x)|> s(x)} ≤ 1

sβ (x) log1+δ s(x)
E|ξ (x)|1+β log1+δ (1+ |ξ (x)|)

≤ c
logβδ/4 x

xβ log1+δ x
= o(1/xβ ) = o(v(x))

and

P{|ξ (x)|> s(x)} ≤ 1

s1+β (x) log1+δ s(x)
E|ξ (x)|1+β log1+δ (1+ |ξ (x)|)

≤ c
log(1+β )δ/4 x

x1+β log1+δ x
= o(v(x))

1

x log1+δ/2 x
,

where the quotient on the right hand side is integrable at infinity.

Corollary 5.4. Let Eξ (x)∼ c(logx)1+β/x, β > 0, and

sup
x

Eξ
2(x)< ∞.

Then

X2
n

(logXn)1+β n
a.s.→ 2c as n→ ∞,

which is equivalent to the following convergence

X2
n

n log1+β n
a.s.→ 22+β c as n→ ∞.

Proof of Corollary 5.4. Under this drift condition, v(x) = c(logx)1+β/x for
sufficiently large x and then V (x) ∼ x2/2c log1+β x. Observe that the value of
m[s(x)]

2 (x) is bounded here regardless of the choice of the truncation level s(x).
Consider a truncation level s(x)= x/ logβ/4 x and a function f (x)= log1+β/2(1+
x). Then the conditions (5.22) and (5.23) are satisfied. The conditions (5.3),
(5.13), (5.9) and (5.10) are satisfied too because

E{|ξ (x)|; |ξ (x)|> s(x)} ≤ 1
s(x)

Eξ
2(x)

≤ c
logβ/4 x

x
= o((logx)1+β/x) = o(v(x))
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and

P{|ξ (x)|> s(x)} ≤ 1
s2(x)

Eξ
2(x)

≤ c
logβ/2 x

x2 = o(v(x))
1

x log1+β/3 x
,

where the quotient on the right hand side is integrable at infinity.

Notice that drift like v(x) = (logx)/x or more speedy decreasing is excluded
from consideration in Theorem 5.2 because then xv(x) = logx and f (x) cannot
be chosen growing faster than logx to satisfy (5.22), thus the condition (5.23)
fails. The law of large numbers, Theorem 5.1, is still applicable.

The proof of Theorem 5.2 is based on the following generalisation of the
strong law of large numbers to martingales, see e.g. [80, Theorem 2.2].

Theorem 5.5. Let {Fn} be a filtration and {Xn} be a martingale with respect
to {Fn} which is square integrable. If

∞

∑
n=1

E(Xn+1−Xn)
2

n2 < ∞,

then Xn/n→ 0 a.s. as n→ ∞.

Proof of Theorem 5.2. As in Theorem 5.1, it suffices to show that

V (Zn)

n
→ 1 a.s. as n→ ∞. (5.25)

We introduce r(x) and s(x) = o(1/r(x)) as in the proof of Theorem 5.1. In
addition, we can guarantee that the following version of the condition (5.22)
holds true

m[s(x)]
2 (x) = O

( v(x)
r(x) f (V (x))

)
as x→ ∞, (5.26)

Denote

mV
n := E{V (Zn+1)−V (Zn)|Fn},

where Fn = σ(Z0, . . . ,Zn). By the Markov property, as it was calculated in the
proof of Theorem 5.1 with α = 0, on the event Zn→ ∞,

mV
n → 1 as n→ ∞; (5.27)

Put

Dn :=V (Zn+1)−V (Zn)−mV
n ,
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so that

V (Zn) =
n−1

∑
k=0

mV
k +

n−1

∑
k=0

Dk.

By (5.27) and the convergence Zn→ ∞ we have

1
n

n−1

∑
k=0

mV
k → 1 a.s. as n→ ∞,

and consequently the required convergence (5.25) would follow once it is
proven that

1
n

n−1

∑
k=0

Dk→ 0 a.s. as n→ ∞. (5.28)

The process ∑
n−1
k=0 Dk constitutes a martingale with respect to the filtration

{Fn−1}, hence the a.s. convergence (5.28) would follow by Theorem 5.5 if
we have managed to prove that the increments of this martingale satisfy the
condition

∞

∑
n=1

ED2
n

n2 < ∞. (5.29)

By the construction of Dk and due to the insensitivity condition (5.6), for x≥ x̂,

E{D2
k | Zk = x}= VarDk

≤ E{[V (x+ξ (x))−V (x)]2; |ξ (x)| ≤ s(x)}
≤ c1(V ′(x))2E{ξ 2(x); |ξ (x)| ≤ s(x)}

= c2
1

v2(x)
v(x)

r(x) f (V (x))
≤ c3

V (x)
f (V (x))

,

owing to (5.26) and (5.7). Since the function y/ f (y) is concave, by Jensen’s
inequality

ED2
k ≤ c3

EV (Zk)

f (EV (Zk))
≤ c3

2k
f (k/2)

,

for sufficiently large k, as follows from (5.21). For x < x̂,

E{D2
k | Zk = x} ≤V 2(x̂+ s(x̂)) =: c4.

Then it follows from concavity of f (y) that ED2
k ≤ 2c3k/ f (k) which yields

∞

∑
k=1

ED2
k

k2 ≤
∞

∑
k=1

( 2c3

k f (k)
+

c4

k2

)
< ∞,

by the condition (5.23), hence (5.29) holds and the proof is complete.
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5.3 Integral renewal theorem for transient chain satisfying
law of large numbers

In this section we discuss asymptotics of the renewal measure for {Xn} satis-
fying the conditions of the law of large numbers, Theorem 5.1. Notice that, in
particular, we do not assume convergence of the second moment at infinity.

Theorem 5.6. Under the conditions of the law of large numbers, Theorem 5.1,
there exists an x̂ such that, given any distribution of X0,

H(x̂,x]∼V (x) =
∫ x

0

1
v(y)

dy as x→ ∞.

Proof. We split the proof of the asymptotics for H into two parts, upper and
lower bounds. First let us prove a proper upper bound. Let r(x) be defined in
Theorem 5.1. The chain {Xn} satisfies all the conditions of Theorem 4.3. For
any A > 1, by the Markov property and (4.32),

H(x̂,x]≤ E
T
(

x+ A
r(x)

)
−1

∑
n=0

I{x̂ < Xn ≤ x}

+P
{

Xn ≤ x for some n
∣∣∣X0 > x+

A
r(x)

}
sup

z
Hz(x̂,x]

≤ EL(x̂,T (x+A/r(x)))

+
(
eδ (R(x)−R(x+A/r(x)))+o(1)

)
sup

z
Hz(x̂,x] (5.30)

as x→ ∞ uniformly for all A > 1, where a stopping time T (t) is defined as

T (t) := min{n≥ 1 : Xn > t},

and L is defined in (4.13). We have

eδ (R(x)−R(x+A/r(x))) = e−δ
∫ x+A/r(x)

x r(y)dy

≤ e−δAr(x+A/r(x))/r(x) ≤ e−δA/2,

for all sufficiently large x, owing to the lower bound (2.8) which is applicable
due to (5.14). Applying the upper bound of Theorem 4.3 to the right hand side
of (5.30) we deduce that, for some c < ∞,

H(x̂,x]≤ EL(x̂,T (x+A/r(x)))+
(
e−δA/2 +o(1)

)
c
∫ x+1/r(x)

x̂

1
v(z)

dz

as x→ ∞ uniformly for all A > 1. Applying now Theorem 4.2 we deduce that

EL(x̂,T (x+A/r(x)))≤
∫ x+A/r(x)+s(x+A/r(x))

x̂

1
v(z)

dz
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and therefore,

H(x̂,x]≤
(
1+ ce−δA/2 +o(1)

)∫ x+(A+1)/r(x)

x̂

1
v(z)

dz

∼
(
1+ ce−δA/2 +o(1)

)
V (x) as x→ ∞, (5.31)

for any fixed A, owing to (5.8). Letting now A→ ∞, we get the required upper
bound for H(0,x].

The lower bound is simpler. Indeed,

H(x̂,x] =
∞

∑
n=0

P{x̂ < Xn ≤ x}

≥ ∑
10V (x̂)≤n≤(1−ε)V (x)

P{V (x̂)<V (Xn)≤V (x)}

≥ ∑
10V (x̂)≤n≤(1−ε)V (x)

P
{

0.1 <
V (Xn)

n
≤ 1

1− ε

}
,

for any fixed ε > 0. Therefore, by the law of large numbers for Xn, V (Xn)/n→
1, hence

H(x̂,x]≥ (1− ε +o(1))V (x) as x→ ∞.

This concludes the proof due to the arbitrary choice of ε > 0.

5.4 Central limit theorem

In this section we study the case where xm1(x)→ ∞ as x→ ∞ and the strong
law of large numbers holds true,

Xn

V−1(n)
a.s.→ 1 as n→ ∞, (5.32)

given any distribution of X0, for sufficient conditions see Theorem 5.2. Then
the next natural step is to study the fluctuations around the mean value. In the
next result we specify additional conditions that guarantee a normal approxi-
mation to that.

In addition to the condition (5.1), let the function v(x) be regularly varying
at infinity with index −β ∈ [−1,0]. Then, by Karamata’s theorem,

V (x) =
∫ x

0

1
v(y)

dy ∼ 1
1+β

x
v(x)

as x→ ∞. (5.33)

In this section we consider the case where the second truncated moment of
jumps has a positive limit at infinity, so the drift function m[s(x)]

1 (x) and the
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quotient 2m[s(x)]
1 (x)/m[s(x)]

2 (x) are asymptotically proportional to each other.
For that reason any function r(x) of order o(v(x)) delivers a lower bound for
the quotient, that is, satisfies the drift condition (5.13).

Notice that the function r(x) =
√

v(x)/x is asymptotically sandwiched be-
tween 1/x and v(x), more precisely,√

v(x)/x
1/x

→ ∞ and

√
v(x)/x
v(x)

→ 0 as x→ ∞. (5.34)

Theorem 5.7. Let, for some increasing function s(x) = o
(√

x/v(x)
)
,

m[s(x)]
1 (x) = v(x)+o(

√
v(x)/x) and m[s(x)]

2 (x)→ b > 0 (5.35)

as x→ ∞, and the following conditions hold

E{|ξ (x)|; ξ (x)≤−s(x)}= o(v(x)) as x→ ∞, (5.36)

P{|ξ (x)|> s(x)} ≤ p(x)v(x), (5.37)

where p(x) is a decreasing function integrable at infinity. Then

Xn−V−1(n)√
b 1+β

1+3β
n
⇒ N0,1 as n→ ∞.

The proof is based on the following generalisation of the central limit the-
orem to martingales which goes back to [29, Theorem 2]. Let {Fn,n ≥ 1} be
a filtration and {Xn,n ≥ 1} be a square integrable martingale with respect to
{Fn}.

Theorem 5.8. Let {Xn} be a martingale such that

∑
n
k=1E{(Xk+1−Xk)

2 | Fk}
EX2

n

p→ 1 as n→ ∞

and the conditioned Lindeberg condition holds: for all ε > 0,

1
EX2

n

n

∑
k=1

E{(Xk+1−Xk)
2I{|Xk+1−Xk|> ε

√
EX2

n } | Fk}
p→ 0 as n→ ∞.

Then Xn/
√

EX2
n converges weakly to a standard normal distribution as n→∞.

Proof of Theorem 5.7. As in the proof of Theorem 4.8, we consider a mod-
ified Markov chain {X̃n} on the same probability space as {Xn} with jumps
ξ̃ (x) = ξ (x)I{|ξ (x)| ≤ s(x)}, and, as explained there, we can assume that {X̃n}
satisfies the unboundedness of trajectories condition (5.11).

Notice that the chain {X̃n} satisfies the conditions (3.56) and (3.57) with
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r(x) =
√

v(x)/x, for a sufficiently large x̂. The relation s(x) = o(
√

x/v(x)) is
equivalent to s(x) = o(1/r(x)). Since v(x) is regularly varying at infinity, it
satisfies the condition (4.24). Therefore, Theorem 4.3 applies to {X̃n}, hence

H X̃
y (x,x+1/r(x)]≤ c1

v(x)r(x)
,

which in its turn allows us to apply Lemma 4.1 to a pair of the chains Y = X
and Z = X̃ . Hence it suffices to prove the statement of the theorem for the
process {Zn}, that is, it is sufficient to prove that

Zn−V−1(n)√
b 1+β

1+3β
n
⇒ N0,1 as n→ ∞. (5.38)

The analogue of (5.32) for Zn reads as

Zn

V−1(n)
a.s.→ 1 as n→ ∞. (5.39)

Denote

mV
n := E{V (Zn+1)−V (Zn) | Fn},

where Fn := σ(Z0, . . . ,Zn). We have mV
n = mV (Zn) where

mV (x) := E{V (Zn+1)−V (Zn) | Zn = x}
= E{V (x+ξ (x))−V (x); |ξ (x)| ≤ s(x)}

= V ′(x)m[s(x)]
1 (x)+

1
2
E{V ′′(x+θξ (x))ξ 2(x); |ξ (x)| ≤ s(x)}

=
1

v(x)
m[s(x)]

1 (x)− 1
2
E
{ v′

v2 (x+θξ (x))ξ 2(x); |ξ (x)| ≤ s(x)
}
.

Then it follows from the conditions (5.35) and (5.5) that

mV (x) = 1+o(1/
√

xv(x))+O(v′(x)/v2(x))

= 1+o(1/
√

xv(x)) as x→ ∞. (5.40)

Further, define

Qn := E{(V (Zn+1)−V (Zn))
2|Fn}.

We observe that Qn = Q(Zn) where

Q(x) := E{(V (x+ξ (x))−V (x))2; |ξ (x)| ≤ s(x)}
= E{(V ′(x+θξ (x))ξ (x))2; |ξ (x)| ≤ s(x)}
∼ b/v2(x) as x→ ∞, (5.41)

because V ′(x+ y) = 1/v(x+ y)∼ 1/v(x) as x→ ∞ uniformly for |y| ≤ s(x).
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Let us center V (Zn), that is, let us consider

Z̃n :=V (Zn)−
n−1

∑
j=0

mV
j

= V (Zn)−V (Zn−1)−mV
n−1 + Z̃n−1,

so {Z̃n} constitutes a martingale with respect to the filtration {Fn}. It follows
from the strong law of large numbers (5.39) and from (5.41) that

v2(V−1( j))E
{(

Z̃ j+1− Z̃ j
)2 | F j

}
= v2(V−1( j))E

{(
V (Z j+1)−V (Z j)−mV

j
)2 | F j

}
= v2(V−1( j))

[
E
{
(V (Z j+1)−V (Z j))

2 | F j
}
− (mV

j )
2]

= v2(V−1( j))
[
E
{(

V (Z j+1)−V (Z j)
)2 | F j

}
+O(1)

]
a.s.→ b as j→ ∞,

which implies the convergence

1
σ2

n

n−1

∑
j=0

E
{(

Z̃ j+1− Z̃ j
)2 | F j

} a.s.→ 1 as n→ ∞, (5.42)

where

σ
2
n := b

n−1

∑
j=0

1
v2(V−1( j))

≥ b
n
2

1
v2(V−1((n−1)/2))

≥ c1
n

v2(V−1(n))
for some c1 > 0. (5.43)

Since |Z1−Z0| ≤ s(x) given Z0 = x,∣∣V (Z1)−V (Z0)
∣∣=V ′(x+θξ (x))|ξ (x)|I{|ξ (x)| ≤ s(x)}

≤ s(x)
v(x+ s(x))

.

By the choice of s(x) = o(
√

x/v(x)), given Z0 = x+ y,∣∣V (Z1)−V (Z0)
∣∣2 ≤ γ(x)x/v3(x) for all |y| ≤ x/2,

where γ(x)→ 0 as x→ ∞. Hence, on the event |Zn−V−1(n)| ≤V−1(n/2),∣∣V (Zn+1)−V (Zn)
∣∣2 ≤ γ(V−1(n))

V−1(n)
v3(V−1(n))

≤ γ(V−1(n))
c2n

v2(V−1(n))
,
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because z/v(z)≤ c2V (z) for some c2 < ∞, by (5.33). Then, on the same event,
by (5.43), ∣∣V (Zn+1)−V (Zn)

∣∣2 ≤ γ(V−1(n))
c2

c1
σ

2
n .

By the strong law of large numbers (5.39),

P{|Zn−V−1(n)| ≤V−1(n/2) for all sufficiently large n}= 1.

This allows us to conclude that, for any fixed δ > 0,

E
{(

Z̃ j+1− Z̃ j
)2; |Z̃ j+1− Z̃ j| ≥ δσn | F j

} a.s.→ 0 as j→ ∞, j ≤ n−1,

hence

1
σ2

n

n−1

∑
j=0

E
{(

Z̃ j+1− Z̃ j
)2; |Z̃ j+1− Z̃ j| ≥ δσn | F j

} a.s.→ 0 as n→ ∞.

So, the martingale {Z̃n} satisfies the conditions of the central limit theorem for
martingales—see Theorem 5.8— and we conclude that

Z̃n

σn
=

V (Zn)−∑
n−1
j=0 mV

j

σn
⇒ N0,1 as n→ ∞.

Further, as follows from the decomposition (5.40) for the mean drift of V (Zn),∣∣∣∣∣n−1

∑
j=0

mV
j −n

∣∣∣∣∣≤ c3

n−1

∑
j=0

I{Z j ≤V−1( j)/2}+
n−1

∑
j=0

ψ j√
V−1( j)v(V−1( j)/2)

,

where ψ j→ 0 as j→ ∞. The first sum on the right hand side is bounded by

ζ := c3

∞

∑
j=0

I{Z j ≤V−1( j)/2},

which is a proper random variable, due to the strong law of large numbers
(5.32), whereas the second one is of order

o(1)
n−1

∑
j=0

1√
V−1( j)v(V−1( j))

= o
(

n√
V−1(n)v(V−1(n))

)
as n→ ∞.

Since V (z)≤ z/v(z),

V−1(n)
v(V−1(n))

≥V (V−1(n)) = n

and hence

n√
V−1(n)v(V−1(n))

≤
√

n
v(V−1(n))

.
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Combining altogether including the lower bound (5.43) for σn, we get∣∣∣∣∣n−1

∑
j=0

mV
j −n

∣∣∣∣∣≤ o(σn)+ζ as n→ ∞.

Thus,

V (Zn)−n
σn

⇒ N0,1 as n→ ∞.

To conclude convergence to a normal distribution for Zn itself, we make use of
the mean-value theorem as follows

Zn−V−1(n)
σn

=
V−1(V (Zn))−V−1(n)

σn

= (V−1)′(θn)
V (Zn)−n

σn

where θn is sandwiched between n and V (Zn). Therefore, owing to the equality
V ′ = 1/v,

Zn−V−1(n)
σn

= v(V−1(θn))
V (Zn)−n

σn
.

By the strong law of large numbers (5.39), θn/n→ 1 with probability 1 as
n→ ∞. Therefore, v(V−1(θn))/v(V−1(n))→ 1 and hence

Zn−V−1(n)
σ̃n

⇒ N0,1,

where

σ̃
2
n := σ

2
n v2(V−1(n))

= b
n−1

∑
j=0

v2(V−1(n))
v2(V−1( j))

.

The sequence v2(V−1( j)) is regularly varying with index − 2β

1+β
, hence

n−1

∑
j=0

v2(V−1(n))
v2(V−1( j))

∼ n−
2β

1+β

n−1

∑
j=0

j
2β

1+β ∼ 1+β

1+3β
n as n→ ∞, (5.44)

and the proof is complete.

Theorem 5.9. Let the conditions of Theorem 5.7 hold. Let
√

nv(V−1(n))
logn

→ ∞ as n→ ∞. (5.45)
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Then

maxk≤n Xk−V−1(n)√
b 1+β

1+3β
n

⇒ N0,1 as n→ ∞.

Since the function v(V−1(n)) is regularly varying at infinity with index
−β/(1+ β ) > −1/2 provided β ∈ [0,1), the condition (5.45) automatically
holds for β ∈ [0,1).

Proof. It is again sufficient to prove the same result for the process {Zn}, that
is, it is sufficient to show that, for Mn := maxk≤n Zk,

Mn−V−1(n)√
b 1+β

1+3β
n
⇒ N0,1 as n→ ∞. (5.46)

Since Mn ≥ Zn, it suffices to show that, for all ε > 0,

P{Mn ≤ Zn + ε
√

n}→ 1 as n→ ∞.

Indeed,

P{Mn > Zn + ε
√

n} ≤ P{Mn 6∈ [V−1(n)/2,2V−1(n)]}
+P{Zn < Mn− ε

√
n, Mn ∈ [V−1(n)/2,2V−1(n)]}.

Firstly, by the strong law of large numbers for Zn, Mn/V−1(n)→ 1 with prob-
ability 1, so

P{Mn 6∈ [V−1(n)/2,2V−1(n)]}→ 0 as n→ ∞.

Secondly,

P{Zn < Mn− ε
√

n, Mn ∈ [V−1(n)/2,2V−1(n)]}

≤
n−1

∑
k=0

P{Mn = Zk, Zn < Zk− ε
√

n, Zk ∈ [V−1(n)/2,2V−1(n)]}

≤
n−1

∑
k=0

P{Zn < Zk− ε
√

n, Zk ∈ [V−1(n)/2,2V−1(n)]}.

Therefore,

P{Zn < Mn− ε
√

n, Mn ∈ [V−1(n)/2,2V−1(n)]}

≤
n−1

∑
k=0

∫ 2V−1(n)

V−1(n)/2
P{Zk ∈ dy}P{Zn < y− ε

√
n | Zk = y}

≤ n× sup
y∈[V−1(n)/2,2V−1(n)]

P{Zm < y− ε
√

n for some m≥ 1 | Z0 = y}.
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The process {Zn} satisfies all the conditions of Theorem 3.12 with r(x) =
v(x)/b, thus, for all y ∈ [V−1(n)/2,2V−1(n)]

P{Zm < y− ε
√

n | Z0 = y} ≤ e−δ
∫ y

y−ε
√

n v(z)dz

≤ e−δε
√

nv(y)

≤ e−δε
√

nv(2V−1(n)), (5.47)

because the function v(z) is decreasing. Therefore, by the regular variation of
v and the condition (5.45),

sup
y∈[V−1(n)/2,2V−1(n)]

P{Zm < y− ε
√

n | Z0 = y}= o(1/n) as n→ ∞,

which yields

P{Zn < Mn− ε
√

n, Mn ∈ [V−1(n)/2,2V−1(n)]}→ 0 as n→ ∞.

The proof is complete.

Recall that T (x) = min{n : Xn > x}.

Corollary 5.10. Under the conditions of Theorem 5.7 and (5.45),

T (x)−V (x)√
b 1+β

1+3β

x
v3(x)

⇒ N0,1 as x→ ∞.

Proof. Since {T (x)≤ n}= {supk≤n Xk > x},

P

{
T (x)−V (x)√

b 1+β

1+3β

x
v3(x)

≤ u

}
= P

{
sup
k≤n

Xk > x
}
,

where

n :=V (x)+u

√
b

1+β

1+3β

x
v3(x)

.

Since (V−1(z))′ = 1/V ′(V−1(z)) = v(V−1(z)) and n∼V (x), (V−1(n))′ ∼ v(x).
Therefore,

V−1(n) = x+u

√
b

1+β

1+3β

x
v(x)

+o(
√

x/v(x)).
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Hence,

P
{

sup
k≤n

Xk > x
}
= P

{
supk≤n Xk−V−1(n)√

b 1+β

1+3β
n

>
x−V−1(n)√

b 1+β

1+3β
n

}

= P

{
supk≤n Xk−V−1(n)√

b 1+β

1+3β
n

>−u+o(1)

}
,

and reference to Theorem 5.9 completes the proof.

5.5 Functional central limit theorem

In the last section we have proved the central limit theorem for a transient
Markov chain and the key idea of the proof is extraction of a martingale for
which the central limit theorem is known from Brown [29], see Theorem 5.8.
Since this reference also contains a functional version of this result, it allows
us to state and prove the following weak convergence to a Gaussian process
for {Xn}.

Theorem 5.11. Under the conditions of Theorem 5.7, the process

X[nt]−V−1(nt)√
b 1+β

1+3β
n

, t ∈ [0,1],

converges weakly in D[0,1] as n→ ∞ to the process

t−
β

1+β B
(

t
1+3β

1+β

)
,

where B(t) is a standard Brownian motion. The limiting process is Gaussian

with zero mean and covariance function t(t/s)
β

1+β for s≥ t.

Proof. As in the proof of Theorem 4.11, it suffices to prove the same conver-
gence for the process Z[nt]. The weak convergence in the space D[0,1] to the
limiting process is equivalent to the following two statements: for any fixed
t0 ∈ (0,1),

Z[nt]−V−1(nt)√
b 1+β

1+3β
n
⇒ t−

β

1+β B
(

t
1+3β

1+β

)
as n→ ∞ in the space D[t0,1],

(5.48)
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and

sup
t≤t0

∣∣∣∣Z[nt]−V−1(nt)√
b 1+β

1+3β
n

∣∣∣∣⇒ 0 as n→ ∞, t0→ 0. (5.49)

The calculations of the last section leading to the central limit theorem for
V (Zn) allow us to apply the functional limit theorem for martingales by Brown
[29, Theorem 3] to the process in D[0,1] defined as (V (Zk)− k)/σn on the
interval [σ2

k /σ2
n ,σ

2
k+1/σ2

n ) where

σ
2
n = b

n−1

∑
j=0

1
v2(V−1( j))

∼ b
1+β

1+3β

n
v2(V−1(n))

as n→ ∞, (5.50)

owing to (5.44). The process defined in this way converges weakly in the space
D[0,1] to the Brownian motion, that is,

n

∑
k=1

V (Zk)− k
σn

I{σ2
k /σ

2
n ≤ t < σ

2
k+1/σ

2
n }⇒ B(t) in the space D[0,1].

(5.51)

The regular variation of σ2
n implies that

σ2
[nt]

σ2
n
→ t

1+3β

1+β as n→ ∞ uniformly for all t ∈ [t0,1].

Hence

V (Z[nt])−nt
σn

⇒ B
(

t
1+3β

1+β

)
= t

β

1+β B(t) in the space D[t0,1].

Then we need to explain how to proceed from V (Z[nt]) to Z[nt]. By the mean-
value theorem,

Z[nt]−V−1(nt)√
b 1+β

1+3β
n

=
V−1(V (Z[nt]))−V−1(nt)√

b 1+β

1+3β
n

=
σn√

b 1+β

1+3β
n
(V−1)′(θ)

V (Z[nt])−nt
σn

where θ lies between nt and V (Z[nt]). Therefore, by the equality V ′ = 1/v,

Z[nt]−V−1(nt)√
b 1+β

1+3β
n

=
σn√

b 1+β

1+3β
n

v(V−1(θ))
V (Z[nt])−nt

σn
. (5.52)
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It follows from the strong law of large numbers for V (Zn)—see Theorem 5.2—
that

V (Z[nt])

n
→ t in the space D[0,1],

so θ/n→ t in D[0,1] too. Then, since v is assumed regularly varying at infinity
and v(V−1(nt))/v(V−1(n))∼ 1/tβ/(1+β ) as n→ ∞,

t
β

1+β
v(V−1(θ))

v(V−1(n))
→ 1 in the space D[t0,1].

Hence we may replace v(V−1(θ)) in (5.52) by t−
β

1+β v(V−1(n)) on the interval
t ∈ [t0,1]. Taking into account (5.50), we deduce the first required statement,
(5.48).

Further, the second statement, (5.49), may be reformulated as follows: for
all γ > 0 and δ > 0 there exist t0 > 0 and n0 ∈ N such that

P
{

sup
t≤t0

∣∣∣∣Z[nt]−V−1(nt)√
b 1+β

1+3β
n

∣∣∣∣> γ

}
≤ δ for all n > n0. (5.53)

Indeed, first choose t0 such that

P
{

sup
t≤t0
|B(t)|> γ

}
≤ δ/2.

Then it follows from (5.51) that there exists an n0 ∈ N such that

P
{

sup
k:σ2

k /σ2
n≤t0

∣∣∣∣V (Zk)− k
σn

I{σ2
k /σ

2
n ≤ t < σ

2
k+1/σ

2
n }
∣∣∣∣> γ

}
≤ δ

for all n > n0. Equivalently,

P
{

sup
k:σ2

k /σ2
n≤t0

∣∣∣∣V (Zk)− k
σn

∣∣∣∣> γ

}
≤ δ for all n > n0.

If we take k≤ nt ′0 where t ′0 = t
1+3β

1+β

0 /2, then σ2
k /σ2

n ≤ t0 for all sufficiently large
n. Therefore,

P
{

sup
t≤t ′0

∣∣∣∣V (Z[nt])−nt
σn

∣∣∣∣> γ

}
≤ δ for all n > n0.

Then we apply the same calculations as in (5.52) and conclude (5.53).
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5.6 Normal approximation at high level

In this section a version of the central limit theorem is deduced for a Markov
chain starting from a high level. Such kind of normal approximation is more
appropriate for the purpose of proving asymptotics for renewal measure.

As in the last two sections we consider the case where the second truncated
moment of jumps has a positive limit at infinity, so again the drift function
m[s(x)]

1 (x) and the quotient 2m[s(x)]
1 (x)/m[s(x)]

2 (x) are asymptotically proportional
to each other. This allows us to choose a sufficiently small γ > 0 such that

r(x) := γv(x)

makes the condition (3.56) fulfilled for the chain {Xn}, for a sufficiently large
x̂. Notice that r(x) defined above satisfies the condition (3.57) due to (5.5)
which now reads

v′(x) = o(v2(x)) as x→ ∞, (5.54)

which, in particular, specifies the insensitivity condition (5.6) as follows, for
any fixed c < ∞,

v(x± c/v(x))∼ v(x) as x→ ∞. (5.55)

In the previous sections we apply a convex function V to Xn in order to get a
chain with an asymptotically (positive) constant drift which helps us to prove
the law of large numbers and the central limit theorem. For the purposes of this
section—normal approximation at high level x—it is more convenient to make
calculations for {Xn} itself because the drift of {Xn} does not change much on
time scale O(1/v2(x)), due to (5.55), provided the drift is proportional to v(x).

Theorem 5.12. Let, for some increasing function s(x) = o(1/v(x)) where a
decreasing function v(x) satisfies xv(x)→ ∞, (5.55) and (5.54),

m[s(x)]
1 (x)∼ v(x) and m[s(x)]

2 (x)→ b > 0, (5.56)

E{|ξ (x)|; ξ (x)≤−s(x)} = o(v(x)) as x→ ∞, (5.57)

P{|ξ (x)|> s(x)} ≤ p(x)v(x), (5.58)

where a decreasing function p(x) > 0 is integrable at infinity. Then, for any
fixed t > 1 and h ∈ R,

Px

{
Xn− x≤ h

v(x)

}
−Φ

(
h/v(x)−nv(x)√

nb

)
→ 0
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as x, n→ ∞ in such a way that 1/t ≤ nv2(x) ≤ t; hereinafter Φ stands for the
standard normal distribution function. Moreover,

sup
x≤y≤x+o(1/v(x))

∣∣∣∣Py

{
Xn− x≤ h

v(x)

}
−Φ

(
h/v(x)−nv(x)√

nb

)∣∣∣∣→ 0.

We start with the following tightness result for {Xn}.

Lemma 5.13. Let, for some increasing function s(x) = o(1/v(x)) where a de-
creasing function v(x) satisfies xv(x)→ ∞, (5.55) and (5.54),

δv(x) ≤ m[s(x)]
1 (x)≤ v(x)/δ , (5.59)

for some δ > 0 and all sufficiently large x. Assume also

sup
x

m[s(x)]
2 (x)< ∞, (5.60)

and that the conditions (5.58) and (5.57) hold. Then, for every fixed t > 0 and
ε > 0, there exists an h < ∞ such that

Px

{
− h

v(x)
≤ Xn− x≤ h

v(x)
for all n≤ t

v2(x)

}
≥ 1− ε

for all sufficiently large x.

Proof. As in the proof of Theorem 4.8, we consider a modified Markov chain
{X̃n} on the same probability space as {Xn}with jumps ξ̃ (x) = ξ (x)I{|ξ (x)| ≤
s(x)}, and, as explained there, we can assume that {X̃n} satisfies the unbound-
edness of trajectories condition (5.11).

As discussed at the beginning of the section the chain {X̃n} satisfies the
condition (3.56) with r(x) := γv(x). Therefore, Theorem 4.3 is applicable to
{X̃n}, hence

H X̃
y (x,x+1/v(x)]≤ c1

v2(x)
,

which in its turn allows us to apply Lemma 4.1 to a pair of the chains Y = X
and Z = X̃ . Hence it suffices to prove the result of the lemma for {Zn}. That is,
it is sufficient to show that, for a sufficiently large h > 0,

Px

{
− h

v(x)
≤ Zn− x≤ h

v(x)
for all n≤ t

v2(x)

}
≥ 1− ε (5.61)

ultimately in x.
Similarly to (5.47) we deduce that, for some γ > 0,

Px

{
min
n≥0

Zn ≤ x− h
v(x)

}
≤ e−γh→ 0 as x, h→ ∞. (5.62)
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Let us center Zn, that is, let us consider the process

Z̃n := Zn− x−
n−1

∑
j=0

m
[s(Z j)]
1 (Z j), (5.63)

which constitutes a martingale with respect to Fn := σ(Z0, . . . ,Zn). By the con-
dition (5.59), we have, for all N ≥ 1,

0 <
N−1

∑
n=0

m
[s(Z j)]
1 (Zn)≤ N

1
δ

max
z>x−h/v(x)

v(z) ≤ N
2
δ

v(x)

on the event minn Zn > x− h/v(x), where the last inequality follows for all
sufficiently large x from (5.55). Hence, for any y > 0,

Px

{
min

n
Zn > x− h

v(x)
, max

n≤N
|Zn− x|> y

}
≤ Px

{
max
n≤N
|Z̃n|> y− 2

δ
Nv(x)

}
.

By Doob’s inequality for martingales,

Px

{
max
n≤N
|Z̃n|> y− 2

δ
Nv(x)

}
≤ ExZ̃2

N
(y−2Nv(x)/δ )2 .

The second moments of jumps of the martingale {Z̃n} are bounded by some
c < ∞—see the condition (5.60); therefore,

Px

{
max
n≤N
|Z̃n|> y− 2

δ
Nv(x)

}
≤ Nc

(y−2Nv(x)/δ )2 .

Taking now N = t/v2(x) and y = h/v(x), we obtain that

Px

{
max
n≤N
|Z̃n|> y− 2

δ
Nv(x)

}
≤ tc

(h−2t/δ )2 ≤
ε

2
,

for all sufficiently large h. Therefore,

Px

{
min

n
Zn > x− h

v(x)
, max

n≤t/v2(x)
|Zn− x|> h

v(x)

}
≤ ε

2
,

which together with (5.62) completes the proof of (5.61).

The proof of Theorem 5.12 is based on the following generalisation of the
central limit theorem to a triangular array of martingales which goes back to
[71, Theorem 4].

Theorem 5.14. Let, for all j≥ 1, {Fn, j,n≥ 1} be a filtration and {Xn, j,n≥ 1}
be a square integrable martingale with respect to {Fn, j}. Let n j→∞ as j→∞,

∑
n j
k=1E{(Xk+1, j−Xk, j)

2 | Fk, j}
EX2

n j , j

p→ 1 as j→ ∞
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and conditioned Lindeberg condition hold: for all ε > 0,

1
EX2

n j , j

n j

∑
k=1

E{(Xk+1, j−Xk, j)
2I{|Xk+1, j−Xk, j|> ε

√
EX2

n j , j} | Fk, j}
p→ 0

as j→ ∞. Then Xn j , j/
√

EX2
n j , j converges weakly to a standard normal distri-

bution as j→ ∞.

Proof of Theorem 5.12. As shown in Lemma 5.13, it suffices to prove the
same result for the chain {Zn}, that is, it is sufficient to prove that

Zn− x−nv(x)√
nb

⇒ N0,1. (5.64)

as x, n→ ∞ in such a way that 1/t ≤ nv2(x)≤ t.
Since the chain {Zn} satisfies all the conditions of Lemma 5.13, for any

function h(x)→ ∞, given Z0 = x,

Px

{
−h(x)

v(x)
≤ Zn− x≤ h(x)

v(x)
for all n≤ t

v2(x)

}
→ 1 as x→ ∞.

(5.65)

The process {Z̃n} defined in (5.63) constitutes a martingale—parameterised
by x—whose second moment of jumps converges to b as x→ ∞. Due to the
construction of jumps of {Zn} and s(x) = o(1/v(x)) we get, for any ε > 0,

E{ξ 2(x); s(x)≥ |ξ (x)| ≥ ε
√

n}→ 0 as x, n→ ∞

in such a way that 1/t ≤ nv2(x)≤ t. Together with (5.62) this implies that, for
the same range of x and n,

E{(Zk+1−Zk)
2; |Zk+1−Zk| ≥ ε

√
n | Z0 ≥ x}→ 0

uniformly for k ≤ n. These observations guarantee that conditioned Linde-
berg condition of the central limit theorem for martingales in triangular array
setting—see Theorem 5.14—is met for Z̃n and n satisfying 1/t ≤ nv2(x) ≤ t.
Then we conclude that, given Z0 = x, the random sequence

Z̃n√
nb

=
Zn− x−∑

n−1
j=0 m

[s(Z j)]
1 (Z j)√

nb

converges weakly as x, n→ ∞ to a standard normal distribution.
Let us choose h(x)→ ∞ sufficiently slow such that in the spatial range x−

h(x)/v(x)≤ y≤ x+h(x)/v(x) we have

v(y)∼ m[s(y)]
1 (y)∼ m[s(x)]

1 (x)∼ v(x) as x→ ∞,
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which is possible due to (5.55). Then within the temporal range n ≤ t/v2(x),
we deduce from (5.65) that

∑
n−1
j=0 m

[s(Z j)]
1 (Z j)√
nb

−
√

n/bv(x)
p→ 0 as x→ ∞.

Therefore,

Zn− x√
nb
−
√

n/bv(x) =
Zn− x−nv(x)√

nb

converges weakly as x→ ∞ to a standard normal distribution and the proof of
the first result is complete.

For the second statement, the same arguments with minor modification ap-
ply to show that, for any sequences xk and yk such that yk ≥ xk, yk − xk =

o(1/v(xk)) it holds true that

Pyk

{
Xn− xk ≤

h
v(xk)

}
−Φ

(
h/v(xk)−nv(xk)√

nb

)
→ 0

as k, n→∞ in such a way that 1/t ≤ nv2(xk)≤ t. Then the second statement is
immediate, by contradiction.

5.7 Integro-local renewal theorem for transient chain with
Normal limit

In this section we discuss asymptotics of partial and full renewal measure for X
with normal limit. We pay special attention to the fact that both are investigated
under truncation at level s(x) = o(1/v(x)).

Theorem 5.15. Under the conditions of Theorem 5.12, for every fixed h > 0
and B > 0,

[B/v2(x)]

∑
n=0

Py

{
Xn ∈

(
x,x+

h
v(x)

]}
∼ f (h,B)

v2(x)

as x→ ∞ uniformly for all y ∈ [x,x+o(1/v(x))], where f (h,B) ↑ h as B→ ∞.

Proof. Due to the normal approximation provided by Theorem 5.12 we con-
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clude that, for every fixed B,

[B/v2(x)]

∑
n=0

Py

{
Xn ∈

(
x,x+

h
v(x)

]}
=

[B/v2(x)]

∑
n=0

(
Φ

(h−nv2(x)√
nbv2(x)

)
−Φ

(
− nv2(x)√

nbv2(x)

)
+o(1)

)
as x→ ∞ uniformly for all y ∈ [x,x+ o(1/v(x))]. Approximating the sum on
the right by the integral we obtain that its value is equal to

1
v2(x)

∫ B

0

(
Φ

(h− z√
bz

)
−Φ

(
− z√

bz

))
dz+o

( 1
v2(x)

)
as x→ ∞. (5.66)

The last integral equals

f (h,B) =
∫ B

0

(
Φ

(h− z√
bz

)
−Φ

(
− z√

bz

))
dz

=
∫ B

0

dz√
bz

∫ h

0
ϕ

(u− z√
bz

)
du.

Changing the order of integration and making the substitution z = v2/b, we
obtain equalities

1√
2π

∫ h

0
du
∫ B

0

1√
bz

e−(u−z)2/2bzdz

=
1√
2π

∫ h

0
eu/bdu

∫ B

0

1√
bz

e−u2/2bz−z/2bdz

=
2

b
√

2π

∫ h

0
eu/bdu

∫ √bB

0
e−u2/2v2−v2/2b2

dv.

The limit of the internal integral as B→ ∞ is known—see, e.g [74, p. 337,
3.325]—and is nothing else but∫

∞

0
e−u2/2v2−v2/2b2

dv =
b
√

2π

2
e−u/b.

Combining altogether we deduce that∫
∞

0

(
Φ

(h− z√
bz

)
−Φ

(
− z√

bz

))
dz = h.

Together with (5.66) this implies the result.

Now let us turn to the asymptotic behaviour of the renewal measure.
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Theorem 5.16. Under the conditions of Theorem 5.12, for every fixed h > 0
and distribution of X0,

H
(

x,x+
h

v(x)

]
∼ h

v2(x)
as x→ ∞.

Proof. We consider the same function r(x) as in the proof of Lemma 5.13, so
the conditions (3.56) and (3.57) are satisfied for all sufficiently large x.

We split the proof of the integro-local asymptotics for H into two parts, up-
per and lower bounds. First let us prove a proper upper bound. By the Markov
property it is sufficient to show that, uniformly for all y > x,

limsup
x→∞

v2(x)Hy

(
x,x+

h
v(x)

]
≤ h. (5.67)

The chain {Xn} satisfies all the conditions of Theorem 4.3. Then, for any A> h,
by the Markov property and (4.32),

Hy

(
x,x+

h
v(x)

]

≤ Ey

T
(

x+ A
v(x)

)
−1

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
+P
{

Xn ≤ x+
h

v(x)
for some n | X0 > x+

A
v(x)

}
sup

z
Hz

(
x,x+

h
v(x)

]

≤ Ey

T
(

x+ A
v(x)

)
−1

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
+
(

eδ

(
R
(

x+ h
v(x)

)
−R
(

x+ A
v(x)

))
+o(1)

)
sup

z
Hz

(
x,x+

h
v(x)

]
(5.68)

as x→ ∞ uniformly for all A > h where a stopping time T is defined as

T (t) := min{n≥ 1 : Xn > t}.

We have

eδ

(
R
(

x+ h
v(x)

)
−R
(

x+ A
v(x)

))
= e−δ

∫ x+A/v(x)
x+h/v(x) r(y)dy

≤ e−δ (A−h)r(x+A/v(x))/v(x) ≤ e−δ (A−h)/2,

for all sufficiently large x. Applying the upper bound of Theorem 4.3 to the
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right hand side of (5.68) we deduce that, for some c < ∞,

Hy

(
x,x+

h
v(x)

]
≤ Ey

T
(

x+ A
v(x)

)
−1

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
+
(
e−δ (A−h)/2 +o(1)

) c
v2(x)

(5.69)

as x→ ∞, for all A > h. The mean of the sum on the right hand side may be
estimated as follows: for C > A,

Ey

T
(

x+ A
v(x)

)
−1

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
≤ Ey

[C/v2(x)]

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}

+Ey

{T
(

x+ A
v(x)

)
−1

∑
n=0

I{Xn > x}; T
(

x+
A

v(x)

)
>

C
v2(x)

}

= Ey

[C/v2(x)]

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
+Ey

{
L
(

x,T
(

x+
A

v(x)

))
; T
(

x+
A

v(x)

)
>

C
v2(x)

}
.

For y > x, the second term on the right hand side is not greater than

Ey

{
L
(

x,T
(

x+
A

v(x)

))
; Xn < x− D

v(x)
for some n≥ 1

}
+Ey

{
L
(

x,T
(

x+
A

v(x)

))
;

Xn ≥ x− D
v(x)

for all n≤ T
( A

v(x)

)
−1, T

(
x+

A
v(x)

)
>

C
v2(x)

}
≤ Ey

{
L
(

x,T
(

x+
A

v(x)

))
; Xn < x− D

v(x)
for some n≥ 1

}
+Ey

{
L
(

x− D
v(x)

,T
(

x+
A

v(x)

))
; L
(

x− D
v(x)

,T
(

x+
A

v(x)

))
>

C
v2(x)

}
.

Fix an ε > 0. By Theorem 4.2, for any fixed A and D, the family of random
variables

v2(x)L
(

x− D
v(x)

,T
(

x+
A

v(x)

))
, x≤ y, X0 = y,
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is uniformly integrable, hence, there is a C =C(A,D) such that

sup
y:y≥x

v2(x)Ey

{
L
(

x− D
v(x)

,T
(

x+
A

v(x)

))
;

L
(

x− D
v(x)

,T
(

x+
A

v(x)

))
>

C
v2(x)

}
≤ ε,

for all sufficiently large x. Since

sup
y>x

Py

{
Xn < x− D

v(x)
for some n≥ 1

}
→ 0 as D→ ∞,

by the uniform integrability that there exists a D = D(A) such that

sup
y≥x

v2(x)Ey

{
L
(

x,T
(

x+
A

v(x)

))
; Xn < x− D

v(x)
for some n≥ 1

}
≤ ε,

for all sufficiently large x. Combining altogether we conclude that, uniformly
for all y ∈ (x,h/v(x)],

limsup
x→∞

v2(x)Ey

T
(

x+ A
v(x)

)
−1

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
≤ limsup

x→∞

v2(x)Ey

[C/v2(x)]

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
+2ε,

which being substituted into (5.69) gives

limsup
x→∞

v2(x)Hy

(
x,x+

h
v(x)

]
≤ limsup

x→∞

v2(x)Ey

[C/v2(x)]

∑
n=0

I
{

Xn ∈
(

x,x+
h

v(x)

]}
+ ce−δ (A−h)/2 +2ε.

As already shown in Theorem 5.15,

v2(x)
[C/v2(x)]

∑
n=0

Py

{
Xn ∈

(
x,x+

h
v(x)

]}
→ f (h,C) as x→ ∞,

which implies the following upper bound, for each fixed A > 1,

limsup
x→∞

v2(x)Hy

(
x,x+

h
v(x)

]
≤ f (h,C)+ ce−δ (A−h)/2 +2ε,

where C =C(A,D(A)). Letting now A→ ∞, we get the required upper bound
(5.67).
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Now let us proceed with the lower bound. First notice that, by Theorem 5.15,

liminf
x→∞

v2(x)Hy

(
x,x+

h
v(x)

]
≥ h (5.70)

as x→∞ uniformly for all y∈ [x,x+o(1/v(x))]. It remains to prove that (5.70)
holds for any fixed y. By the Markov property, it suffices to show that the
overshoot over the level x is less than s(x) with high probability, that is,

Py{XT (x)− x > s(x)}→ 0 as x→ ∞. (5.71)

Indeed, for any fixed x0 > 0,

Py{XT (x)− x > s(x)} ≤
∞

∑
n=1

∫ x

0
Py{Xn ∈ dz}P{z+ξ (z)> x+ s(x)}

=

(∫ x0

0
+
∫ x

x0

)
P{z+ξ (z)> x+ s(x)}Hy(dz).

The first integral on the right hand side is bounded by∫ x0

0
P{ξ (z)> s(x)}Hy(dz)→ 0 as x→ ∞,

due to the dominated convergence theorem. Since x− z+ s(x) ≥ s(z) for all
z≤ x, it follows from the condition (5.58) that the second integral is dominated
by ∫ x

x0

P{ξ (z)> s(z)}Hy(dz)≤
∫

∞

x0

p(z)v(z)Hy(dz) → 0 as x0→ ∞,

see the calculations leading to (4.6). Altogether yields the convergence (5.71)
for the overshoot. This concludes the proof.

Theorem 5.15 and the proof of Theorem 5.16 imply the following result.

Theorem 5.17. Under the conditions of Theorem 5.12, for every fixed h > 0,
n

∑
k=0

Py

{
Xk ∈

(
x,x+

h
v(x)

]}
=

1
v2(x)

f (h,nv2(x))+o
( 1

v2(x)

)
as x → ∞ uniformly for all y ∈ [x,x + o(1/v(x))] and for all n ≥ 1, where
f (h,z) ↑ h as z→ ∞.

Theorem 5.18. Under the conditions of Theorems 5.7 and 5.16, given any
distribution of X0 and any fixed h > 0,

n

∑
k=0

P
{

Xk ∈
(

x,x+
h

v(x)

]}
=

h
v2(x)

Φ

(
n−V (x)√
b 1+β

1+3β

x
v3(x)

)
+o
( 1

v2(x)

)
(5.72)

as x→ ∞ uniformly for all n≥ 1.
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Proof. We have
n

∑
k=0

P
{

Xk ∈
(

x,x+
h

v(x)

]}
= E

n

∑
k=T (x)

I
{

Xk ∈
(

x,x+
h

v(x)

]}
.

As (5.71) shows, v(x)(XT (x)− x)→ 0 in probability. This allows us to apply
Theorem 5.17: as x→ ∞,

E
n

∑
k=T (x)

I
{

Xk ∈
(

x,x+
h

v(x)

]}
=

1
v2(x)

E f
(
h,v2(x)(n−T (x))+

)
+o
( 1

v2(x)

)
.

Further, fix u ∈ R and take

n =V (x)+u

√
b

1+β

1+3β

x
v3(x)

.

Then

v2(x)(n−T (x))+ =

√
b

1+β

1+3β
xv(x)

(n−T (x))+√
b 1+β

1+3β

x
v3(x)

=

√
b

1+β

1+3β
xv(x)

(
u+

V (x)−T (x)√
b 1+β

1+3β

x
v3(x)

)+

.

Since xv(x)→ ∞, the last quantity tends to infinity with probability

P

{
V (x)−T (x)√

b 1+β

1+3β

x
v3(x)

>−u

}
→ Φ(u) as x→ ∞,

and equals zero with probability going to 1−Φ(u), both by Corollary 5.10.
Taking into account that f (h,z)→ h as z→ ∞, we conclude that

E f
(
h,v2(x)(n−T (x))+

)
→ hΦ(u) as x→ ∞,

which completes the proof.

5.8 Local renewal theorem for transient chain on Z with
Normal limit

In this section we formulate and prove a local version of the renewal theorem
in the case of convergence to a normal distribution. Following the technique
developed so far, we can only do this for a lattice Markov chain. Without loss
of generality, let Z be the minimal lattice where X is living on. Similarly to
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the case of convergence to a Γ-distribution, it is unlikely that the local renewal
theorem would be valid if we only assumed a regular asymptotic behaviour
of moments of jumps. We believe it can be only proven if we assume weak
convergence of jumps ξ (x) to some random variable ξ on Z, that is,

ξ (x)⇒ ξ as x→ ∞. (5.73)

Theorem 5.19. Let v(x) be a decreasing differentiable function satisfying xv(x)→
∞ and v′(x) = o(v2(x)) and let

m1(x)∼ v(x) and m2(x)→ b > 0 as x→ ∞, (5.74)

and

limsup
n→∞

Xn = ∞ with probability 1.

Furthermore we assume the convergence (5.73). Let Z be the minimal lattice
for ξ , and let the limit ξ satisfy

Eξ = 0, Eξ
2 = b. (5.75)

In addition, let the jumps ξ (x) be bounded below and above by J uniformly for
all x ∈ Z+, that is,

|ξ (x)| ≤ J for all x ∈ Z+. (5.76)

Then

h(x) := H{x} ∼ 1
v(x)

as x→ ∞. (5.77)

Moreover,

P
{ ∞

∑
n=0

I{Xn = x}> N
}
= c1(x)(1− c2(x)v(x))N , (5.78)

where c1(x), c2(x)→ 1 as x→ ∞, hence the family of random variables

v(x)
∞

∑
n=0

I{Xn = x}, x ∈ {1,2,3, . . .}, (5.79)

is uniformly integrable.

More general results are derived in Chapter 6, via different technique based
on the martingale approach.

Proof. Let δ > 0 and define two decreasing functions

U±(x) :=
∫

∞

x
e−R±(y)dy, x > 0,
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where

R±(y) :=
2±δ

b

∫ y

0
v(z)dy.

By the mean value theorem, for all x and j ∈ Z there is a θ = θ( j,x) ∈ (0,1)
such that

U±(x+ j)−U±(x) =− je−R±(x+θ j) ∼ − je−R±(x) as x→ ∞,

because, for any fixed u > 0,

|R±(x+u)−R±(x)| ≤
2+δ

b
uv(x) → 0 as x→ ∞,

due to v(x)→ 0. By L’Hôpital’s rule,

lim
x→∞

U±(x)
1

v(x)e−R±(x)
= lim

x→∞

U ′±(x)( 1
v(x)e−R±(x)

)′
= lim

x→∞

e−R±(x)( v′(x)
v2(x) +

2±δ

b

)
e−R±(x)

=
b

2±δ
,

owing to the condition v′(x) = o(v2(x)). Therefore,

U±(x+ j)−U±(x) ∼ − j
2±δ

b
v(x)U±(x).

Then, since ξ (x) are bounded below, we get for all fixed k ≥ 1 that

Ex+k
{

U±(Xτ(x))−U±(x+ k); τ(x)< ∞
}

∼ 2±δ

b
v(x)U±(x+ k)Ex+k{x+ k−Xτ(x); τ(x)< ∞}, (5.80)

where

τ(x) := min{n≥ 1 : Xn ≤ x}.

Let us compute the drift of U±(Xn). Since the jumps are bounded, by Taylor’s
expansion,

E(U±(x+ξ (x))−U±(x))

= U ′±(x)m1(x)+
1
2

m2(x)U ′′±(x)m2(x)+O(U ′′′± (x))

= −e−R±(x)m1(x)+
1±δ/2

b
v(x)e−R±(x)m2(x)+O

(
v2(x)e−R±(x)

)
∼ ±(δ/2+o(1))v(x)e−R±(x) as x→ ∞.
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Therefore, the sequence U−(Xn∧τ(x)) is a supermartingale for all sufficiently
large x. Then, by the optional stopping theorem,

Ex+k{U−(Xτ(x)); τ(x)< ∞} ≤ U−(x+ k).

This is equivalent to

Ex+k
{

U−(Xτ(x))−U−(x+ k); τ(x)< ∞
}
≤ U−(x+ k)Px+k{τ(x) = ∞}.

Using now (5.80), we get

Px+k{τ(x) = ∞} ≥ 2−2δ

b
v(x)Ex+k{x+ k−Xτ(x); τ(x)< ∞}. (5.81)

Since U+(Xn∧τ(x)) is a submartingale for all sufficiently large x,

Ex+k{U+(Xτ(x)); τ(x)< ∞} ≥ U+(x+ k).

This implies that

Px+k{τ(x) = ∞} ≤ 2+2δ

b
v(x)Ex+k{x+ k−Xτ(x); τ(x)< ∞}.

Combining this lower bound with (5.81) and due to the arbitrary choice of
δ > 0, we conclude that

Px+k{τ(x) = ∞} =
2+o(1)

b
v(x)Ex+k{x+ k−Xτ(x); τ(x)< ∞}. (5.82)

The rest of the proof is literally almost the same as that of Theorem 4.14.

5.9 Comments to Chapter 5

The weak law of large numbers in the form of (5.12) was originally proven by
Lamperti in [112, Theorem 7.1] under the condition that the fourth moment of
jumps is bounded and the drift is of order θ/xβ , β ∈ (0,1). His proof is based
on the method of moments as everything else in that paper.

The strong law of large numbers in the form of (5.24) for a nearest neighbour
Markov chain was proven by Voit in [148, Theorem 2.11] via an orthogonal
polynomials technique.

Various laws of large numbers—both weak and strong—and central limit
theorems were proven by Keller, Kersting and Rosler [90] under minimal mo-
ment condition on positive part of jumps—the existence of square integrable
majorant—and under assumption that jumps are bounded below. Strong law
of large numbers under minimal moment condition was proven by Kersting in
[93].



190 Limit theorems

In [123, Theorem 2.3], Menshikov and Wade have proved the strong law
of large numbers in the form of (5.24) under the assumption that moments of
jumps of order 2+2β +δ , δ > 0, are bounded. In the same paper, the authors
have proved the central limit theorem like Theorem 5.7 for drift proportional
to 1/xβ under the assumption that jumps have moments of order

max
(

2+2β ,1+
2

1+β

)
bounded.



6
Asymptotics for renewal measure for transient

Markov chain via martingale approach

For a transient Markov chain {Xn} on R with asymptotically zero drift, the
average time spent by {Xn} in the interval (x,x+ 1] is roughly speaking the
reciprocal of the drift and tends to infinity as x grows.

In this chapter we present a general approach relying on diffusion approxi-
mation to prove renewal theorems for Markov chains, for that reason we con-
sider Markov chains which may be approximated by diffusion process. Then,
if we have some result of renewal type for diffusion processes as in Section
1.5.2, we should be able to obtain a similar result for a Markov chain having
similar asymptotic behaviour of the first two moments of jumps. In particular,
we will see in the examples below that as soon as we have the Green function
for the diffusion process we should, in principle, be able to construct an ap-
proximation for the Green function of the Markov chain and thus to derive a
renewal theorem.

We apply a martingale type technique and show that the asymptotic be-
haviour of the renewal measure heavily depends on the rate at which the drift
vanishes. As in the last two chapters, the two main cases are distinguished,
either the drift of the chain decreases as 1/x or much slower than that, say as
1/xα for some α ∈ (0,1). In contrast to the case of asymptotically positive
drift considered in Chapter 10 below, the case of vanishing drift is quite tricky
for the analysis due to the fact that the Markov chain tends to infinity rather
slowly and hence one should take into account diffusion fluctuations.

191
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6.1 Asymptotics for renewal measure on growing intervals

Throughout this chapter we assume that the trajectories of {Xn} are unbounded,
that is,

limsup
n→∞

Xn = ∞ a.s. (6.1)

This condition holds true for any irreducible Markov chain on Z+, because
such a chain leaves any finite collection of states in finite time, with probability
1.

Theorem 6.1. Let {Xn} be such that (6.1) holds and

m[s(x)]
1 (x)∼ µ

x
, m[s(x)]

2 (x)→ b ∈ (0,∞) as x→ ∞, (6.2)

for some µ > b/2 and an increasing level s(x) of order o(x). Assume also that

P{|ξ (y)| ≥ s(y)} ≤ p(y)/y (6.3)

for some decreasing integrable at infinity function p(x), and

|ξ (y)|I{|ξ (y)| ≤ s(y)} ≤st ξ̂ for all y≥ 0, (6.4)

where

Eξ̂
2 < ∞. (6.5)

Then, for every function h(x) ↑ ∞ of order o(x), we have

H(x,x+h(x)]∼ 2
2µ−b

xh(x) as x→ ∞.

Notice that both conditions (6.3) and (6.4) are met for some s(x) = o(x) if
|ξ (y)| ≤st ξ̂ for all y and for some ξ̂ satisfying (6.5).

In the course of the proof of this and subsequent theorems we construct a
bounded non-negative supermartingale, which shows that Xn → ∞ a.s. This
convergence means transience of any set bounded on the right.

We now turn to the critical case µ = b/2 where the properties of the chain—
particularly recurrence and transience—depend on further terms in asymptotic
expansions for the moments of increments. As the next theorem shows this is
also true for the renewal function.

Theorem 6.2. Let {Xn} be such that (6.1) holds and that there exist m ≥ 1,
γ > 0 and an increasing level s(x) of order o(x) such that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

=
1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

γ +1+o(1)
x logx · . . . · log(m) x
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and m[s(x)]
2 (x)→ b > 0 as x→ ∞. Assume that, for some ε > 0,

P{|ξ (x)|> s(x)} = o(1/x2 log2+ε x), (6.6)

E{|ξ (x)|3; |ξ (x)| ≤ s(x)} = o(x/ log1+ε x), (6.7)

|ξ (y)|I{|ξ (y)|< s(y)} ≤st ξ̂ , (6.8)

where ξ̂ satisfies (6.5). Then, for every function h(x) ↑∞ of order o(x), we have

H(x,x+h(x)]∼ 2h(x)
bγ

x logx · . . . · log(m) x as x→ ∞.

The proof of the integral renewal theorem in the case µ > b/2 in Section 4.8
is based on the convergence of X2

n /n towards a Γ-distribution. This approach is
not applicable under the conditions of Theorem 6.2, although the convergence
to a Γ-distribution is still valid. The reason is that some chains with µ = b/2
are null-recurrent while other are transient, but this difference disappears in the
weak limit. The only statement which can be obtained from weak convergence
here is the following lower bound:

lim
x→∞

H(0,x]
x2 = ∞

In the next theorem we consider the case where the drift decreases slower
than 1/x, that is, m1(x)x→ ∞.

Theorem 6.3. Let {Xn} be such that (6.1) holds and that there exist a decreas-
ing v(x) satisfying xv(x)→ ∞ and v′(x) = o(v2(x)) and an increasing level
s(x) = o(1/v(x)) such that

m[s(x)]
1 (x)∼ v(x), m[s(x)]

2 (x)→ b ∈ (0,∞) as x→ ∞.

Assume also that

P{|ξ (y)| ≥ s(y)} ≤ p(y)v(y), (6.9)

ξ (y)I{|ξ (y)|< s(y)} ≤st ξ̂ for all y≥ 0, (6.10)

where p(x) is a non-increasing, non-negative integrable at infinity function,
and ξ̂ satisfies (6.5). Then, for every function h(x) ↑ ∞ of order o(1/v(x)), we
have

H(x,x+h(x)]∼ h(x)
v(x)

as x→ ∞.

In the two examples considered in Subsections 1.4.2 and 1.5.2—nearest
neighbour Markov chain and diffusion process—it is possible to construct an
appropriate martingale which allows us to find the renewal measure in a closed
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form. For general Markov chains considered in the last three theorems, this
martingale approach does not work because it is hopeless to construct such a
martingale. However, it is possible to construct almost a martingale that allows
us to derive the asymptotic behaviour of the renewal measure; it is done in
Section 6.2.

6.2 Proof of integro-local renewal theorem on growing
intervals

Let r(x) be a decreasing differentiable function on [0,∞) satisfying the condi-
tion

r′(x) = O(r2(x)) as x→ ∞, (6.11)

in the sequel r(x) approximates the quotient 2m[s(x)]
1 (x)/m[s(x)]

2 (x). We shall
impose assumptions on the truncated moments of Markov chains, and doing
that we always assume that the truncation function s(x) increases and satisfies

s(x) = o(1/r(x)) as x→ ∞.

Define R(x) = 0 for x≤ 0,

R(x) :=
∫ x

0
r(y)dy, x > 0, U(x) :=

∫
∞

x
e−R(z)dz, x ∈ R, (6.12)

where U(x) is assumed finite, compare to U defined in (1.31). Clearly,

U ′′(x)
U ′(x)

=−r(x).

Due to (6.11),

r(x+ y)∼ r(x), R(x+ y)−R(x)→ 0, and e−R(x+y) ∼ e−R(x) (6.13)

as x→ ∞ uniformly for |y| ≤ s(x). Also,

U ′′′(x) = (r2(x)− r′(x))e−R(x) = O
(
r2(x)e−R(x)) (6.14)

and, consequently,

U ′′′(x+ y) = O
(
r2(x)e−R(x)) as x→ ∞ uniformly for |y| ≤ s(x).

(6.15)

Let

G(y) := U(0)−U(y) =
∫ y

0
e−R(z)dz.
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We start with a result showing that G(Xn) is almost a martingale provided the
quotient 2m[s(x)]

1 (x)/m[s(x)]
2 (x) is asymptotically proportional to r(x).

Lemma 6.4. Let θ(y) be a non-negative bounded function. Let

E{|ξ (y)|3; |ξ (y)| ≤ s(y)}= o
(
m[s(y)]

2 (y)θ(y)/r(y)
)

as y→ ∞. (6.16)

(i) If

P{ξ (y)<−s(y)}= 0 for all y≥ 0, (6.17)

and

2m[s(y)]
1 (x)

m[s(y)]
2 (y)

≥ (1+θ(y))r(y) for all sufficiently large y, (6.18)

then there exists a y∗ > 0 such that

E{G(y+ξ (y))−G(y); ξ (y)≤ s(y)} ≥ 0 for all y > y∗.

(ii) If

P{ξ (y)> s(y)}= 0 for all y≥ 0, (6.19)

and

2m[s(y)]
1 (x)

m[s(y)]
2 (y)

≤ (1−θ(y))r(y) for all sufficiently large y, (6.20)

then there exists a y∗ > 0 such that

E{G(y+ξ (y))−G(y); ξ (y)≥−s(y)} ≤ 0 for all y > y∗.

Proof. (i) Since the function G(y) is increasing,

EG(y+ξ (y))−G(y)≥ E{G(y+ξ (y))−G(y); |ξ (y)| ≤ s(y)},

due to the condition (6.17). Since G′(y) = e−R(y), G′′(y) = −r(y)e−R(y), and
G′′′(y+ z) = O(r2(y))e−R(y) as y→ ∞ uniformly for all |z| ≤ s(y) due to the
upper bound (6.15) on U ′′′ and (6.13), application of Taylor’s expansion up to
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the third derivative yields that, for some γ = γ(y,ξ (y)) ∈ [0,1],

E{G(y+ξ (y))−G(y); |ξ (y)| ≤ s(y)}

= m[s(y)]
1 (y)G′(y)+

1
2

m[s(y)]
2 (y)G′′(y)

+
1
6
E{ξ 3(y)G′′′(y+ γξ (y)); |ξ (y)| ≤ s(y)}

= m[s(y)]
1 (y)e−R(y)− 1

2
m[s(y)]

2 (y)r(y)e−R(y)

+O
(

r2(y)e−R(y)E{|ξ 3(y)|; |ξ (y)| ≤ s(y)}
)

as y→ ∞.

The sum of the first two terms on the right hand side equals

1
2

e−R(y)(2m[s(y)]
1 (y)−m[s(y)]

2 (y)r(y)
)
≥ 1

2
e−R(y)m[s(y)]

2 (y)θ(y)r(y),

due to the condition (6.18). The third term on the right hand side of the previous
equation is of order o

(
m[s(y)]

2 (y)θ(y)r(y)e−R(y)
)

owing to the condition (6.16).
These observations conclude the proof of (i).

(ii) Since the function G(y) is increasing,

EG(y+ξ (y))−G(y)≤ E{G(y+ξ (y))−G(y); |ξ (y)| ≤ s(y)},

due to the condition (6.19). The rest of the proof is very similar to part (i).

6.2.1 Upper bound for renewal measure

Our derivation of an upper bound for the renewal measure of {Xn} is based on
the Lyapunov function G∗∗h,x(y) defined below in (6.23).

For any x and h > 0, consider a piecewise differentiable function

g∗∗h,x(y) :=


0, y≤ x,

2(y− x), y ∈ (x,x+h],

2h, y ∈ (x+h,x+h+ s(x+h)],

2heR(x+h+s(x+h))−R(y), y > x+h+ s(x+h),

(6.21)

whose derivative satisfies

g∗∗′h,x(y) = 2I{y ∈ [x,x+h]} for all y < x+h+s(x+h), y 6= x,x+h. (6.22)

Its integral—the function which originates from the key function (1.34) for
diffusion processes,

G∗∗h,x(y) :=
∫ y

0
g∗∗h,x(z)dz, (6.23)
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is an increasing bounded function, G∗∗h,x(∞)< ∞, because

g∗∗h,x(y) ≤ 2heR(x+h+s(x+h))−R(y) for all y, (6.24)

and hence,

G∗∗h,x(∞)≤ 2h
∫

∞

x
eR(x+h+s(x+h))−R(y)dy

= 2heR(x+h+s(x+h))U(x)

≤ 2hU(x)eR(x+h)+R′(x+h)s(x+h)

= 2hU(x)eR(x+h)+r(x+h)s(x+h), (6.25)

because R is concave. As s(x) = o(1/r(x)),

G∗∗h,x(∞)≤ 2hU(x)eR(x+h)+o(1)

≤ 2hU(x)eR(x)+o(1) as x→ ∞, (6.26)

for h≤ s(x), due to (6.13).
The function G∗∗h,x(y) is convex for y ≤ x+ h. For y > x+ h, the function

G∗∗h,x(y) increases in a concave way with slope 2h at point x+ h. Notice that,
for y > x+h+ s(x+h) and z > 0,

G∗∗h,x(y+ z)−G∗∗h,x(y) = 2heR(x+h+s(x+h))(G(y+ z)−G(y))

and, due to (6.24), for y > x+h+ s(x+h) and z≤ 0,

G∗∗h,x(y+ z)−G∗∗h,x(y)≥ 2heR(x+h+s(x+h))(G(y+ z)−G(y)).

Therefore, for all y > x+h+ s(x+h) and z ∈ R

G∗∗h,x(y+ z)−G∗∗h,x(y)≥ 2heR(x+h+s(x+h))(G(y+ z)−G(y)). (6.27)

Further, for y ∈ (x+h,x+h+ s(x+h)],

g∗∗h,x(y+ z) ≥ 2heR(y)−R(y+z) for z > 0,

and

g∗∗h,x(y+ z) ≤ 2h ≤ 2heR(y)−R(y+z) for z≤ 0.

Therefore, for y ∈ (x+h,x+h+ s(x+h)],

G∗∗h,x(y+ z)−G∗∗h,x(y)≥ 2heR(y)(G(y+ z)−G(y)). (6.28)

Lemma 6.5. Assume that the conditions (6.16)–(6.18) hold. Then there exists
an x∗ > 0 such that, for all x > x∗, y≥ 0, h≤ s(x), and t ∈ (0,h/2),

EG∗∗h,x(y+ξ (y))−G∗∗h,x(y)≥ m[t]
2 (y)I{y ∈ [x+ t,x+h− t]}. (6.29)
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Proof. Since the function G∗∗h,x(y) is zero for y≤ x and positive for y > x, the
mean drift of G∗∗h,x is non-negative for all y ∈ [0,x] and the inequality (6.29)
follows for this range of y.

Since G∗∗h,x(y) is increasing and due to (6.17),

EG∗∗h,x(y+ξ (y))−G∗∗h,x(y) ≥ E{G∗∗h,x(y+ξ (y))−G∗∗h,x(y); |ξ (y)| ≤ s(y)}
=: E.

Positivity of E for y > x+h follows from (6.27) and (6.28), by Lemma 6.4.
It only remains to estimate E from below for y ∈ [x,x+ h]. Let us apply

Taylor’s expansion for G∗∗h,x with integral remainder term,

E = m[s(y)]
1 (y)g∗∗h,x(y)+E

{∫ y+ξ (y)

y
g∗∗′h,x(z)(y+ξ (y)− z)dz; |ξ (y)| ≤ s(y)

}
.

(6.30)

Since g∗∗h,x(z)≥ 0 and g∗∗′h,x(z)≥ 0 for all z ∈ [0,x+h+ s(x+h)], we obtain for
all sufficiently large x and y ∈ [x,x+h], t ∈ (0,h/2),

E ≥ E
{∫ y+ξ (y)

y
g∗∗′h,x(z)(y+ξ (y)− z)dz; |ξ (y)| ≤ t

}
≥ 2I{y ∈ [x+ t,x+h− t]}E

{∫ y+ξ (y)

y
(y+ξ (y)− z)dz; |ξ (y)| ≤ t

}
= m[t]

2 (y)I{y ∈ [x+ t,x+h− t]},

because g∗∗′h,x(z) = 2 for all z ∈ (x,x+h] which concludes the proof.

Proposition 6.6. Assume that conditions of Lemma 6.5 hold. Then there exists
an x∗ > 0 such that, for all x > x∗, h≤ s(x), and t ∈ (0,h/2),

H(x+ t,x+h− t]≤
G∗∗h,x(∞)−EG∗∗h,x(X0)

miny∈[x+t,x+h−t] m
[t]
2 (y)

.

Proof. Consider the following decomposition

G∗∗h,x(Xn) =
n−1

∑
k=0

(G∗∗h,x(Xk+1)−G∗∗h,x(Xk))+G∗∗h,x(X0).

Since G∗∗h,x(y) is bounded by G∗∗h,x(∞), we obtain

G∗∗h,x(∞)≥ EG∗∗h,x(Xn)

= EG∗∗h,x(X0)+
n−1

∑
k=0

E[G∗∗h,x(Xk+1)−G∗∗h,x(Xk)]

≥ EG∗∗h,x(X0)+
n−1

∑
k=0

E{m[t]
2 (Xk);Xk ∈ (x+ t,x+h− t]},
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for x > x∗, by Lemma 6.5. Hence, for any n,

n−1

∑
k=0

P{Xk ∈ (x+ t,x+h− t]} ≤
G∗∗h,x(∞)−EG∗∗h,x(X0)

miny∈[x+t,x+h−t] m
[t]
2 (y)

.

Letting n to infinity we arrive at the conclusion.

6.2.2 Lower bound for renewal measure

We now turn to an accompanying lower bound for the renewal measure. To
this end we consider a continuous piecewise differentiable function

g∗h,x(y) :=


0, y≤ x,

2(y− x), y ∈ (x,x+h],

2heR(x+h)−R(y), y > x+h,

(6.31)

whose derivative satisfies

g∗′h,x(y) ≤ 2I{y ∈ [x,x+h]} for all y≥ 0, y 6= x, x+h. (6.32)

Its integral—which similarly to (6.23) originates from the key function (1.34)
for diffusion processes,

G∗h,x(y) :=
∫ y

0
g∗h,x(z)dz, (6.33)

is an increasing bounded function, G∗h,x(∞)< ∞, and

G∗h,x(∞) = h2 +2heR(x+h)U(x+h)

≥ 2heR(x)U(x+h). (6.34)

For h≤ s(x) = o(1/r(x)), due to (6.11),

G∗h,x(∞)≥ (2+o(1))heR(x)U(x) as x→ ∞. (6.35)

Also define a concave function

G∗<h,x(y) := h2 +2heR(x+h)
∫ y

x+h
e−R(z)dz, (6.36)

whose derivative is 2heR(x+h)−R(y) and G∗<h,x(x+h) = G∗h,x(x+h). Observe the
inequality

G∗h,x(y)≥ G∗<h,x(y) for all y≤ x+h, (6.37)

and the equality

G∗h,x(y) = G∗<h,x(y) for all y≥ x+h. (6.38)
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Hence, for y > x+h and z > 0,

G∗h,x(y− z)−G∗<h,x(y− z)≤ G∗h,x(y)−G∗<h,x(y− z)

= G∗<h,x(y)−G∗<h,x(y− z)

= 2heR(x+h)(G(y)−G(y− z)). (6.39)

Lemma 6.7. Assume that the conditions (6.16), (6.19) and (6.20) hold. Then
there exists an x∗ > 0 such that, for all x > x∗, y≥ 0, h≤ s(x), and t ∈ (0,h/2),

EG∗h,x(y+ξ (y))−G∗h,x(y)

≤


0, y≤ x− s(x),

2hE{ξ (y);ξ (y) ∈ (x− y,s(y))}, y ∈ (x− s(x),x− t],

(1+hr(y))m[s(y)]
2 (y), y ∈ (x− t,x+h+ t],

3hE{|ξ (y)|;−s(y)< ξ (y)< x+h− y}, y > x+h+ t.

Proof. Since G∗h,x(y) is increasing in y, we obtain

EG∗h,x(y+ξ (y))−G∗h,x(y) ≤ E{G∗h,x(y+ξ (y))−G∗h,x(y); ξ (y)≥−s(y)}
= E{G∗h,x(y+ξ (y))−G∗h,x(y); |ξ (y)| ≤ s(y)}
=: E,

due to (6.19).
In the case y≤ x− s(x), we have y+ξ (y)≤ x− s(x)+ s(y)≤ x, so G∗h,x(y+

ξ (y)) = G∗h,x(y) = 0 and the conclusion of the lemma follows for y≤ x− s(x).
In the case x− s(x) < y ≤ x− t, it follows from the definition of G∗h,x that

G∗h,x(x+ z)≤ 2hz for all z > 0 which yields G∗h,x(y+ z)≤ 2h(y− x+ z) for all
y≤ x and z > 0. Therefore,

E ≤ 2hE{ξ (y);ξ (y) ∈ (x− y,s(y)]} , (6.40)

and the conclusion of the lemma follows for x− s(x)< y≤ x− t.
In the case y ∈ (x− t,x+ h+ t], we proceed similarly to Lemma 6.5. By

Taylor’s expansion (6.30),

E ≤ m[s(y)]
1 (y)g∗h,x(y)+m[s(y)]

2 (y)

≤ 1
2

m[s(y)]
2 (y)r(y)g∗h,x(y)+m[s(y)]

2 (y)

≤ m[s(y)]
2 (y)(hr(y)+1),

due to (6.20) where θ(y)≥ 0, (6.32) and inequality g∗h,x(y)≤ 2h, for all suffi-
ciently large y. Thus the lemma’s conclusion follows for y ∈ (x− t,x+h+ t].
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In the case y > x+h+ t, since the function G(y) is concave,

G(y)−G(y− z)≤ zG′(y− z) = ze−R(y−z) for all z > 0.

Therefore, as y→ ∞,

G(y)−G(y− z)≤ ze−R(y)(1+o(1)) uniformly for all z ∈ [0,s(y)].

Thus it follows from (6.39) that, as y→ ∞,

G∗h,x(y− z)−G∗<h,x(y− z)≤ 2hzeR(x+h)−R(y)(1+o(1))

≤ 2hz(1+o(1)) (6.41)

uniformly for all h, z∈ [0,s(y)]. The inequality (6.37) and equality (6.38) allow
us to conclude that, for y > x+h,

E = E{G∗<h,x(y+ξ (y))−G∗<h,x(y); |ξ (y)| ≤ s(y)}
+E{G∗h,x(y+ξ (y))−G∗<h,x(y+ξ (y)); |ξ (y)| ≤ s(y)}

= E{G∗<h,x(y+ξ (y))−G∗<h,x(y); |ξ (y)| ≤ s(y)}
+E{G∗h,x(y+ξ (y))−G∗<h,x(y+ξ (y)); ξ (y) ∈ [−s(y),x+h− y]}
≤ E{G∗h,x(y+ξ (y))−G∗<h,x(y+ξ (y)); ξ (y) ∈ [−s(y),x+h− y]},

by the second statement of Lemma 6.4. Applying here (6.41) we deduce, for
all sufficiently large x and y > x+h,

E ≤ 3hE{|ξ (y)|; ξ (y) ∈ [−s(y),x+h− y]}.

Combining altogether we conclude the result of the lemma for y > x+ h+
t.

Proposition 6.8. Let the assumptions of Lemma 6.7 hold. Then there exists an
x∗ > 0 such that, for all x > x∗, y≥ 0, h≤ s(x), and t ∈ (0,h/2),

H(x− t,x+h+ t]≥
G∗h,x(∞)−EG∗h,x(X0)−δ (x)

maxy∈[x−t,x+h+t](1+hr(y))m[s(y)]
2 (y)

,

where

δ (x) = 2h
∫ x−t

x−s(x)
H(dy)E{ξ (y); x− y < ξ (y)< s(y)}

+3h
∫

∞

x+h+t
H(dy)E{|ξ (y)|;−s(y)< ξ (y)< x+h− y}.

Proof. Consider the decomposition

G∗h,x(Xn) =
n−1

∑
k=0

(G∗h,x(Xk+1)−G∗h,x(Xk))+G∗h,x(X0).
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Therefore we deduce from Lemma 6.7 that, for some c < ∞ and all x > x∗,

EG∗h,x(Xn)

= EG∗h,x(X0)+
n−1

∑
k=0

E(G∗h,x(Xk+1)−G∗h,x(Xk))

≤ EG∗h,x(X0)+
n−1

∑
k=0

E
{
(1+hr(Xk))m

[s(Xk)]
2 (Xk);Xk ∈ (x− t,x+h+ t]

}
+2h

n−1

∑
k=0

∫ x−t

x−s(x)
P{Xk ∈ dy}E{ξ (y);x− y < ξ (y)< s(y)}

+3h
n−1

∑
k=0

∫
∞

x+h+t
P{Xk ∈ dy}E{|ξ (y)|;−s(y)< ξ (y)< x+h− y}.

Hence, for any n,

n−1

∑
k=0

P{Xk ∈ (x− t,x+h+ t]} ≥
EG∗h,x(Xn)−EG∗h,x(X0)−δ (x)

maxy∈[x−t,x+h+t](1+hr(y))m[s(y)]
2 (y)

.

Letting n→ ∞ we arrive at the conclusion due to the convergence G∗h,x(Xn)→
G∗h,x(∞) which in its turn follows from Lemma 6.5 together with the martingale
convergence theorem and the assumption (6.1).

In order to get a lower bound in a closed form, we need to derive conditions
under which the term δ (x) in Proposition 6.8 is of order o(G∗h,x(∞)) as x→ ∞.
In the next result we demonstrate how to bound δ (x) provided an appropriate
upper bound for the renewal measure is available.

Lemma 6.9. Let, for some h = h(x)≤ s(x) and t = t(x)≤ h/2,

sup
y: x/2≤y≤2x

H(y,y+ t]≤C1tU(x)eR(x) for some C1 < ∞, (6.42)

and, for some random variable ξ with Eξ 2 < ∞,

|ξ (y)| ≤st ξ for all y≥ 0. (6.43)

Then δ (x)≤ chU(x)eR(x)E{ξ 2; |ξ |> t} for some c < ∞.

Proof. Let us analyse the first term in δ (x). The stochastic majorisation con-
dition (6.43) yields that∫ x−t

x−s(x)
H(dy)E{ξ (y); x− y < ξ (y)< s(y)} ≤

∫ x−t

x−s(x)
H(dy)E{ξ ; ξ > x− y}.
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Further, using the upper bound (6.42) we deduce

∫ x−t

x−s(x)
H(dy)E{ξ ; ξ > x− y} ≤

s(x)/t

∑
n=1

H(x− (n+1)t,x−nt]E{ξ ; ξ > nt}

≤C2tU(x)eR(x)
s(x)/t

∑
n=1

E{ξ ; ξ > nt}

≤C2tU(x)eR(x)E{ξ 2/t; ξ > t}
=C2U(x)eR(x)E{ξ 2; ξ > t}.

Hence the first term in δ (x) is not greater than 2C2hU(x)eR(x)E{ξ 2; ξ > t} as
required.

The second term in δ (x) can be bounded in the same way, namely∫
∞

x+h+t
H(dy)E{|ξ (y)|; −s(y)< ξ (y)< x+h− y}

=
∫ x+h+s(x)

x+h+t
H(dy)E{|ξ (y)|; −s(x)< ξ (y)< x+h− y}

≤
∫ x+h+s(x)

x+h+t
H(dy)E{|ξ |; ξ < x+h− y}

=
∫ s(x)

t
H(x+h+dy)E{|ξ |; ξ <−y},

and, as above,∫ s(x)

t
H(x+h+dy)E{|ξ |; ξ <−y}

≤
s(x)/t

∑
n=1

H(x+h+nt,x+h+(n+1)t]E{|ξ |; ξ <−nt}

≤C3tU(x)eR(x)
s(x)/t

∑
n=1

E{|ξ |; ξ <−nt}

≤C3U(x)eR(x)E{ξ 2; ξ <−t},

and we conclude the proof.

6.2.3 On two Markov chains with asymptotically equal jumps

As in Section 4.1, let {Yn} and {Zn} be two Markov chains with jumps η(x)
and ζ (x) respectively. Denote by HY and HZ their renewal measures.
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Lemma 6.10. Let the conditions of Lemma 4.1 hold. If there exists a nonneg-
ative function g(x) such that

HZ(x,x+h(x)]∼ g(x) as x→ ∞ (6.44)

for any distribution of Z0 and

sup
y

HZ
y (x,x+h(x)] = O(g(x)) as x→ ∞, (6.45)

then, for any distribution of Y0,

HY (x,x+h(x)]∼ g(x) as x→ ∞.

If, in addition, the family of random variables

1
g(x)

∞

∑
n=0

I{Zn ∈ (x,x+h(x)]}

is uniformly integrable, then

1
g(x)

∞

∑
n=0

I{Yn ∈ (x,x+h(x)]}

is so.

Proof. Let us consider two sequences of independent random fields {ηn(x),
x ∈ R}n≥0 and {ζn(x), x ∈ R}n≥0 as in (4.5) and then the Markov chains {Yn}
and {Zn} as there.

Fix an ε > 0 and let xε be delivered by Lemma 4.1. Let τ := min{n ≥ 0 :
Yn > xε} and consider {Zk} with initial value Z0 = Yτ . Define

µ := min{k ≥ 1 : Zk 6= Yτ+k}.

By Lemma 4.1, P{µ < ∞} ≤ ε . For x > xε ,

sup
y

HY
y (x,x+h(x)]≤ sup

y
Ey

τ+µ−1

∑
n=τ

I{Yn ∈ (x,x+h(x)]}

+sup
y
Ey

∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]}.

The first expectation on the right hand side is not greater than HZ
y (x,x+h(x)]

because Yn = Zn−τ between τ and τ + µ − 1. The second one possesses the
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following upper bound

Ey

∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]}

= Ey

{ ∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]}
∣∣∣µ < ∞

}
P{µ < ∞}

≤ sup
z

HY
z (x,x+h(x)]ε.

Therefore,

sup
y

HY
y (x,x+h(x)]≤ 1

1− ε
sup

y
HZ

y (x,x+h(x)]. (6.46)

For any distribution of Y0 and x > xε we have

HY (x,x+h(x)]

= E
τ+µ−1

∑
n=τ

I{Yn ∈ (x,x+h(x)]}+E
∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]}

= E
τ+µ−1

∑
n=τ

I{Zn ∈ (x,x+h(x)]}+E
∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]}

= EHY
Yτ
(x,x+h(x)]

−EEYτ

∞

∑
n=µ

I{Zn ∈ (x,x+h(x)]}+E
∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]}.

As we have seen in the first part of the proof, for all x large enough,

E
∞

∑
n=τ+µ

I{Yn ∈ (x,x+h(x)]} ≤ ε sup
y

HY
y (x,x+h(x)]

≤ ε

1− ε
sup

y
HZ

y (x,x+h(x)],

owing to (6.46). Similarly,

EZτ

∞

∑
n=µ

I{Zn ∈ (x,x+h(x)]} ≤ EPYτ
(µ < ∞)sup

y
HZ

y (x,x+h(x)]

≤ ε sup
y

HZ
y (x,x+h(x)].

Therefore,

|HY (x,x+h(x)]−EHZ
Yτ
(x,x+h(x)]| ≤ ε

1− ε
sup

y
HZ

y (x,x+h(x)].
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Letting ε → 0 and using (6.45) we conclude

|HY (x,x+h(x)]−EHZ
Zτ
(x,x+h(x)]|= o(g(x)) as x→ ∞.

According to (6.44) and (6.45), EHZ
Yτ
(x,x+h(x)]∼ g(x) which completes the

proof.

6.2.4 Proofs of Theorems 6.1, 6.2, and 6.3

Proof of Theorem 6.1. Consider a modified Markov chain {X̃n} on the same
probability space as {Xn} with jumps ξ̃ (x) defined as follows:

ξ̃ (x) =
{

ξ (x) if |ξ (x)| ≤ s(x);
any value if |ξ (x)|> s(x).

If {X̃n} does not satisfy the unboundedness of trajectories condition (6.1), then
we can increase the value of s(x) on some set bounded on the right in such a
way that then {X̃n} does satisfy (6.1). Indeed, it follows from the conditions
(6.2), (6.4) and (6.5) that there exist a sufficiently high level x0 and an ε > 0
such that P{ξ (x) ≥ ε} ≥ ε for all x ≥ x0. Then it suffices to increase s(x) on
the set (−∞,x0] to ensure the condition (6.1) for {X̃n}.

Without loss of generality we assume that h(x)≤ s(x). Let us choose a func-
tion t(x) ↑ ∞ of order o(h(x)) as x→ ∞.

Fix some c > 1 and consider r(x) = c/(1+ x). Then,

R(x) = c log(1+ x) and U(x) = (1+ x)1−c/(c−1).

Therefore,

U(x)eR(x) =
x+1
c−1

. (6.47)

The chain {X̃n} satisfies the condition (6.17). Fix some c∗∗ ∈ (1,2µ/b) and
define r∗∗(x) = c∗∗/(1+ x), which ensures the condition (6.18) with θ(y) =
θ = (2µ/bc∗∗− 1)/2 > 0. The condition (6.16) is immediate from the upper
bound

E{|ξ (y)|3; |ξ (y)| ≤ s(y)} ≤ s(y)m[s(y)]
2 (y) (6.48)

and the relation s(y) = o(y). Also,

m[t(x)]
2 (x)→ b as x→ ∞,
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by the conditions (6.4) and (6.5). As a result, by Proposition 6.6, as x→ ∞,

H̃(x+ t(x),x+h(x)− t(x)]≤
G∗∗h,x(∞)

b+o(1)

≤ 2+o(1)
(c∗∗−1)b

xh(x),

owing to (6.26) and (6.47). Letting c∗∗→ 2µ/b, we get

H̃(x+ t(x),x+h(x)− t(x)]≤ 2+o(1)
2µ−b

xh(x) as x→ ∞.

Taking into account that t(x)= o(h(x)) we conclude the following upper bound

H̃(x,x+h(x)]≤ 2+o(1)
2µ−b

xh(x) as x→ ∞. (6.49)

The chain {X̃n} satisfies the condition (6.19). Fix some c∗> 2µ/b and define
r∗(x) = c∗/(1+ x), which ensures the condition (6.20) with θ(y) = θ = (1−
2µ/bc∗)/2 > 0. Then it follows from Proposition 6.8 that, as x→ ∞,

H̃(x− t(x),x+h(x)+ t(x)]≥
G∗h,x(∞)−EG∗h,x(X0)−δ (x)

b+o(1)

≥ (2+o(1))
h(x) x

c∗−1 −δ (x)
b+o(1)

,

due to (6.35) and (6.47). By the condition (6.4), the chain {X̃n} satisfies (6.43)
which together with the upper bound (6.49) for the renewal measure generated
by {X̃n} yields the upper bound for δ (x) delivered by Lemma 6.9. Therefore,

H̃(x− t(x),x+h(x)+ t(x)]≥ 2+o(1)
(c∗−1)b

xh(x).

owing to (6.47). Letting here c∗→ 2µ/b and since t(x) = o(h(x)), we finally
get

H̃(x,x+h(x)]≥ 2+o(1)
2µ−b

xh(x) as x→ ∞.

Combining this lower bound with the upper bound (6.49), we conclude that

H̃(x,x+h(x)]∼ 2
2µ−b

xh(x) as x→ ∞.

Together with the condition (6.3) this allows us to apply Lemma 6.10 to the
two Markov chains, Y = X and Z = X̃ , hence the same asymptotics for the
renewal measure generated by {Xn}.
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Proof of Theorem 6.2. As in the proof of Theorem 6.1, from the very begin-
ning we may assume that |ξ (y)| ≤ s(y) for all y which implies both (6.17) and
(6.19). Without loss of generality we assume that h(x)≤ s(x).

Fix c > 1 and consider

r(x) =
1

x+ e(m)
+

1
(x+ e(m)) log(x+ e(m))

+ . . .+
c

(x+ e(m)) log(x+ e(m)) · . . . · log(m)(x+ e(m))
,

where e(m) > 0 is defined by log(m) e(m) = 1. Therefore,

R(x) = log(x+ e(m))+ log log(x+ e(m))

+ . . .+ log(m)(x+ e(m))+ c log(m+1)(x+ e(m))−Cm

and

U(x) =
eCm

c−1

(
log(m)(x+ e(m))

)1−c
,

which implies from (6.26) that, for c∗∗ < γ +1,

G∗∗h(x),x(∞)≤ 2+o(1)
c∗∗−1

h(x)x logx · . . . · log(m) x as x→ ∞,

and from (6.35), for c∗ > γ +1,

G∗h(x),x(∞)≥ 2+o(1)
c∗−1

h(x)x logx · . . . · log(m) x as x→ ∞.

Repeating the arguments used in the proof of Theorem 6.1, we obtain the de-
sired result.

Proof of Theorem 6.3. As in the proof of Theorem 6.1, from the very begin-
ning we may assume that |ξ (y)| ≤ s(y) for all y which implies both (6.17) and
(6.19). Without loss of generality we assume that h(x)≤ s(x). Let us choose a
function t(x) ↑ ∞ of order o(h(x)) as x→ ∞.

Fix some c > 0 and consider r(x) = cv(x). Then, by l’Hôspital’s rule,

U(x)
U ′(x)

∼ 1
r(x)

.

Therefore, as follows from (6.26)

G∗∗h(x),x(∞)≤ (2+o(1))
h(x)
r(x)

as x→ ∞, (6.50)

and from (6.35)

G∗h(x),x(∞)≥ (2+o(1))
h(x)
r(x)

as x→ ∞. (6.51)
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Considering c∗∗ < 2/b and c∗ > 2/b and repeating the arguments used in
the proof of Theorem 6.1, we conclude the proof.

6.3 Asymptotics for renewal measure on fixed intervals

While the asymptotic behaviour of the renewal measure on growing intervals is
derived under assumptions on regular behaviour of the first two moments only,
it seems that the local renewal theorem can be only proved for asymptotically
homogeneous in space Markov chain. The next result gives us a tool for deriv-
ing asymptotic behaviour of the renewal measure on intervals from results for
sufficiently slowly growing intervals. It requires weak convergence of jumps at
infinity, that is, we consider an asymptotically homogeneous in space Markov
chain which is defined as a Markov chain such that, for some random variable
ξ ,

ξ (x)⇒ ξ as x→ ∞; (6.52)

if there is no asymptotic homogeneity in space then the asymptotic behaviour
of H(x,x+h] may be very different. For Markov chains on Z+ with bounded
jumps, it was studied in Sections 4.9 and 5.8 via careful analysis of the return-
ing probabilities at high level.

Theorem 6.11. Let (6.52) hold and the family of random variables {|ξ (x)|, x∈
R} admit an integrable majorant Ξ, that is, EΞ < ∞ and

|ξ (x)| ≤st Ξ for all x ∈ R. (6.53)

Assume that there exist a bounded function v(x)> 0, a growing level t̃(x) ↑ ∞

and a constant CH < ∞ such that, for any t(x) ↑ ∞ satisfying t(x)≤ t̃(x),

v(x)H(x,x+ t(x)]
t(x)

→ CH as x→ ∞. (6.54)

If the limiting random variable ξ is non-lattice, then v(x)H(x,x+h]→CHh
as x→ ∞, for all fixed h > 0.

If the chain {Xn} is integer-valued and Z is the minimal lattice for the vari-
able ξ , then v(k)H{k}→CH as k→∞, and, in addition, the family of random
variables

v(k)
∞

∑
n=0

I{Xn = k}, k > 0, (6.55)

is uniformly integrable.
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Let us apply the last result to chains considered in Theorems 6.1–6.3. In
addition, under specific assumptions on the drift function we are able to gen-
eralise the uniform integrability conclusion from lattice to general Markov
chains.

Corollary 6.12. Under the conditions of Theorem 6.1, (6.52) and (6.53), we
have, for every h > 0,

H(x,x+h]∼ 2h
2µ−b

x as x→ ∞,

if the limiting random variable ξ is non-lattice, and

H{k} ∼ 2
2µ−b

k as k→ ∞,

if the chain {Xn} is integer-valued and Z is the minimal lattice for the variable
ξ .

In addition, for some x̂ ∈ R, the family of random variables

1
x

∞

∑
n=0

I{Xn ∈ (x,x+1]}, x≥ x̂,

is uniformly integrable.

For lattice Markov chains, the last corollary is an improvement on Theorem
4.14 where the same asymptotics were only proven in the case of bounded
jumps. A similar improvement on Theorem 4.16 holds true.

As far as it concerns applications, we apply the last result to derive local
asymptotics of the renewal measure for a random walk conditioned to stay
positive in Section 11.1.

Corollary 6.13. Under the conditions of Theorem 6.2, (6.52) and (6.53), we
have, for every h > 0,

H(x,x+h]∼ 2h
bγ

x logx · . . . · log(m) x as x→ ∞,

if the limiting random variable ξ is non-lattice, and

H{k} ∼ 2
bγ

k logk · . . . · log(m) k as k→ ∞,

if the chain {Xn} is integer-valued and Z is the minimal lattice for the variable
ξ .

In addition, for some x̂ ∈ R, the family of random variables

1
x logx · . . . · log(m) x

∞

∑
n=0

I{Xn ∈ (x,x+1]}, x≥ x̂,
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is uniformly integrable.

Corollary 6.14. Under the conditions of Theorem 6.3, (6.52) and (6.53), we
have, for every h > 0,

H(x,x+h]∼ h
v(x)

as x→ ∞,

if the limiting random variable ξ is non-lattice, and

H{k} ∼ 1
v(k)

as k→ ∞,

if the chain {Xn} is integer-valued and Z is the minimal lattice for the variable
ξ .

In addition, for some x̂ ∈ R, the family of random variables

v(x)
∞

∑
n=0

I{Xn ∈ (x,x+1]}, x≥ x̂,

is uniformly integrable.

The last result is an improvement on Theorem 5.19 and it is particularly
useful for the proof of the local asymptotics for a random walk conditioned to
stay positive – which represents one of the classical examples of chains with
asymptotically zero drift, see Proposition 11.1.

6.4 Key renewal theorem

We now turn to the renewal equation

Z(B) = z(B)+
∫
R

Z(dy)P(y,B), B ∈B(R),

where z is a finite nonnegative measure on R. This is more than sufficient to
ensure that

Z(B) =
∫
R

z(du)Hu(B), B ∈B(R),

is a unique locally finite solution to the renewal equation. The analysis of the
preceding subsection of this paper allows us to deduce the asymptotic be-
haviour of the measure Z at infinity. The proof is immediate from the dom-
inated convergence theorem.
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Theorem 6.15. Let B ∈ B(R). Assume that, for some positive function g(x)
and for all y ∈ R,

Hy(x+B) ∼ g(x) as x→ ∞,

and, for some c < ∞,

Hy(x+B) ≤ cg(x) for all x, y ∈ R.

If z is a finite measure, then

Z(x+B) ∼ z(R)g(x) as x→ ∞.

6.5 Proof of results of Section 6.3

In this section, our first goal is to provide an approach that allows us to reduce
the proof of the asymptotic behaviour of the renewal measure on intervals of
fixed length to that on sufficiently slowly growing intervals, that is, Theorem
6.11.

Lemma 6.16. Assume that there exist monotone functions v(x)> 0 and t̃(x) ↑
∞ such that, for any t(x) ↑ ∞ satisfying t(x)≤ t̃(x),

sup
x≥1

v(x)H(x,x+ t(x)]
t(x)

< ∞.

Then,

sup
x≥1

v(x)H(x,x+1]< ∞. (6.56)

Proof. Suppose that (6.56) fails. Then there exists a sequence xn ↑ ∞ such
that

αn := v(xn)H(xn,xn +1]→ ∞ as n→ ∞.

Since both αn and t̃(xn) tend to infinity, there exists a sequence tn ↑∞ such that
tn ≤ t̃(xn) and tn = o(αn) as n→ ∞. Let t be defined as follows

t(x) = tn, xn ≤ x < xn+1.

Clearly, t(x)≤ t̃(x) and t(x) ↑ ∞. Then, eventually in n,

v(xn)H(xn,xn + t(xn)]

t(xn)
≥ v(xn)H(xn,xn +1]

t(xn)
=

αn

t(xn)
→ ∞,

which contradicts the hypothesis.
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Proof of Theorem 6.11. By Lemma 6.16 it follows from the assumption (6.54)
that the supremum in (6.56) is finite. In turn, it allows us to apply Helly’s Se-
lection Theorem to the family of measures {v(x)H(x + ·), x ∈ R} (see, for
example, Theorem 2 in [63, Section VIII.6]). Hence, there exists a sequence
of points xn→∞ such that the sequence of measures v(xn)H(xn + ·) converges
weakly to some measure λ as n→ ∞. The following two results characterise
λ .

Lemma 6.17. Let F denote the distribution of ξ . A weak limit λ of the se-
quence of measures v(xn)H(xn + ·) satisfies the identity λ = λ ∗F.

Proof. The measure λ is positive and σ -finite with necessity. Fix any smooth
function f (x) with a bounded support; let A > 0 be such that f (x) = 0 for x /∈
[−A,A]. The weak convergence of measures means convergence of integrals∫

∞

−∞

f (x)v(xn)H(xn +dx) =
∫ A

−A
f (x)v(xn)H(xn +dx)

→
∫ A

−A
f (x)λ (dx) as n→ ∞. (6.57)

On the other hand, due to the equality H(·) = P{X0 ∈ ·}+H ∗P(·) we have the
following representation for the left side of (6.57):∫ A

−A
f (x)v(xn)P{X0 ∈ xn +dx}

+
∫ A

−A
f (x)

∫
∞

−∞

P(xn + y,xn +dx)v(xn)H(xn +dy). (6.58)

Since f and v are bounded,∫ A

−A
f (x)v(xn)P{X0 ∈ xn +dx} ≤ ‖ f‖∞‖v‖∞P{X0 ∈ [xn−A,xn +A]}

→ 0 as n→ ∞. (6.59)

The second term in (6.58) is equal to∫
∞

−∞

v(xn)H(xn +dy)
∫ A

−A
f (x)P(xn + y,xn +dx). (6.60)

The weak convergence P(t, t + ·)⇒ F(·) as t→ ∞ implies convergence of the
inner integral in (6.60):∫ A

−A
f (x)P(xn + y,xn +dx)→

∫ A

−A
f (x)F(dx− y);
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here the rate of convergence can be estimated in the following way:

∆(n,y) :=

∣∣∣∣∣
∫ A

−A
f (x)(P(xn + y,xn +dx)−F(dx− y))

∣∣∣∣∣
=

∣∣∣∣∣
∫ A

−A
f ′(x)(P{ξ (xn + y)≤ x− y}−F(x− y))dx

∣∣∣∣∣
≤ ‖ f ′‖∞

∫ A−y

−A−y
|P{ξ (xn + y)≤ x}−F(x)|dx.

Thus, the asymptotic homogeneity of the chain yields for every fixed C > 0 a
uniform convergence

sup
y∈[−C,C]

∆(n,y)→ 0 as n→ ∞. (6.61)

In addition, by the majorisation condition (6.53), for all x ∈ R,

|P{ξ (xn + y)≤ x}−F(x)| ≤ 2P{Ξ > |x|}.

Hence, for all y,

∆(n,y)≤ 2‖ f ′‖∞

∫ A−y

−A−y
P{Ξ > |x|}dx

≤ 4A‖ f ′‖∞P{Ξ > |y|−A}. (6.62)

We have an upper bound

∆n :=

∣∣∣∣∣
∫

∞

−∞

v(xn)H(xn +dy)

(∫ A

−A
f (x)P(xn+y,xn+dx)−

∫ A

−A
f (x)F(dx−y)

)∣∣∣∣∣
≤
∫

∞

−∞

∆(n,y)v(xn)H(xn +dy).

For any fixed C > 0, (6.61) and (6.56) imply that∫ C

−C
∆(n,y)v(xn)H(xn +dy) ≤ sup

y∈[−C,C]

∆(n,y) · sup
n

(
v(xn)H[xn−C,xn +C]

)
→ 0 as n→ ∞.

The remaining part of the integral can be estimated by (6.62):

limsup
n→∞

∫
|y|≥C

∆(n,y)v(xn)H(xn +dy)

≤ 4A‖ f ′‖∞ limsup
n→∞

∫
|y|≥C

P{Ξ > |y|−A}v(xn)H(xn +dy).

Since Ξ has finite mean, the property (6.56) of the renewal measure H allows
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us to choose a sufficiently large C in order to make the ‘limsup’ as small as we
please. Therefore, ∆n → 0 as n→ ∞. Hence, (6.60) has the same limit as the
sequence of integrals∫

∞

−∞

v(xn)H(xn +dy)
∫ A

−A
f (x)F(dx− y).

Now the weak convergence to λ implies that (6.60) has the limit∫
∞

−∞

λ (dy)
∫

∞

−∞

f (x)F(dx− y) =
∫

∞

−∞

f (x)
∫

∞

−∞

F(dx− y)λ (dy)

=
∫

∞

−∞

f (x)(F ∗λ )(dx). (6.63)

By (6.57)–(6.59) and (6.63), we conclude the identity∫
∞

−∞

f (x)λ (dx) =
∫

∞

−∞

f (x)(F ∗λ )(dx).

Since the last identity holds for any smooth function f with a bounded support,
the measures λ and F ∗λ coincide and the proof is complete.

Further we use the following statement from Choquet and Deny [35].

Proposition 6.18. Let F be a distribution not concentrated at 0. Let λ be
a nonnegative measure satisfying the equality λ = λ ∗ F and the property
sup
n∈Z

λ [n,n+1]< ∞.

If F is non-lattice, then λ is proportional to the Lebesgue measure.
If F is lattice with minimal span 1 and λ (R\Z) = 0, then λ is proportional

to the counting measure.

The concluding part of the proof of Theorem 6.11 will be carried out for the
non-lattice case. Choose any sequence of points xn→ ∞ such that the measure
v(xn)H(xn+ ·) converges weakly to some measure λ as n→∞. It follows from
Lemma 6.17 and Proposition 6.18 that then λ (dx) = α ·dx with some α , i.e.,

v(xn)H(xn +dx)⇒ α ·dx as n→ ∞.

Then, for any A > 0 and k ∈ {0,1,2, . . .},

v(xn)H(xn + kA,xn +(k+1)A]→ αA.

Then, there exists a sufficiently slowly growing sequence tn ↑ ∞ such that

v(xn)H(xn,xn + tn]
tn

→ α.

It follows from the assumption (6.54) that α =CH .
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We complete the proof of the local limit of the renewal measure by contra-
diction argument. Suppose there exists a sequence {xn} such that

v(xn)H(xn,xn +h] 6→ CHh as n→ ∞. (6.64)

However, by Helly’s Selection Theorem and arguments above there exists a
further subsequence xnk for which

v(xnk)H(xnk ,xnk +h]→CHh,

which contradicts (6.64).
Now let us show the uniform integrability in the lattice case, to prove it, let

us first notice that the Markov property implies

P
{ ∞

∑
n=1

I{Xn = x}> N
}

= P{Xn = x for some n≥ 0}PN{Xn = x for some n≥ 1 | X0 = x}

= P{Xn = x for some n≥ 0}
(

1−P{Xn 6= x for all n≥ 1 | X0 = x}
)N

. (6.65)

We denote

p1(x) := P{Xn = x for some n≥ 0};

it tends to 1 as x→ ∞ for the following reason. For any fixed ε > 0, by the
condition (6.53) on jumps, there exists a sufficiently large J such that, for all
X0 < x,

1− ε ≤ P{Xn ∈ [x,x+ J] for some n}
= P{Xn = x for some n}

+ P{Xn ∈ [x+1,x+ J] for some n, Xn 6= x for all n},

and because the second probability on the right hand side tends to zero as
x→ ∞. Indeed, it is not greater than

J

∑
i=1

P{Xn = x+ i for some n, Xn 6= x for all n}

≤
J

∑
i=1

P{Xn 6= x for all n | X0 = x+ i}

and the ith probability on the right hand side converges as x→ ∞ to

P{Sn 6= 0 for all n | S0 = i}= 0,

due to Eξ = 0. Hence, due to the arbitrary choice of ε , p1(x)→ 1 as x→ ∞.
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If follows from (6.65) that

E
{ ∞

∑
n=1

I{Xn = x};
∞

∑
n=1

I{Xn = x}> N
}

=
∞

∑
k=N

P
{ ∞

∑
n=1

I{Xn = x}> k
}
+NP

{ ∞

∑
n=1

I{Xn = x}> N
}

= p1(x)
(
1− p2(x)

)N
(N +1/p2(x)).

where

p2(x) = P{Xn 6= x for all n≥ 1 | X0 = x}.

Taking into account that p1(x)→ 1 and

p1(x)
p2(x)

= E
∞

∑
n=1

I{Xn = x} ∼ CH

v(x)
as x→ ∞,

we derive asymptotics

p2(x)∼ p1(x)
v(x)
CH

∼ v(x)
CH

as x→ ∞.

Thus, for all sufficiently large x,

v(x)
2CH

≤ p2(x)≤
2v(x)
CH

,

which yields, for all sufficiently large x,

E
{ ∞

∑
n=1

I{Xn = x};
∞

∑
n=1

I{Xn = x}> N
}
≤
(
1− v(x)/2CH

)N
(N +2CH/v(x)),

hence the required uniform integrability.

Proof of the uniform integrability of Corollary 6.12. It suffices to prove that,
for some h > 0 and x̂ ∈ R, the family of random variables

1
x

∞

∑
n=0

I{Xn ∈ (x,x+h]}, x≥ x̂,

is uniformly integrable. In its turn, by Lemma 6.10, it is sufficient to prove the
last result for a Markov chain {Yn} with jumps

η(x) := max(ξ (x), −s(x)).

This Markov chain satisfies all the conditions of Corollary 3.13 for all δ ∈
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(0,2µ/b−1). By the Markov property,

P
{ ∞

∑
n=1

I{Yn ∈ (x,x+h]}> N
}
≤ P{Yn ∈ (x,x+h] for some n≥ 0}

× sup
y∈(x,x+h]

PN{Yn ∈ (x,x+h] for some n≥ 1 | Y0 = y}

≤ sup
y∈(x,x+h]

PN{Yn ∈ (x,x+h] for some n≥ 1 | Y0 = y}.

Therefore,

P
{ ∞

∑
n=1

I{Yn ∈ (x,x+h]}> N
}

≤
(

1− inf
y∈(x,x+h]

P{Yn 6∈ (x,x+h] for all n≥ 1 | Y0 = y}
)N

.

Let us choose h > 0 such that

p := P{ξ > 3h}> 0,

and then x̂ such that

P{η(x)> 2h} ≥ P{ξ > 3h}= p > 0 for all x > x̂,

which is possible due to the asymptotic homogeneity (6.52). Under such choice
of h and x̂, for all x > x̂ and y ∈ (x,x+h],

P{Yn 6∈ (x,x+h] for all n≥ 1 | Y0 = y}
≥ P{η(y)> 2h}P{Yn > x+h for all n≥ 1 | Y0 > x+2h}

≥ pP{Yn > x+h for all n≥ 1 | Y0 > x+2h}.

As follows from Theorem 3.12, for all z > x+2h,

P{Yn > x+h for all n≥ 1 | Y0 = z}
= 1−P{Yn ≤ x+h for some n≥ 1 | Y0 = z}

≥ 1−
(

x+h
x+2h

)δ

∼ δh/x as x→ ∞,

which in its turn implies that, for all sufficiently large x,

inf
y∈(x,x+h]

P{Yn 6∈ (x,x+h] for all n≥ 1 | Y0 = y} ≥ pδh/2x,

and then

P
{ ∞

∑
n=1

I{Yn ∈ (x,x+h]}> N
}
≤ (1− c/x)N where c = pδh/2 > 0.
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which implies the required uniform integrability.

Proof of the uniform integrability of Corollaries 6.13 and 6.14 is the same.

6.6 Comments to Chapter 6

The renewal theory for a random walk with positive drift – which is the sim-
plest example of a transient Markov chain (spatially and temporally homoge-
neous) – has been intensively studied since 1940s. The integral (elementary)
renewal theorem for a random walk with positive jumps and finite mean goes
back to Feller [62] and states that H(0,x]∼ x/Eξ1 as x→ ∞. A more detailed
information is available via the local renewal theorem, which was proved for
lattice random variables in [58] and for non-lattice random variables in [18].
In the finite mean case the local renewal theorem gives the following sharp
asymptotics H(x,x+h]→ h/Eξ1 as x→ ∞, for any fixed h > 0. Later Black-
well extended in [19] the local renewal theorem to the case of i.i.d. random
variables with positive mean that can take values of both signs using the im-
portant concept of what was called by Feller ladder heights and ladder epochs.
Original Blackwell’s proof was considered to be quite complicated and a num-
ber of attempts were made to give an easier proof. A rather simple proof was
given by Feller and Orey [64], see also [63]. Further studies also considered
behaviour of the remainder in the local renewal theorem, see [136] and refer-
ences therein. In the infinite mean case the asymptotics in Blackwell’s theorem
was not sharp. In 1960-70s a local renewal theorem was proved for regularly
varying increments of index α > 1/2, see Garcia [72] and Erickson [59]. Sub-
sequently there have been various improvements on these results, but the com-
plete answer has been obtained very recently, see Caravenna and Doney [33].

There exists a number of generalisations of the renewal theorem for vari-
ous stochastic processes. A natural extension is one for non-homogeneous (in
time) random walk, that is a random walk with independent, but not necessar-
ily identically distributed increments. Probably the first result in this direction
was Cox and Smith [37], where the local renewal theorem was derived from
the local central limit theorem for a non-homogeneous random walk. Further
extensions may be found in Smith [142], Williamson [151], Maejima [118].
Renewal theorems for multidimensional random walks may be found in Doney
[49], Nagaev [128], Guibourg and Hervé [75], and recent paper Berger [12],
see also references therein.

The Markov setting has mostly been considered in the literature for the case
of Markov modulated random walks, see, e.g. Kesten [96], Athreya, McDon-
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ald, and Ney [10], Klüppelberg and Pergamenchtchikov [100], and Shurenkov
[141]. In this setting one can usually use the Harris regeneration and split the
process into independent cycles. Then, the traditional setting of Blackwell’s
theorem can be used.

For the results cited above, it is essential that the underlying process pos-
sesses some independence structure. In the present chapter we consider tran-
sient Markov chains where the cycle structure is not available which makes re-
duction to Blackwell’s theorem impossible. Clearly, in order to observe some
regular asymptotics for the renewal process, we need to assume some reg-
ular behaviour of the Markov chain at infinity. In particular, if the drift of
X , m1(x), has a positive limit at infinity, say a, then the local renewal result,
H(x,x+h]→ h/a, is only known for an asymptotically homogeneous in space
Markov chain, see Korshunov [102]. The current chapter is based on the paper
by Denisov, Korshunov, and Wachtel [44].



7
Doob’s h-transform: transition from recurrent to

transient chain and vice versa

This short chapter is the most conceptual part of the book. Our purpose here is
to describe, without superfluous details, a change of measure strategy, which
allows us to transform a recurrent chain into a transient one, and vice versa. It
is motivated by the exponential change of measure technique which goes back
to Cramér [38] where, in the context of large deviations in the collective risk
theory, it allows one to transform a negatively drifted random walk into one
with positive drift.

We now briefly sketch Cramér’s approach. For any distribution F with fi-
nite γ-exponential moment, ϕ(γ) :=

∫
eγxF(dx) < ∞, we define a new dis-

tribution F(γ) as F(γ)(dx) = eγxF(dx)/ϕ(γ) which is the exponential change
of measure F with parameter γ . The remarkable fact is that the exponential
change of measure preserves independence, that is, the nth convolution of F ,
eγxF(∗n)(dx)/ϕn(γ), is equal to the nth convolution of the exponentially trans-
formed F , (F(γ))(∗n).

The expected value of the transformed distribution F(γ) is equal to

1
ϕ(γ)

∫
R

xeγxF(dx) =
ϕ ′(γ)

ϕ(γ)
=

d
dx

logϕ(γ).

The right hand side function is increasing in γ because

d2

dx2 logϕ(γ) =
ϕ ′′(γ)

ϕ(γ)
−
(

ϕ ′(γ)

ϕ(γ)

)2

represents the variance of F(γ) and hence is positive. So, increasing the value
of γ we increase the expected value of F(γ).

For the collective risk process with initial risk reserve x > 0, the ruin proba-
bility is described by the tail probability

P{M∞ > x} = P
{

sup
n≥0

Sn > x
}
,

221
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where the underlying random walk Sn has typical jump ξ = X − cτ where X
represents the typical claim size, τ the typical inter-arrival time, and c is the
premium rate. As discussed in Section 1.3,

P{M∞ > x} = lim
n→∞

P{Wn > x}.

Under the net-profit condition c > EX/Eτ , {Sn} has a negative drift, hence the
Markov chain Wn has asymptotically negative drift too. Under the additional
assumption that ϕ(β ) = Eeβξ = 1 for some β > 0, Cramér suggested to ap-
ply the β -exponential change of measure to negatively driven random walk Sn

which leads to a random walk with positive drift equal to ϕ ′(β ), and eventually
to exponential estimate for the ruin probability, see Section 1.3. Notice that eβx

is a harmonic function for the spatially homogeneous process Sn, not for the
chain Wn.

As Markov chains are not spatially homogeneous, we cannot apply exactly
the same approach to them. Instead, historically it is Doob’s transform with
a superharmonic function which leads to a sub-stochastic transition probabil-
ities. In the context of Lamperti’s problem, the most natural substitution for
the exponential change of measure is Doob’s h-transform with asymptotically
harmonic function. Again, similar to convolutions, the remarkable fact is that
Doob’s h-transform applied to the n-step transition kernel equals to the n-step
h-transformed transition kernel, see below.

A very important, in comparison with the classical Doob’s h-transform, nov-
elty of our approach consists in the fact that we introduce weight functions
which are not necessarily harmonic or superharmonic, they are only asymptoti-
cally harmonic at infinity. This leads to potentially excessive transition masses,
that is, the resulting transformed transition kernel is not necessarily substochas-
tic as it is dealt with in the existing literature, see Chung and Walsh [36], Doob
[52] and [53], Levin and Peres [116], Popov [134], and Woess [152].

Doob’s h-transforms with asymptotically harmonic function connect natu-
rally previous chapters on asymptotic behaviour of transient chains with sub-
sequent chapters, which are devoted to recurrent chains.

The main challenge in applying Doob’s h-transform to Lamperti chains is to
identify such asymptotically harmonic functions under various drift scenarios,
see Lemmas 8.6, 9.3, and the proof of Theorem 10.8. Then it is applied to
the proof of Theorem 8.2 dealing with drift proportional to 1/x, Theorem 9.2
where xm1(x)→ ∞, and Theorem 10.8 dealing with asymptotically negative
drift.
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7.1 Doob’s h-transform for transition kernels

7.1.1 General change of measure methodology for transition
kernels

Let S be a measurable space with a σ -algebra A(S). Let P(x,A) : S×A(S)→
R+ be a non-negative transition kernel on S, that is, it is measurable in x for all
fixed A and it is a non-negative measure in A for all fixed x. It is not necessarily
stochastic.

Let U(x)> 0 be a positive measurable function such that∫
S
U(y)P(x,dy)< ∞ for all x ∈ S; (7.1)

such a function U is called a weight function. Then it allows us to define a new
transition kernel

Q(x,A) :=
∫

A

U(y)
U(x)

P(x,dy),

which is just Doob’s h-transform for P with weight function U . If U is a har-
monic function for P, that is, if

U(x) =
∫

S
U(y)P(x,dy) for all x ∈ S,

then Q is a transition probability kernel.
In order to ensure that the powers of Q are well-defined, we need to strengthen

the condition (7.1) as follows:

cS := sup
x∈S

∫
S

U(y)
U(x)

P(x,dy)< ∞. (7.2)

Then it is legible to carry out the following standard calculations

Qn(x,A)

:=
∫

S
Q(x,dy1) . . .

∫
S

Q(yn−2,dyn−1)
∫

A
Q(yn−1,dyn)

=
∫

S

U(y1)

U(x)
P(x,dy1) . . .

∫
S

U(yn−1)

U(yn−2)
P(yn−2,dyn−1)

∫
A

U(yn)

U(yn−1)
P(yn−1,dyn)

=
∫

S

U(yn)

U(x)
P(x,dy1) . . .

∫
S

P(yn−2,dyn−1)
∫

A
P(yn−1,dyn)

=
∫

A

U(yn)

U(x)
Pn(x,dyn)

which shows that Doob’s h-transform of the nth power of P, Pn, is equal to the
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nth power of Doob’s h-transform of P, Qn. Similarly, for any collection of sets
A1, . . . , An ∈A(S),∫

A1

Q(x,dy1) . . .
∫

An−1

Q(yn−2,dyn−1)
∫

An

Q(yn−1,dyn)

=
∫

A1

P(x,dy1) . . .
∫

An−1

P(yn−2,dyn−1)
∫

An

U(yn)

U(x)
P(yn−1,dyn).

Performing the inverse change of measure we get

Pn(x,dy) =
U(x)
U(y)

Qn(x,dy) (7.3)

and ∫
A1

P(x,dy1) . . .
∫

An−1

P(yn−2,dyn−1)
∫

An

P(yn−1,dyn)

=
∫

A1

Q(x,dy1) . . .
∫

An−1

Q(yn−2,dyn−1)
∫

An

U(x)
U(yn)

Q(yn−1,dyn). (7.4)

Denote

q(x) :=− logQ(x,S).

Let us consider the following normalised kernel

P̂(x,dy) =
Q(x,dy)
Q(x,S)

= Q(x,dy)eq(x)

and let {X̂n} be a Markov chain with these transition probabilities. Then

Q(x,dy) = P̂(x,dy)e−q(x)

and hence, by (7.3), we arrive at the following basic equalities:

Pn(x,dy) =
U(x)
U(y)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy

}
(7.5)

and ∫
A1

P(x,y1) . . .
∫

An−1

P(yn−2,dyn−1)P(yn−1,dyn)

=
U(x)
U(yn)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂1 ∈ A1, . . . , X̂n−1 ∈ An−1, X̂n ∈ dyn

}
. (7.6)

Let ξ̂ (x) be the jumps of {X̂n}.
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7.1.2 Application to killed Markov chain

In this subsection we specify how the above transformation works in the case
that we are mostly interested in—the transition kernel corresponding to a Mar-
kov chain killed at entering some fixed set. Namely, let {Xn} be a Markov
chain with transition probabilities P(·, ·), let B ⊂ S be some fixed set, and let
τB := min{n≥ 1 : Xn ∈ B}. Consider a substochastic transition kernel

PB(x,A) := P(x,A\B) = Px{X1 ∈ A, τB > 1},

which is the transition kernel corresponding to {Xn} killed at entering B.
Given a weight function U(x)> 0 for all x /∈ B, the corresponding change of

measure produces a transition kernel Q which may be rewritten as follows

Q(x,dy) :=
U(y)
U(x)

Px{X1 ∈ dy,τB > 1}

=
U(y)
U(x)

Px{X1 ∈ dy,X1 /∈ B}. (7.7)

Consequently, performing the inverse change of measure we arrive at the
following basic equality:

Px{Xn ∈ dy,τB > n}= U(x)
U(y)

Qn(x,dy)

=
U(x)
U(y)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy

}
, (7.8)

where

q(x) :=− log
∫

S\B

U(y)
U(x)

P(x,dy) (7.9)

and {X̂n} is a Markov chain with transition probabilities

P̂(x,A) =
Q(x,A)
Q(x,S)

=

∫
A\B U(y)P(x,dy)∫
S\B U(y)P(x,dy)

. (7.10)

In other words, for any positive Borel function f (y),

Ex{ f (Xn); τB > n}=U(x)
∫

S\B

f (y)
U(y)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy

}
=U(x)Ex

{
e−∑

n−1
k=0 q(X̂k)

f (X̂n)

U(X̂n)

}
. (7.11)
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7.2 How to increase drift via change of measure with weight
function close to harmonic function

7.2.1 Stochastic kernel

Let {Xn} be a Markov chain on R with jumps ξ (x). Let, for some increasing
function s(x) and decreasing function r(x) ↓ 0 as x→ ∞,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

∼ −r(x), (7.12)

m[s(x)]
2 (x)→ b > 0. (7.13)

If we want to increase the drift—say if we need to pass from a recurrent
Markov chain to a transient one, then clearly an increasing weight should be
applied. So, let U(x)≥ 0 be an increasing differentiable function such that, for
some cU > 0,

U ′(x)
U(x)

∼ cU r(x) as x→ ∞ (7.14)

and

U(x+ y) ∼ U(x) and U ′(x+ y) ∼ U ′(x) (7.15)

as x→ ∞ uniformly for all |y| ≤ s(x).
We assume that U is close to a harmonic function in the following sense:

ExU(X1) = EU(x+ξ (x))∼U(x) as x→ ∞. (7.16)

This condition provides the asymptotic stochasticity of Q, that is, Q(x,R)→ 1
as x→ ∞.

Let Q, P̂(·, ·), {X̂n}, and ξ̂ (x) be defined for P(·, ·) with weight function U
as described in Section 7.1.1.

Lemma 7.1. Let conditions (7.12)–(7.16) hold. Then

E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)} ∼ (cU −1/2)br(x), (7.17)

E{(ξ̂ (x))2; |ξ̂ (x)| ≤ s(x)}→ b (7.18)

as x→ ∞, so hence

2m̂[s(x)]
1 (x)

m̂[s(x)]
2 (x)

∼ (2cU −1)r(x).
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In addition,

P{ξ̂ (x)<−s(x)} ≤ (1+o(1))P{ξ (x)<−s(x)}, (7.19)

E{|ξ̂ (x)|; ξ̂ (x)<−s(x)} ≤ (1+o(1))E{|ξ (x)|; ξ (x)<−s(x)}, (7.20)

P{ξ̂ (x)> s(x)} ≤ (1+o(1))
E
{

U(x+ξ (x)); ξ (x)> s(x)
}

U(x)
. (7.21)

Proof. By the construction of {X̂n} and the condition (7.16),

E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)}= E{U(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)}
EU(x+ξ (x))

∼ E{U(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)}
U(x)

.

By Taylor’s theorem,

E{U(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)}
=U(x)E{ξ (x); |ξ (x)| ≤ s(x)}+E{U ′(x+θξ (x))ξ 2(x); |ξ (x)| ≤ s(x)},

where θ = θ(x,ξ (x))∈ (0,1). The first term on the right hand side is equivalent
to −bU(x)r(x)/2, as follows from (7.12) and (7.13). By the condition (7.15),
U ′(x+θξ (x))∼U ′(x) as x→∞ uniformly for all |ξ (x)| ≤ s(x) which implies,
as x→ ∞,

E{U ′(x+θξ (x))ξ 2(x); |ξ (x)| ≤ s(x)} ∼U ′(x)E{ξ 2(x); |ξ (x)| ≤ s(x)}
∼U ′(x)b ∼ cU br(x)U(x),

due to the conditions (7.13) and (7.14). Altogether yields that

E{U(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)} ∼ (cU −1/2)br(x)U(x) as x→ ∞,

and (7.17) follows. The second result, (7.18), follows if we apply (7.13), (7.15),
and (7.16) to the right hand side of

E{ξ̂ 2(x); |ξ̂ (x)| ≤ s(x)}= E{U(x+ξ (x))ξ 2(x); |ξ (x)| ≤ s(x)}
EU(x+ξ (x))

.

Using (7.16) and recalling that U is increasing, we also get

P{ξ̂ (x)<−s(x)}= E{U(x+ξ (x));ξ (x)<−s(x)}
EU(x+ξ (x))

∼ E{U(x+ξ (x));ξ (x)<−s(x)}
U(x)

≤ P{ξ (x)<−s(x)},

and similarly for (7.20). The last assertion, (7.21), follows again by (7.16), and
the proof is complete.
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7.2.2 Killed Markov chain

Let x̂ ∈ R+ be some level. For {Xn} killed at entering B := (−∞, x̂], let us per-
form the change of measure with an increasing weight function U and consider
the corresponding kernel Q,

Q(x,A) =
E{U(x+ξ (x)); x+ξ (x) ∈ A∩ (x̂,∞)}

U(x)
, (7.22)

and the embedded Markov chain {X̂n} with transition probabilities

P̂(x,A) =
E{U(x+ξ (x)); x+ξ (x) ∈ A∩ (x̂,∞)}

E{U(x+ξ (x)); x+ξ (x)> x̂}
, (7.23)

if P{x + ξ (x) > x̂} > 0 and P̂(x,A) = I{x ∈ A} otherwise. Let ξ̂ (x) be the
jumps of {X̂n}.

The following result is almost immediate from Lemma 7.1.

Lemma 7.2. Let the conditions (7.12)–(7.16) hold for some s(x)≤ x/2 and let

P{x+ξ (x)≤ x̂}→ 0 as x→ ∞. (7.24)

Then the conclusions (7.17)–(7.21) hold.
If, in addition, cU > 1/2 and (7.24) holds for any x̂, then there exists a

sufficiently large x̂ such that

E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)} ≥ cU −1/2
2

br(x) for all x≥ x̂. (7.25)

Proof. By the condition (7.24),

E{U(x+ξ (x)); x+ξ (x)≤ x̂} ≤U(x̂)P{x+ξ (x)≤ x̂} → 0

as x→ ∞, hence

E{U(x+ξ (x)); x+ξ (x)> x̂} ∼ EU(x+ξ (x)) ∼ U(x),

owing to (7.16). Thus (7.17)–(7.21) follow from Lemma 7.1 due to s(x) ≤
x/2.

7.3 How to decrease drift via change of measure with weight
function close to harmonic function
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7.3.1 Stochastic kernel

In this section let {Xn} be a Markov chain on R such that, for some increasing
function s(x) and decreasing function r(x)→ 0 as x→ ∞,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

∼ r(x), (7.26)

m[s(x)]
2 (x)→ b > 0. (7.27)

If we want to decrease the drift—say if we need to pass from a transient
Markov chain to a recurrent one, then clearly a decreasing weight should be ap-
plied. So, let U(x)> 0 be a decreasing differentiable function such that (7.14)
for some cU < 0 and (7.15) hold. As in the previous section, we again assume
that U is close to a harmonic function in the sense (7.16).

In the same way as Lemma 7.1, the following result follows.

Lemma 7.3. Let conditions (7.26), (7.27) and (7.14)–(7.16) hold. Then

E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)} ∼ (cU +1/2)br(x), (7.28)

E{(ξ̂ (x))2; |ξ̂ (x)| ≤ s(x)}→ b (7.29)

as x→ ∞, hence

2m̂[s(x)]
1 (x)

m̂[s(x)]
2 (x)

∼ (2cU +1)r(x). (7.30)

In addition,

P{ξ̂ (x)> s(x)} ≤ (1+o(1))P{ξ (x)> s(x)}, (7.31)

P{ξ̂ (x)<−s(x)} ≤ (1+o(1))
E
{

U(x+ξ (x)); ξ (x)<−s(x)
}

U(x)
. (7.32)

7.3.2 Killed Markov chain

Let x̂ ∈ R+ be some level. For {Xn} killed at entering B := (−∞, x̂], let us per-
form the change of measure with a decreasing weight function U and consider
the corresponding kernel Q and the embedded Markov chain {X̂n}.

Then similarly to Lemma 7.2 we get the following result.

Lemma 7.4. Let the conditions (7.26), (7.27), and (7.14)–(7.16) hold. Then
the conclusions (7.28)–(7.32) follow.



230 Doob’s h-transform

7.4 Cycle structure of Markov chain and Doob’s transform

Let a Markov chain {Xn} on R be recurrent in the sense that, for some x̂ ∈ R,
the set (−∞, x̂] is recurrent, that is,

Px{τ(−∞,x̂] < ∞}= 1 for all x > x̂. (7.33)

Let {Xn} possess a sigma-finite non-negative invariant measure π , that is, a
measure π that solves the equation

π(A) =
∫
R

P(x,A)π(dx) for all A ∈B(R);

we do not assume that this invariant measure is unique. It follows from (7.33)
that

π(−∞, x̂]> 0. (7.34)

The case of a finite π corresponds to positive recurrence while infinite π cor-
responds to null recurrence.

In addition, assume that

π(−∞, x̂]< ∞. (7.35)

The conditions (7.34) and (7.35) allow us to construct an aggregated Markov
chain {X∗n } on [x̂,∞) with the following transition probabilities: for x > x̂,

P∗(x,A) =
{

P(x,A) for A⊆ (x̂,∞),

P(x,(−∞, x̂]) for A = {x̂}, (7.36)

and

P∗(x̂,A) =


∫
(−∞,x̂]

P(y,A)
π(−∞, x̂]

π(dy) for A⊆ (x̂,∞),∫
(−∞,x̂]

P(y,(−∞, x̂])
π(−∞, x̂]

π(dy) for A = {x̂}.
(7.37)

Then the measure π∗ which aggregates states from (−∞, x̂] to x̂, that is, π∗{x̂}=
π(−∞, x̂] and π∗(A)= π(A) for all A⊆ (x̂,∞), is an invariant measure for {X∗n }.
Indeed,∫
[x̂,∞)

P∗(y,{x̂})π∗(dy) = π
∗(x̂)P∗(x̂,{x̂})+

∫
(x̂,∞)

P∗(y,{x̂})π∗(dy)

=
∫
(−∞,x̂]

P(y,(−∞, x̂])π(dy)+
∫
(x̂,∞)

P(y,(−∞, x̂])π(dy)

= π(−∞, x̂] = π
∗{x̂},
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as π is invariant for P, and, for A⊆ (x̂,∞),∫
[x̂,∞)

P∗(y,A)π∗(dy) = π
∗(x̂)P∗(x̂,A)+

∫
(x̂,∞)

P∗(y,A)π∗(dy)

=
∫
(−∞,x̂]

P(y,A)π(dy)+
∫
(x̂,∞)

P(y,A)π(dy)

= π(A) = π
∗(A).

We assume that the atom x̂ is non-degenerate, that is,

P∗(x̂,{x̂})< 1; (7.38)

a sufficient condition for that is given next.

Lemma 7.5. Let the conditions (7.33) and (7.35) hold true and let
(i) either π be a probability measure and

π(x̂,∞)> 0; (7.39)

(ii) or π be sigma-finite and, for all initial states,

P
{

limsup
n→∞

Xn > x̂
}
= 1. (7.40)

Then (7.38) follows.

Proof. (i) Consider a stationary Markov chain {Xn} having distribution π for
all n. If P∗(x̂,{x̂}) = 1 in (7.37) then∫

(−∞,x̂]
P(y,(x̂,∞))P{X0 ∈ dy}= 0

and hence

P{X1 > x̂}=
∫
(x̂,∞)

P(y,(x̂,∞))P{X0 ∈ dy}

= P{X0 > x̂,X1 > x̂}.

By induction,

P{Xn > x̂}= P{X0 > x̂, . . . ,Xn > x̂},

hence recurrence of the set (−∞, x̂] implies convergence P{Xn > x̂} → 0 as
n→ ∞ which contradicts the stationarity of {Xn} and (7.39).

(ii) The condition (7.35) allows us to consider a Markov chain {Xn} with
initial distribution concentrated on (−∞, x̂],

P{X0 ∈ dy}= π(dy)
π(−∞, x̂]

, y≤ x̂.
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If P∗(x̂,{x̂}) = 1 then

P{X1 ≤ x̂}=
∫
(−∞,x̂]

P(y,(−∞, x̂])P{X0 ∈ dy}

=
∫
(−∞,x̂]

P(y,(−∞, x̂])
π(−∞, x̂]

π(dy)

= P∗(x̂,{x̂}) = 1.

By induction, then P{Xn ≤ x̂}= 1 for all n which contradicts (7.40).

So, under the conditions (7.33), (7.35) and (7.38) the aggregated Markov
chain {X∗n } on [x̂,∞) is Harris recurrent with a non-degenerate atom at state
x̂—for definition see [126]—regardless of whether π is finite or not. Then the
following representation for the invariant measure π∗ via cycle structure (gen-
erated by the atom x̂) of the Markov chain {X∗n } is well known—see, e.g. [126,
Theorem 10.4.9],

π
∗(dy) = π

∗(x̂)Ex̂

τ∗x̂−1

∑
n=1

I{X∗n ∈ dy}

= π
∗(x̂)

∞

∑
n=1

Px̂{X∗n ∈ dy; τ
∗
x̂ > n}, y > x̂, (7.41)

where τ∗x̂ = min{n≥ 1 : X∗n = x̂}. This is equivalent to the following represen-
tation for the invariant measure π of {Xn}:

π(dy) =
∫

B
π(dz)

∞

∑
n=1

Pz{Xn ∈ dy; τB > n}, y > x̂, (7.42)

where B = (−∞, x̂]. By the Markov property,

Pz{Xn ∈ dy, τB > n}=
∫

∞

x̂
Pz{X1 ∈ dx}Px{Xn−1 ∈ dy, τB > n−1}.

Therefore, for y > x̂,

π(dy) =
∫

B
π(dz)

∫
∞

x̂
Pz{X1 ∈ dx}

∞

∑
n=0

Px{Xn ∈ dy, τB > n}

=
∫

∞

x̂
µ(dx)

∞

∑
n=0

Px{Xn ∈ dy, τB > n},

where

µ(dx) :=
∫

B
π(dz)Pz{X1 ∈ dx}

=
∫

B
π(dz)P(z,dx) (7.43)
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is a measure on (x̂,∞). Substituting here (7.8), we get

π(dy) =
1

U(y)

∫
∞

x̂
µ(dx)U(x)

∞

∑
n=0

Ex{e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy}.

Consider the chain {X̂n} with initial distribution

P{X̂0 ∈ dz}= µ(dz)U(z)
c∗

, z ∈ (x̂,∞), (7.44)

where c∗ is a normalising constant,

c∗ :=
∫

∞

x̂
µ(dx)U(x)

=
∫

B
π(dz)

∫
∞

x̂
U(x)P(z,dx).

Then

π(dy) =
Ĥ(q)(dy)

U(y)
c∗,

where the weighted renewal measure Ĥ(q) for {X̂n} is defined as

Ĥ(q)(dy) =
∞

∑
n=0

E{e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy}. (7.45)

The constant c∗ is finite if

sup
z∈B

∫
∞

x̂
U(x)P(z,dx)< ∞.

Provided the condition (7.2) holds, the constant c∗ possesses the following
upper bound:

c∗ ≤ cS

∫
B

U(z)π(dz), (7.46)

which is not greater than cSU(x̂)π(−∞, x̂] if the function U(x) is increasing.
The above calculations imply, in particular, that

π(x1,x2] = c∗
∫ x2

x1

Ĥ(q)(dy)
U(y)

. (7.47)

So, the main idea for investigation of the invariant measure is to identify an
increasing test function U(x) which is sufficiently close to a harmonic function
in a sense that its drift is sufficiently small for large x which implies small
values of q(x). We also need to choose U(x) in such a way that the chain {X̂n}
is transient. Then the factorisation result for the renewal function Ĥ(q), see
Section 4.4, and an integro-local renewal theorem for {X̂n} allow us to derive
asymptotics for the tail distribution of the invariant measure π .
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7.5 Last visit decomposition and Doob’s transform

For pre-stationary distribution of Xn, we follow the last visit decomposition
approach. Let x̂ ∈ R, set B := (−∞, x̂]. Regardless recurrence or transience of
{Xn}, splitting the trajectory of {Xn} by the last visit to B, we get, for y > x̂,

P{Xn ∈ dy}=
n

∑
j=1

P{Xn− j ∈ B,Xn− j+1, . . . ,Xn−1 6∈ B,Xn ∈ dy}

=
n

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Pu{X j−1 ∈ dy,τB > j−1}.

Substituting (7.8), we obtain the following equality

P{Xn ∈ dy}

=
n

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)

U(u)
U(y)

Eu

{
e−∑

j−2
k=0 q(X̂k); X̂ j−1 ∈ dy

}
,

(7.48)

where q(x) and {X̂n} are defined in (7.9) and (7.10) respectively. Equivalently,
for all x > x̂ and h > 0,

P{Xn ∈ (x,x+h]}

=
n

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)U(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

U(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
,

(7.49)

The last representation allows us to study the tail distribution of a positive
recurrent {Xn} via considering a suitable increasing test function U(x) which
makes the chain {X̂n} transient. Then factorisation result for the renewal func-
tion H(q) with weights, see Section 4.4, and an integro-local renewal theorem
for {X̂n} and convergence in total variation of Xn to π allow us to derive asymp-
totics for the tail distribution of Xn.

7.6 Comments to Chapter 7

Doob has introduced such kind of transform in [52] for Brownian motion, with
a superharmonic function U where the resulting transition kernel is substochas-
tic; this approach was further developed in [53].

In [152, Sect. 7.6], Woess uses Doob’s h-processes to exhibit two general
criteria that are useful for recognising the minimal harmonic functions.
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More systematic exposition of Doob’s h-transform generated by a superhar-
monic function can be found in Chung and Walsh [36, Ch. 11].

Doob’s h-transform based on harmonic functions has been briefly discussed
by Levin and Peres [116, Sect. 17.6] in the context of hitting absorbing states.

In the context of simple random walks in one and two dimensions, Doob’s
h-transform was used by Popov in [134, Sect. 4.1] where it leads to a Lamperti-
type Markov chain with drift of order 1/x, see Section 1.4.3.

Doob’s h-transform with a harmonic function applied to a recurrent ran-
dom walk killed at entering (−∞,0) appears in Bertoin and Doney [13] when
they consider construction of a recurrent random walk conditioned to stay non-
negative.



8
Tail analysis for recurrent Markov chains with

drift proportional to 1/x

In this chapter we consider a recurrent Markov chain {Xn} possessing an in-
variant measure which is either probabilistic in the case of positive recurrence
or σ -finite in the case of null recurrence. We denote this measure by π .

If we consider an irreducible aperiodic Markov chain on Z, then the ex-
istence of probabilistic invariant measure is equivalent to finiteness of E0τ0

where τ0 := min{n ≥ 1 : Xn = 0}. The case of null recurrence corresponds to
almost surely finite τ0 with infinite mean, Eτ0 = ∞. For the state space R, a
standard notion of recurrence is Harris recurrence, see [126] for related defini-
tions. The Harris recurrence guarantees that an invariant measure is unique up
to a constant multiplier.

We consider the case where π has right unbounded support, that is, π(x,∞)>

0 for all x. Our main aim is to describe the asymptotic behaviour of its tail,
π(x,∞), for a class of Markov chains with asymptotically zero drift.

In this chapter we consider a Markov chain {Xn} such that the first two
truncated moments of jumps satisfy the following condition

m[s(x)]
2 (x)→ b > 0 and m[s(x)]

1 (x)x→−µ ∈ R as x→ ∞,

where a function s(x) = o(x) is increasing and µ >−b/2. In this case the tail
of π typically decays as a regularly varying function with index −2µ/b+ 1,
see Corollary 8.4 below. We have already observed this effect for chains with
jumps ±1 and 0 in Example 1.31 for the positive recurrent case µ > b/2.

As follows from Example 1.44, a stationary density of a diffusion with the
same drift and diffusion coefficients is asymptotically equivalent to c/x2µ/b as
x→ ∞.

8.1 Markov chains with asymptotically zero drift:

236
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heavy-tailedness of invariant measure

We start with the following result which states that a typical stationary Markov
chain with asymptotically zero drift generates a heavy-tailed invariant distri-
bution which is very different from the case of Markov chains with asymptoti-
cally negative drift bounded away from zero.

Theorem 8.1. Let a Markov chain {Xn} on R have asymptotically zero drift,
i.e. m1(x)→ 0 as x→ ∞ and, in addition,

liminf
x→∞

E{ξ 2(x); ξ (x)> 0}> 0. (8.1)

Then any right unbounded invariant distribution π of {Xn} is heavy-tailed, that
is, ∫

eλy
π(dy) = ∞ for all λ > 0.

Proof. Assume on the contrary that an invariant distribution π is right un-
bounded with finite exponential moment of some order λ > 0. Let {Xn} be
stationary with distribution π . Then, for any x0,

E(V (X1)−V (X0)) = 0, (8.2)

where V (x) := max(eλx,eλx0). Since

E(V (X1)−V (X0))≥ E{V (X1)−V (X0); X0 > x0}

and since X0 has right unbounded support, it would be a contradiction with
(8.2) if we proved that, for some x0,

v(x) := E{V (X1)−V (X0) | X0 = x}> 0 for all x > x0. (8.3)

For all x > x0,

v(x)≥ Eeλ (x+ξ (x))− eλx = eλx(Eeλξ (x)−1).

Since ey ≥ 1+ y for all y and ey ≥ 1+ y+ y2/2 for all y > 0,

Eeλξ (x)−1≥ λm1(x)+
λ 2

2
E{ξ 2(x); ξ (x)> 0}.

Due to λm1(x)→ 0 as x→∞ and the condition (8.1), there exists a sufficiently
large x0 such that the sum on the right hand side of the last inequality is positive
for all x > x0 which proves (8.3) and hence the theorem assertion.

Let us show by example that the condition (8.1) which is some kind of non-
degeneracy of jumps is essential for the theorem conclusion to hold. Consider
the skip-free Markov chain {Xn} on Z+ described in Section 1.4, that is, ξ (x)
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takes values −1, 1 and 0 only, with probabilities p−(x), p+(x) and p0(x) re-
spectively, p−(0) = 0. The invariant probabilities π(x), x ∈ Z+, are computed
in (1.7),

π(x) = π(0)
x

∏
k=1

p+(k−1)
p−(k)

.

Consider the case where p+(x) := 1/2(x+1) and p−(x) := 1/(x+1). In this
case the drift is asymptotically zero but the stationary probabilities are asymp-
totically equivalent to cx/2x so the invariant distribution is light-tailed. Clearly,
here the condition (8.1) fails.

8.2 Stationary measure of recurrent chains: power-like
asymptotics

This section is devoted to the precise asymptotic behaviour of the invariant
measure in the case where the drift asymptotically behaves like c/x.

As discussed in Sections 1.4 and 1.5.1, there are two types of Markov chains
for which the invariant measure is explicitly calculable. Both are related to
skip-free processes, either on lattice Z+ or on continious state space R+.

The first case where the stationary distribution is explicitly known is a Mar-
kov chain on Z+ with ξ (x) taking values −1, 1 and 0 only, with probabilities
p−(x), p+(x) and p0(x) respectively, p−(0) = 0, see Section 1.4. The second
case is diffusion processes on R+ (slotted in time if we wanted just a Markov
chain), see Section 1.5. In both cases we observe power tail behaviour of in-
variant probabilities in the case where the drift is asymptotically proportional
to −µ/x as x→ ∞.

In this chapter we consider a recurrent Markov chain {Xn} on R whose
jumps are such that

m[s(x)]
2 (x)→ b > 0 and m[s(x)]

1 (x)x→−µ ∈ R as x→ ∞, (8.4)

where a function s(x) = o(x) is increasing and µ >−b/2;

• the case µ ∈ (−b/2,b/2) usually corresponds to null recurrence of {Xn},
see Corollary 2.16,

• the case µ > b/2 corresponds to positive recurrence, see Corollary 2.5;

• in the case µ = b/2 either null or positive recurrence can happen, see Corol-
laries 2.6, 2.17.
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In addition, we assume that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

=−r(x)+o(p(x)) as x→ ∞ (8.5)

for some monotone function r(x)→ 0 satisfying r(x)x→ 2µ/b >−1 as x→∞

and some decreasing integrable at infinity function p(x) ≥ 0. Since p(x) is
decreasing and integrable, p(x)x→ 0 as x→ ∞. We also assume that

r′(x) = O(1/x2) and p′(x) = O(1/x2). (8.6)

As follows from Lemma 2.30, the second relation can always be satisfied by
choosing a slower decreasing integrable function p(x).

Under (8.4), an equivalent way to state the assumption (8.5) is

m[s(x)]
1 (x)+

m[s(x)]
2 (x)

2
r(x) = o(p(x)) as x→ ∞. (8.7)

Define a monotone function

R(x) :=
∫ x

0
r(y)dy, x > 0, (8.8)

R(x) = 0 for x≤ 0. Since xr(x)→ 2µ/b >−1,

R(x)
logx

→ 2µ

b
> −1 as x→ ∞.

Define the following increasing function which plays the most important
rôle in our analysis of recurrent Markov chains: U(x) = 0 for x ≤ 0 and, for
x > 0,

U(x) :=
∫ x

0
eR(y)dy → ∞ as x→ ∞, (8.9)

again due to 2µ/b > −1; in what follows we show that the function U(x) is
very close to be a harmonic function for large values of x. Note that the function
U(x) solves the equation U ′′− rU ′ = 0 for x > 0.

According to our assumptions,

r(x) =
2µ

b
1
x
+

ε(x)
x

,

where ε(x)→ 0 as x→ ∞. In view of the representation theorem for slowly
varying functions, see e.g. [17, Theorem 1.3.1], there exists a slowly varying
at infinity function `(x) such that

eR(x) = xρ−1`(x) and U(x)∼ xρ`(x)/ρ where ρ = 2µ/b+1 > 0.

The main result in this section is the following theorem which provides exact
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asymptotics for stationary measure of recurrent Markov chains with asymptot-
ically zero drift described above.

Theorem 8.2. Let {Xn} be a recurrent Markov chain and let π(·) be its sta-
tionary measure. Let π(−∞,x]< ∞ for all x and let, for any initial state,

P
{

limsup
n→∞

Xn = ∞

}
= 1. (8.10)

Let the first two truncated moments of jumps satisfy the conditions (8.4) and
(8.5) where r(x) and p(x) satisfy the regularity condition (8.6). Assume that
the following integrability conditions hold

sup
x∈R

EU(ξ (x))
1+U(x)

< ∞, (8.11)

and, as x→ ∞,

P{|ξ (x)|> s(x)}= o(p(x)/x), (8.12)

E
{
|ξ (x)|3; |ξ (x)| ≤ s(x)

}
= o(x2 p(x)). (8.13)

In addition, let

E
{

U(ξ (x)); ξ (x)> s(x)
}
= o(p(x)eR(x)). (8.14)

Then, for some c > 0,

π(x1,x2]∼ c
∫ x2

x1

y
U(y)

dy

as x1, x2→ ∞ in such a way that liminfx2/x1 > 1.

It follows from the condition (8.10) that π has right-unbounded support, that
is, π(x,∞)> 0 for all x.

As far as it concerns applications, we apply the last result to derive asymp-
totics of the invariant measure for a reflected random walk with zero drift in
Section 11.2, for a branching process with migration at the end of Section
11.3.3, and for a stochastic difference equation in Theorem 11.17.

Corollary 8.3. If 2µ > b, {Xn} is positive recurrent, and the conditions of
Theorem 8.2 hold, then

π(x,∞)∼ c
ρ−2

x2

U(x)
as x→ ∞.

If 2µ ∈ (−b,b), {Xn} is null recurrent, and the conditions of Theorem 8.2 hold,
then

π(−∞,x)∼ c
2−ρ

x2

U(x)
as x→ ∞.
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Corollary 8.4. Let, in addition, r(x) = 2µ/bx. If 2µ > b and {Xn} is positive
recurrent, then

π(x,∞) ∼ cρ

ρ−2
1

x2µ/b−1 as x→ ∞.

If 2µ ∈ (−b,b) and {Xn} is null recurrent, then

π(−∞,x) ∼ cρ

2−ρ
x1−2µ/b as x→ ∞.

In the case 2µ = b, we have the following result.

Corollary 8.5. Let, in addition, for some m≥ 1 and γ 6= 0,

r(x) =
1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

1+ γ

x logx · . . . · log(m) x
.

If γ > 0 and {Xn} is positive recurrent, then

π(x,∞) ∼ 2c
γ

1
logγ

(m)
x

as x→ ∞.

If γ < 0 and {Xn} is null recurrent, then

π(−∞,x) ∼ 2c
−γ

log−γ

(m)
x as x→ ∞.

Before proving Theorem 8.2 let us formulate and prove some auxiliary re-
sults. First we construct a Lyapunov function needed. Consider the function
rp(x) := r(x)− p(x) and define Rp(x) =Up(x) = 0 for x≤ 0 and

Rp(x) :=
∫ x

0
rp(y)dy, Up(x) :=

∫ x

0
eRp(y)dy for x > 0. (8.15)

We have rp(x)≤ r(x), Rp(x)≤ R(x), and Up(x)≤U(x) for x≥ 0. Since

Cp :=
∫

∞

0
p(y)dy is finite,

we have

Rp(x) = R(x)−Cp +o(1) as x→ ∞. (8.16)

Therefore,

Up(x)∼ e−CpU(x)→ ∞ as x→ ∞, (8.17)

because U(x)→ ∞. Further, since xrp(x) = xr(x)− xp(x)→ 2µ/b,

U ′p(x)

(xeRp(x))′
=

eRp(x)

(1+ xrp(x))eRp(x)
→ b

2µ +b
as x→ ∞.
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Then L’Hôpital’s rule yields

Up(x)∼
b

2µ +b
xeRp(x) ∼ be−Cp

2µ +b
xeR(x) as x→ ∞. (8.18)

In the sequel we need to know the asymptotic behaviour of the drift of
Up(Xn).

Lemma 8.6. Assume that (8.4)–(8.6) and (8.12)–(8.14) hold. Then

EUp(x+ξ (x))−Up(x)∼−
b
2

p(x)eRp(x)

∼−2µ +b
2

p(x)
x

Up(x) as x→ ∞, (8.19)

where the last equivalence is due to (8.18).

Proof. We start with the following decomposition:

EUp(x+ξ (x))−Up(x) = E{Up(x+ξ (x))−Up(x); ξ (x)<−s(x)}
+E{Up(x+ξ (x))−Up(x); |ξ (x)| ≤ s(x)}
+E{Up(x+ξ (x))−Up(x); ξ (x)> s(x)}. (8.20)

Here the first term on the right hand side is negative and may be bounded below
as follows:

E{Up(x+ξ (x))−Up(x); ξ (x)<−s(x)} ≥ −Up(x)P{ξ (x)<−s(x)}
= o(p(x)/x)Up(x)

= o(p(x)eRp(x)), (8.21)

by the condition (8.12) and the equivalence (8.18). Furthermore, the third term
on the right hand side of (8.20) is positive and may be bounded in the following
way:

E{Up(x+ξ (x))−Up(x); ξ (x)> s(x)}
≤ E{Up(x+ξ (x)); ξ (x)> s(x)}
≤ E{Up(2x)+Up(2ξ (x)); ξ (x)> s(x)}
≤ c

(
Up(x)P{ξ (x)> s(x)}+E{Up(ξ (x)); ξ (x)> s(x)}

)
,

owing to the regular variation of Up at infinity. Hence,

E{Up(x+ξ (x))−Up(x); ξ (x)> s(x)}= o(p(x)eRp(x)), (8.22)

due to the conditions (8.12) and (8.14). To estimate the second term on the
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right hand side of (8.20), we make use of Taylor’s expansion:

E{Up(x+ξ (x))−Up(x); |ξ (x)| ≤ s(x)}

= U ′p(x)E{ξ (x); |ξ (x)| ≤ s(x)}+ 1
2

U ′′p (x)E{ξ 2(x); |ξ (x)| ≤ s(x)}

+
1
6
E
{

U ′′′p (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)
}
, (8.23)

where 0≤ θ = θ(x,ξ (x))≤ 1. By the construction of Up,

U ′p(x) = eRp(x) and U ′′p (x) = rp(x)eRp(x) = (r(x)− p(x))eRp(x). (8.24)

Then it follows that

U ′p(x)m
[s(x)]
1 (x)+

1
2

U ′′p (x)m
[s(x)]
2 (x)

= eRp(x)
(

m[s(x)]
1 (x)+(r(x)− p(x))

m[s(x)]
2 (x)

2

)
=

m[s(x)]
2 (x)

2
eRp(x)

(
2m[s(x)]

1 (x)

m[s(x)]
2 (x)

+ r(x)− p(x)
)

= −
m[s(x)]

2 (x)
2

eRp(x)p(x)(1+o(1))

∼ −b
2

eRp(x)p(x), (8.25)

by the condition (8.5).
Finally, let us estimate the last term in (8.23). Notice that by the condition

(8.6) on the derivatives of r(x) and p(x),

U ′′′p (x) =
(
r′(x)− p′(x)+(r(x)− p(x))2)eRp(x) = O(1/x2)eRp(x),

so hence ∣∣E{U ′′′p (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)
}∣∣

≤ c1

x2E
{
|ξ 3(x)|; |ξ (x)| ≤ s(x)

}
eRp(x),

because s(x) = o(x) and the function eRp(x) is regularly varying at infinity.
Then, in view of (8.13),∣∣E{U ′′′p (x+θξ (x))ξ 3(x); |ξ (x)| ≤ s(x)

}∣∣= o(p(x)eRp(x)). (8.26)

Then it follows from (8.23), (8.25) and (8.26) that

E{Up(x+ξ (x))−Up(x); |ξ (x)| ≤ s(x)}=−b
2

p(x)eRp(x)+o(p(x)eRp(x)).

(8.27)
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Substituting (8.21), (8.22) and (8.27) into (8.20), we finally get the desired
expression for EUp(x+ξ (x))−Up(x). This completes the proof of the lemma.

Fix an x̂ > 0. Define a transition kernel Q on S = (x̂,∞) via the following
change of measure

Q(x,dy) :=
Up(y)
Up(x)

P(x,dy), x, y > x̂.

Since

EU(x+ξ (x))
1+U(x)

≤ U(2x)
1+U(x)

+
EU(2ξ (x))

1+U(x)

and the function U is regularly varying at infinity, the condition (8.11) implies
that

sup
x∈R

EU(x+ξ (x))
1+U(x)

< ∞. (8.28)

Then it follows that the kernel Q satisfies the condition (7.2) which allows us
to apply the machinery developed in Chapter 7. We have

Q(x,R) =
E{Up(x+ξ (x)); x+ξ (x)> x̂}

Up(x)
. (8.29)

Lemma 8.6 yields the following result.

Corollary 8.7. Under the conditions of Lemma 8.6, there exists an x̂ such that

−(2µ +b)
p(x)

x
Up(x) ≤ EUp(x+ξ (x))−Up(x) ≤ 0 for all x > x̂.

Everywhere in what follows x̂ is any level guaranteed by Corollary 8.7, B =

(−∞, x̂] and τB := min{n ≥ 1 : Xn ∈ B}. Then the definition of the transition
kernel Q may be rewritten as follows

Q(x,dy) =
Up(y)
Up(x)

Px{X1 ∈ dy,τB > 1}

=
Up(y)
Up(x)

Px{X1 ∈ dy,X1 > x̂}. (8.30)

It follows from the upper bound in Corollary 8.7 that

Q(x,R) =
E{Up(x+ξ (x));τB > 1}

Up(x)
≤

EUp(x+ξ (x))
Up(x)

≤ 1 for all x > x̂.
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In other words, Q restricted to (x̂,∞) is a substochastic kernel. It follows from
(8.12) that

E{Up(x+ξ (x));τB = 1}= Ex{Up(X1); X1 ≤ x̂}
≤Up(x̂)P{x+ξ (x)≤ x̂}
= o(p(x)/x). (8.31)

Combining this with the lower bound in Corollary 8.7 we obtain that

q(x) := − logQ(x,R) = O(p(x)/x). (8.32)

Let us consider the following normalised kernel

P̂(x,dy) :=
Q(x,dy)
Q(x,R)

and let {X̂n} be a Markov chain with this transition probabilities; let ξ̂ (x) be
its jump from the state x. Consequently, by (7.8),

Px{Xn ∈ dy,τB > n}=
Up(x)
Up(y)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy

}
. (8.33)

Lemma 8.8. Under the conditions of Lemma 8.6, as x→ ∞,

E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)} ∼ µ +b
x

, (8.34)

E{(ξ̂ (x))2; |ξ̂ (x)| ≤ s(x)}→ b, (8.35)

P{|ξ̂ (x)|> s(x)} = o(p(x)/x), (8.36)

E{|ξ̂ (x)|; ξ̂ (x)<−s(x)} = o(p(x)), (8.37)

for some decreasing integrable at infinity function p(x). Moreover, there exists
a sufficiently large x̂ such that

E{ξ̂ (x); ξ̂ (x)≤ s(x)} ≥ µ +b
2x

for all x≥ x̂. (8.38)

Proof. It follows from (8.18) that

U ′p(x)
Up(x)

=
eRp(x)

Up(x)
∼ 2µ +b

bx
as x→ ∞.

So, the function Up satisfies the condition (7.14) with r(x) = 1/x and cU =

1+2µ/b. Also Up satisfies (7.15) for any s(x) = o(x) because

U ′p(x+ y)
U ′p(x)

=
eRp(x+y)

eRp(x)
∼ eR(x+y)−R(x) = e

∫ x+y
x r(z)dz = eO(s(x)/x) = eo(1)
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as x→ ∞ uniformly for all |y| ≤ s(x), and, by (8.18),

Up(x+ y)
Up(x)

∼ x+ y
x

eR(x+y)

eR(x)
∼ eR(x+y)−R(x) → 1.

The function Up satisfies (7.16) by Lemma 8.6. Finally, the condition (7.24)
follows from (8.36). So, all conditions of Lemma 7.2 are met and (8.34)–(8.38)
follow.

Therefore, the chain {X̂n} satisfies the conditions (4.45)–(4.47) of Theorem
4.8 with µ̂ = µ +b and b̂ = b, so that µ̂ > b̂/2. Further, the lower bound (8.38)
for the drift of {X̂n} allows us to apply Theorem 4.2 to {X̂n} and to conclude
that, for T̂ (t) = min{n≥ 1 : X̂n > t},

EyT̂ (t) = EyL̂(x̂, T̂ (t))< ∞ for all t > y,

so hence, for any initial state X̂0 = y,

Py

{
limsup

n→∞

X̂n = ∞

}
= 1.

In its turn, then it follows from Theorem 2.21 that X̂n→ ∞ with probability 1.
So, Theorem 4.8 is applicable to {X̂n} which implies weak convergence

of (X̂n)
2/n to a Γ-distribution with mean 2µ + 3b = (2+ ρ)b and variance

(2µ + 3b)2b = (2+ρ)2b2 where ρ = 1+ 2µ/b, that is, a Γ-distribution with
probability density function

γ(u) =
1

(2b)1+ρ/2Γ(1+ρ/2)
uρ/2e−u/2b. (8.39)

Furthermore, by Theorem 4.3, there exists a c < ∞ such that

Ĥy(x) :=
∞

∑
n=0

Py{X̂n ≤ x} ≤ c(1+ x2) for all x, y. (8.40)

Having this estimate proven we now deduce the following result.

Lemma 8.9. Under the conditions of Lemma 8.6,

h(z) := lim
n→∞

Eze−∑
n
k=0 q(X̂k) > 0 for all z, (8.41)

where q is defined in (8.32). Moreover, h(z)→ 1 as z→ ∞.

Proof. The existence of h(z) is immediate because e−∑
n
k=0 q(X̂k) is decreasing

in n. Since the function e−x is convex, by Jensen’s inequality

Eze−∑
n
k=0 q(X̂k) ≥ e−Ez ∑

n
k=0 q(X̂k). (8.42)
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Thus, to show positivity it suffices to prove that

Ez

∞

∑
k=1

q(X̂k)< ∞, z > x̂. (8.43)

Note that

Ez

∞

∑
k=1

q(X̂k)≤
∫

∞

x̂
q(y)Ĥz(dy) ≤ c

∫
∞

x̂

p(y)
y

Ĥz(dy),

because q(y) = O(p(y)/y), see (8.32). But it has been already shown in the
proof of Lemma 4.1 that the last integral is finite.

To prove that h(z)→ 1, we note that Theorem 2.21 implies, for every fixed
N > 0,

Pz{X̂n > N for all n≥ 1}→ 1 as z→ ∞,

so that

Ĥz(N)→ 0 as z→ ∞.

Then, for every fixed N,

lim
z→∞

Ez

∞

∑
k=0

q(X̂k)≤ sup
z>x̂

∫
∞

N
q(y)Ĥz(dy).

According to (4.6),

lim
N→∞

sup
z>x̂

∫
∞

N
q(y)Ĥz(dy) = 0.

Therefore, we infer that

lim
z→∞

Ez

∞

∑
k=0

q(X̂k) = 0,

so we finally conclude limz→∞ h(z) = 1 again from (8.42).

For tail asymptotics of recurrence times derived below in Section 8.5, we
need the following two assertions.

Corollary 8.10. Assume that the conditions of Lemma 8.6 are valid. Then h(x)
is a harmonic function for the kernel Q, that is,

h(x) =
∫

∞

x̂
h(y)Q(x,dy) for all x > x̂.

Furthermore,

Wp(x) := h(x)Up(x) (8.44)
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is a harmonic function for {Xn} killed at the time of the first visit to (−∞, x̂]:

Wp(x) = Ex{Wp(X1); X1 > x̂} for all x > x̂.

Proof. By the Markov property,

Exe−∑
n
k=0 q(X̂k) = e−q(x)

∫
∞

x̂
P̂(x,dy)Eye−∑

n−1
k=0 q(X̂k).

Letting n→ ∞ and using the dominated convergence theorem, we get

h(x) = e−q(x)
∫

∞

x̂
P̂(x,dy)h(y).

Recalling now that e−q(x)P̂(x,dy) = Q(x,dy), we arrive at the first statement of
the corollary.

Noting also that Q(x,dy) = Up(y)
Up(x)

Px{X1 ∈ dy,X1 > x̂} for all x, y > x̂, we
conclude that h(x)Up(x) is harmonic for {Xn} killed at entering (−∞, x̂], and
the proof is complete.

It turns out that being formally defined via the function Up(x), the harmonic
function Wp(x) does not essentially depend on the choice of an increasing inte-
grable at infinity function p(x) which only contribute to a constant multiplier.
This observation follows from the following result.

Lemma 8.11. Let V (x) be a positive harmonic function for {Xn} killed at the
first visit to B := (−∞, x̂], that is,

V (x) = Ex{V (X1); τB > 1} for all x > x̂. (8.45)

If, for some CV > 0,

V (x)∼CVU(x) as x→ ∞, (8.46)

then

V (x) =CV lim
n→∞

Ex{U(Xn); τB > n} for all x > x̂.

Proof. It follows from (8.45) that, for all n≥ 1,

V (x) = Ex{V (Xn); τB > n} for all x > x̂. (8.47)

Fix an ε > 0. Due to the assumption (8.46), there exists an xε such that

(1− ε)V (y) ≤ CVU(y) ≤ (1+ ε)V (y) for all y > xε .

Therefore,

(1− ε)Ex{V (Xn); τB > n,Xn > xε} (8.48)

≤ CVEx{U(Xn); τB > n,Xn > xε}
≤ (1+ ε)Ex{V (Xn); τB > n,Xn > xε}. (8.49)
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On the other hand, by the definition of {X̂n}, see (7.11),

Ex{V (Xn);τB > n,Xn ≤ xε}=Up(x)Ex

{
e−∑

n−1
k=0 q(X̂k)

V (X̂n)

Up(X̂n)
; X̂n ≤ xε

}
≤Up(x)Ex

{ V (X̂n)

Up(X̂n)
; X̂n ≤ xε

}
,

since q(y) is non-negative. Recalling that the chain {X̂n} is transient, we con-
clude convergence

Ex{V (Xn); τB > n,Xn ≤ xε}→ 0 as n→ ∞. (8.50)

By the same argument,

Ex{U(Xn); τB > n,Xn ≤ xε}→ 0 as n→ ∞. (8.51)

Combining (8.49), (8.51) and (8.47), we obtain

CVEx{U(Xn); τB > n} ≤ (1+ ε)Ex{V (Xn); τB > n,Xn > xε}+o(1)

≤ (1+ ε)V (x)+o(1) as n→ ∞.

Combining (8.48), (8.50) and (8.47), we obtain

CVEx{U(Xn); τB > n} ≥ (1− ε)Ex{V (Xn); τB > n,Xn > xε}
= (1− ε)V (x)+o(1) as n→ ∞.

Therefore, for any fixed ε > 0,

1− ε

CV
V (x)≤ liminf

n→∞
Ex{U(Xn); τB > n}

≤ limsup
n→∞

Ex{U(Xn); τB > n} ≤ 1+ ε

CV
V (x).

Letting here ε→ 0 we conclude the existence of a limit of Ex{U(Xn); τB > n}
as n→ ∞ which equals V (x)/CV .

Set

W (x) := lim
n→∞

Ex{U(Xn); τB > n}. (8.52)

According to Corollary 8.10, Wp(x) = h(x)Up(x) is harmonic and Wp(x) ∼
e−CpU(x). Then, by Lemma 8.11,

Wp(x) = e−CpW (x). (8.53)

Consider the following weighted renewal measure

Ĥ(q)
z (dx) =

∞

∑
j=0

Ez{e−∑
j−1
k=0 q(X̂k); X̂ j ∈ dx}, (8.54)
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and its finite time horizon version,

Ĥ(q)
z,n (dx) =

n

∑
j=0

Ez{e−∑
j−1
k=0 q(X̂k); X̂ j ∈ dx}. (8.55)

Applying Lemma 4.5 and Theorem 4.12 to X̂ and taking into account Lemma
8.9, we get the following result.

Corollary 8.12. Assume that the conditions of Lemma 8.6 are valid. Then

Ĥ(q)
z,n (x̂,x] = h(z)Ĥz,n(x̂,x]+o(x2) = h(z)(Î(n/x2)+o(1))x2

as x→ ∞ uniformly for all n, where Î is a function defined in Theorem 4.12
with µ̂ = µ +b and b̂ = b. In particular,

Ĥ(q)
z (x̂,x]∼ h(z)Ĥz(x̂,x]∼ h(z)

x2

2µ +b
as x→ ∞.

Now we are ready to prove the main result of this section.

Proof of Theorem 8.2. Since the function y/U(y) is regularly varying at in-
finity and liminfx2/x1 > 1, it suffices to consider the case where x2 =(1+h)x1,
h > 0.

Lemma 7.5 is applicable to the chain {Xn}, so it is legible to use the cycle
representation (7.42). As follows from the representation (7.47) applied to Up,

π(x,(1+h)x] = c∗
∫ (1+h)x

x

H(q)(dy)
Up(y)

∼ c∗eCp

∫ (1+h)x

x

H(q)(dy)
U(y)

as x→ ∞, (8.56)

due to Up(y)∼ e−CpU(y), see (8.17); H(q) is defined in (7.45).
Fix an ε > 0 and n ∈ N. Let xk = (1+hk/n)x, k = 0, . . . , n. Then, since the

function U is increasing,

n−1

∑
k=0

Ĥ(q)(xk,xk+1)

U(xk+1)
≤
∫ (1+h)x

x

Ĥ(q)(dy)
U(y)

≤
n−1

∑
k=0

Ĥ(q)(xk,xk+1)

U(xk)
.

Now, according to Corollary 8.12,

Ĥ(q)(xk,xk+1] =
∫
R

Ĥ(q)
z (xk,xk+1]P{X̂0 ∈ dz}

= cq(x2
k+1− x2

k)+o(x2) as x→ ∞ uniformly for all k ≤ n−1,

where cq := Eh(X̂0)/(2µ +b). Consequently, for all sufficiently large x,

(cq− ε)(x2
k+1− x2

k) ≤ Ĥ(q)(xk,xk+1]≤ (cq + ε)(x2
k+1− x2

k)
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for all k ≤ n−1, which yields

(cq− ε)
n−1

∑
k=0

x2
k+1− x2

k

U(xk+1)
≤
∫ (1+h)x

x

Ĥ(q)(dy)
U(y)

≤ (cq + ε)
n−1

∑
k=0

x2
k+1− x2

k

U(xk)
,

hence

(cq− ε)
2h
n

n−1

∑
k=0

xk+1 + xk

U(xk+1)
≤
∫ (1+h)x

x

Ĥ(q)(dy)
U(y)

≤ (cq + ε)
2h
n

n−1

∑
k=0

xk+1 + xk

U(xk)
.

Letting n→ ∞ and taking into account that the function y/U(y) is regularly
varying at infinity we derive that∫ (1+h)x

x

Ĥ(q)(dy)
U(y)

∼ 2cq

∫ (1+h)x

x

y
U(y)

dy,

which together with (8.56) concludes the proof.

Corollary 8.13. Assume that the conditions of Theorem 8.2 are valid. Then
the integrability of the function y/U(y) at infinity is necessary and sufficient
for the Markov chain {Xn} on R+ to be positive recurrent.

8.3 Local asymptotics of stationary probabilities

In this section we derive sharp local asymptotics for a stationary measure π

of recurrent irreducible Markov chain with asymptotically zero drift of order
1/x at infinity. Following Section 6.3, we assume that the jumps ξ (x) converge
weakly to some random variable ξ on R, that is, the asymptotic homogeneity
condition (6.52) holds.

Theorem 8.14. Let a recurrent Markov chain {Xn} with invariant measure
π(·) satisfy the conditions of Theorem 8.2. In addition, let ξ (x)⇒ ξ as x→ ∞

where Eξ = 0, Eξ 2 = b, and

|ξ (y)|I{|ξ (y)| ≤ s(y)} ≤st Ξ for all y≥ 0, (8.57)

where EΞ2 < ∞. Then, in the lattice case,

π(x)∼ c
x

U(x)
as x→ ∞, (8.58)

for some c > 0. In the non-lattice case, for any h > 0,

π(x,x+h] = ch
x

U(x)
as x→ ∞. (8.59)
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As far as it concerns applications, we apply the last result to derive local
asymptotic behaviour of the invariant measure for a reflected random walk
with zero drift in Section 11.2.

Corollary 8.15. Let, in addition, r(x) = 2µ/bx and either 2µ/b ∈ (−1,1) or
2µ/b > 1, so either null or positive recurrence holds respectively. Then, in the
lattice case,

π(x)∼ cρx−2µ/b as x→ ∞,

which agrees with the global asymptotics given in Corollary 8.4; ρ = 2µ/b+
1 > 0. In the non-lattice case, for any h > 0,

π(x,x+h]∼ chρx−2µ/b as x→ ∞.

In the case 2µ/b = 1, we have the following result.

Corollary 8.16. Let, in addition, for some m≥ 1 and γ 6= 0,

r(x) =
1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

1+ γ

x logx · . . . · log(m) x

as x→∞, where γ < 0 corresponds to null recurrence while γ > 0 — to positive
recurrence. Then, in the lattice case,

π(x) ∼ 2c

x logx . . . log(m−1) x log1+γ

(m)
x

as x→ ∞,

which agrees with the global asymptotics given in Corollary 8.5. In the non-
lattice case, for any h > 0,

π(x,x+h] ∼ 2ch

x logx . . . log(m−1) x log1+γ

(m)
x

as x→ ∞.

Proof of Theorem 8.14. As in the proof of Theorem 8.2, it follows from the
representation (7.47) that

π(x,x+h] = c∗
∫ x+h

x

Ĥ(q)(dy)
Up(y)

,

where

Ĥ(q)(dy) :=
∞

∑
n=0

P{X̂n ∈ dy}.

Since the function Up(y) is regularly varying at infinity (and hence long-tailed
at infinity),

π(x,x+h]∼ c∗
Ĥ(q)(x,x+h]

Up(x)
as x→ ∞.
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The Markov chain {X̂n} satisfies all the conditions of Corollary 6.12 with µ̂ =

µ + b and b̂ = b, so 2µ̂ − b̂ = 2µ + b > 0. Indeed, the conditions (6.2)–(6.3)
are checked in Lemma 8.8 and (6.1) right after that. The weak convergence
(6.52) for ξ̂ (x), that is ξ̂ (x)⇒ ξ , follows from that for the original jumps
ξ (x) because Up(x+ y)/Up(x)→ 1 as x→ ∞, for any fixed y ∈ R. Finally, the
majorisation condition (6.53) holds with a square integrable majorant, since it
follows from (8.32) and (8.30) that, for all sufficiently large x,

P{ξ̂ (x)I{|ξ̂ (x)| ≤ s(x)|}> y}

=
Q(x,(x+ y,x+ s(x)])

Q(x,R)

≤ 2
E{Up(x+ξ (x)); ξ (x)I{|ξ (x)| ≤ s(x)|}> y}

Up(x)

≤ 2
Up(2x)
Up(x)

P{ξ (x)I{|ξ (x)| ≤ s(x)|}> y}

+2
E{Up(2ξ (x)); ξ (x)I{|ξ (x)| ≤ s(x)|}> y}

Up(x)

≤ c1P{Ξ > y}+ c1

U(x)
E{U(Ξ); y < Ξ≤ s(x)},

owing to the regular variation of the function Up, and the conditions (8.18) and
(8.57). Since s(x)≤ x,

P{ξ̂ (x)I{|ξ̂ (x)| ≤ s(x)|}> y} ≤ 2c1P{Ξ > y},

which implies that

ξ̂ (x)I{|ξ̂ (x)| ≤ s(x)|} ≤st Ξ̂,

where EΞ̂2 < ∞ due to the assumption EΞ2 < ∞. In addition,

P{ξ̂ (x)I{|ξ̂ (x)| ≤ s(x)|}<−y}

=
Q(x, [x− s(x),x− y))

Q(x,R)

≤ 2
E{Up(x+ξ (x)); ξ (x)I{|ξ (x)| ≤ s(x)|}<−y}

Up(x)
≤ 2P{ξ (x)I{|ξ (x)| ≤ s(x)|}<−y}
≤ 2P{Ξ > y},

which implies that ξ̂ (x) ≥st −Ξ̂, and the proof of existence of a square inte-
grable majorant for the family of ξ̂ (x)I{|ξ̂ (x)| ≤ s(x)|} is complete.

Hence, by Corollary 6.12 and Lemma 4.5 applied to the Markov chain {X̂n},
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we deduce that

Ĥ(q)(x,x+h]∼ cq
h+o(1)

2µ̂− b̂
x as x→ ∞,

which concludes the proof because Up(x)∼ c3U(x) as x→ ∞, see (8.17).

8.4 Pre-stationary distribution of positive recurrent chain
with power-like stationary measure

In this section we assume that the distribution of Xn converges in total variation
distance to a unique invariant distribution π as n→ ∞, that is,

sup
A∈B(R)

|P{Xn ∈ A}−π(A)| → 0 as n→ ∞; (8.60)

for a countable Markov chain {Xn} this condition holds automatically provided
the chain is irreducible, aperiodic, and positive recurrent; for a real-valued
chain it is related to the Harris ergodicity, see e.g. [126].

Theorem 8.17. Assume that all the conditions of Theorem 8.2 are valid and
that {Xn} is positive recurrent satisfying (8.60). Then

P{Xn > x}= (F(n/x2)+o(1))π(x,∞)

as x→ ∞ uniformly for all n, where

F(u) :=
1

Î(∞)

∫ u

0
Γ̂(1/z)

[
1− ρ

2

( z
u

)ρ/2−1)]
dz

is a continuous distribution function; Î and Γ̂ are functions defined in Theorem
4.12 with µ̂ = µ +b and b̂ = b.

The last result shows that {Xn} enters the stationary regime at time n of order
x2; that is, if n = o(x2) then

P{Xn > x}= o(π(x,∞)),

if n/x2→ u ∈ (0,∞) then

P{Xn > x} ∼ F(u)π(x,∞),

and if n/x2→ ∞ then

P{Xn > x} ∼ π(x,∞).
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Proof. Splitting all the paths according to the time of the last visit of {Xn} to
B = (−∞, x̂], see (7.49), we get, for x > x̂,

P{Xn > x}

=
n

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 > x

}
,

(8.61)

where q(x)≥ 0 and {X̂n} are defined in (7.9) and (7.10) respectively.
Fix a sequence Nx → ∞ such that Nx = o(x2). Then, since q ≥ 0 and Up is

increasing,

n

∑
j=n−Nx+1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 > x

}
≤ Nx

1
Up(x)

sup
z∈B

∫
∞

x̂
P(z,du)Up(u)

≤ Nx
c

Up(x)
sup
z∈B

(1+Up(z))

= o(x2/Up(x)), (8.62)

where the second bound follows from (8.28). Furthermore, the distribution of
Xn− j converges in total variation to π uniformly for all j ≤ n−Nx, see (8.60).
Therefore, as x→ ∞,

n−Nx

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 > x

}

∼
n−Nx

∑
j=1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 > x

}
. (8.63)

Similarly to (8.62),

n

∑
j=n−Nx+1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 > x

}
= o(x2/Up(x)). (8.64)
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Combining (8.61)—(8.64), we obtain

P{Xn > x}

= (1+o(1))
n

∑
j=1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)

Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 > x

}
+o
(

x2

Up(x)

)
= (1+o(1))

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)

n

∑
j=1

∫
∞

x
Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(y)
; X̂ j−1 ∈ dy

}
+o
(

x2

Up(x)

)

= (1+o(1))
∫

∞

x̂
µ(du)Up(u)

∫
∞

x

Ĥ(q)
u,n (dy)
Up(y)

+o
(

x2

Up(x)

)
(8.65)

as x→ ∞, where

µ(du) =
∫

B
π(dz)P(z,du)

is a measure on (x̂,∞), see (7.43), and

Ĥ(q)
u,n (A) :=

n

∑
j=1

Eu

{
e−∑

j−2
k=0 q(X̂k); X̂ j−1 ∈ A

}
is a measure on (x̂,∞) too.

For any fixed u > x̂, due to Corollary 8.12,

Ĥ(q)
u,n (x̂,y]∼ h(u)(Î(n/y2)+o(1))y2 as y→ ∞ uniformly for all n. (8.66)

In addition, due to q≥ 0,

sup
u>x̂

Ĥ(q)
u,n (x̂,y]≤ sup

u>x̂

n

∑
j=1

Pu{X̂ j−1 ∈ (x̂,y]} ≤ c1y2 for all y and n, (8.67)

for some c1 < ∞ as follows from the integral renewal theorem for {X̂n}. Inte-
gration by parts together with (8.66) implies that, for any fixed u > x̂,

∫
∞

x

Ĥ(q)
u,n (dz)
Up(z)

=− Ĥ(q)
u,n (x̂,x]
Up(x)

−
∫

∞

x
Ĥ(q)

u,n (x̂,z]d
1

Up(z)

= h(u)

[
− Î(n/x2)x2

Up(x)
−
∫

∞

x
Î(n/z2)z2d

1
Up(z)

]
+o
( x2

Up(x)

)
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as x→ ∞ uniformly for all n. Taking into account that

− d
dz

1
Up(z)

=
U ′p(z)
U2

p(z)
=

eRp(z)

U2
p(z)

∼ 2µ +b
b

1
zUp(z)

as z→ ∞,

owing to (8.18), we deduce∫
∞

x

Ĥ(q)
u,n (dz)
Up(z)

= h(u)

[
− Î(n/x2)x2

Up(x)
+

2µ +b
b

∫
∞

x

Î(n/z2)z
Up(z)

dz

]
+o
( x2

Up(x)

)
= h(u)

[
− Î(n/x2)x2

Up(x)
+

2µ +b
b

x2
∫

∞

1

Î(n/x2z2)z
Up(xz)

dz

]
+o
( x2

Up(x)

)
.

Since the function Up is regularly varying at infinity with index ρ = 2µ/b+1>
2, Up(xz)/Up(x)→ zρ as x→ ∞. Therefore,∫

∞

x

Ĥ(q)
u,n (dz)
Up(z)

= h(u)
x2

Up(x)

[
−Î(n/x2)+ρ

∫
∞

1

Î(n/x2z2)

zρ−1 dz

]
+o
( x2

Up(x)

)
= h(u)

x2

Up(x)
F̂(n/x2)+o

( x2

Up(x)

)
(8.68)

as x→ ∞ uniformly for all n, where

F̂(t) :=−Î(t)+ρ

∫
∞

1

Î(t/z2)

zρ−1 dz

= −Î(t)− ρ

ρ−2

∫
∞

1
Î(t/z2)d

1
zρ−2

= Î(t)
2

ρ−2
+

ρ

ρ−2

∫
∞

1

1
zρ−2 dÎ(t/z2).

Therefore,

F̂(t) = Î(t)
2

ρ−2
− 2ρt

ρ−2

∫
∞

1

1
zρ+1 Γ̂(z2/t)dz

= Î(t)
2

ρ−2
− ρt1−ρ/2

ρ−2

∫ t

0
uρ/2−1

Γ̂(1/u)du

=
2

ρ−2

∫ t

0
Γ̂(1/u)

(
1− ρ

2

(
u
t

)ρ/2−1)
du.

Similarly, it follows from (8.67) that

sup
u>x̂

∫
∞

x

Ĥ(q)
u,n (dz)
Up(z)

≤ c2
x2

Up(x)
.
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In addition,

ĉ =
∫

∞

x̂
h(u)Up(u)µ(du)

=
∫

B
π(dz)

∫
∞

x̂
h(u)Up(u)P(z,du) < ∞,

as follows from (8.28). Hence the dominated convergence theorem is applica-
ble to (8.65), so plugging (8.68) into (8.65), we obtain

P{Xn > x}= ĉ
x2

Up(x)
(F̂(n/x2)+o(1)) (8.69)

as x→ ∞ uniformly for all n. In particular, letting n→ ∞ we get that

π(x,∞) = lim
n→∞

P{Xn > x} ∼ ĉ
x2

Up(x)
F̂(∞) = ĉ

x2

Up(x)
2

ρ−1
ρ−2

Î(∞),

which concludes the proof.

8.5 Tail asymptotics for recurrence times of positive and null
recurrent Markov chains

In this section we study the tail behaviour of the stopping time

τx̂ := inf{n≥ 1 : Xn ≤ x̂},

in the case where τx̂ is a proper random variable, that is, {Xn} is either positive
or null recurrent with respect to the set (−∞, x̂].

Theorem 8.18. Let the conditions of Theorem 8.2 hold. Let x̂ be chosen as in
Corollary 8.7 and Lemma 8.8. Then there exists a constant c < ∞ such that

Px{τx̂ > n} ≤ c
U(x)

U(
√

n)
for all n and x > x̂. (8.70)

Further, for any fixed x > x̂,

Px{τx̂ > n} ∼ 1
(2b)ρ/2Γ(1+ρ/2)

W (x)
U(
√

n)
as n→ ∞, (8.71)

where W (x) is the harmonic function defined in (8.52).
In addition, if X0 > x̂ a.s. and EU(X0)< ∞ then

P{τx̂ > n} ∼ EW (X0)

(2b)ρ/2Γ(1+ρ/2)
1

U(
√

n)
as n→ ∞. (8.72)



8.5 Tail asymptotics for recurrence times 259

Notice that

W (x)
U(
√

n)
∼ U(x)

U(
√

n)
as n, x→ ∞,

due to Lemma 8.9 and the equivalence (8.17).
As far as it concerns applications, we apply the last result to derive down-

crossing probabilities for a reflected random walk with zero drift in Section
11.2.

In order to prove the upper bound (8.70) for the tail of τx̂ we need a couple of
preliminary results. In Theorem 3.12 we have already constructed a function of
a transient Markov chain which is a bounded supermartingale. It turns out that
for the Markov chain {X̂n} which is specially constructed a similar result is
valid under weaker conditions on the left tail distribution. Recall the definition
of the function Up in (8.15).

Lemma 8.19. For any ε ∈ (0,1) and a > 1/ε , there exists an x∗ > x̂ such that

min
(

Uε
ap(X̂n)

Up(X̂n)
,

Uε
ap(x∗)

Up(x∗)

)
is a positive supermartingale.

Proof. By the definition of the chain {X̂n} and Jensen’s inequality,

E
Uε

ap(x+ ξ̂ (x))

Up(x+ ξ̂ (x))
=
∫

∞

x̂

Uε
ap(y)

Up(y)
Q(x,dy)
Q(x,R)

=
1∫

∞

x̂ Up(y)P(x,dy)

∫
∞

x̂
Uε

ap(y)P(x,dy)

≤ 1∫
∞

x̂ Up(y)P(x,dy)

(∫ ∞

x̂
Uap(y)P(x,dy)

)ε

. (8.73)

Due to Lemma 8.6 and (8.31), as x→ ∞,∫
∞

x̂
Up(y)P(x,dy) =Up(x)

(
1− 2µ +b

2
p(x)

x
+o
( p(x)

x

))
(8.74)

and ∫
∞

x̂
Uap(y)P(x,dy) =Uap(x)

(
1−a

2µ +b
2

p(x)
x

+o
( p(x)

x

))
.

Then (∫ ∞

x̂
Uap(y)P(x,dy)

)ε

=Uε
ap(x)

(
1−aε

2µ +b
2

p(x)
x

+o
( p(x)

x

))
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and it follows from aε > 1 that

1∫
∞

x̂ Up(y)P(x,dy)

(∫ ∞

x̂
Uap(y)P(x,dy)

)ε

≤
Uε

ap(x)
Up(x)

for all sufficiently large x, which completes the proof.

Lemma 8.20. For

T̂ (z) := min{n≥ 0 : X̂n > z}, z > x̂,

there exists a γ > 0 such that, for all n and z,

sup
x
Px{T̂ (z)> n} ≤ ce−γn/z2

.

Proof. It follows from the definition of the chain {X̂n} that it can only visit
(−∞, x̂] at time 0. Therefore,

T̂ (z)≤ 1+
T̂ (z)−1

∑
k=1

I{X̂k > x̂}.

Then, by Theorem 4.2 with v(x)≥ c1/x,

ExT̂ (z)≤
∫ z+s(z)

x

y
c1

dy

≤ 1
2c1

(z+ s(z))2 ≤ c2z2 uniformly for all x and z. (8.75)

Next, by the Markov property, for all t and s > 0,

Px{T̂ (z)> t + s}=
∫ z

0
Px{T̂ (z)> t,Xt ∈ du}Pu{T̂ (z)> s}

≤ Px{T̂ (z)> t}sup
u≤z

Pu{T̂ (z)> s}.

Therefore, a decreasing function g(t) := supu≤zPu{T̂ (z)> tz2} satisfies the in-
equality g(t+s)≥ g(t)g(s) and g(0) = 1. Then an increasing function g0(t) :=
log(1/g(t)) is convex due to g0(t + s) ≤ g0(t)+ g0(s) and g0(0) = 0. By the
bound (8.75) and Markov’s inequality, there exists a t0 such that g(t0) < 1 so
that g(t0) = e−γ with γ > 0, and g0(t0) = γ > 0. Then, by g0(0) = 0 and by
the convexity of g0, g0(t)≥ γ(t− t0) for t ≥ t0, which implies g(t)≤ e−γ(t−t0)

equivalent to the lemma conclusion.

Lemma 8.21. For any fixed ε ∈ (0,ρ), ρ = 2µ/b+1, there exists a constant
c(ε) such that, for all n, x and y ∈ (x∗,

√
n],

Px{X̂k ≤ y for some k ∈ [n+1,2n]} ≤ c(ε)
( y√

n

)ρ−ε

.
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Proof. For any z > y, the event whose probability we need to bound can only
occur if either the chain {X̂n} does not exceed the level z by time n or it does
exceed this level and then falls down below y. Therefore, by the Markov prop-
erty, the corresponding probability is not greater than the sum

Px{T (z)> n}+ sup
u≥z

Pu{X̂k ≤ y for some k ≥ 1}, (8.76)

where the first term may be bounded above by Lemma 8.20. For the second
term, by Lemma 8.19, we can apply the Doob inequality for supermartingales
which guarantees that there exists a constant c1(ε) such that, for all u≥ z,

Pu{X̂k ≤ y for some k ≥ 1} ≤ c1(ε)
Up(y)
Up(u)

Uε/2ρ
ap (u)

Uε/2ρ
ap (y)

for all y ∈ (x∗,u].

Hence the equivalence (8.17) implies the existence of c2(ε) such that

Pu{X̂k ≤ y for some k ≥ 1} ≤ c2(ε)

(
U(y)
U(u)

)1−ε/2ρ

for all y ∈ (x∗,u].

Since U is regularly varying at infinity with index ρ , by Potter’s bounds, see
e.g. [17, Theorem 1.5.6], there exists a constant c3(ε) such that

1
c3(ε)

( y
u

)ρ+ε/2
≤ U(y)

U(u)
≤ c3(ε)

( y
u

)ρ−ε/2
for all y ∈ (x∗,u].

(8.77)

Consequently,

sup
u≥z

Pu{X̂k ≤ y for some k ≥ 1} ≤ c4(ε)

(
y
z

)ρ−ε

. (8.78)

Therefore, the estimates for each term in the upper bound (8.76) give

Px{X̂k ≤ y for some k ∈ [n+1,2n]} ≤ c5

(
e−γn/z2

+
(y

z

)ρ−ε)
.

Optimisation of the right hand side with respect to z is not solvable in elemen-
tary functions, so we choose

z :=
√

γn
log((

√
n/y)ρ−ε)

,

which is close to the optimal value. Then

Px{X̂k ≤ y for some k ∈ [n+1,2n]}

≤ c5

(( y√
n

)ρ−ε

+
( y
√

γn

)ρ−ε(
(ρ− ε) log

√
n

y

) ρ−ε

2
,
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which implies the lemma conclusion if we take ε/2 instead of ε on the right
hand side.

Proof of Theorem 8.18. We start with the upper bound (8.70) which is the
most difficult part of the theorem. It follows from (8.33) that

Px{τx̂ > n}=Up(x)
∫

∞

x̂

1
Up(y)

Qn(x,dy)

=Up(x)
∫

∞

x̂

1
Up(y)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy

}
. (8.79)

Since q(x)≥ 0,

Px{τx̂ > n} ≤Up(x)Ex
1

Up(X̂n)

≤ c1U(x)Ex
1

U(X̂n)
, (8.80)

due to (8.17). Summing up n successive probabilities we get

2n

∑
k=n+1

Px{τx̂ > k} ≤ c1U(x)
∫

∞

x̂

1
U(y)

Ĥx,n(dy)

= c1U(x)
(∫ √n

x̂
+
∫

∞

√
n

)
1

U(y)
Ĥx,n(dy), (8.81)

where

Ĥx,n(A) :=
2n

∑
k=n+1

Px{X̂k ∈ A}.

The function U increases, so∫
∞

√
n

1
U(y)

Ĥx,n(dy)≤ n
U(
√

n)
for all x and n. (8.82)

Further, integrating by parts, we obtain∫ √n

x̂

1
U(y)

Ĥx,n(dy) =
Ĥx,n(x̂,

√
n]

U(
√

n)
+
∫ √n

x̂

U ′(y)Ĥx,n(x̂,y]
U2(y)

dy

≤ n
U(
√

n)
+
∫ √n

x̂

eR(y)Ĥx,n(x̂,y]
U2(y)

dy,

owing to U ′ = eR. Combining this with (8.81), (8.82) and noting that eR(y) ∼
ρU(y)/y, we conclude that

2n

∑
k=n+1

Px{τx̂ > k} ≤ 2c1U(x)
n

U(
√

n)
+ c2U(x)

∫ √n

x̂

Ĥx,n(x̂,y]
yU(y)

dy. (8.83)
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Next we derive an upper bound for Ĥx,n. It is clear that

Ĥx,n(x̂,y] = Ex

2n

∑
k=n+1

I{X̂k ∈ (x̂,y]}

≤ Px{X̂k ∈ (x̂,y] for some k ∈ [n+1,2n]}sup
s≤y

∞

∑
k=0

Ps{X̂k ∈ (x̂,y]}

≤ sup
s

Ĥs(x̂,y]Px{X̂k ∈ (x̂,y] for some k ∈ [n+1,2n]}.

Applying here Theorem 4.3 and Lemma 8.21, we get

Ĥx,n(x̂,y]≤ c3y2
( y√

n

)ρ−ε

.

Therefore, ∫ √n

x̂

Ĥx,n(y)
yU(y)

dy≤ c4

∫ √n

x̂

y
U(y)

( y√
n

)ρ−ε

dy.

Substitution y = u
√

n leads to the following expression for the last integral:

n
U(
√

n)

∫ 1

x̂/
√

n

U(
√

n)
U(u
√

n)
u1+ρ−ε du.

Applying the left hand side inequality from (8.77) we get an upper bound∫ √n

x̂

Ĥx,n(y)
yU(y)

dy≤ c5
n

U(
√

n)

∫ 1

0
u1−3ε/2du = c6

n
U(
√

n)
,

provided ε < 1. Substituting this upper bound into (8.83) we get that

2n

∑
k=n+1

Px{τx̂ > k} ≤CU(x)
n

U(
√

n)
.

Therefore,

Px{τx̂ > 2n} ≤C
U(x)

U(
√

n)
.

Since U is regularly varying at infinity, this completes the proof of the upper
bound (8.70).

Now let us prove tail asymptotics for τx̂. Fix an ε > 0 and split the integral
(8.79) into two parts

Px{τx̂ > n}=Up(x)
(∫

ε
√

n

x̂
+
∫

∞

ε
√

n

)
1

Up(y)
Qn(x,dy). (8.84)

The asymptotic behaviour of the second integral here relatively easy follows



264 Drift proportional to 1/x

from the weak convergence to a Γ-distribution and dominated convergence
theorem. Indeed,∫

∞

ε
√

n

1
Up(y)

Qn(x,dy) =
1

Up(
√

n)

∫
∞

ε
√

n

Up(
√

n)
Up(y)

Qn(x,dy). (8.85)

Monotonicity of Up implies the following upper bound for the integrand on the
right hand side:

sup
n, y>ε

√
n

Up(
√

n)
Up(y)

≤ sup
n

Up(
√

n)
Up(ε

√
n)

< ∞, (8.86)

because Up is regularly varying at infinity which also implies convergence

Up(
√

n)
Up(u

√
n)
→ 1

uρ
as n→ ∞. (8.87)

It follows from Theorem 4.8 that X̂2
n /n converges weakly to a Γ-distribution

with probability density function γ(u), see (8.39). Then, by Lemma 4.7, the
substochastic measure Qn(x,

√
n ·du) converges weakly as n→∞ to a measure

with density function h(x)2uγ(u2). The relations (8.86) and (8.87) allow us to
apply the dominated convergence theorem and to conclude that, as n→ ∞,∫

∞

ε

Up(
√

n)
Up(u

√
n)

Qn(x,
√

n ·du)→ h(x)
∫

∞

ε

2u
uρ

γ(u2)du

= h(x)
∫

∞

ε2

1
uρ/2 γ(u)du

= h(x)
e−ε2/2b

(2b)ρ/2Γ(1+ρ/2)
.

Hence, (8.85) and (8.44) finally imply

Up(x)
∫

∞

ε
√

n

1
Up(y)

Qn(x,dy)∼
h(x)Up(x)
Up(
√

n)
e−ε2/2b

(2b)ρ/2Γ(1+ρ/2)

=
Wp(x)

Up(
√

n)
e−ε2/2b

(2b)ρ/2Γ(1+ρ/2)

=
W (x)

U(
√

n)
e−ε2/2b

(2b)ρ/2Γ(1+ρ/2)
, (8.88)

due to (8.53) and (8.18). Letting ε ↓ 0 we conclude the following lower bound

liminf
n→∞

U(
√

n)Px{τx̂ > n} ≥ W (x)
(2b)ρ/2Γ(1+ρ/2)

, (8.89)

which also follows by Fatou’s lemma; however (8.88) is still needed in the
sequel.
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Fix some δ > 0. By the Markov property,

Px{τx̂ > n}=
∫

∞

x̂
Px{X[(1−δ )n] ∈ dy,τx̂ > (1−δ )n}Py{τx̂ > δn}.

(8.90)

It follows from the upper bound (8.70) that∫
ε
√

n

x̂
Px{X[(1−δ )n] ∈ dy,τx̂ > (1−δ )n}Py{τx̂ > δn}

≤ C

Up(
√

δn)

∫
ε
√

n

x̂
Up(y)Px{X[(1−δ )n] ∈ dy,τx̂ > (1−δ )n}

=
CUp(x)

Up(
√

δn)

∫
ε
√

n

x̂
Q[(1−δ )n](x,dy)

≤
CUp(x)

Up(
√

δn)
Px{X̂[(1−δ )n] ≤ ε

√
n},

since Q is substochastic. The function Up is regularly varying at infinity with
index ρ , hence Up(

√
δn)/Up(

√
n)→ δ ρ/2 as n→ ∞. Together with the weak

convergence of X̂2
n /n to a Γ-distribution, it implies that, for all δ > 0,

lim
ε→0

limsup
n→∞

Up(
√

n)
∫

ε
√

n

x̂
Px{X[(1−δ )n] ∈ dy,τx̂ > (1−δ )n}Py{τx̂ > δn}= 0.

(8.91)

Further, ∫
∞

ε
√

n
Px{X[(1−δ )n] ∈ dy,τx̂ > (1−δ )n}Py{τx̂ > δn}

≤
∫

∞

ε
√

n
Px{X[(1−δ )n] ∈ dy,τx̂ > (1−δ )n}

=Up(x)
∫

∞

ε
√

n

1
Up(y)

Q[(1−δ )n](x,dy).

As proven in (8.88),

Up(x)
∫

∞

ε
√

n

1
Up(y)

Q[(1−δ )n](x,dy)∼ W (x)

U(
√

(1−δ )n)

e−ε2/2b(1−δ )

(2b)ρ/2Γ(1+ρ/2)
. (8.92)

Substitution of (8.91) and (8.92) into (8.90) leads to

limsup
n→∞

U(
√

n)Px{τx̂ > n} ≤ limsup
n→∞

W (x)U(
√

n)

U(
√

(1−δ )n)

1
(2b)ρ/2Γ(1+ρ/2)

.

Since U(
√

n)/U(
√
(1−δ )n) → (1− δ )−ρ/2 and δ > 0 may be chosen as
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small as we please, we obtain an upper bound

limsup
n→∞

U(
√

n)Px{τx̂ > n} ≤ W (x)
(2b)ρ/2Γ(1+ρ/2)

,

which together with the lower bound (8.89) completes the proof of the asymp-
totics (8.71).

Conditioning on X0, we conclude (8.72) by the dominated convergence the-
orem owing to (8.71) and (8.70).

Corollary 8.22. Under the conditions of Theorem 8.2, for any initial distribu-
tion such that EU(X0)< ∞,

P{τx̂ > n} ∼ E{W (X1); X1 > x̂}
(2b)ρ/2Γ(1+ρ/2)

1
U(
√

n)
as n→ ∞.

As far as it concerns applications, we apply this result to derive asymptotic
estimates for non-extinction probability of branching processes with migration
in Theorem 11.9.

Proof. We have

P{τx̂ > n}

=
∫

∞

x̂
Py{τx̂ > n}P{X0 ∈ dy}+

∫ x̂

−∞

P{X0 ∈ dy}
∫

∞

x̂
P(y,dz)Pz{τx̂ > n−1}

∼ E{W (X0);X0 > x̂}+E{W (X1);X0 ≤ x̂,X1 > x̂}
(2b)ρ/2Γ(1+ρ/2)

1
U(
√

n)
,

by Theorem 8.18 and the result follows from the harmonicity of W .

Next let us discuss an implication for a discrete state space where it is pos-
sible to extend the results of the last theorem to the hitting time for any finite
subset D of the state space,

τD := min{n≥ 1 : Xn ∈ D}.

Theorem 8.23. Assume that {Xn} is a countable Markov chain on a state
space {z0 < z1 < z2 < .. .} satisfying the conditions of Theorem 8.2. Then, for
any finite subset D of the state space, there exists a c = c(D)< ∞ such that

Px{τD > n} ≤ c
U(x)

U(
√

n)
for all n and x. (8.93)

In addition, for any fixed initial state x,

Px{τD > n} ∼ C(x,D)

U(
√

n)
as n→ ∞, (8.94)
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where

C(x,D) :=
1

(2b)ρ/2Γ(1+ρ/2)

∞

∑
j=0

Ex{W (X j+1); X j+1 > x̂,τD > j} ∈ (0,∞);

here x̂ is any level guaranteed by Corollary 8.7 and such that D⊆ B := [z0, x̂].

Proof. Due to the upper bound (8.70) provided by Theorem 8.18 and by the
Markov property, it is enough to prove (8.93) for x≤ x̂. To start with, consider
the case where B\D is a singleton, say z1. Given X0 = z1, the distribution of the
hitting time τB may be decomposed as the following mixture of distributions,
according to the position of the chain at time τx̂:

Pz1{τB > n}= pPz1{η > n}+(1− p)Pz1{θ > n},

where p = Pz1{XτB = z1}, 1− p = Pz1{XτB ∈ D}, the distribution of the ran-
dom variable η is the conditional distribution of τB given XτB = z1 and the
distribution of θ is the conditional distribution of τB given XτB ∈ D. Since the
chain may visit z1 several times before hitting D, we get

Pz1{τD > n}= (1− p)
∞

∑
k=0

pkP{η1 + . . .+ηk +θ > n},

where ηk are independent copies of η . By Theorem 8.18, the distribution of
τB is regularly varying, so the tail distributions of both of η and θ possess
regularly varying upper bounds of order c/U(

√
n) which is known to be of

subexponential type. Thus, Kesten’s bound—see, e.g. [67, Sec. 3.10]—shows
that the random sum possesses the same regularly varying upper bound and the
proof of (8.93) for the case |B \D| = 1 follows. Since we have only used the
upper bound for the tail of τB in our proof of the upper bound for the tail of τD,
we may apply the same arguments to the case of an arbitrary number of states
in B\D, by induction on this number.

Now let us prove (8.94). For any N < n/2,

Px{τD > n} = Px{τD > n,X j ≤ x̂ for some j ∈ [N,n]}
+Px{τD > n,X j > x̂ for all j ∈ [N,n]}

=: P1 +P2. (8.95)

Let us first show that the first probability becomes negligible when N increases.
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Indeed,

P1 ≤ Px{τD > n,X j ≤ x̂ for some j ∈ [N,n/2]}
+ Px{τD > n,X j ≤ x̂ for some j ∈ (n/2,n−N]}
+ Px{τD > n,X j > x̂ for all j ∈ [N,n−N],

X j ≤ x̂ for some j ∈ (n−N,n]}
=: P11 +P12 +P13.

As proven in Theorem 8.18, the tail of τB is regularly varying, hence

EPXN{τB = n+ k}= o(P{τB > n}) as n→ ∞

for any fixed k ∈ Z, so that, for any fixed N,

P13 ≤ EPXN{X j > x̂ for all k ∈ [N,n−N],X j ≤ x̂ for some j ∈ (n−N,n]}
= EPXN{τB ∈ (n−2N,n−N]}
= o(P{τB > n}) as n→ ∞. (8.96)

By the Markov property,

P11 ≤ Px{τD > N}max
y≤x̂

Py{τD > n/2} ≤ c1

U(
√

N)U(
√

n/2)
, (8.97)

owing to (8.93) because there is only finite number of states in [0, x̂] and

P12 ≤ Px{τD > n/2}max
y≤x̂

Py{τD > N} ≤ c2

U(
√

n/2)U(
√

N)
. (8.98)

It follows from the inequalities (8.96)–(8.98) and regular variation of U that

lim
N→∞

limsup
n→∞

U(
√

n)P1 = 0. (8.99)

Further, decomposing all the trajectories according to the time of the last visit
to [z0, x̂], we obtain by the Markov property,

P2 =
N−1

∑
j=0

∑
y∈B\D

Px{X j = y,τD > j}Py{τB > n− j}

∼ 1
(2b)ρ/2Γ(1+ρ/2)

1
U(
√

n)

×
N−1

∑
j=1

∑
y∈B\D

Px{X j = y,τD > j}Ey{W (X1);X1 > x̂}

as n→∞, by Corollary 8.22 because U(
√

n) is regularly varying. Summing up
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over y we get, as n→ ∞,

P2 ∼
1

(2b)ρ/2Γ(1+ρ/2)
1

U(
√

n)

N−1

∑
j=0

Px{W (X j+1),X j+1 > x̂,τD > j},

which being substituted into (8.95) together with (8.99) gives the required an-
swer if we let N→ ∞.

8.6 Limit theorems for positive and null recurrent chains
conditioned to stay above some level

In this section we prove limit theorems for positive and null recurrent Markov
chains {Xn} conditioned on the event

{X1 > x̂, . . . ,Xn > x̂}.

Theorem 8.24. Let the conditions of Theorem 8.2 hold, in particular, let 2µ >

−b. Let EU(X0)< ∞. Then, for all u > 0,

P
{X2

n

nb
> u

∣∣∣ τx̂ > n
}
→ e−u/2 as n→ ∞.

As far as it concerns applications, we apply the last result to a reflected
random walk with zero drift in Section 11.2 and to branching processes in
Section 11.3.

Proof. For any fixed initial state x > x̂, by the change of measure,

Px

{X2
n

nb
> u,τx̂ > n

}
=Up(x)

∫
∞

√
unb

1
Up(y)

Qn(x,dy)

∼ W (x)
U(
√

n)
e−u/2

(2b)ρ/2Γ(1+ρ/2)
.

as shown in (8.88). Combining this with tail asymptotics for τx̂ given in The-
orem 8.18, we arrive at the required result for x > x̂. Then we follow the same
arguments as in Corollary 8.22.

Corollary 8.25. Assume that {Xn} is a countable Markov chain on a state
space {z0 < z1 < z2 < .. .}. Then, for any finite subset D of the state space and
for all u > 0,

P
{X2

n

nb
> u

∣∣∣ τD > n
}
→ e−u/2 as n→ ∞.
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As far as it concerns applications, we apply this result to derive limit be-
haviour of branching processes with migration given it is non-instinct in The-
orem 11.9.

Proof. Fix an N ≥ 1. It follows from (8.99) and asymptotic tail behaviour of
τD—see Theorem 8.23—that

lim
N→∞

limsup
n→∞

P
{X2

n

nb
> u,X j ≤ x̂ for some j ∈ [N,n]

∣∣∣τD > n
}
= 0. (8.100)

Further, by the Markov property,

P
{X2

n

nb
> u,τD > n,X j > x̂ for all j ∈ [N,n]

}
= ∑

y>x̂
P{XN = y,τD > N}Py

{X2
n−N

nb
> u,τB > n−N

}
.

Since EU(X0) < ∞ and U is regularly varying, EU(XN) < ∞ too. Applying
now Theorem 8.24, we get

P
{X2

n

nb
> u,τD > n,X j > x̂ for all j ∈ [N,n]

}
∼ e−u/2

∑
y>x̂

P{XN = y,τD > N}Py {τB > n−N}

= e−u/2P
{

τD > n,X j > x̂ for all j ∈ [N,n]
}

= e−u/2P2,

where P2 is defined in (8.95), which in combination with (8.100) yields the
required limit behaviour.

Theorem 8.26. Let the conditions of Theorem 8.2 hold. Then, for any x > x̂,

Px

{
max
n≤τx̂

Xn > y
}
∼ W (x)

W (y)
as y→ ∞,

where W is the harmonic function for {Xn} killed at the time of the first visit to
(−∞, x̂], see Corollary 8.10.

Proof. First notice that

Px

{
max
n≤τx̂

Xn > y
}
= Px{τx̂ > T (y)}.

The harmonicity of Wp implies that the sequence Wp(Xn)I{τx̂ > n} is a mar-
tingale. Applying the optional stopping theorem to this martingale and to the
stopping time τx̂∧T (y), we obtain

Wp(x) = Ex{Wp(XT (y)); τx̂ > T (y)}.
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Since Wp(z)∼Up(z) as z→ ∞, we have

Ex{Up(XT (y)); τx̂ > T (y)}→Wp(x) as y→ ∞. (8.101)

Let us split the expectation on the left hand side into two parts:

Ex{Up(XT (y)); τx̂ > T (y)}
= Ex{Up(XT (y)); τx̂ > T (y),XT (y) ≤ y+ s(y)}
+ Ex{Up(XT (y)); τx̂ > T (y),XT (y) > y+ s(y)}. (8.102)

Since s(y) = o(y) and Up is a regularly varying function, Up(y+ s(y))∼Up(y)
as y→ ∞, so

Ex{Up(XT (y)); τx̂ > T (y),XT (y) ≤ y+ s(y)}
∼ Up(y)Px{τx̂ > T (y),XT (y) ≤ y+ s(y)}. (8.103)

By the change of measure with function Up and the fact that the resulting kernel
Q is substochastic,

Ex{Up(XT (y)),τx̂ > T (y),XT (y) > y+ s(y)} ≤Up(x)Px{X̂T̂ (y) > y+ s(y)}.

By the formula of total probability,

Px{X̂T̂ (y) > y+ s(y)}=
∞

∑
n=0

∫ y

x̂
Px{X̂n ∈ dz, T̂ (y)> n}P{ξ̂ (z)> y+ s(y)− z}

≤
∫ y

x̂
P{ξ̂ (z)> s(y)}Ĥx(dz).

According to (8.36), P{ξ̂ (z)> s(z)}= o(p(z)/z). Then, similar to the integral
estimation in the proof of Lemma 4.1, we conclude that∫

∞

x̂
P{ξ̂ (z)> s(z)}Ĥx(dz)< ∞.

Consequently, ∫ y

x̂
P{ξ̂ (z)> s(y)}Ĥx(dz)→ 0 as y→ ∞.

As a result,

Ex{Up(XT (y)); τx̂ > T (y),XT (y) > y+ s(y)}→ 0 as y→ ∞, (8.104)

and hence

Up(y)Px{τx̂ > T (y),XT (y) > y+ s(y)}→ 0 as y→ ∞. (8.105)
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Applying (8.105) to (8.103) we get

Ex{Up(XT (y)); τx̂ > T (y),XT (y) ≤ y+ s(y)}
= (1+o(1))Up(y)Px{τx̂ > T (y)}+o(1).

Combining this with (8.104), we obtain from (8.102) the following equality, as
y→ ∞,

Ex{Up(XT (y)); τx̂ > T (y)}= (1+o(1))Up(y)Px{τx̂ > T (y)}+o(1).

Plugging this into (8.101) gives

Up(y)Px{τx̂ > T (y)}→Wp(x) as y→ ∞,

which completes the proof due to Up(y)∼Wp(y) = e−cpW (y).

Now we turn to functional limit theorems for a recurrent chain {Xn} condi-
tioned on {τx̂ > n}. Durrett [55] has suggested a method for deriving functional
limit theorems for conditional distributions of null recurrent Markov chains
from the corresponding limit theorems for unconditioned chains. His approach
is applicable in the case µ ∈ (−b/2,b/2). It immediately follows from The-
orems 4.11 and 8.24 that the conditions of [55, Theorem 3.9] are satisfied.
Therefore, the finite dimensional distributions of {X[nt]/

√
bn} conditioned on

{τx̂ > n} converge to that of a (time-inhomogeneous) Markov process X+(t)
which may be described in terms of the limiting Bessel process Bes(t) in The-
orem 4.11—with drift µ/bx and diffusion coefficient 1—and in terms of its
first hitting time for the origin, T0 = min{t : Bes(t) = 0}. The process X+(t),
0≤ t ≤ 1, is a Markov process on R+ starting at the origin, with entrance law

P{X+(t) ∈ dy}= y
tρ/2+1/2 e−y2/2tP{T0 > 1− t | Bes(0) = y}dy,

for t ∈ (0,1], where ρ = 1+2µ/b and with transition kernel, for t > s,

P{X+(t) ∈ dy | X+(s) = x}

=
P{T0 > 1− t | Bes(0) = y}
P{T0 > 1− s | Bes(0) = x}

P{Bes(t− s) ∈ dy,T0 > t− s | Bes(0) = x}.

It is easy to see that X+(t) converges in probability to zero as t → 0. Then,
using again Theorem 3.9 in [55], we conclude that the sequence of conditional
distributions is tight in D[0,1]. Therefore, we get weak convergence in the
space D[0,1].

We follow a different strategy for positive recurrent Markov chains which
allows us to avoid proving a functional limit theorem for unconditioned pos-
itive recurrent chains {X[nt]} with a starting point of order

√
n. To the best of
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our knowledge, such a functional limit is only known for chains on Z+, see
[15, Theorem 5].

Below we suggest an alternative approach which is based on the change
of measure technique and uses functional limit theorems for transient chains.
As after Theorem 4.11 in Section 4.7, we define {X (n)(t)} as a continuous
piece-wise linear process whose trajectories connect points (k/n,Xk/

√
bn) by

segments. The limiting process X+(t) may be equivalently defined via values
of Eg(X+) for all bounded continuous functionals g on the space C[0,1] as
follows: as above, starting with the Bessel process Bes(t), now with drift (µ +

b)/bx and diffusion coefficient 1, we define a Markov process X+ starting at
the origin and such that

Eg(X+) = 2ρ/2
Γ(1+ρ/2)E

g(Bes)
Besρ(1)

=
Eg(Bes)Bes−ρ(1)

EBes−ρ(1)
.

Theorem 8.27. Let the conditions of Theorem 8.2 hold, in particular, let 2µ >

−b. Then the process X (n) conditioned on {τx̂ > n} converges weakly to X+(t)
in the space C[0,1] as n→ ∞.

Proof. It suffices to prove this weak convergence for the case where X0 > x̂.
Let g be a bounded continuous functional on the space C[0,1]. We need to
show that, for all x > x̂,

Ex{g(X (n)) | τx̂ > n} → Eg(X+) as n→ ∞. (8.106)

Our strategy is to represent the expectation on the left hand side as a functional
of a transient Markov chain. So we consider the process X̂ (n)(t), t ∈ [0,1], con-
structed as a continuous piece-wise linear process whose trajectories connect
points (k/n, X̂k/

√
bn) by segments where {X̂k} is a transient Markov chain

constructed in Section 7.1 as Doob’s h-transform with function Up of the orig-
inal Markov chain {Xk}. Then it follows from (7.6) that, for any bounded func-
tional g on the space C[0,1],

Ex{g(X (n)) | τx̂ > n}=
Up(x)

Px{τx̂ > n}
Ex

{
e−∑

n−1
k=0 q(X̂k)

Up(X̂n)
g(X̂ (n))

}
.

By Theorem 8.18 and definitions (8.41) and (8.44),

Px{τx̂ > n} ∼ 1
(2b)ρ/2Γ(1+ρ/2)

Wp(x)
Up(
√

n)

∼ 1
(2b)ρ/2Γ(1+ρ/2)

Up(x)
Up(
√

n)
Exe−∑

∞
k=0 q(X̂k) as n→ ∞.
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Therefore

Ex{g(X (n)) | τx̂ > n} ∼ (2b)ρ/2Γ(1+ρ/2)

Exe−∑
∞
k=0 q(X̂k)

Ex

{
e−∑

n−1
k=0 q(X̂k)

Up(X̂n)/Up(
√

n)
g(X̂ (n))

}
.

(8.107)

Fix a δ > 0. Since g is bounded, it follows from Theorem 8.24 that, for all
δ > 0 and n,∣∣∣E{g(X (n))I{Xn ≤ δ

√
nb} | τx̂ > n}

∣∣∣≤ ‖g‖∞P{Xn ≤ δ
√

nb | τx̂ > n}

≤Cδ . (8.108)

Applying (8.107) to g(X (n))I{X (n)(1)> δ} we get

Ex{g(X (n))I{Xn > δ
√

nb} | τx̂ > n}

∼ (2b)ρ/2Γ(1+ρ/2)

Exe−∑
∞
k=0 q(X̂k)

Ex

{
e−∑

n−1
k=0 q(X̂k)

Up(X̂n)/Up(
√

n)
g(X̂ (n))I{X̂ (n)(1)> δ}

}
.

Due to the regular variation at infinity of the function Up, we have a conver-
gence

Up(X̂n)

Up(
√

n)
=

Up(X̂ (n)(1)
√

nb)
Up(
√

n)
→ (X̂ (n)(1))ρ bρ/2 as n→ ∞

uniformly on the event {X̂ (n)(1)> δ}= {X̂n/
√

nb > δ}. Hence,

Ex{g(X (n))I{Xn > δ
√

nb} | τx̂ > n}

∼ 2ρ/2Γ(1+ρ/2)

Exe−∑
∞
k=0 q(X̂k)

Ex

{
e−∑

n−1
k=0 q(X̂k)

(X̂ (n)(1))ρ
g(X̂ (n))I{X̂ (n)(1)> δ}

}
. (8.109)

The Bessel approximation proven in Theorem 4.11 still holds if a certain num-
ber of first values of the Markov chain are fixed, hence we conclude that, for
any bounded continuous functional g on the space C[0,1],

E
{

g(X̂ (n))

(X̂ (n)(1))ρ
I{X̂ (n)(1)> δ}

∣∣∣ X0 = z0, . . . ,XN = zN

}
→ E

{
g(Bes)

(Bes(1))ρ
I{Bes(1)> δ}

}
,

for all N and z0, . . . , zN . This makes it possible to apply Lemma 4.6, hence

Ex

{
e−∑

n−1
k=0 q(X̂k)

(X̂ (n)(1))ρ
g(X̂ (n))I{X̂ (n)(1)> δ}

}
→ Ee−∑

∞
k=0 q(X̂k)E

{
g(Bes)

(Bes(1))ρ
I{Bes(1)> δ}

}
as n→ ∞.
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From this estimate and (8.109) we obtain

Ex{g(X (n))I{Xn > δ
√

nb} | τx̂ > n}

∼ 2ρ/2
Γ(1+ρ/2)E

{
g(Bes)

(Bes(1))ρ
I{Bes(1)> δ}

}
as n→ ∞.

Combining this with (8.108), an upper bound

E
{
(Bes(1))−ρ ; Bes(1)< δ

}
= O(δ )

and letting δ → 0, we get

E{g(X (n)) | τx̂ > n}→ 2ρ/2
Γ(1+ρ/2)E

g(Bes)
(Bes(1))ρ

as n→ ∞,

hence the desired convergence.

Corollary 8.28. Assume that {Xn} is a countable Markov chain on a state
space {z0 < z1 < z2 < .. .}. Then, under the conditions of Theorem 8.2, for any
finite subset D of the state space, the process X (n) conditioned on {τD > n}
converges weakly to X+(t) in the space C[0,1] as n→ ∞.

Proof. Fix N ≥ 1. It follows from (8.99) and the asymptotic tail behaviour of
τD—see Theorem 8.23—that

lim
N→∞

limsup
n→∞

E
{

g(X (n));X j ≤ x̂ for some j ∈ [N,n]
∣∣τD > n

}
= 0. (8.110)

By the Markov property,

E
{

g(X (n));τD > n,X j > x̂ for all j ∈ [N,n]
}

= ∑
y1,...,yN 6∈D

P{X1 = y1, . . . ,XN = yN}

×E{g(X (n));τB > n | X1 = y1, . . . ,XN = yN}.

Applying now Theorem 8.27 which is still valid for the conditional expecta-
tions on the right hand side, we get

E
{

g(X (n));τD > n,X j > x̂ for all j ∈ [N,n]
}

∼ Eg(X+) ∑
y1,...,yN 6∈D

P{X1 = y1, . . . ,XN = yN}

×P{τB > n | X1 = y1, . . . ,XN = yN}
= Eg(X+)P

{
τD > n,X j > x̂ for all j ∈ [N,n]

}
= Eg(X+)P2,

where P2 is defined in (8.95), which in combination with (8.110) yields the
required limit behaviour.
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8.7 Limit theorem in critical case 2µ = b

In the critical case µ = b/2 we have a different type of limit behaviour which
may be described in terms of the function

G(x) :=
∫ x

x̂

y
U(y)

dy,

which is slowly varying at infinity because U is regularly varying with index
ρ = 2µ/b+1 = 2.

Theorem 8.29. Let {Xn} be a Markov chain on a countable set {z0 < z1 < z2 <

.. .}. Let the conditions of Theorem 8.2 hold with µ = b/2. If G(x)→∞ as x→
∞, then G(Xn)/G(

√
n) converges weakly as n→ ∞ to a uniform distribution

on the interval [0,1].

As far as it concerns applications, we apply the last result to derive asymp-
totics for a branching process with migration at the end of Section 11.3.3.

Corollary 8.30. In particular case where, for some m≥ 1 and γ > 0,

r(x) =
1
x
+

1
x logx

+ . . .+
1

x logx · . . . · log(m−1) x
+

1− γ

x logx · . . . · log(m) x
,

we have

R(x) = logx+ log(2) x+ . . .+ log(m) x+(1− γ) log(m+1) x,

U(x)∼ x2

2
logx · log(2) x · . . . · log(m−1) x · log1−γ

(m)
x,

x
U(x)

∼ 2

γx logx · log(2) x · . . . log(m−1) x · log1−γ

(m)
x
,

G(x)∼ 2
γ

logγ

(m)
x as x→ ∞.

Then the following weak converges holds true( log(m) Xn

log(m)

√
n

)γ

⇒U [0,1] as n→ ∞.

Proof of Theorem 8.29. According to Corollary 8.13, the assumption G(x)→
∞ implies null-recurrence of {Xn}. Furthermore, by Theorem 8.23,

U(
√

n)Px{τz0 > n}→C(x,z0) as n→ ∞.

Let Tk be the time intervals between consequent visits of {Xn} to the state
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z0. All these random variables are independent. Moreover, T2, T3, . . . are iden-
tically distributed and, for every k ≥ 2,

P{Tk > n} ∼ C(z0,z0)

U(
√

n)
as n→ ∞.

Let θn denote the corresponding renewal process, that is,

θn := max{k ≥ 1 : T1 +T2 + . . .+Tk ≤ n}.

Let us also introduce the sequence of undershoots:

On := n− (T1 +T2 + . . .+Tθn), n≥ 1.

It is clear from the definition of θn that

P{On = j}= P{Xn− j = z0}P{T2 > j} for 0≤ j ≤ n−1

and

P{On = n}= P{T1 > n}.

Then, for every z > z0 we have

P{Xn > z}=
n

∑
j=1

P{Xn− j = z0}Pz0{X j > z,τz0 > j}

=
n

∑
j=1

P{On = j}P{X j > z | τz0 > j}.

According to Theorem 8.24,

Pz0{X j > z | τz0 > j}= e−z2/2b j +o(1) as j→ ∞

uniformly for all z. In addition, for any fixed j,

Pz0{X j > z | τz0 > j}→ 0 as z→ ∞.

Therefore,

Pz0{X j > z | τz0 > j}= e−z2/2b j +o(1) as z→ ∞

uniformly for all j. Hence,

P{Xn > z}= Eexp
{
− z2

2bOn

}
+o(1) as z→ ∞,

which implies the following relation, as n→ ∞,

P
{ G(Xn)

G(
√

n)
> y
}
= P{Xn > G−1(yG(

√
n))}

= Eexp
{
− 1

2b

(G−1(yG(
√

n))√
On

)2}
+o(1). (8.111)
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Since P{T2 > n} ∼C(z0)/U(
√

n), we get, as x→ ∞,∫ x

0
P{T2 > y}dy∼C(z0)

∫ x

x̂2

1
U(
√

y)
dy

= 2C(z0)
∫ √x

x̂

u
U(u)

du

= 2C(z0)G(
√

x).

Let us recall the following result by Erickson [59, Theorem 6].

Theorem 8.31. Let Sn = ξ1 + . . .+ ξn be a random walk with positive jumps
such that the distribution F of ξ has infinite mean and F(t) = L(t)/t, t > 0,
where L is slowly varying at infinity. Let N(t) =max{n : Sn ≤ t} be the renewal
process generated by the random walk, Y (t) = t−SN(t) be the undershoot and
Z(t) = SN(t)+1− t be the overshoot. Then, for 0 < y≤ 1, z > 0,

P
{

m(Y (t))
m(t)

≤ y,
m(Z(t))

m(t)
≤ z
}
→min{y,z} as t→ ∞,

where

m(t) =
∫ t

0
F(u)du.

Applying this result, we conclude, for all y ∈ [0,1],

P
{G(
√

On)

G(
√

n)
≤ y
}
→ y as n→ ∞,

or in other words

P{
√

On ≤ G−1(yG(
√

n))}→ y as n→ ∞. (8.112)

Since G is a slowly varying function, the inverse function satisfies the relation

G−1(tu) = o(G−1(u)) as u→ ∞,

for any fixed 0 < t < 1, so it follows from (8.112) that
√

On

G−1(yG(
√

n)))
→ 0 as n→ ∞ with probability y

and √
On

G−1(yG(
√

n)))
→ ∞ as n→ ∞ with probability 1− y.

Therefore,

Eexp
{
− 1

2b

(G−1(yG(
√

n))√
On

)2}
→ 1− y as n→ ∞,
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which completes the proof, due to (8.111).

8.8 Comments to Chapter 8

In paper [122], Menshikov and Popov investigated the behaviour of the invari-
ant distribution {π(x),x ∈ Z+} for countable Markov chains with asymptoti-
cally zero drift and with bounded jumps. Some rough theorems for the local
probabilities π(x) were proven; if the condition (8.4) holds then for every ε > 0
there exist constants c− = c−(ε)> 0 and c+ = c+(ε)< ∞ such that

c−x−2µ/b−ε ≤ π(x) ≤ c+x−2µ/b+ε .

The same bounds were obtained by Aspandiiarov and Iasnogorodski in [9];
their results also cover null-recurrent chains with µ > 0.

The paper [107] by Korshunov is devoted to the existence and non-existence
of moments of invariant distribution. In particular, it was proven there that if
(8.4) holds and the families of random variables {(ξ+(x))2+γ ,x≥ 0} for some
γ > 0 and {(ξ−(x))2,x≥ 0} are uniformly integrable then the moment of order
γ of the invariant distribution π is finite if γ < 2µ/b− 1, and infinite if π has
unbounded support and γ > 2µ/b−1. This result implies that for every ε > 0
there exists a c(ε) such that

π(x,∞) ≤ c(ε)x−2µ/b+1+ε . (8.113)

In [42] we have found the asymptotic behaviour of π(x,∞) for positive re-
current chains under more restrictive moment conditions. In particular, it has
been assumed there that the third moments of jumps converge at infinity.

Concerning Theorem 8.18, Huillet [84] and Dette [47] have obtained exact
formulas for recurrence times for very special chains. They use the orthogonal
polynomials technique, which has been suggested by Karlin and McGregor in
[86].

Alexander [5] has considered recurrence times for Markov chain with steps
±1. Using the standard embedding of such a random walk into the correspond-
ing Bessel process, he has found exact asymptotics for Px{τ0 = n} for all ρ > 0.
Unfortunately, this method applies only to a skip-free chain.

From the results in Hryniv et al. [83, Theorem 2.4] one gets the bounds

n−ρ/2 log−ε n≤ P0{τ0 > n} ≤ n−ρ/2 logρ+1+ε

for chains satisfying conditions similar to that of Theorem 8.18 with r(x) =
2µ/bx+o(1/x logx).
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Theorem 8.26 improves Theorem 2.3 by Hryniv, Menshikov, and Wade [83]
where lower and upper bounds were given with extra logarithmic term.



9
Tail analysis for positive recurrent Markov

chains with drift going to zero slower than 1/x

In this chapter we consider a Markov chain {Xn} which possesses a station-
ary (invariant) probability distribution π and such that the first two truncated
moments of jumps satisfy the following condition

m[s(x)]
2 (x)→ b > 0 and m[s(x)]

1 (x)x→−∞ as x→ ∞. (9.1)

In this case the tail of π typically decays faster than any power function, as
may be guessed from Corollary 8.4, it is usually of Weibullian type as seen
below.

We have already observed this effect for chains with jumps ±1 and 0 in Ex-
ample 1.32. Let us consider such chains in more detail. Fix positive numbers
a+ > a−, α ∈ (0,1) and consider a chain {Xn} on Z+ with transition probabil-
ities up and down

p+(x) =
1
2

(
1− a+

(x+1)α

)
, p−(x) =

1
2

(
1+

a−
(x+1)α

)
, x≥ 1,

p0(0)+ p+(0) = 1, p+(0)> 0. Then, according to (1.7),

π(x) = π(0)exp
{ x

∑
k=1

log
p+(k−1)

p−(k)

}
.

From the definition of p± we get

log
p+(k−1)

p−(k)
= log

(
1− a+

kα

)
− log

(
1+

a−
(k+1)α

)
.

Set dα :=max{ j : jα ≤ 1}. Then, by Taylor’s expansion of the logarithm func-
tion,

log
p+(k−1)

p−(k)
=−

dα

∑
j=1

a j
+− (−a−) j

j
k− jα +O(k−(dα+1)α) as k→ ∞.

281
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Therefore,

π(x) ∼ C exp
{
−

dα−1

∑
j=1

a j
+− (−a−) j

j(1− jα)
x1− jα −

adα

+ − (−a−)dα

dα

x

∑
k=1

k−dα α

}
,

(9.2)

owing to Proposition 1.30. If dα < 1/α then we get

π(x) ∼ C exp
{
−

dα

∑
j=1

a j
+− (−a−) j

j(1− jα)
x1− jα

}
,

and if dα = 1/α then

π(x) ∼ Cxq exp
{
−

1/α−1

∑
j=1

a j
+− (−a−) j

j(1− jα)
x1− jα

}
,

where q =−α(a1/α

+ − (−a−)1/α). In this example we have

m1(x) =−
a++a−

2(x+1)α
and m2(x) = 1− a+−a−

2(x+1)α
.

As follows from (1.22), a stationary density of a diffusion with the same
drift and diffusion coefficients is asymptotically equivalent to, as x→ ∞,

C exp
{
−(a++a−)

∫ x

0

1
(y+1)α − (a+−a−)/2

dy
}

∼ C exp
{
−(a++a−)

(dα−1

∑
j=1

(a+−a−) j−1

2 j−1(1− jα)
x1− jα

+
(a+−a−)dα−1

2dα−1

∫ x

1
y−dα α dy

)}
.

Comparing this expression to (9.2), we see that the main term is the same
but all correction terms have different coefficients. Since the correction terms
play a rôle in the case α ≤ 1/2 (dα ≥ 2), we conclude that the densities are
asymptotically equivalent for α > 1/2 only. We also see that if α ≤ 1/2 then
it is not sufficient to know the asymptotic behaviour of the first and second
moments only to conclude the precise asymptotic behaviour of the tail of π;
we will see later on that higher moments also play a rôle if α ≤ 1/2.
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9.1 Stationary measure of positive recurrent chains:
Weibullian-type asymptotics

Our first result concerns the case where, roughly speaking, m1(x) = o(1/
√

x)
as x→ ∞. More precisely, we assume that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

=−r(x)+o(p(x)) as x→ ∞, (9.3)

where a decreasing differentiable function r(x)> 0 satisfies r(x)x→∞ as x→
∞ and

r2(x) = o(p(x)) as x→ ∞, (9.4)

where p(x) ∈ [0,r(x)] is a decreasing differentiable function which is assumed
r(x)-insensitive, that is, p(x±1/r(x))∼ p(x), and integrable at infinity,∫

∞

0
p(x)dx < ∞. (9.5)

An increasing function s(x) is assumed to be of order o(1/r(x)). In view of
(9.1), the condition (9.3) is equivalent to

m[s(x)]
1 (x)+

m[s(x)]
2 (x)

2
r(x) = o(p(x)) as x→ ∞. (9.6)

We also assume that

|p′(x)|< |r′(x)| for all x, |r′(x)|= o(r2(x)) as x→ ∞. (9.7)

Compare the second part of this condition to (2.7) or (3.3); it is valid for func-
tions r(x) like x−β , x−β logα x with β ∈ (0,1), logα x/x with α > 0, and ex-
cludes the function r(x) = 1/x.

Define

R(x) :=
∫ x

0
r(y)dy, x≥ 0, (9.8)

R(x) = 0 for x < 0. Since xr(x)→ ∞, R(x)→ ∞ as x→ ∞. The function R(x)
is concave because r(x) is decreasing. As shown in Section 2.1, 1/r(x) is a
natural x-step responsible for the constant increase of the function R(x), see
(2.11)–(2.12). Under the condition (9.7) which in stronger than (2.7), we can
derive an asymptotic version of the inequalities (2.8) and (2.9) as follows: for
all h > 0,

1
r(x)
− 1

r(x+h/r(x))
=
∫ x+h/r(x)

x

r′(y)
r2(y)

dy = o(1/r(x)) as x→ ∞,
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which implies equivalence

r(x+h/r(x))∼ r(x) as x→ ∞. (9.9)

Therefore, for any fixed h ∈ R,

R
(

x+
h

r(x)

)
= R(x)+h+o(1) as x→ ∞. (9.10)

Consider the following function

U(x) :=
∫ x

0
eR(y)dy, x≥ 0, (9.11)

U(x) = 0 for x < 0. Note that the function U solves the equation U ′′−rU ′ = 0.
The function U(x) is convex. Since

U ′(x)( 1
r(x)eR(x)

)′ = eR(x)(
1− r′(x)

r2(x)

)
eR(x)

and |r′(x)|= o(r2(x)) by (9.7), L’Hôpital’s rule yields that

U(x)∼ 1
r(x)

eR(x) as x→ ∞. (9.12)

The condition (9.4) is aimed at functions r(x) of order o(1/
√

x) where the
tail asymptotics of the invariant measure is determined by the functions r and
U which are defined via the asymptotic behaviour of the first two truncated
moments of jumps.

Theorem 9.1. Let {Xn} be a positive recurrent Markov chain on R and let
π(·) be its invariant probability measure. Let π have right unbounded support,
that is, π(x,∞)> 0 for all x.

Let the first two moments of jumps truncated at some increasing level s(x) =
o(1/r(x)) satisfy the conditions (9.1) and (9.3) where the functions r(x) and
p(x) satisfy (9.4) and (9.7). Let the following integrability conditions hold

sup
x∈R

EU(x+ξ (x))
1+U(x)

< ∞, (9.13)

and, as x→ ∞,

P{|ξ (x)|> s(x)}= o(r(x)p(x)), (9.14)

E
{

U(ξ (x)); ξ (x)> s(x)
}
= o(p(x)), (9.15)

sup
x
E
{
|ξ (x)|3; |ξ (x)| ≤ s(x)

}
< ∞. (9.16)
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Then there exists a c > 0 such that, for any fixed h > 0,

π

(
x,x+

h
r(x)

]
∼ c

1− e−h

r2(x)U(x)
as x→ ∞.

In particular,

π(x,∞) ∼ c
r2(x)U(x)

as x→ ∞.

Notice that the condition (9.4) excludes any function r(x) which decreases
like 1/

√
x or slower. In case where the absolute value of the first moment

decreases slower than 1/
√

x, the conclusion of Theorem 9.1 fails, in general.
In this case the answer heavily depends on asymptotic properties of higher
moments of the chain jumps.

In order to present the tail asymptotics for the invariant measure in general
case we need the following set of conditions.

Fix some γ ∈ {2,3,4, . . .} and a decreasing integrable at infinity function
p(x) ∈Cγ−1(R+). Assume that there exists a decreasing function r(x) satisfy-
ing

rγ(x) = o(p(x)) as x→ ∞, (9.17)

and such that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

∼−r(x) as x→ ∞.

We further assume that the following condition — which involves all truncated
moments of order up to γ — holds:

m[s(x)]
1 (x)+

γ

∑
j=2

m[s(x)]
j (x)

j!
r j−1(x) = o(p(x)) as x→ ∞. (9.18)

We also assume that the conditions (9.5) and (9.7) hold, and that, as x→ ∞,

r(k)(x) = o(p(x)), p(k)(x) = o(p(x)) for all 2≤ k ≤ γ−1. (9.19)

As follows from Lemma 2.30, the second relation can be always satisfied by
choosing a slower decreasing integrable function p(x).

Define R(x) as in (9.8) and U(x) as in (9.11).

Theorem 9.2. Let {Xn} be a positive recurrent Markov chain on R and π(·)
be its invariant probability measure. Let π have right unbounded support, that
is, π(x,∞)> 0 for all x.

Let γ ∈ {2,3, . . .}. Let the first γ moments of jumps truncated at some in-
creasing level s(x) = o(1/r(x)) satisfy the conditions (9.1) and (9.18) with
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functions r(x) and p(x) satisfying (9.17), (9.7) and (9.19). Let the following
integrability conditions hold

sup
x∈R

EU(x+ξ (x))
1+U(x)

< ∞, (9.20)

and, as x→ ∞,

P{|ξ (x)|> s(x)}= o(r(x)p(x)), (9.21)

E
{

U(ξ (x)); ξ (x)> s(x)
}
= o(p(x)), (9.22)

sup
x
E
{
|ξ (x)|γ+1; |ξ (x)| ≤ s(x)

}
< ∞. (9.23)

Then there exists a c > 0 such that, for any fixed h > 0,

π

(
x,x+

h
r(x)

]
∼ c

1− e−h

r2(x)U(x)
as x→ ∞.

In particular,

π(x,∞) ∼ c
r2(x)U(x)

as x→ ∞.

Let us demonstrate how the function r(x) may be constructed under some
regularity conditions. Assume that m[s(x)]

1 (x) possesses the following decom-
position with respect to some nonnegative decreasing function t(x) ∈Cγ(R+):

m[s(x)]
1 =−t(x)+

γ−1

∑
j=2

a1, jt j(x)+o(p(x)), (9.24)

and that, for all k = 2,3, . . . ,γ ,

m[s(x)]
k (x) =

γ−k

∑
j=0

ak, jt j(x)+o(t1−k(x)p(x)), (9.25)

where the function t(x) satisfies the conditions (9.7) and (9.19) for r(x). Then
there exists—see Lemma 9.8 below—a solution to the equation (9.18) which
may be represented as

r(x) =
γ−1

∑
j=1

r jt j(x), (9.26)

for some reals r1, . . . , rγ−1. The function r(x) satisfies the conditions (9.7) and
(9.19). In addition, since its derivative,

r′(x) = t ′(x)(1+O(t(x))) = t ′(x)(1+o(1)),

is non-positive ultimately in x, we may redefine the function t(x) on a compact
set so that the function r(x) becomes decreasing.
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Theorems 9.1 and 9.2 give, at first glance, the same answer:

π

(
x,x+

h
r(x)

]
∼ c

1− e−h

r2(x)U(x)
.

The difference consists in the choice of the function r(x). In Theorem 9.1 this
function should satisfy (9.6), while in Theorem 9.2 we use (9.18) instead of
(9.6). In order to explain the difference between (9.18) and (9.6) we consider
the case where the first moment behaves regularly at infinity. We first assume
that (9.6) holds with r(x) = x−β `(x), β ∈ (0,1). Due to the condition (9.4) we
may apply Theorem 9.1 for β > 1/2 only. In this case

R(x) =
∫ x

0
y−β `(y)dy ∼ 1

1−β
x1−β `(x) as x→ ∞.

Recalling that U(x)∼ 1
r(x)eR(x), we then get

π(x,∞)∼ c
xβ

`(x)
exp
{
−
∫ x

0
y−β `(y)dy

}
as x→ ∞ (9.27)

and, in particular,

logπ(x,∞)∼− 1
1−β

x1−β `(x) as x→ ∞. (9.28)

If β ≤ 1/2 then we have to use (9.18) with γ = min{k ∈ Z : kβ > 1}. This
choice of γ follows from (9.17). In order to have a simpler representation for
the answer we assume that (9.24) and (9.25) are valid with t(x) = x−β `(x). As
mentioned above, then

r(x) = x−β `(x)+
γ

∑
j=2

r jx− jβ ` j(x).

Consequently,

R(x) =
∫ x

0
y−β `(y)dy+

γ

∑
j=2

r j

∫ x

0
y− jβ ` j(y)dy

and

π(x,∞)∼ c
xβ

`(x)
exp

{
−
∫ x

0
y−β `(y)dy+

γ

∑
j=2

r j

∫ x

0
y− jβ ` j(y)dy

}
. (9.29)

Taking the logarithm and comparing with (9.28), we see that the logarithmic
asymptotics are the same for all β ∈ (0,1), however the exact asymptotics are
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different. If, for example, β ∈ (1/3,1/2] and `(x)≡ 1 then we get from (9.29)
that

π(x,∞)∼ cxβ exp
{
− 1

1−β
x1−β +

r2

1−2β
x1−2β

}
.

For β > 1/2 we have only the first summand in the exponent. Finally, in the
borderline case β = 1/2 we have

π(x,∞)∼ cxβ+r2 exp
{
− 1

1−β
x1−β

}
,

which again differs from the case β > 1/2.
Lastly, let us discuss the case β = 1, so where r(x) = `(x)/x and `(x)→ ∞.

Let us consider a special case where `(x) = c logx, c > 0. Then

R(x) =
c
2

log2 x+ c1 +o(1);

U(x)∼ c2
x

logx
ec(log2 x)/2 as x→ ∞,

which, due to Theorem 9.1, gives rise to the log-normal type of the tail be-
haviour of the invariant measure:

π(x,∞)∼ c3
x

logx
e−c(log2 x)/2 as x→ ∞.

9.2 Lyapunov function and corresponding change of
measure

In this section we construct a Lyapunov function which will be used to derive
exact asymptotics in Theorems 9.1 and 9.2.

Consider a function rp(x) := r(x)− p(x). We have 0 ≤ rp(x) ≤ r(x); this
function is decreasing because

r′p(x) = r′(x)− p′(x)< 0,

by the condition (9.7). Define Rp(x) =Up(x) = 0 for x≤ 0 and, for x > 0,

Rp(x) :=
∫ x

0
rp(y)dy, 0≤ Rp(x)≤ R(x),

Up(x) :=
∫ x

0
eRp(y)dy, 0 <Up(x)≤U(x).

Since the function rp(x) is decreasing, the function Rp(x) is concave. Since∫
∞

0
r(y)dy = ∞ and Cp :=

∫
∞

0
p(y)dy < ∞,
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we have that

Rp(x) = R(x)−Cp +o(1) as x→ ∞. (9.30)

Therefore,

Up(x)∼ e−CpU(x) as x→ ∞, (9.31)

and, by (9.12),

Up(x)∼
1

r(x)
eR(x)−Cp ∼ 1

rp(x)
eRp(x) as x→ ∞. (9.32)

Notice that the increments of the function Up obey the following useful up-
per bound, for all x, y > 0,

Up(x+ y)−Up(x) =
∫ y

0
eRp(x+z)dz

≤
∫ y

0
eR(x+z)dz

≤ eR(x)
∫ y

0
eR(z)dz = eR(x)U(y), (9.33)

provided the function r(x) is decreasing, because then the function R is concave
as an integral of a decreasing function r.

Lemma 9.3. Under the conditions of Theorem 9.2, as x→ ∞,

EUp(x+ξ (x))−Up(x) =−p(x)r(x)Up(x)
(m[s(x)]

2 (x)
2

+o(1)
)
. (9.34)

Proof. We start with the following decomposition:

EUp(x+ξ (x))−Up(x) = E{Up(x+ξ (x))−Up(x); ξ (x)<−s(x)}
+E{Up(x+ξ (x))−Up(x); |ξ (x)| ≤ s(x)}
+E{Up(x+ξ (x))−Up(x); ξ (x)> s(x)}. (9.35)

Since the function Up(x) increases, the first term on the right hand side may be
bounded as follows:∣∣E{Up(x+ξ (x))−Up(x); ξ (x)<−s(x)}

∣∣≤Up(x)P{ξ (x)<−s(x)}
= o(p(x)r(x))Up(x), (9.36)

due to the condition (9.21). To estimate the second term on the right hand side
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of (9.35), we make use of Taylor’s expansion:

E{Up(x+ξ (x))−Up(x); |ξ (x)| ≤ s(x)}

=
γ

∑
k=1

U (k)
p (x)
k!

m[s(x)]
k (x)+E

{U (γ+1)
p (x+θξ (x))

(γ +1)!
ξ

γ+1(x); |ξ (x)| ≤ s(x)
}
,

(9.37)

where 0≤ θ = θ(x,ξ (x))≤ 1. By the construction of Up,

U ′p(x) = eRp(x), U ′′p (x) = rp(x)eRp(x) = (r(x)− p(x))eRp(x), (9.38)

and, for k = 3, . . . , γ +1,

U (k)
p (x) = (eRp(x))(k−1) =

(
rk−1

p (x)+o(p(x))
)
eRp(x) as x→ ∞,

where the remainder terms in the parentheses on the right are of order o(p(x))
by the conditions (9.7) and (9.19). By the definition of rp(x), for k ≥ 3,

rk−1
p (x) = (r(x)− p(x))k−1 = rk−1(x)+o(p(x)),

which implies the relation

U (k)
p (x) =

(
rk−1(x)+o(p(x))

)
eRp(x) as x→ ∞. (9.39)

It follows from the equalities (9.38) and (9.39) that

γ

∑
k=1

U (k)
p (x)
k!

m[s(x)]
k (x)

= eRp(x)
( γ

∑
k=1

rk−1(x)
k!

m[s(x)]
k (x)+o(p(x))− p(x)

m[s(x)]
2 (x)

2

)

= eRp(x)
(

o(p(x))− p(x)
m[s(x)]

2 (x)
2

)
,

by the conditions (9.18). Hence, the equivalence (9.32) yields

γ

∑
k=1

U (k)
p (x)
k!

m[s(x)]
k (x) =−r(x)p(x)

m[s(x)]
2 (x)

2
Up(x)+o(r(x)p(x))Up(x).

(9.40)

Owing to the condition (9.19) for γ ≥ 3 and (9.7) for γ = 2 on the derivatives
of r(x) and the condition (9.17),

U (γ+1)
p (x) = (rγ(x)+o(p(x)))eRp(x)

= o(p(x))eRp(x) = o(p(x)r(x))Up(x).
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Then, due to (9.9), (9.10) and (9.12), the last term in (9.37) possesses the fol-
lowing bound:∣∣∣E{U (γ+1)

p (x+θξ (x))
(γ +1)!

ξ
γ+1(x); |ξ (x)| ≤ s(x)

}∣∣∣
≤ o(p(x)r(x))Up(x))E

{
|ξ (x)|γ+1; |ξ (x)| ≤ s(x)

}
= o(p(x)r(x))Up(x),

by the condition (9.23). Therefore, it follows from (9.37) and (9.40) that

E{Up(x+ξ (x))−Up(x); |ξ (x)| ≤ s(x)}

=−r(x)p(x)
m[s(x)]

2 (x)
2

Up(x)+o(p(x)r(x))Up(x). (9.41)

Finally, the last term in (9.35) is of order o(p(x)r(x))Up(x) due to the upper
bound (9.33), the equivalence (9.32) and the condition (9.22). Substituting this
together with (9.36) and (9.41) into (9.35), we arrive at the lemma conclusion.

Corollary 9.4. Let the conditions of Theorem 9.2 hold true. Then there exists
an x̂ such that the mean drift of the function Up(x) is sandwiched as follows

−bp(x)r(x)Up(x) ≤ EUp(x+ξ (x))−Up(x) ≤ 0 for all x > x̂.

9.3 Proof of Theorem 9.2

Let us define a new transition kernel via the following change of measure

Q(x,dy) :=
Up(y)
Up(x)

Px{X1 ∈ dy,τB > 1}, (9.42)

where B = (−∞, x̂], x̂ is defined in Corollary 9.4, and

τB := min{n≥ 1 : Xn ∈ B}.

It follows from the upper bound in Corollary 9.4 that

Q(x,R) =
E{Up(x+ξ (x)),τB > 1}

Up(x)
≤

EUp(x+ξ (x))
Up(x)

≤ 1

for all x> x̂. In other words, Q is a substochastic kernel on (x̂,∞). Furthermore,
combining the lower bound in Corollary 9.4 with the estimate — due to (9.21)
—

E{Up(x+ξ (x));τB = 1} ≤Up(x̂)P{x+ξ (x)≤ x̂}= o(p(x)r(x)),
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we obtain that

q(x) :=− logQ(x,R) = O(p(x)r(x)). (9.43)

Let us consider the following normalised kernel

P̂(x,dy) =
Q(x,dy)
Q(x,R)

and let {X̂n} denote the corresponding Markov chain; let ξ̂ (x) be its jump from
the state x. Consequently, performing the inverse change of measure we arrive
at the following basic equality, see (7.8):

Px{Xn ∈ dy,τB > n}=
Up(x)
Up(y)

Ex
{

e−∑
n−1
k=0 q(X̂k); X̂n ∈ dy

}
. (9.44)

Lemma 9.5. Under the conditions of Theorem 9.2, as x→ ∞,

E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)} ∼ b
2

r(x), (9.45)

E{(ξ̂ (x))2; |ξ̂ (x)| ≤ s(x)}→ b, (9.46)

P{|ξ̂ (x)|> s(x)} = o(p(x)r(x)). (9.47)

Moreover, there exists a sufficiently large x̂ such that

E{ξ̂ (x); ξ̂ (x)≤ s(x)} ≥ b
4

r(x) for all x≥ x̂. (9.48)

Proof. We apply Lemma 7.2, so we need to check its conditions. The con-
ditions (7.12) and (7.13) are met due to the conditions (9.1) and (9.3). The
condition (7.24) is met because of (9.21). Further, it follows from (9.30) and
(9.32) that

U ′p(x)
Up(x)

=
eRp(x)

Up(x)
∼ eR(x)−Cp

1
r(x)eR(x)−Cp

= r(x).

So, the function Up satisfies the condition (7.14) with cU = 1. Also Up satisfies
(7.15) for any s(x) = o(1/r(x)) because

U ′p(x+ y)
U ′p(x)

=
eRp(x+y)

eRp(x)
∼ eR(x+y)−R(x) = e

∫ x+y
x r(z)dz = eO(s(x)r(x)) = eo(1)

as x→ ∞ uniformly for all |y| ≤ s(x), and, by (9.32),

Up(x+ y)
Up(x)

∼ r(x)
r(x+ y)

eR(x+y)

eR(x)
∼ eR(x+y)−R(x) → 1.

Finally, Up satisfies (7.16) by Corollary 9.4. So, all conditions of Lemma 7.2
are met and (9.45)–(9.48) follow.
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Owing to (9.48), the chain {X̂n} satisfies the condition (4.15) in Theorem 4.2
with v̂(x) = br(x)/4, hence we conclude that, for T̂ (t) = min{n≥ 1 : X̂n > t},

EyT̂ (t) = EyL̂(x̂, T̂ (t))< ∞ for all t > y.

Thus, for any initial state X̂0 = y,

P
{

limsup
n→∞

X̂n = ∞

}
= 1.

In its turn, then it follows from Theorem 2.21 that X̂n→ ∞ with probability 1.
Further, v̂(x) introduced above satisfies the condition (4.24) due to (9.9).

Therefore, Theorem 4.3 is applicable to the chain {X̂n}, and there exists a
c < ∞ such that

Ĥy(x,x+1/r(x)] :=
∞

∑
n=0

Py{X̂n ∈ (x,x+1/r(x)]}

≤ c
r2(x)

for all x,y > 0. (9.49)

Having this estimate we now prove the following result.

Lemma 9.6. Under the conditions of Theorem 9.2,

h(z) := lim
n→∞

Eze−∑
n
k=0 q(X̂k) > 0, z > x̂.

Moreover, h(z)→ 1 as z→ ∞.

Proof. The existence of h(z) as a limit is immediate from the monotonicity
of the sequence e−∑

n
k=0 q(X̂k) in n. By the convexity of the function e−x, to show

positivity it suffices to prove that

Ez

∞

∑
k=0

q(X̂k)< ∞, z > x̂. (9.50)

Note that

Ez

∞

∑
k=0

q(X̂k) =
∫

∞

x̂
q(y)Ĥz(dy) ≤ c

∫
∞

x̂
p(y)r(y)Ĥz(dy),

because q(y) = O(p(y)r(y)), see (9.43). But it has been already shown in the
proof of Lemma 4.1 that the last integral is finite under (9.49), thus the first
statement of the lemma is proven.

To prove the second claim we notice that it follows from Theorem 2.21 that,
for every fixed N > 0,

Pz{X̂n > N for all n≥ 1}→ 1 as z→ ∞,
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hence

Ĥz(N)→ 0 as z→ ∞.

Then, for any fixed N,

lim
z→∞

Ez

∞

∑
k=0

q(X̂k)≤ sup
z>x̂

∫
∞

N
q(y)Ĥz(dy).

According to (4.6),

lim
N→∞

sup
z>x̂

∫
∞

N
q(y)Ĥz(dy) = 0.

Therefore, we infer that

lim
z→∞

Ez

∞

∑
k=0

q(X̂k) = 0.

From this relation and Jensen inequality we finally conclude limz→∞ h(z) =
1.

Consider the following weighted renewal measure on (x̂,∞)

Ĥ(q)
z (dx) =

∞

∑
j=0

Ez{e−∑
j−1
k=0 q(X̂k); X̂ j ∈ dx}, (9.51)

and its finite time horizon version,

Ĥ(q)
z,n (dx) =

n

∑
j=0

Ez{e−∑
j−1
k=0 q(X̂k); X̂ j ∈ dx}. (9.52)

Corollary 9.7. Under the conditions of Theorem 9.2, for every fixed z≥ x̂ and
h > 0,

Ĥ(q)
z

(
x,x+

h
r(x)

]
∼ h(z)Ĥz

(
x,x+

h
r(x)

]
∼ h(z)

h
r2(x)

as x→ ∞.

Proof. It follows from Lemma 4.5 which applies to {X̂n} due to Theorem
5.16 and Lemmas 9.5 and 9.6.

We again use the representation (7.47) applied to the test function Up which
reads

π(x,x+h/r(x)] = c∗
∫ x+h/r(x)

x

Ĥ(q)(dy)
Up(y)

,

where Ĥ(q) is defined in (7.45), with initial distribution (7.44). We proceed
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with splitting the interval (x,x+ h/r(x)) into small equal subintervals. So, let
us fix a large m ∈ Z+ and consider points

xk(m) = x+
k−1

m
h

r(x)
, k ∈ {1,2, . . . ,m+1}.

Then ∫ x+h/r(x)

x

Ĥ(q)(dy)
Up(y)

=
m

∑
k=1

∫ xk+1(m)

xk(m)

Ĥ(q)(dy)
Up(y)

.

Since the function Up(y) is increasing, we have the following lower and upper
bounds

Ĥ(q)(xk(m),xk+1(m)]

Up(xk+1(m))
≤
∫ xk+1(m)

xk(m)

Ĥ(q)(dy)
Up(y)

≤ Ĥ(q)(xk(m),xk+1(m)]

Up(xk(m))
.

For every fixed m, it follows from Corollary 9.7 that, as x→ ∞,

Ĥ(q)(xk(m),xk+1(m)
]
∼ Ĥ

(
xk(m),xk+1(m)

]∫
B

h(z)P{X̂0 ∈ dz}

= Ĥ
(
xk(m),xk+1(m)

]∫B h(z)Up(z)µ(dz)∫
B Up(z)µ(dz)

,

where the measure µ is defined in (7.43). In its turn, Theorem 5.16 yields the
following asymptotics

Ĥ(q)(xk(m),xk+1(m)
]
∼ c

h
mr2(xk(m))

as x→ ∞,

because

xk+1(m)− xk(m) =
h

mr(x)
∼ h

mr(xk(m))
,

where

c :=
∫

B h(z)Up(z)µ(dz)∫
B Up(z)µ(dz)

.

This implies the following asymptotic upper bound∫ x+h/r(x)

x

Ĥ(q)(dy)
Up(y)

≤ (c+o(1))
h
m

∞

∑
k=1

1
r2(xk(m))Up(xk(m))

.

Substituting the asymptotic relation (9.32) for Up, we arrive at the following
upper bound:∫ x+h/r(x)

x

Ĥ(q)(dy)
Up(y)

≤ (c+o(1))
h
m

m

∑
k=1

e−R(xk(m))

r(xk(m))
as x→ ∞.
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Letting m→ ∞ we approximate the sum on the right multiplied by h/m by the
integral

r(x)
∫ x+h/r(x)

x

e−R(y)

r(y)
dy∼

∫ h/r(x)

0
e−R(x+y)dy

=
1

r(x)

∫ h

0
e−R(x+y/r(x))dy

∼ 1
r(x)

e−R(x)
∫ h

0
e−ydy =

1− e−h

r(x)
e−R(x)

as x→ ∞, where we make use of (9.10). In this way the upper bound of Theo-
rem 9.2 is done.

The corresponding lower bound may be derived in the same way and the
proof of Theorem 9.2 is complete.

9.4 Sufficient condition for existence of r(x) satisfying (9.18)

Lemma 9.8. Let γ ∈ {2,3, . . .}. Assume that m[s(x)]
1 (x) possesses the following

decomposition with respect to some nonnegative decreasing function t(x) ∈
Cγ(R+) satisfying the conditions (9.7) and (9.19) on r(x):

m[s(x)]
1 (x) =−t(x)+

γ−1

∑
j=2

a1, jt j(x)+o(p(x)), (9.53)

and that, for every k = 2,3, . . . ,γ ,

m[s(x)]
k (x) =

γ−k

∑
j=0

ak, jt j(x)+o(t1−k(x)p(x)). (9.54)

Then there exists a solution to the equation (9.18) which possesses the follow-
ing decomposition:

r(x) =
γ−1

∑
j=1

r jt j(x), (9.55)

for some reals r1, . . . , rγ−1.

Proof. It is sufficient to find r(x) satisfying the equality

m[s(x)]
1 (x)+

γ

∑
j=2

1
j!

m[s(x)]
j (x)r j−1(x) = o(p(x)). (9.56)
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In order to find the coefficients r j, let us substitute (9.53), (9.54) and (9.55)
into (9.56). Then we arrive at the following equality:(
−t(x)+

γ−1

∑
j=2

a1, jt j(x)
)
+

γ

∑
j=2

1
j!

(γ− j

∑
k=0

a j,ktk(x)
)(γ−1

∑
k=1

rktk(x)
) j−1

= o(p(x)).

The coefficient of t equals to −1+ r1a2,0/2, which implies

r1 = 2/a2,0.

The coefficient of t2 equals to a1,2+
1
2 (a2,0r2+a2,1r1)+

1
6 a3,0r2

1, which implies

r2 =−
2a1,2 +a2,1r1 +a3,0r2

1/3
a2,0

.

All further coefficients may be evaluated in recursive way.

9.5 Local asymptotics of stationary probabilities

Similarly to the case of m1(x) ∼ −µ/x, in this section we derive sharp local
asymptotics for stationary measure π of a recurrent irreducible Markov chain
with asymptotically zero drift of order r(x), xr(x)→∞. Following Section 6.3,
we assume that the jumps ξ (x) converge weakly to some random variable ξ

on R, that is, the condition (6.52) holds.

Theorem 9.9. Let {Xn} be a positive recurrent Markov chain on R and π(·) be
its invariant probabilistic measure. Let π have right unbounded support, that
is, π(x,∞)> 0 for all x.

Let γ ∈ {2,3, . . .}. Let the first γ moments of jumps truncated at some in-
creasing level s(x) = o(1/r(x)) satisfy the conditions (9.1) and (9.18) with
functions r(x) and p(x) satisfying (9.17), (9.7) and (9.19). Let the following
integrability conditions hold

sup
x∈R

EU(x+ξ (x))
1+U(x)

< ∞, (9.57)

and, as x→ ∞,

P{|ξ (x)|> s(x)}= o(r(x)p(x)), (9.58)

E
{

U(ξ (x)); ξ (x)> s(x)
}
= o(p(x)), (9.59)

sup
x
E
{
|ξ (x)|γ+1; |ξ (x)| ≤ s(x)

}
< ∞. (9.60)
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Furthermore we assume convergence ξ (x)⇒ ξ and that Eξ = 0 and Eξ 2 = b.
In addition, let

−Ξ− ≤st ξ (x)≤st Ξ+ for all x, (9.61)

where Ξ2
− < ∞ and EU(Ξ+)Ξ

2
+ < ∞. Then, in the lattice case,

π(x)∼ ce−
∫ x

0 r(y)dy as x→ ∞,

for some c > 0. In the non-lattice case, for any h > 0,

π(x,x+h]∼ che−
∫ x

0 r(y)dy as x→ ∞. (9.62)

Corollary 9.10. Let, in addition, r(x) = γ/xβ where β ∈ (1/2,1) and γ > 0.
Then, in the lattice case,

π(x)∼ ce−
γ

1−β
x1−β

as x→ ∞,

which agrees with the global asymptotics given in (9.27). In the non-lattice
case,

π(x,x+h] = e−
γ

1−β
x1−β

as x→ ∞.

Proof of Theorem 9.9. It is very similar to that of Theorem 8.14. Particularly,
as it is shown there,

π(x,x+h]∼ c∗
Ĥ(q)(x,x+h]

Up(x)
as x→ ∞.

The Markov chain {X̂n} satisfies all the conditions of Corollary 6.14 with
v̂(x) = r(x)b/2 and b̂ = b. Indeed, the drift conditions and (6.9) are checked in
Lemma 9.5 and (6.1) right after that. The weak convergence (6.52) for ξ̂ (x),
that is ξ̂ (x)⇒ ξ , follows from that for the original jumps ξ (x) because Up(x+
y)/Up(x)→ 1 as x→∞, for any fixed y∈R. Finally, the majorisation condition
(6.53) holds with a square integrable majorant, since it follows from (9.43),
(9.42), and (9.33) that, for all sufficiently large x,

P{ξ̂ (x)> y}= Q(x,(x+ y,∞))

Q(x,R)

≤ 2
E{Up(x+ξ (x)); ξ (x)> y}

Up(x)

≤ 2P{ξ (x)> y}+2eR(x)E{U(ξ (x)); ξ (x)> y}
Up(x)

≤ 2P{ξ (x)> y}+ c1E{U(Ξ+); Ξ+ > y},

owing to (9.32) and (9.61). Therefore, due to the condition EU(Ξ+)Ξ
2
+ < ∞,
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there exists a random variable Ξ̂+ such that ξ̂ (x) ≤st Ξ̂+ and EΞ̂2
+ < ∞. In

addition,

P{ξ̂ (x)<−y}= Q(x,(−∞,x− y))
Q(x,R)

≤ 2
E{Up(x+ξ (x)); ξ (x)<−y}

Up(x)
≤ 2P{ξ (x)<−y} ≤ 2P{Ξ− > y},

which implies that ξ̂ (x)≥st −Ξ̂− where EΞ̂2
− < ∞ due to the condition EΞ2

− <

∞, and the proof of existence of a square integrable majorant for the family of
ξ̂ (x) is complete.

Hence, by Corollary 6.14 and Lemma 4.5 applied to the Markov chain {X̂n},
we deduce that

Ĥ(q)(x,x+h]∼ cq
h

v̂(x)
∼ cq

2h
br(x)

as x→ ∞,

which concludes the proof because Up(x)∼ c3U(x) as x→ ∞, see (9.31).

9.6 Pre-stationary distributions

In this section we assume that the distribution of Xn converges to π in the total
variation distance, see (8.60).

Theorem 9.11. Assume that all the conditions of Theorem 9.2 are valid. If
r(x) is a regularly varying at infinity with index −β ∈ [−1,0] and satisfying
r′(x) = O(r(x)/x), then, for any fixed h > 0,

P{Xn ∈ (x,x+h/r(x)]}
π(x,x+h/r(x)]

= Φ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o(1)

as x→ ∞ uniformly for all n, where the function V (x) is given by

V (x) =
∫ x

0

(
γ

∑
k=2

m[s(y)]
k (y)

(k−2)!k
rk−1(y)

)−1

dy.

Proof. Splitting all the paths according to the time of the last visit of {Xn} to
B = (−∞, x̂], see (7.48), we get, for x > x̂,

P{Xn ∈ (x,x+h/r(x)]}

=
n

∑
j=1

∫
B
P{Xn− j∈dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; x<X̂ j−1≤x+

h
r(x)

}
,

(9.63)
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where q(x)≥ 0 and {X̂n} are defined in (7.9) and (7.10) respectively.

Fix a sequence Nx → ∞ of order o(1/r2(x)). Then, since q ≥ 0 and Up is
increasing,

n

∑
j=n−Nx+1

∫
B
P{Xn− j∈dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; x<X̂ j−1≤x+

h
r(x)

}
≤ Nx

1
Up(x)

sup
z∈B

∫
∞

x̂
P(z,du)Up(u)

≤ Nx
c

Up(x)
sup
z∈B

(1+Up(z))

= o(1/r2(x)Up(x)), (9.64)

where the second bound follows from the condition (9.20). Furthermore, the
distribution of Xn− j converges in total variation to π uniformly for all j ≤
n−Nx, see (8.60). Therefore,

n−Nx

∑
j=1

∫
B
P{Xn− j∈dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; x<X̂ j−1≤x+

h
r(x)

}

∼
n−Nx

∑
j=1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; x<X̂ j−1≤x+

h
r(x)

}
.

(9.65)

Similarly to (9.64),

n

∑
j=n−Nx+1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; x<X̂ j−1≤x+

h
r(x)

}
= o(1/r2(x)Up(x)). (9.66)
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Combining (9.63)—(9.66), we obtain

P{Xn ∈ (x,x+h/r(x)]}

=
n

∑
j=1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; x<X̂ j−1≤x+

h
r(x)

}
+o(1/r2(x)Up(x))

=
∫

B
π(dz)

∫
∞

x̂
P(z,du)Up(u)

n

∑
j=1

∫ x+h/r(x)

x
Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(y)
; X̂ j−1 ∈ dy

}
+o(1/r2(x)Up(x))

=
∫

∞

x̂
µ(du)Up(u)

∫ x+h/r(x)

x

Ĥ(q)
u,n (dy)
Up(y)

+o(1/r2(x)Up(x)) (9.67)

as x→ ∞, where

µ(du) =
∫

B
π(dz)P(z,du)

is a measure on (x̂,∞), see (7.43), and

Ĥ(q)
u,n (A) :=

n

∑
j=1

Eu

{
e−∑

j−2
k=0 q(X̂k); X̂ j−1 ∈ A

}
is a measure on (x̂,∞) too.

Lemma 9.12. Under the conditions of Theorem 9.11,

Ĥ(q)
z,n (x,x+h/r(x)] = h(z)Ĥz,n(x,x+h/r(x)]+o(1/r2(x))

= h(z)
h

r2(x)
Φ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o
( 1

r2(x)

)
as x→ ∞ uniformly for all n, where Φ is the standard normal distribution
function.

Proof. We want to apply Lemma 4.5 and Theorem 5.18 to {X̂n} keeping in
mind Lemma 9.6.

In order to apply Theorem 5.18 we need to identify a regularly varying de-
creasing function v(x) such that v′(x) = O(v(x)/x) and

m̂[s(x)]
1 (x) := E{ξ̂ (x); |ξ̂ (x)| ≤ s(x)} = v(x)+o(

√
v(x)/x). (9.68)

By the definition of ξ̂ (x),

m̂[s(x)]
1 (x) =

E
{

Up(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)
}

Q(x,R+)Up(x)
. (9.69)
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By Taylor’s expansion,

E{Up(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)}

=
γ

∑
k=1

U (k−1)
p (x)
(k−1)!

m[s(x)]
k (x)+E

{U (γ)
p (x+θξ (x))

γ!
ξ

γ+1(x); |ξ (x)| ≤ s(x)
}
.

It is clear that the assumption (9.23) implies boundedness of functions m[s(x)]
k (x)

for all k ≤ γ +1. From this fact and from (9.38) and (9.39) we infer that

E
{

Up(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)
}

= Up(x)m
[s(x)]
1 (x)+U ′p(x)

γ

∑
k=2

m[s(x)]
k (x)
(k−1)!

rk−2(x)

+O(p(x)r(x))Up(x)+O(rγ(x))Up(x).

By (9.17),

E
{

Up(x+ξ (x))ξ (x); |ξ (x)| ≤ s(x)
}

= Up(x)m
[s(x)]
1 (x)+U ′p(x)

γ

∑
k=2

m[s(x)]
k (x)
(k−1)!

rk−2(x)+O(p(x))Up(x).

Substituting this relation into (9.69) and using Q(x,R+) = 1+O(r(x)p(x)),
which is immediate from (9.43), we conclude that

m̂[s(x)]
1 (x) = m[s(x)]

1 (x)+
U ′p(x)

rp(x)Up(x)

γ

∑
k=2

m[s(x)]
k (x)
(k−1)!

rk−1(x)+O(p(x)). (9.70)

Recalling that U ′p(x) = eRp(x) and using r′p(x) = O(rp(x)/x) we get

(U ′p(x)− rp(x)Up(x))′ = −r′p(x)Up(x) = O
(Up(x)rp(x)

x

)
.

Since rp(x)Up(x)∼ eRp(x), we have

|U ′p(x)− rp(x)Up(x)| ≤ c1

∫ x

1

eRp(y)

y
dy for some c1 < ∞.

The derivative of Up(x)/x is asymptotically equivalent to eRp(x)/x because
r(x)x→ ∞. Therefore, by L’Hopital’s rule,

|U ′p(x)− rp(x)Up(x)| = O(Up(x)/x),

or, in other words,
U ′p(x)

rp(x)Up(x)
= 1+O(1/xr(x)).
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Plugging this into (9.70), we obtain

m̂[s(x)]
1 (x) = m[s(x)]

1 (x)+
γ

∑
k=2

m[s(x)]
k (x)
(k−1)!

rk−1(x)+O(1/x).

According to (9.18),

m[s(x)]
1 (x) =−

γ

∑
k=2

m[s(x)]
k (x)

k!
rk−1(x)+o(p(x)).

As a result we have the following asymptotic expansion for the expectation of
the truncation at levels ±s(x) of jumps for the chain {X̂n}

m̂[s(x)]
1 (x) =

γ

∑
k=2

m[s(x)]
k (x)

(k−2)!k
rk−1(x)+O(1/x).

Now it is clear that (9.68) is valid with

v(x) =
γ

∑
k=2

m[s(x)]
k (x)

(k−2)!k
rk−1(x),

because, for some c2 > 0,

x
√

v(x)/x =
√

v(x)x ≥ c2
√

r(x)x → ∞ as x→ ∞,

and so

1/x = o(
√

v(x)/x) as x→ ∞.

The function v(x) is regularly varying at infinity since

v(x)
r(x)

∼
m[s(x)]

2 (x)
2

→ b
2
,

and the proof follows.

Since Up is increasing, we deduce the following lower and upper bounds

Ĥ(q)
u,n (x,x+h/r(x)]
Up(x+h/r(x))

≤
∫ x+h/r(x)

x

Ĥ(q)
u,n (dz)
Up(z)

≤ H(q)
u,n (x,x+h/r(x)]

Up(x)
. (9.71)

For any fixed u > x̂, due to Lemma 9.12,

Ĥ(q)
u,n

(
x,x+

h
r(x)

]
= h(u)

h
r2(x)

Φ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o
( 1

r2(x)

)
(9.72)
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as y→ ∞ uniformly for all n. In addition, due to q≥ 0,

sup
u>x̂

Ĥ(q)
u,n

(
x,x+

h
r(x)

]
≤ sup

u>x̂

n

∑
j=1

Pu

{
X̂ j−1 ∈

(
x,x+

h
r(x)

]}
≤ c1/r2(x) (9.73)

for all x and n, for some c1 < ∞ as follows from (9.49).
From the estimate (9.72) and the equivalence Up(x+h/r(x))∼ ehUp(x)—as

follows from (9.10)—we infer from (9.71) that, for any fixed u > x̂,

Up(x)r2(x)
∫ x+h/r(x)

x

Ĥ(q)
u,n (dz)
Up(z)

≤ h(u)hΦ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o(1)

and

Up(x)r2(x)
∫ x+h/r(x)

x

Ĥ(q)
u,n (dz)
Up(z)

≥ h(u)he−h
Φ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o(1).

Splitting the interval (x,x+ h/r(x)] into smaller intervals as it has been done
in Theorem 9.2, we can justify the following asymptotics

Up(x)r2(x)
∫ x+h/r(x)

x

Ĥ(q)
u,n (dz)
Up(z)

∼ h(u)(1− e−h)Φ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o(1)

(9.74)

as x→ ∞ uniformly for all n.
Similarly, it follows from (9.73) that

sup
u>x̂

∫ x+h/r(x)

x

Ĥ(q)
u,n (dz)
Up(z)

≤ c2

r2(x)Up(x)
.

In addition,

ĉ =
∫

∞

x̂
h(u)Up(u)µ(du)

=
∫

B
π(dz)

∫
∞

x̂
h(u)Up(u)P(z,du) < ∞,

as follows from the condition (9.13). Hence the dominated convergence theo-
rem is applicable to (9.67), so plugging (9.74) into (9.67), we obtain

P{Xn ∈ (x,x+h/r(x)]}= ĉ
1− e−h

r2(x)Up(x)
Φ

(
n−V (x)√
b 1+β

1+3β

x
r3(x)

)
+o
( 1

r2(x)Up(x)

)
as x→ ∞ uniformly for all n and the proof is complete.
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9.7 Comments to Chapter 9

Markov chains with drift satisfying xm1(x) → ∞ were considered by Men-
shikov and Popov in [122] along with drift of order 1/x. They have derived
rough asymptotics for {π(x),x∈Z+} for countable Markov chains with asymp-
totically zero drift and with bounded jumps. Some rough theorems for the local
probabilities π(x) were proven; if

2m1(x)/m2(x) ∼ −θ/xβ as x→ ∞,

then for every ε > 0 there exist constants c− = c−(ε)> 0 and c+ = c+(ε)< ∞

such that

c−e−(θ/(1−β )+ε)x1−β ≤ π(x) ≤ c+e−(θ/(1−β )−ε)x1−β

.

The same bounds were obtained by Aspandiiarov and Iasnogorodski in [9].
The paper [107] by Korshunov is devoted to the existence and non-existence

of moments of invariant distribution. In particular, it was proven there that if
m1(x)∼−µ/xβ and b(x)→ b hold and the families of random variables

{e
γ

2 log2(1+ξ+(x))(ξ+(x))2, x≥ 0} for some γ > 0

and {(ξ−(x))2,x ≥ 0} are uniformly integrable, then, for X0 having invariant
distribution π ,

• EeγX1−β

0 < ∞ for γ < 2µ/(1−β )b;

• EeγX1−β

0 = ∞ if π has unbounded support and γ > 2µ/(1−β )b.

This result implies that for every ε > 0 there exists a c(ε) such that

π(x,∞) ≤ c(ε)e−(2µ/(1−β )b−ε)x1−β

. (9.75)

In that paper there is also some analysis for γ = 2µ/(1−β )b.



10
Markov chains with asymptotically non-zero

drift in Cramér’s case

In this chapter we consider Markov chains with asymptotically constant (non-
zero) drift. As shown in the previous chapter, the slower m1(x) tends to zero the
higher moments should behave regularly at infinity in order to make it possible
to describe the asymptotic tail betaviour of the invariant measure. Therefore, it
is not surprising that in the case of asymptoticaly negative drift bounded away
from zero we will assume that the distribution of jumps ξ (x) converges weakly
as x tends to infinity. This corresponds, roughly speaking, to the assumption
that all moments are regularly behaving at infinity. In this chapter we slightly
extend the notion of an asymptotically homogeneous Markov chain by allow-
ing extended limiting random variable.

Definition 10.1. We say that {Xn} is asymptotically homogeneous in space if

ξ (x)⇒ ξ as x→ ∞, (10.1)

where ξ is an extended random variable taking values in R∪{−∞}.

The class of asymptotically homogeneous chains is larger than the class of
additive Markov chains, which has been introduced by Aldous [4], where ξ (x)
is assumed convergent in the total variation norm.

The simplest and one of the most important examples of asymptotically ho-
mogeneous Markov chains is a random walk with delay at zero (Lindley recur-
sion):

Wn+1 = (Wn +ξn+1)
+, n≥ 0, (10.2)

where {ξn} are independent copies of ξ . In this example we observe conver-
gence in total variation. The process {Wn} describes the waiting time process
in a single-server queue which is a basic model in queueing theory.

Another popular class of models closely related to asymptotically homoge-

306
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neous chains is originated from stochastic recursions

Rn = AnRn−1 +Bn, n≥ 0,

where {(An,Bn)} are independent identically distributed random vectors in
R+×R. The sequence Rn does not satisfy (10.1), but some function of it is an
asymptotically homogeneous Markov chain, for details see Goldie [73, Section
2] or Section 11.5 below.

10.1 Local renewal theorem

In this section we assume that (10.1) holds and that the mean of the limiting
variable ξ is positive. Our aim is to study the asymptotic behaviour of the
renewal measure

H(B) :=
∞

∑
n=0

P{Xn ∈ B}.

In contrast to the case of asymptotically zero drift, one can derive a renewal
theorem for an asymptotically homogeneous chain {Xn} without use of limit
theorems for Xn. Instead, we apply some ideas of the operator approach pro-
posed by Feller [63].

Theorem 10.2. Let ξ (x)⇒ ξ as x→∞ and Eξ > 0. Let the family of random
variables {|ξ (x)|, x∈R} admit an integrable majorant Ξ, that is, EΞ < ∞ and

|ξ (x)| ≤st Ξ for all x ∈ R. (10.3)

Assume that Xn → ∞ with probability 1 as n→ ∞ and, moreover, its renewal
measure satisfies

sup
x∈R

H(x,x+1]< ∞. (10.4)

If the limiting random variable ξ is non-lattice, then H(x,x+h]→ h/Eξ as
x→ ∞, for all fixed h > 0.

If the chain {Xn} is integer-valued and Z is the minimal lattice for the vari-
able ξ , then H{n}→ 1/Eξ as n→ ∞.

The condition Eξ > 0 excludes possibility of an atom of ξ at point −∞.
The condition (10.3) and the dominated convergence theorem imply |ξ | ≤st Ξ,
E|ξ | < ∞ and Eξ (x)→ Eξ as x→ ∞; in particular, the chain {Xn} has an
asymptotically space-homogeneous drift.
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Proof. First of all, the condition (10.4) allows us to apply Helly’s Selection
Theorem to the family of measures {H(x + ·), x ∈ R+} (see, for example,
Theorem 2 in [63, Section VIII.6]). Hence, there exists a sequence of points
tn→∞ such that the sequence of measures H(tn+ ·) converges weakly to some
measure λ as n→ ∞. The following result characterises λ , it follows from
Lemma 6.17 with v(x)≡ 1.

Lemma 10.3. Let F denote the distribution of ξ . A weak limit λ of the se-
quence of measures H(tn + ·) satisfies the identity λ = λ ∗F.

In the sequel the following auxiliary result is useful.

Lemma 10.4. Let λn be a sequence of measures on R weakly convergent to
an absolutely continuous σ -finite measure λ . Let Fn : R→ R be a sequence
of increasing functions weakly convergent to an increasing function F (that is,
Fn(n) is convergent at all points of continuity of F(x)). Then, for any A > 0,∫ A

0
Fn(x)λn(dx)→

∫ A

0
F(x)λ (dx) as n→ ∞.

Proof. Firstly, by Fubini’s theorem, as n→ ∞,∫ A

0
(Fn(x)−Fn(0))(λn−λ )(dx) =

∫ A

0
(λn−λ )(dx)

∫ x

0
Fn(du)

=
∫ A

0
(λn−λ )(u,A]Fn(du) → 0,

because λn(u,A]→ λ (u,A] as n→ ∞ uniformly for all u ∈ [0,A], due to the
weak convergence λn⇒ λ and the absolute continuity of the measure λ . There-
fore, ∫ A

0
Fn(x)(λn−λ )(dx)→ 0 as n→ ∞.

Secondly, ∫ A

0
Fn(x)λ (dx)→

∫ A

0
F(x)λ (dx) as n→ ∞,

by the dominated convergence theorem, because Fn(x)→ F(x) almost every-
where due to the weak convergence of Fn and monotonicity of Fn(x) and F(x).
Altogether implies the desired convergence of integrals.

The concluding part of the proof of Theorem 10.2 will be carried out for the
non-lattice case. Choose any sequence of points tn→ ∞ such that the measure
H(tn + ·) converges weakly to some measure λ as n → ∞. It follows from
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Lemma 10.3 and Proposition 6.18 that then λ (dx) = α ·dx with some α , i.e.,

H(tn +dx)⇒ α ·dx as n→ ∞.

Now it suffices to prove that α = 1/Eξ for any sequence tn such that the
measure H(tn + ·) is weakly convergent. Fix some k ∈ N. Put

H(k)(·) :=
∞

∑
j=k

P{X j ∈ ·}

= H(·)−
k−1

∑
j=0

P{X j ∈ ·}.

Then, due to the weak convergence P{X j ∈ tn + ·} ⇒ 0 for all j,

H(k)(tn +dx)⇒ α ·dx as n→ ∞. (10.5)

Consider the measure H(k)−H(k+1); by the definition of the renewal measure
it equals the distribution of Xk, that is, for any bounded Borel set B, H(k)(B)−
H(k+1)(B) = P{Xk ∈ B} (the equality may fail for unbounded sets, say, for
(x,∞]). In particular,

(H(k)−H(k+1))(0,x] = P{Xk ∈ (0,x]}→ P{Xk > 0} as x→ ∞.

(10.6)

On the other hand,

(H(k)−H(k+1))(0,x]

=
∫

∞

−∞

(I−P)(y,(0,x])H(k)(dy)

=−
∫ 0

−∞

P(y,(0,x])H(k)(dy)+
∫ x

0
P(y,(−∞,0])H(k)(dy)

+
∫ x

0
P(y,(x,∞))H(k)(dy)−

∫
∞

x
P(y,(0,x])H(k)(dy). (10.7)

By Lemma 10.4, the asymptotic homogeneity of the chain and weak conver-
gence (10.5) imply the following convergences of the integrals, for any fixed
A > 0: ∫ tn

tn−A
P(y,(tn,∞))H(k)(dy)→ α

∫ A

0
P{ξ > z}dz (10.8)

as n→ ∞, and∫ tn+A

tn
P(y,(0, tn])H(k)(dy)→ α

∫ A

0
P{ξ ≤−z}dz. (10.9)
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The majorisation condition (10.3) allows us to estimate the tails of the inte-
grals: ∫ tn−A

0
P(y,(tn,∞))H(k)(dy)≤−

∫
∞

A
P{Ξ > z}H(tn−dz) (10.10)

and ∫
∞

tn+A
P(y,(0, tn])H(k)(dy)≤

∫
∞

A
P{Ξ≥ z}H(tn +dz). (10.11)

Since the majorant Ξ is integrable, the condition (10.4) guarantees that the right
hand sides of the inequalities (10.10) and (10.11) can be made as small as we
please by the choice of a sufficiently large A. For these reasons we conclude
from (10.7)–(10.9) that

(H(k)−H(k+1))(0, tn]

→ −
∫ 0

−∞

P(y,(0,∞))H(k)(dy)+
∫

∞

0
P(y,(−∞,0])H(k)(dy)

+α

∫
∞

0
P{ξ > z}dz−α

∫
∞

0
P{ξ ≤−z}dz as n→ ∞.

Together with (10.6) it implies the following equality, for any fixed k:

P{Xk > 0}=−
∫ 0

−∞

P(y,(0,∞))H(k)(dy)+
∫

∞

0
P(y,(−∞,0])H(k)(dy)+αEξ .

(10.12)

Now let k→ ∞, then both integrals go to zero. For example, the first integral
can be estimated as follows, for all A > 0:∫ 0

−∞

P(y,(0,∞))H(k)(dy)≤
∫ −A

−∞

P{Ξ >−y}H(dy)+H(k)(−A,0].

Here, for any fixed A, H(k)(−A,0]→ 0 as k→ ∞, due to (10.4). Therefore,
(10.6) and (10.12) imply that 1 = αEξ and the proof is complete.

In the next theorem we provide some simple conditions sufficient for the
condition (10.4), that is, for local compactness of the renewal measure. Denote
a∧b = min{a,b}.

Theorem 10.5. Suppose that there exist A > 0 and ε > 0 such that

E(ξ (x)∧A)≥ ε for all x ∈ R. (10.13)

In addition, let

P{Xn > x for all n≥ 1|X0 = x} ≥ δ > 0 for all x ∈ R. (10.14)

Then H(x,x+ h] ≤ (A+ h)/εδ for all x ∈ R and h > 0; in particular, (10.4)
holds.
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Proof. By the Markov property, it suffices to show that

Hy(x,x+h]≤ (A+h)/εδ (10.15)

for all y ∈ (x,x+h]. Given X0 ∈ (x,x+h], consider a stopping time

T (x+h) = min{n≥ 1 : Xn > x+h}.

Since XT (x+h)∧ (x+h+A)−X0 ≤ A+h with probability 1,

A+h≥ E(XT (x+h)∧ (x+h+A)−X0)

=
∞

∑
n=1

E
(
[Xn∧ (x+h+A)−Xn−1∧ (x+h+A)]I{T (x+h)≥ n}

)
.

Hence, the definition of T (x+h) implies

A+h≥
∞

∑
n=1

E{Xn∧ (x+h+A)−Xn−1∧ (x+h+A); T (x+h)≥ n}

=
∞

∑
n=1

E{Xn∧ (x+h+A)−Xn−1 | T (x+h)≥ n}P{T (x+h)≥ n}.

The Markov property and condition (10.13) yield

E{Xn∧ (x+h+A)−Xn−1 | T (x+h)≥ n} ≥ E(ξ (Xn−1)∧A)≥ ε

for all n. Therefore,

A+h≥ ε

∞

∑
n=1

P{T (x+h)≥ n}= εET (x+h).

So, the expected number of visits to the interval (x,x + h] till the first exit
from (−∞,x+h] does not exceed (A+h)/ε , independently of the initial state
X0 ∈ (x,x+h]. By the condition (10.14), after exiting (−∞,x+h] the chain is
above the level XT (x+ h) forever with probability at least δ ; in particular, it
does not visit the interval (x,x+h] any more. With probability at most 1−δ the
chain visits this interval again, and so on. Concluding, we get that the expected
number of visits to the interval (x,x+h] cannot exceed the value of

A+h
ε

∞

∑
n=0

(1−δ )n =
A+h

εδ
,

and (10.15) is proven. The proof of Theorem 10.5 is complete.

Corollary 10.6. Let the family of jumps {ξ (x),x ∈ R} possess an integrable
minorant with a positive mean, that is, there exists a random variable ζ such
that Eζ > 0 and ξ (x)≥st ζ for all x ∈ R. Then

H(x,x+h]≤ (A+h)A/ε
2
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for all A > 0 such that ε ≡ E(ζ ∧A)> 0; in particular, (10.4) holds.

Proof. Consider the partial sums Zn = ζ1 + . . .+ζn of independent copies of
ζ . Denote the first ascending ladder epoch by η = min{n ≥ 1 : Zn > 0}. It is
well known (see, for example, Theorem 2.3(c) in [8, Chapter VIII] that

P{Zn > 0 for all n≥ 1}= 1/Eη .

Since

P{Xn > x for all n≥ 1 | X0 = x} ≥ P{Zn > 0 for all n≥ 1}

by the minorisation condition, the δ in Theorem 10.5 is at least 1/Eη . Since
ZA,ηA ≤ A where ZA,n := ζ1∧A+ · · ·+ζn∧A and ηA := min{n≥ 1 : ZA,n > 0},
we get EηA ≤ A/ε by Wald’s equality EZηA = EηAEζ1 ∧A. Then it follows
from η ≤ ηA that Eη ≤ A/ε , which yields δ ≥ ε/A and the corollary conclu-
sion follows.

10.2 Large deviation principle for stationary distribution

We now turn to the asymptotic behaviour of the stationary distribution of an
asymptotically homogeneous chain, that is, we assume that (10.1) holds with
an extended limiting variable ξ . We shall also assume that the limiting variable
ξ satisfies Cramér’s condition:

there exists a β > 0 such that Eeβξ = 1. (10.16)

As is well-known, the stationary measure of the random walk {Wn} de-
layed at the origin—defined in (10.2), say πW , coincides with the distribution
of supn≥0 ∑

n
k=1 ξk where ξk’s are independent copies of ξ . Then, due to the

classical Cramér—Lundberg approximation, for some c > 0,

πW (x,∞)∼ ce−βx as x→ ∞, (10.17)

under the additional assumption Eξ eβξ < ∞, in the non-lattice case; in the lat-
tice case x is restricted to the lattice values. Since the jumps of the chains {Xn}
and {Wn} are asymptotically equivalent, one could expect that the stationary
tail distributions of {Xn} and {Wn} are asymptotically equivalent. It turns out
to be true on the logarithmic scale only.

Theorem 10.7. Assume the asymptotic homogeneity (10.1) and Cramér’s con-
dition (10.16). If an invariant measure π has right unbounded support then the
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following lower bound holds:

liminf
x→∞

logπ(x,∞)

x
≥−β . (10.18)

If, in addition,

sup
x>0

Eeλξ (x) < ∞, sup
x≤0

Eeλ (x+ξ (x)) < ∞ for all λ ∈ [0,β ), (10.19)

then

limsup
x→∞

logπ(x,∞)

x
≤−β . (10.20)

As it concerns applications, we apply this result to derive logarithmic asymp-
totics of the stationary distribution of positive recurrent stochastic difference
equations in Theorem 11.15.

Proof. Fix some x̂ ∈ R and consider an aggregated Markov chain {X∗n } on
[x̂,∞) with transition probabilities defined in (7.36) and (7.37). As mentioned
there, the measure π∗ that aggregates states from (−∞, x̂] to x̂, that is, π∗{x̂}=
π(−∞, x̂] and π∗(B)= π(B) for all B⊆ (x̂,∞), is an invariant measure for {X∗n }.

First we derive the lower bound (10.18) via comparison of {X∗n } with a
random walk delayed at zero; we choose x̂ sufficiently large as follows. For
any u consider a random variable η(u) with tail distribution

P{η(u)> z} = inf
v≥u−1/u

P{ξ (v)> z+2/u}.

Then η(u) stochastically increases as u grows and ξ (v) ≥st η(u) for all v ≥
u− 1/u. For any A > 0, define ηA(u) := min{η(u),A}. Since the chain {Xn}
is asymptotically homogeneous, we have ηA(u)≤st ξ for all u and ηA(u)⇒ ξ

as A, u→ ∞. Hence, for all sufficiently large A and u, there exists a unique
solution βA(u) to the equation EeβA(u)ηA(u) = 1, which is always not less than
β . In addition, βA(u) decreases as A and u grow, and

βA(u) ↓ β as A, u→ ∞.

Fix an ε ∈ (0,1) and choose sufficiently large A and x̂ such that βA(x̂)∈ [β ,β +

ε] and π(x̂− 1/x̂, x̂] > 0, which is possible because π has right-unbounded
support. Denote η̂ := ηA(x̂). It follows from (7.37) that, for u > x̂,

P∗(x̂,(u,∞))≥ 1
π(−∞, x̂]

∫ x̂+0

x̂−1/x̂
P(z,(u,∞))π(dz)

≥ π(x̂−1/x̂, x̂]
π(−∞, x̂]

P{η̂ > u− x̂}. (10.21)
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Consider the random walk {Ŵn} delayed at x̂, that is,

Ŵn = max(x̂, Ŵn−1 + η̂n),

where η̂n are independent copies of η̂ . By the construction of η̂ = ηA(x̂), {Ŵn}
is dominated by {Xn} above x̂, more precisely, the following inequality is valid
for all u > x̂, y > x̂ and m:

P{Xk > x̂ for all k < m, Xm > y | X0 = u}
≥ P{Ŵk > x̂ for all k < m, Ŵm > y | Ŵ0 = u}. (10.22)

Consider a stationary version of {Xn}, that is, Xn has distribution π for all
n≥ 0. Then the distribution of max(x̂,Xn) on (x̂,∞) is the same as of X∗n given
X∗0 has distribution π∗. Then, at any time n, the decomposition of all trajectories
with respect to the last visit of {X∗k } to the state x̂ gives the following lower
bound, for y > x̂,

π(y,∞) = P{X∗n > y}

≥
n−1

∑
j=0

P{X∗j = x̂}
∫

∞

x̂+0
P∗(x̂,du)P{X∗k > x̂,k ∈ [ j+2,n−1],X∗n > y | X∗j+1 = u}

= π(−∞, x̂]
n−1

∑
j=0

∫
∞

x̂+0
P∗(x̂,du)P{Xk > x̂,k ∈ [ j+2,n−1],Xn > y | X j+1 = u}

≥ π(−∞, x̂]
n−1

∑
j=0

∫
∞

x̂+0
P∗(x̂,du)P{Ŵk > x̂,k ∈ [ j+2,n−1],Ŵn > y | Ŵj+1 = u},

due to (10.22). Since the probability P{Ŵk > x̂,k ∈ [ j + 2,n− 1], Ŵn > y |
Ŵj+1 = u} is increasing in u, the stochastic domination condition (10.21) yields
that∫

∞

x̂+0
P∗(x̂,du)P{Ŵk > x̂,k ∈ [ j+2,n−1], Ŵn > y | Ŵj+1 = u}

≥ π(x̂−1/x̂, x̂]
π(−∞, x̂]

∫
∞

x̂+0
P{x̂+ η̂ ∈ du}

×P{Ŵk > x̂,k ∈ [ j+2,n−1], Ŵn > y | Ŵj+1 = u}.

Therefore,

π(y,∞)≥ π(x̂−1/x̂, x̂]
n−1

∑
j=0

∫
∞

x̂+0
P{x̂+ η̂ ∈ du}

×P{Ŵk > x̂,k ∈ [ j+2,n−1], Ŵn > y | Ŵj+1 = u}. (10.23)

On the other hand, applying the decomposition of all trajectories of {Ŵn} with
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respect to the last visit of {Ŵn} to the state x̂ we deduce, for Ŵ0 = x̂ and y > x̂,

P{Ŵn > y}

=
n−1

∑
j=0

P{Ŵj = x̂}
∫

∞

x̂+0
P{Ŵj+1 ∈ du | Ŵj = x̂}

×P{Ŵk > x̂,k ∈ [ j+2,n−1], Ŵn > y | Ŵj+1 = u}

≤
n−1

∑
j=0

∫
∞

x̂+0
P{x̂+ η̂ ∈ du}P{Ŵk > x̂,k ∈ [ j+2,n−1], Ŵn > y | Ŵj+1 = u}.

Together with (10.23) it implies the following lower bound

π(y,∞)≥ π(x̂−1/x̂, x̂]P{Ŵn > y} for y > x̂.

As Ŵn− x̂ is a Lindley recursion, the Cramér–Lundberg approximation (10.17)
yields that

lim
y→∞

lim
n→∞

logP{Ŵn > y}
y

=−βA(x̂),

so hence

liminf
y→∞

logπ(y,∞)

y
≥−βA(x̂).

Letting ε ↓ 0 we conclude the assertion (10.18) because βA(x̂)≤ β + ε .
Let us now prove the upper bound (10.20). Fix any λ < β . Then the bound-

edness (10.19) of exponential moments of jumps of order (β +λ )/2 ∈ (λ ,β )

and weak convergence ξ (x)⇒ ξ imply convergence of exponential moments
of order λ ,

Eeλξ (x) → Eeλξ < Eeβξ = 1 as x→ ∞,

hence there exist x̂ ∈ R and ε > 0 such that

Eeλξ (x) ≤ 1− ε for all x≥ x̂. (10.24)

Fix an A > x̂ and consider the function g(x) = min(eλx,eλA). Let {Xn} be in
stationary regime, that is, let Xn have distribution π for all n. Since g is bounded
above—by eλA,

0 = E(g(X1)−g(X0))

=
(∫ x̂

−∞

+
∫ A

x̂
+
∫

∞

A

)
(Eg(x+ξ (x))−g(x))π(dx). (10.25)

The third integral on the right hand side is non-positive because the increasing
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function g(x) is constant for x≥ A. The first integral is bounded above by

c1 := sup
x≤x̂

E{g(X1)−g(x) | X0 = x} ≤ sup
x≤x̂

Eeλ (x+ξ (x)),

which is finite due to the condition (10.19). The second integral is not greater
than ∫ A

x̂
(Eg(x+ξ (x))−g(x))π(dx)≤

∫ A

x̂
(Eeλ (x+ξ (x))− eλx)π(dx)

≤−ε

∫ A

x̂
eλx

π(dx),

by (10.24). Therefore, it follows from (10.25) that

0≤ c1− ε

∫ A

x̂
eλx

π(dx).

Due to the arbitrary choice of A, we get∫
∞

x̂
eλx

π(dx)≤ c1/ε,

which implies π(x,∞)≤ c1e−λx/ε for all x≥ x̂. Now the upper bound (10.20)
follows because we may chose λ < β as close to β as we please.

10.3 Sharp asymptotics for stationary distribution

While logarithmic asymptotic law is universal for stationary distribution of
asymptotically homogeneous in space Markov chains, it turns out that the exact
asymptotic tail behaviour of π depends not only on the distribution of ξ , but
also on the speed of convergence in (10.1).

The next result describes the case where this convergence is so fast that
the measure π is asymptotically tail proportional to the stationary measure of
{Wn}.

Theorem 10.8. Assume the asymptotic homogeneity (10.1) and Cramér’s con-
dition (10.16). Let π have right unbounded support. Suppose that

ξ (x)≤st Ξ, x ∈ R, (10.26)

for some random variable Ξ such that EΞeβΞ < ∞ and

|Eeβξ (x)−1| ≤ γ(x) (10.27)

for some decreasing integrable at infinity function γ(x).
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If the distribution of ξ is non-lattice then there exists a positive constant c
such that

π(x,∞) ∼ ce−βx as x→ ∞. (10.28)

If {Xn} takes values on Z and Z is the minimal lattice for ξ then (10.28) holds
with x restricted to integers.

As it concerns applications, we apply this result to derive precise asymp-
totics of the stationary distribution of positive recurrent stochastic difference
equations in Theorem 11.15.

The condition (10.27) is quite close to be optimal. If, for example, all values
of Eeβξ (x)−1 are of the same sign and not summable, then π(x)eβx converges
either to zero or to infinity, see Corollary 10.12 below. Thus, if (10.27) is vio-
lated, then π(x,∞) may only have exponential asymptotics like (10.28) in the
case where Eeβξ (x)−1 is changing its sign infinitely often.

Example 10.9. Consider a Markov chain {Xn} on Z+ with jumps to the nearest
neighbours only:

P{ξ (i) = 1}= 1−P{ξ (i) =−1}= p+ϕ(i).

Assume that, as i→ ∞,

ϕ(i)∼
{

i−γ , i = 2k
−i−γ , i = 2k+1

for some γ ∈ (1/2,1). Clearly, then the asymptotic homogeneity (10.1) and
Cramér’s condition (10.16) hold true while the condition (10.27) fails.

Let us have a look at values of {Xn} at even time epochs, i.e., let us consider
the chain

Yk = X2k, k ≥ 0.

Then we have

Pi{Y1− i =−2}= (q−ϕ(i))(q−ϕ(i−1)),

Pi{Y1− i = 0}= (q−ϕ(i))(p+ϕ(i−1))+(p+ϕ(i))(q−ϕ(i+1)),

Pi{Y1− i = 2}= (p+ϕ(i))(p+ϕ(i+1)),
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where q := 1− p. From these equalities we obtain

Ei

(
q
p

)Y1−i

−1 =

(
p2

q2 −1
)
Pi{Y1− i =−2}+

(
q2

p2 −1
)
Pi{Y1− i = 2}

=

(
p2

q2 −1
)
(q−ϕ(i))(q−ϕ(i−1))+

(
q2

p2 −1
)
(p+ϕ(i))(p+ϕ(i+1))

=−q
(

p2

q2 −1
)
(ϕ(i)+ϕ(i−1))+ p

(
q2

p2 −1
)
(ϕ(i)+ϕ(i+1))+O(i−2γ).

Noting that ϕ(i) +ϕ(i+ 1) = O(i−γ−1) as i→ ∞, we conclude that the se-
quence |Ei(q/p)Y1−i−1| is summable and, consequently, we may apply The-
orem 10.8. Since π is stationary for Y too, we obtain π(i)∼ c(p/q)i as i→ ∞.

Proof of Theorem 10.8. We start, as usual, with the construction of an appro-
priate Lyapunov function which is sufficiently close to a harmonic function.
Let p be a bounded decreasing function p(x) : R→ R+ which is regularly
varying at infinity with index −1 and integrable at infinity. Set

g(x) := min
(

1,
∫

∞

x
p(y)dy

)
(10.29)

and consider

Up(x) := eβx(1+g(x)). (10.30)

We want to show that there exists a p(x) such that

EUp(x+ξ (x))−Up(x) =−eβx p(x)(Eξ eβξ +o(1)) as x→ ∞. (10.31)

By the definition of Up(x),

EUp(x+ξ (x))−Up(x)

= eβx(Eeβξ (x)(1+g(x+ξ (x)))−1−g(x)
)

= eβx(1+g(x))(Eeβξ (x)−1)+ eβxE(g(x+ξ (x))−g(x))eβξ (x). (10.32)

Owing to Lemma 2.29, the assumption (10.27) yields the existence of p(x)
satisfying the conditions above and such that

|Eeβξ (x)−1|= o(p(x)). (10.33)

Fix some increasing function s(x) = o(x) and split the second term on the right
hand side of (10.32) into three parts:

E(g(x+ξ (x))−g(x))eβξ (x) = E{(g(x+ξ (x))−g(x))eβξ (x); ξ (x)<−s(x)}
+E{(g(x+ξ (x))−g(x))eβξ (x); |ξ (x)| ≤ s(x)}
+E{(g(x+ξ (x))−g(x))eβξ (x); ξ (x)> s(x)}.
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Due to the decrease of g and the boundedness of g by 1,

0 ≤ E{(g(x+ξ (x))−g(x))eβξ (x); ξ (x)<−s(x)} ≤ e−β s(x). (10.34)

Since p(x) is assumed regularly varying at infinity, we have an equivalence
g(x+ξ (x))−g(x)∼−p(x)ξ (x) as x→ ∞ uniformly on the set |ξ (x)| ≤ s(x).
Therefore,

E{(g(x+ξ (x))−g(x))eβξ (x); |ξ (x)| ≤ s(x)}
∼ −p(x)E{ξ (x)eβξ (x); |ξ (x)| ≤ s(x)}.

Recalling that the family ξ (x) possesses a majorant Ξ with EΞeβΞ < ∞, we
infer that

E{ξ (x)eβξ (x); |ξ (x)| ≤ s(x)} → Eξ eβξ as x→ ∞.

As a result,

E{(g(x+ξ (x))−g(x))eβξ (x); |ξ (x)| ≤ s(x)} ∼ −p(x)Eξ eβξ . (10.35)

The existence of Ξ implies also that the function E{eβξ (x); ξ (x) > s(x)} is
dominated by E{eβΞ; Ξ > s(x)}. Since EΞeβΞ is finite, the last function is
decreasing and summable provided that s(x)/x→ 0 sufficiently slow. Conse-
quently, there exists p(x) such that

E{(g(x+ξ (x))−g(x))eβξ (x); ξ (x)> s(x)} = o(p(x)). (10.36)

Combining (10.34)–(10.36), we conclude that

E(g(x+ξ (x))−g(x))eβξ (x) = −p(x)(Eξ eβξ +o(1)).

Plugging this relation and (10.33) into (10.32), we obtain (10.31).
Consider, as usual, the transition kernel

Q(x,dy) =
Up(y)
Up(x)

P(x,dy), y≥ x̂.

It follows from (10.31) that, for all x̂ sufficiently large,

Q(x,R) =
1

Up(x)
E{Up(x+ξ (x)); x+ξ (x)≥ x̂}

≤ 1
Up(x)

EUp(x+ξ (x)) ≤ 1 for all x≥ x̂. (10.37)

In other words, Q is a substochastic kernel. Furthermore, it follows from the
asymptotic homogeneity that

Q(x,R) ≥ P{ξ (x)≥ 0} ≥ P{ξ ≥ 0}/2 for all x≥ x̂, (10.38)
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if x̂ is chosen sufficiently large. Using (10.31) once again, we conclude that

q(x) := − logQ(x,R) = O(p(x)) as x→ ∞. (10.39)

Let {X̂n} be a Markov chain on (x̂,∞) with the transition kernel

P̂(x,dy) =
Q(x,dy)
Q(x,R)

and let ξ̂ (x) denotes its jump from state x. It is immediate from the definition
of Up that ξ̂ (x) converges weakly to the distribution eβyP{ξ ∈ dy} as x→ ∞.
Furthermore, the assumption that EΞeβΞ <∞ and (10.38) imply that the family
of jumps |ξ̂ (x)| possesses an integrable majorant. Therefore, there exists an x̂
such that the family of jumps {ξ̂ (x); x > x̂} possesses a stochastic minorant
with positive expectation. Thus, Corollary 10.6 applies to the chain {X̂n}which
in its turn allows us to apply Theorem 10.2: If ξ is non-lattice then, for all
h > 0,

Ĥ(x,x+h] → h
Eξ eβξ

as x→ ∞.

If {Xn} is an integer-valued Markov chain and Z is the minimal lattice for ξ

then the previous relation is valid for h and x restricted to integers.
Combining (10.39) with the upper bound supx Ĥ(x,x+h]< ∞ we conclude

as in Lemma 8.9 that
∞

∑
k=0

Eq(X̂k) < ∞.

Thus, by Lemma 4.5,

Ĥ(q)(x,x+h] → h
Eξ eβξ

Ee−∑
∞
k=0 q(X̂k) as x→ ∞. (10.40)

Here, again, h is an arbitrary positive number in the case when ξ is non-lattice
and h is integer in the lattice case.

For the invariant distribution π we have the following representation, see
(7.47),

π(dy) = c∗
Ĥ(q)(dy)

Up(y)
.

If ξ is lattice then

π{n} = c∗
Ĥ(q){n}
Up(n)

,

and the result follows from (10.40) and the fact that Up(x)∼ eβx.
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In the non-lattice case, for any fixed h > 0,

c∗
Ĥ(q)(x,x+h]

maxx≤y≤x+h Up(y)
≤ π(x,x+h] ≤ c∗

Ĥ(q)(x,x+h]
minx≤y≤x+h Up(y)

.

Using again (10.40), we obtain lower and upper bounds

che−βx−βh(1+o(1)) ≤ π(x,x+h] ≤ che−βx(1+o(1)).

Choosing h small and summing bounds for π(x+ kh,x+(k+ 1)h] we obtain
the required lower and upper bounds for π(x,∞) which completes the proof of
the theorem.

We now turn to the case where Eeβξ (x) converges to 1 in a non-summable
way. Our next result describes the behaviour of π in terms of a non-uniform
exponential change of measure.

Theorem 10.10. Suppose the asymptotic homogeneity condition (10.1) and
that Cramér’s condition (10.16) holds and, for some ε > 0,

sup
x∈R

Ee(β+ε)ξ (x) < ∞. (10.41)

Assume also that there exists a differentiable function β (x)> 0 such that

|Eeβ (x)ξ (x)−1| ≤ γ(x), (10.42)

and |β ′(x)| ≤ γ(x) where γ(x) is a bounded decreasing integrable at infinity
function. Then, for some c > 0,

π(x,∞)∼ ce−
∫ x

0 β (y)dy as x→ ∞,

where x runs through integers in the lattice case.

Proof. The proof is quite similar to that of Theorem 10.8, the only alter-
ation is a slightly trickier choice of the Lyapunov function Up. Instead of
(1+g(x))eβx we now define

Up(x) := (1+g(x))e
∫ x

0 β (y)dy.

Let δ < ε and c > 1/(ε−δ ). Observe that, with necessity, β (x)→ β so that,
by the condition (10.41), for all sufficiently large x,

E
{

eβ (x)ξ (x); |ξ (x)|> c logx
}

≤ E
{

e(β+δ )ξ (x); ξ (x)> c logx
}
+E
{

e(β−δ )ξ (x); ξ (x)<−c logx
}

= O(e−c(ε−δ ) logx + e−c(β−δ ) logx) = O(1/xc(ε−δ )) (10.43)
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as x→ ∞, where without loss of generality we assume that ε < β . Similarly,

E
{

e
∫ x+ξ (x)

x β (y)dy; |ξ (x)|> c logx
}
= O(1/xc(ε−δ )) as x→ ∞.

Further, by the mean value theorem, for some θ = θ(x,ξ ) ∈ (0,1),∣∣∣E{e
∫ x+ξ (x)

x β (y)dy; |ξ (x)| ≤ c logx
}
−E
{

eβ (x)ξ (x); |ξ (x)| ≤ c logx
}∣∣∣

=
∣∣∣E{eβ (x)ξ (x)(e∫ x+ξ (x)

x (β (y)−β (x))dy−1
)
; |ξ (x)| ≤ c logx

}∣∣∣
=

∣∣∣∣E{∫ x+ξ (x)

x
(β (y)−β (x))dy× eβ (x)ξ (x)+θ

∫ x+ξ (x)
x (β (y)−β (x))dy;

|ξ (x)| ≤ c logx
}∣∣∣∣

≤ γ(x− c logx)
2

E
{

ξ
2(x)eβ (x)ξ (x)+

∫ x+ξ (x)
x |β (y)−β (x)|dy; |ξ (x)| ≤ c logx

}
,

(10.44)

because, by the condition |β ′(x)| ≤ γ(x) on the derivative of β (y), for |ξ (x)| ≤
c logx, ∣∣∣∣∫ x+ξ (x)

x
(β (y)−β (x))dy

∣∣∣∣≤ ∫ x+ξ (x)

x
|β (y)−β (x)|dy

≤ sup
|z|≤c logx

|β ′(x+ z)|ξ 2(x)/2

≤ γ(x− c logx)ξ 2(x)/2.

Uniformly on the event |ξ (x)| ≤ c logx, we have

γ(x− c logx)ξ 2(x) ≤ c2
γ(x− c logx) log2 x→ 0 as x→ ∞,

since the function γ(x) is decreasing and integrable at infinity. Therefore, for
all sufficiently large x, the right hand side of (10.44) is not greater than

γ(x− c logx)E
{

ξ
2(x)eβ (x)ξ (x); |ξ (x)| ≤ c logx

}
= O(γ(x− c logx))

as x→ ∞, owing to the condition (10.41). Hence, as x→ ∞,

Ee
∫ x+ξ (x)

x β (y)dy = Eeβ (x)ξ (x)+O(γ(x− c logx)+1/xc(ε−δ )).

Taking into account (10.42) and c > 1/(ε−δ ), we conclude that there exists a
decreasing integrable at infinity function p1(x) such that

Ee
∫ x+ξ (x)

x β (y)dy = 1+O(p1(x)) as x→ ∞. (10.45)
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We have an equality

EUp(x+ξ (x))−Up(x) =Up(x)
(
Ee

∫ x+ξ (x)
x β (y)dy−1

)
+e

∫ x
0 β (y)dyE(g(x+ξ (x))−g(x))e

∫ x+ξ (x)
x β (y)dy.

Using (10.45) and recalling that g(x) is bounded, we get

EUp(x+ξ (x))−Up(x) = O(p1(x)Up(x))

+e
∫ x

0 β (y)dyE(g(x+ξ (x))−g(x))eβ (x)ξ (x).

Repeating the corresponding arguments from the proof of Theorem 10.8 and
using (10.41), we obtain

E
{
(g(x+ξ (x))−g(x))eβ (x)ξ (x); |ξ (x)|> c logx

}
= o(1/xc(ε−δ ))

and

E
{
(g(x+ξ (x))−g(x))eβ (x)ξ (x); |ξ (x)| ≤ c logx

}
∼ −p(x)Eξ (x)eβ (x)ξ (x).

Therefore, taking p(x)� p1(x), we get

EUp(x+ξ (x))−Up(x) ∼ −p(x)Up(x)Eξ (x)eβ (x)ξ (x).

Using (10.41) once again, we deduce convergence Eξ (x)eβ (x)ξ (x) → Eξ eβξ .
Consequently, as x→ ∞,

EUp(x+ξ (x))−Up(x) =−p(x)Up(x)Eξ eβξ (1+o(1)). (10.46)

This means that Up is an appropriate Lyapunov function, and the remaining
part of the proof literally repeats that of Theorem 10.8.

Since β (x) is not given in a closed form, Theorem 10.10 cannot be seen as
a final statement. For that reason we describe below two cases where β (x) can
be computed provided regular behaviour of the difference Eeβξ (x)−1.

Corollary 10.11. Assume the condition (10.41) and that there exists a differ-
entiable function α(x) such that

α(x) = O(1/x1/2+ε), (10.47)

α
′(x) = O(γ(x)) as x→ ∞, (10.48)

and

Eeβξ (x)−1 = α(x)+O(γ(x)) as x→ ∞, (10.49)

where γ(x) is a decreasing integrable at infinity function. Suppose also that

Eξ (x)eβξ (x) = m+O(γ(x)/α(x)) as x→ ∞, (10.50)
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where m := Eξ eβξ . Then

π(x,∞)∼ ce−βx+A(x)/m as x→ ∞, (10.51)

where c > 0 and A(x) :=
∫ x

0 α(y)dy.

Proof. Take β (x) := β − α(x)/m. By Taylor’s theorem, uniformly on the
event |ξ (x)| ≤ 1/α(x),

e−α(x)ξ (x)/m = 1−α(x)ξ (x)/m+O(α2(x)ξ 2(x)) as x→ ∞.

Similar to (10.43), it follows from the condition (10.41) that

E{eβ (x)ξ (x); |ξ (x)|> 1/α(x)}= O(e−ε/2α(x)) as x→ ∞.

Altogether yields, by (10.50),

Eeβ (x)ξ (x) = Eeβξ (x)−α(x)Eξ (x)eβξ (x)/m+O(α2(x)+ e−ε/2α(x))

= Eeβξ (x)−α(x)+O(γ(x)+α
2(x)+ e−ε/2α(x))

= 1+O(γ(x)+1/x1+2ε + e−ε/2α(x)) as x→ ∞.

Thus, the function β (x) satisfies all the conditions of Theorem 10.10 and the
proof is complete.

Notice that the key condition on the rate of convergence of Eeβξ (x) to 1 that
implies the asymptotics (10.51) in the last corollary is that the function α2(x)
is integrable at infinity. If this condition fails, then the asymptotic behaviour
of π(x,∞) is different from (10.51) and requires higher moment assumptions,
which is specified in the following corollary.

Corollary 10.12. Assume the condition (10.41) and that there exists a differ-
entiable function α(x) such that

|α(x)|= O
(

1/x
1

K+1+ε

)
as x→ ∞,

for some K ∈ N and ε > 0,

|α ′(x)| ≤ γ(x) (10.52)

and

Eeβξ (x)−1 = α(x)+O(γ(x))

for some decreasing integrable at infinity γ(x). Assume also that, for all k = 1,
2, . . . , K,

Mk(x) = Mk +
K−k

∑
j=1

Dk, jα
j(x)+O(γ(x)/α

k(x)), (10.53)
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where Mk(x) := Eξ k(x)eβξ (x) and Mk := Eξ keβξ . Then there exist real num-
bers c > 0 and R1, R2, . . . , RK such that

π(x,∞)∼ cexp
{
−βx+

K

∑
k=1

Rk

∫ x

0
α

k(y)dy
}

as x→ ∞. (10.54)

Proof. Define

∆(x) :=
K

∑
k=1

Rkα
k(x).

In view of Theorem 10.10 it suffices to show that there exist R1,R2, . . . ,RK

such that ∣∣∣Ee(β−∆(x))ξ (x)−1
∣∣∣≤ q(x) (10.55)

for some decreasing integrable function q(x). Indeed, ∆(x) is differentiable
and |∆′(x)| ≤C|α ′(x)|. Therefore, we may apply Theorem 10.10 with β (x) =
β −∆(x).

By Taylor’s expansion, uniformly on the event |ξ (x)| ≤ 1/α(x),

e−∆(x)ξ (x) = 1+
K

∑
k=1

(−∆(x))kξ k(x)
k!

+O(∆K+1(x)ξ K+1(x))

= 1+
K

∑
k=1

(−∆(x))kξ k(x)
k!

+O(αK+1(x)ξ K+1(x)) as x→ ∞.

Similar to (10.43), it follows from the condition (10.41) that

E{eβ (x)ξ (x); |ξ (x)|> 1/α(x)}= O(e−ε/2α(x)) as x→ ∞.

Therefore, as x→ ∞,

Ee(β−∆(x))ξ (x)

= Eeβξ (x)+
K

∑
k=1

Mk(x)
k!

(−∆(x))k +O(αK+1(x)+ e−ε/2α(x))

= 1+α(x)+
K

∑
k=1

Mk(x)
k!

(−∆(x))k +O(γ(x)+α
K+1(x)+ e−ε/2α(x)).

So, we need to identify constants R1, R2, . . . , RK such that

α(x)+
K

∑
k=1

Mk(x)
k!

(−∆(x))k = O(αK+1(x)). (10.56)

It follows from the assumption (10.53) and the bound ∆(x) = O(α(x)) that
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(10.56) is equivalent to

z+
K

∑
k=1

1
k!

(
Mk +

K−k

∑
j=1

Dk, jz j
)(
−

K

∑
j=1

R jz j
)k

= O(zK+1) as z→ 0.

Consequently, the coefficients of zk must be zero for all k ≤ K, and we can
determine all Rk recursively. For example, the coefficient of z equals 1−m1R1.
Thus, R1 = 1/m1. Further, the coefficient of z2 is −D1,1R1−m1R2 +m2R2

1/2
and, consequently,

R2 =
−D1,1R1 +m2R2

1/2
m1

.

All further coefficients can be found recursively.

If α(x) from Corollary 10.12 decreases slower than any power of x but
(10.52) and (10.53) remain valid, then one has, by the same arguments,

π(x,∞) = exp
{
−βx+

K

∑
k=1

Rk

∫ x

0
α

k(y)dy+O
(∫ x

0
α

K+1(y)dy
)}

which can be seen as a corrected logarithmic asymptotic for π . To obtain pre-
cise asymptotics one needs more information on the moments Mk(x).

Corollary 10.13. Assume the condition (10.41) and that there exists a differ-
entiable function α(x) such that (10.52) holds,

Eeβξ (x)−1 = α(x), x≥ 0 (10.57)

and

Mk(x) = Mk +
∞

∑
j=1

Dk, jα
j(x) for all k ≥ 1. (10.58)

Assume furthermore that

sup
k≥1

∞

∑
j=1

Dk, jr j < ∞ for some r > 0.

Then there exist real numbers R1, R2, . . . , such that

π(x,∞) ∼ c exp
{
−βx+

∞

∑
k=1

Rk

∫ x

0
α

k(y)dy
}

as x→ ∞.

Proof. For all sufficiently large x there is a positive solution β (x) to the equa-
tion

Eeβ (x)ξ (x) = 1.
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Since Eeγξ (x) is finite for all γ ≤ β + ε , we may rewrite the last equation as
Taylor’s series:

Eeβξ (x)+
∞

∑
k=1

(−∆(x))k

k!
Eξ

k(x)eβξ (x) = 1,

where ∆(x) = β −β (x). Taking into account (10.57) and (10.58), we then get

α(x)+
∞

∑
k=1

(−∆(x))k

k!

(
Mk +

∞

∑
j=1

Dk, jα
j(x)
)
= 0. (10.59)

Define

F(z,w) := z+ ∑
k≥1

Mk

k!
(−w)k + ∑

k, j≥1

Dk, j

k!
z j(−w)k.

Therefore, (10.59) can be written as F(α(x),∆(x)) = 0. In other words, we
are looking for a function w(z) satisfying F(z,w(z)) = 0. Since F(0,0) = 0
and ∂

∂w F(0,0) = −M1 < 0, we may apply Theorem B.4 from Flajolet and
Sedgewick [65] which says that w(z) is analytic in a vicinity of zero, that is,
there exists a ρ > 0 such that

w(z) =
∞

∑
n=1

Rnzn, |z|< ρ.

Consequently,

∆(x) =
∞

∑
n=1

Rnα
n(x)

for all x such that |α(x)|< ρ .
Applying Theorem 10.10 with β (x) = β −∆(x), we get

π(x,∞) ∼ ce−βx+
∫ x

0 ∆(y)dy as x→ ∞.

Integrating ∆(y) term-wise, we complete the proof.

We finish with the following remark. In the proof of Corollary 10.13 we
have adapted the derivation of the Cramér series in large deviations for sums
of independent random variables, see, e.g., Petrov [132]. There is just one dif-
ference: we need analyticity of an implicit function instead of analyticity of
the inverse function.

10.4 Local central limit theorem

We first state a version of the central limit theorem for Markov chains on R
with asymptotically constant drift.
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Theorem 10.14. Let the family of jumps |ξ (x)| possess a square integrable
majorant. Let m1(x) = µ +o(1/

√
x), µ > 0, let m2(x)→ b > 0 as x→ ∞, and

let

limsup
n→∞

Xn = ∞ with probability 1. (10.60)

Then the strong law of large numbers holds

Xn/n a.s.→ µ as n→ ∞. (10.61)

Further,

Xn−µn√
bn

⇒ N0,1 as n→ ∞

and

maxk≤n Xk−µn√
bn

⇒ N0,1 as n→ ∞.

These statements are immediate from Corollary 5.3, Theorems 5.7 and 5.9
respectively with v(x)≡ µ , so β = 0. In this special case there is a shorter proof
based on the characteristic functions method, see Korshunov [105, Theorem 5].

Theorem 10.15. Let the family of jumps {ξ (x),x ∈ R} possess a stochastic
square integrable minorant with positive mean (so that the condition (10.60)
holds true) and a square integrable stochastic majorant. Assume weak con-
vergence ξ (x)⇒ ξ , relation m1(x) = µ +o(1/

√
x) and upper bound P{X0 <

−x}= o(1/
√

x) as x→ ∞.
If ξ has a non-lattice distribution and, for all A > 0,

sup
|λ |≤A

∣∣Eeiλξ (x)−Eeiλξ
∣∣= o(1/x) as x→ ∞, (10.62)

then, for all h > 0,

sup
x∈R

∣∣√2πbnP{Xn ∈ (x,x+h]}−he−(x−nµ)2/2bn∣∣→ 0 as n→ ∞.

If ξ is integer-valued and, Z is the minimal lattice for ξ and

sup
|λ |≤π

∣∣Eeiλξ (x)−Eeiλξ
∣∣= o(1/x) as x→ ∞, (10.63)

then

sup
x∈Z

∣∣√2πbnP{Xn = x}− e−(x−nµ)2/2bn∣∣→ 0 as n→ ∞.
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Proof. Let η be a square integrable minorant with positive expectation for
the family {ξ (x),x ∈ R}. Let {ηk} be independent copies of η and set Sn :=
η1 + . . .+ηn. Then, by the minorisation assumption, for all n,

P{Xk < kEη/2 for some k ≥ n}
≤ P{X0 <−nEη/4}+P{Sk− kEη/4 < kEη/2 for some k ≥ n}

≤ o(1/
√

n)+P
{

sup
k≥n

Sk− kEη

k
<−Eη/4

}
.

The sequence (Sk− kEη)/k constitutes a reverse martingale and hence it fol-
lows from the Kolmogorov inequality that

P
{

sup
k≥n

Sk− kEη

k
<−Eη/4

}
≤ E(Sn−nEη)2

(Eη/4)2n2 = O(1/n) = o(1/
√

n).

Therefore,

P{Xk < kEη/2 for some k ≥ n} ≤ o(1/
√

n) as n→ ∞. (10.64)

We proceed with the proof for the lattice case only, the non-lattice case can
be treated similarly. By the inversion formula for lattice distributions,

√
nP{Xn = x}= 1

2π

∫
π
√

n

−π
√

n
e−iλ x−nµ√

n Eeiλ Xn−nµ√
n dλ .

Therefore, using standard arguments,

sup
x

∣∣∣∣√nP{Xn = x}− 1√
2πb

e−(x−nµ)2/2b
∣∣∣∣

≤ 1
2π

∫ A

−A

∣∣Eeiλ Xn−nµ√
n − e−λ 2b/2∣∣dλ

+
∫
|λ |∈(A,π

√
n]

∣∣Eeiλ Xn−nµ√
n
∣∣dλ +

∫
|λ |>A

e−λ 2b/2dλ . (10.65)

It follows from the weak convergence to the normal law that Eeiλ Xn−nµ√
n →

e−λ 2b/2 uniformly on compact λ -sets. Therefore, the first integral on the right
hand side of (10.65) converges to zero as n→ ∞, for any fixed A. Choosing
A sufficiently large we can make the integral

∫
|λ |>A e−λ 2b/2dλ as small as we

please. Thus, it remains to prove that the second integral in (10.65) is small
too.

In order to prove this we need to show that the modulus of the character-
istic function in the second integral is sufficiently small. Let us introduce an
auxiliary time-inhomogeneous Markov chain {X̃n} with jumps at time n

ξ̃n(x) =

{
ξ (x) for x > nEη/4,
ξ (xn) for x≤ nEη/4,
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where xn > nEη/4. Consider for simplicity even n and define X̃k for k ≥ n/2
only; set X̃n/2 = Xn/2. Then it follows from the construction that, for all u ∈R,∣∣EeiuXn

∣∣≤ ∣∣EeiuX̃n
∣∣+P{Xk 6= X̃k for some k > n/2}

≤
∣∣EeiuX̃n

∣∣+P{Xk ≤ kEη/4 for some k ≥ n/2}.

From this estimate and (10.64) we obtain∣∣EeiuXn
∣∣≤ ∣∣EeiuX̃n

∣∣+o(1/
√

n) as n→ ∞ uniformly for all u ∈ R.
(10.66)

By the construction of {X̃k}, we have∣∣EeiuX̃k+1 −EeiuξEeiuX̃k
∣∣= ∣∣EeiuX̃k

(
E{eiuξ̃k(X̃k)|X̃k}−Eeiuξ

)∣∣
≤
∣∣E{eiuξ̃k(X̃k)|X̃k}−Eeiuξ

∣∣
≤ sup

x>kEη/4
|Eeiuξ (x)−Eeiuξ |.

Then, for all k ≥ n/2,∣∣EeiuX̃k+1 −EeiuξEeiuX̃k
∣∣ ≤ sup

x>nEη/8
|Eeiuξ (x)−Eeiuξ |

≤ sup
x>nEη/8

sup
|u|≤π

|Eeiuξ (x)−Eeiuξ |

=: δn = o(1/n),

by the assumption of the theorem. Consequently, for m = n/2 we have∣∣EeiuX̃n − (Eeiuξ )n−mEeiuX̃m
∣∣

=
∣∣∣n−1

∑
k=m

(Eeiuξ )n−k−1(EeiuX̃k+1 −EeiuξEeiuX̃k
)∣∣∣

≤ δn

n−m−1

∑
j=0

∣∣Eeiuξ
∣∣ j
,

so hence ∣∣EeiuX̃n
∣∣≤ ∣∣Eeiuξ

∣∣n/2
+δn

n/2−1

∑
j=0

∣∣Eeiuξ
∣∣ j
.

Since Z is the minimal lattice for ξ , there exists an ε > 0 such that |Eeiuξ | ≤
e−εu2

for all u ∈ [−π,π]. This implies that

∣∣EeiuX̃n
∣∣≤ e−nεu2/2 +δn

n/2−1

∑
j=0

e− jεu2
.
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Substituting this into (10.66) we obtain, uniformly for all u ∈ R,

∣∣EeiuXn
∣∣≤ e−nεu2/2 +o(1/

√
n)+o(1/n)

n/2

∑
j=1

e− jεu2
as n→ ∞.

Hence the second term in (10.65) possesses the following upper bound:∫
|λ |∈(A,π

√
n]

∣∣Eeiλ Xn−nµ√
n
∣∣dλ

≤
∫
|λ |∈(A,π

√
n]

e−ελ 2/2dλ +o(1)+o(1/n)
n/2

∑
j=1

∫
|λ |∈(A,π

√
n]

e−ελ 2 j/ndλ

≤ 2
∫

∞

A
e−ελ 2/2dλ +o(1)+o(1/n)

n/2

∑
j=1

∫
∞

−∞

e−ελ 2 j/ndλ

= 2
∫

∞

A
e−ελ 2/2dλ +o(1)+o(1/n)

n/2

∑
j=1

√
πn
ε j

as n→ ∞.

Therefore,

limsup
n→∞

∫
|λ |∈(A,π

√
n]

∣∣Eeiλ Xn−nµ√
n
∣∣dλ ≤ 2

∫
∞

A
e−ελ 2/2dλ .

Letting A→ ∞, we conclude the desired result.

Theorem 10.16. Assume that all the conditions of Theorem 10.15 hold.
If ξ is a non-lattice random variable then, for all h > 0,

n

∑
k=0

P{Xk ∈ (x,x+h]} =
h
µ

Φ

( nµ− x√
xb/µ

)
+o(1)

as x→ ∞ uniformly for all n≥ 0.
If ξ is a lattice random variable and Z is the minimal lattice for ξ then

n

∑
k=0

P{Xk = x}= 1
µ

Φ

( nµ− x√
xb/µ

)
+o(1) as x→ ∞,

as x→ ∞ uniformly for all n≥ 0.

Proof. We again consider the lattice case only. By the local limit theorem, for
any fixed A, B ∈ R, A < B,

x/µ+B
√

x

∑
k=x/µ+A

√
x

P{Xk = x}=
x/µ+B

√
x

∑
k=x/µ+A

√
x

1√
2πbk

e−(x−µk)2/2bk +o(1)

=
x/µ+B

√
x

∑
k=x/µ+A

√
x

1√
2πbx/µ

e−(x−µk)2µ/2bx +o(1).
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Thus, as x→ ∞,

x/µ+B
√

x

∑
k=x/µ+A

√
x

P{Xk = x}=
B
√

x

∑
k=A
√

x

1√
2πxb/µ

e−(k/
√

x)2µ3/2b +o(1)

=
∫ B

A

1√
2πb/µ

e−y2µ3/2bdy+o(1)

=
1
µ

(
Φ(µ3/2B/

√
b)−Φ(µ3/2A/

√
b)
)
+o(1).

(10.67)

Together with Theorem 10.2 it implies that, for any ε > 0, there exist A and B
such that, for all sufficiently large x,

x/µ+A
√

x

∑
k=0

P{Xk = x}+
∞

∑
k=x/µ+B

√
x

P{Xk = x} ≤ ε.

Therefore,

x/µ+A
√

x

∑
k=0

P{Xk=x}→ 0

as A→−∞ uniformly for all x. Combining this with (10.67), we get the desired
relation.

10.5 Pre-stationary distributions

Theorem 10.17. Let the distribution of Xn converge towards a stationary dis-
tribution π in the total variation norm. Assume that the conditions of Theo-
rem 10.8 are valid and that the majorant Ξ satisfies also the condition

EΞ
2eβΞ < ∞. (10.68)

Assume also that

Eξ (x)eβξ (x) = Eξ eβξ +o(1/
√

x) as x→ ∞. (10.69)

If the limiting variable ξ is non-lattice we assume that, for any A > 0,

sup
|λ |≤A

∣∣Ee(β+iλ )ξ (x)−Ee(β+iλ )ξ ∣∣= o(1/x) as x→ ∞. (10.70)

If ξ is a lattice distribution and Z is the minimal lattice for ξ we assume that

sup
|λ |≤π

∣∣Ee(β+iλ )ξ (x)−Ee(β+iλ )ξ ∣∣= o(1/x) as x→ ∞. (10.71)
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Then, uniformly for all n≥ 1,

P{Xn > x}
π(x,∞)

= Φσ2

(
nEξ eβξ − x√

x/Eξ eβξ

)
+o(1) as x→ ∞, (10.72)

where σ2 = Eξ 2eβξ − (Eξ eβξ )2.

Proof. Let {X̂n} be the chain constructed in the proof of Theorem 10.8. We
have shown there that the family of its jumps ξ̂ (x) possesses a stochastic mi-
norant with positive mean and finite second moment and a stochastic majorant
with finite mean. Assumption (10.68) implies that there is a majorant with fi-
nite second moment.

We now turn to the asymptotic behaviour of Eξ̂ (x). As we have shown in
the proof of Theorem 10.8, Eξ̂ (x)→ Eξ eβξ . But, in order to apply Theo-
rem 10.16, we have to show that

Eξ̂ (x) = Eξ eβξ +o(1/
√

x) as x→ ∞. (10.73)

It follows from (10.39) that

Eξ̂ (x) =
Eξ (x)Up(x+ξ (x))

Up(x)
(1+o(1/x)) as x→ ∞. (10.74)

It is immediate from the definition (10.30) of Up that

E{ξ (x)Up(x+ξ (x)); ξ (x)> s(x)} ≤Up(x)E{ξ (x)eβξ (x); ξ (x)> s(x)}.

Thus, due to (10.68), for any s(x) = o(x),

E{ξ (x)Up(x+ξ (x)); ξ (x)> s(x)}
Up(x)

= o(1/s(x)) as x→ ∞. (10.75)

Furthermore, we have an upper bound

E{ξ (x)Up(x+ξ (x)); ξ (x)<−s(x)}
Up(x)

= o(e−β s(x)/2) as x→ ∞. (10.76)

Uniformly on the set {|ξ (x)| ≤ s(x)}we have g(x+ξ (x))−g(x)∼−p(x)ξ (x),
see (10.29). Therefore,

E{ξ (x)Up(x+ξ (x)); |ξ (x)|< s(x)}
= eβxE{ξ (x)(1+g(x+ξ (x)))eβξ (x); |ξ (x)| ≤ s(x)}
= Up(x)E{ξ (x)eβξ (x); |ξ (x)| ≤ s(x)}

−p(x)(1+o(1))eβxE{ξ 2(x)eβξ (x); |ξ (x)| ≤ s(x)}.
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Using again (10.68), we obtain

E{ξ (x)Up(x+ξ (x)); |ξ (x)|< s(x)}
Up(x)

= Eξ (x)eβξ (x)+O(p(x)+1/s(x)).

Combining this estimate with (10.75) and (10.76), and choosing s(x) such that
s(x)/

√
x→ ∞, we conclude that

E{ξ (x)Up(x+ξ (x))}
Up(x)

= Eξ (x)eβξ (x)+o(1/
√

x).

The relation (10.73) follows now from the assumption (10.69). The same argu-
ments show that (10.62) and (10.63) follow from (10.70) and (10.71) respec-
tively. Thus, {X̂n} satisfies all the conditions of Theorem 10.16.

It follows from the conditions on jumps that EeβXn < ∞ for all n which
implies P{Xn > x}= o(e−βx) for any fixed n and hence (10.72). So it remains
to consider the case where n→ ∞.

Fix an h > 0. Applying (7.49) with U =Up we deduce that, for x > x̂,

P{Xn ∈ (x,x+h]}

=
n

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
.

By the conditions (10.26) and (10.68),

P(z,(u,∞)) ≤ P{Ξ > u− x̂} ≤ c2e−βu/u2 for all z≤ x̂ and u > x̂.
(10.77)

The function Up is increasing. Hence, for any Nn = o(
√

n),

n

∑
j=n−Nn+1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
≤ 1

Up(x)

n

∑
j=n−Nn+1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Pu{X̂ j−1 ∈ (x,x+h]}

≤ c3

Up(x)
√

n

n

∑
j=n−Nn+1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)

≤ c4Nn/Up(x)
√

n = o(1/Up(x)) as n→ ∞, (10.78)
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where the second inequality follows by Theorem 10.15 applied to {X̂n}. Since
the distribution of Xn− j converges in total variation to π , for any Nn→ ∞,

n−Nn

∑
j=1

∫
B
P{Xn− j ∈ dz}

∫
∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}

= (1+o(1))
n−Nn

∑
j=1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)

Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
. (10.79)

Similarly to (10.78),

n

∑
j=n−Nn+1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
= o

( 1
Up(x)

)
.

Combining this with (10.78) and (10.79), we obtain

P{Xn ∈ (x,x+h]}

= (1+o(1))
n

∑
j=1

∫
B

π(dz)
∫

∞

x̂
P(z,du)Up(u)

Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
+o
( 1

Up(x)

)
= (1+o(1))

∫
∞

x̂
µ(du)Up(u)

n

∑
j=1

Eu

{
e−∑

j−2
k=0 q(X̂k)

Up(X̂ j−1)
; X̂ j−1 ∈ (x,x+h]

}
+o
( 1

Up(x)

)
as x→ ∞ where

µ(du) =
∫

B
π(dz)P(z,du)

is a measure on (x̂,∞), see (7.43). Therefore, as x→ ∞,

P{Xn ∈ (x,x+h]}= (1+o(1))
∫

∞

x̂
µ(du)Up(u)

∫ x+h

x
e−βyĤ(q)

u,n (dy)+o(e−βx)

where

Ĥ(q)
u,n (dy) =

n

∑
j=1

Eu

{
e−∑

j−2
k=0 q(X̂k); X̂ j−1 ∈ dy

}
.
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In the non-lattice case, due to Lemma 4.5, for any fixed ∆ > 0,

Ĥ(q)
u,n (y,y+∆] ∼ Eue−∑

∞
k=0 q(X̂k)

n

∑
j=1

Pu{X̂ j−1 ∈ (y,y+∆} as y→ ∞,

hence

P{Xn ∈ (x,x+h]}

= (1+o(1))
∫

∞

x̂
µ(du)Up(u)Eue−∑

∞
k=0 q(X̂k)

∫ x+h

x
e−βyĤu,n(dy)+o(e−βx),

where the partial renewal measure of {X̂n},

Ĥu,n(dy) =
n

∑
j=1

Pu{X̂ j−1 ∈ dy},

weakly converges to the Lebesgue measure on the interval [x,x+ h], with co-
efficient 1

µ
Φσ2

(
nµ−x√

x/µ

)
, for any fixed u > x̂, by Theorem 10.16; here µ :=

Eξ eβξ . Then, for any fixed u > x̂, as x→ ∞,∫ x+h

x
e−βyĤu,n(dy) =

1
µ

Φσ2

(nµ− x√
x/µ

)1− e−βh

β
e−βx +o(e−βx).

Secondly, ∫ x+h

x
e−βyĤu,n(dy)≤ e−βxĤu,n(x,x+h] ≤ c5e−βx,

hence the dominated convergence theorem is applicable owing to (10.77), so,
as x→ ∞,

P{Xn > x}

=
1

β µ
Φσ2

(nµ− x√
x/µ

)∫ ∞

x̂
µ(du)Up(u)Eue−∑

∞
k=0 q(X̂k)e−βx +o(e−βx).

Together with Theorem 10.8 that yields the required result (10.72).
The lattice case can be concluded in a similar way.

We can determine the asymptotic behaviour of pre-stationary distributions
also in the case when (10.27) fails.

Theorem 10.18. Assume that the conditions of Theorem 10.10 are valid. As-
sume also that

Eξ (x)eβ (x)ξ (x) = Eξ eβξ +o(1/
√

x).
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If the limiting variable ξ is non-lattice we assume that, for any A > 0,

sup
|λ |≤A

∣∣Ee(β (x)+iλ )ξ (x)−Ee(β+iλ )ξ ∣∣= o(1/x).

If Z is the minimal lattice for ξ we assume that

sup
|λ |≤π

∣∣Ee(β (x)+iλ )ξ (x)−Ee(β+iλ )ξ ∣∣= o(1/x).

Then, uniformly for all n≥ 1,

P{Xn > x}
π(x,∞)

= Φσ2

(
nEξ eβξ − x√

x/Eξ eβξ

)
+o(1) as x→ ∞,

where σ2 = Eξ 2eβξ − (Eξ eβξ )2.

The proof of this theorem is identical to that of Theorem 10.17 and for that
reason we omit it.

10.6 Comments to Chapter 10

Theorem 10.2 specifies Theorem 1 from Korshunov [102] for transient Markov
chains on R.

Borovkov and Korshunov [24], [23, Sect. 27] proved exponential asymp-
totics for π under the condition∫

∞

0
dx
∫

∞

−∞

eβy |P{ξ (x)< y}−P{ξ < y}|dy < ∞, (10.80)

without assuming a domination condition like (10.26).
On the other hand, it is worth mentioning that (10.27) is weaker than con-

ditions we found in the literature. Firstly, (10.80) is definitely stronger than
(10.27) and implies, in particular, that also the expectations Eξ (x)eβξ (x) con-
verge at summable rate. Furthermore, to show that the constant c in front of
e−βx is positive the following condition is introduced in [24]:∫

∞

0

(
Eeβξ (x)−1

)−x logxdx < ∞.

Secondly, for chains on Z+ Foley and McDonald [66] used an assumption,
which can be rewritten in our notation as follows

∞

∑
i=0

∑
j∈Z

eβ j|P{ξ (i) = j}−P{ξ = j}|< ∞.

Theorems 10.8 and 10.17 were proven first time in [106] via so-called evo-
lution of masses, that is, via analysis of non-stochastic kernels.
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A lattice version of Theorem 10.10 was proven by Denisov, Korshunov, and
Wachtel [43] following a different approach based on some useful method of
construction of harmonic functions for Markov kernels on Z+.



11
Applications

The main goal of this chapter is to demonstrate how the theory developed in
the previous chapters can be useful for the study of various Markov models
that give rise to Markov chains with asymptotically zero drift. Some of that
models are quite popular in stochastic modelling: random walks conditioned to
stay positive, state-dependent branching processes or branching processes with
migration, stochastic difference equations. In contrast to the general approach
discussed here, the methods available in the literature for investigation of these
models are mostly model tailored.

We also introduce some new models, where our approach is applicable. For
example, in Section 11.4 we introduce a risk process with surplus-dependent
premium rate, which converges to the critical threshold in the netto profit con-
dition. Furthermore, we introduce a new class of branching processes with
migration and state-dependent reproduction.

11.1 Random walk conditioned to stay positive

Let {Sn} be a random walk with independent identically distributed increments
ξk, that is, Sn = ξ1 +ξ2 + . . .+ξn, n≥ 1. Let τ(x) be the first time epoch when
{Sn} starting at x is non-positive:

τ(x) := min{n≥ 1 : x+Sn ≤ 0}.

We shall assume that the random walk {Sn} is oscillating, that is,

liminf
n→∞

Xn =−∞, limsup
n→∞

Xn = ∞ with probability 1.

In particular, P{τ(x)< ∞}= 1 for all starting points x. Let χ− denote the first
weak descending ladder height of {Sn}, that is, χ− =−Sτ(0). Let V (x) denote

339
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the renewal function generated by the weak descending ladder heights of the
random walk:

V (x) := 1+
∞

∑
k=1

P{χ−1 +χ
−
2 + . . .+χ

−
k < x}

= Eθ(x), (11.1)

where χ
−
k are independent copies of χ− and

θ(x) := min{k ≥ 1 : χ
−
1 +χ

−
2 + . . .+χ

−
k ≥ x}.

In particular, V (0) = 1.
It is well-known—see e.g. Kozlov [109]—that V (x) is a harmonic function

for {Sn} killed at leaving (0,∞). More precisely,

V (x) = E{V (x+S1);τ(x)> 1} for all x > 0.

This implies that Doob’s h-transform

P(x,dy) :=
V (y)
V (x)

P{x+S1 ∈ dy,τ(x)> 1} (11.2)

defines a stochastic transition kernel on (0,∞). Let {Xn} be the corresponding
Markov chain. It is usually called the random walk conditioned to stay positive.
This definition via Doob’s h-transform is equivalent to the construction of a
random walk conditioned to stay positive via the weak limit of conditional
distributions, see Bertoin and Doney [13]:

P(x,B) = lim
n→∞

P{x+S1 ∈ B | τ(x)> n}.

We now show that if Eξ1 = 0 and Eξ 2
1 =: σ2 ∈ (0,∞), then {Xn} has asymp-

totically zero drift. We first observe that these moment conditions allow us to
apply Lemma 2.33 with γ = 2, α = β = 1 and to conclude that, for some in-
creasing s(x) = o(x) and decreasing integrable at infinity p(x) = o(1/x),

E{|ξ1|; |ξ1|> s(x)}= o(p(x)) as x→ ∞, (11.3)

in particular, E{ξ1; ξ1 > −x} = o(1/x), since Eξ1 = 0. Then it follows from
the definition (11.2) of the kernel P that

m1(x) :=
1

V (x)
E{V (x+ξ1)ξ1; ξ1 >−x}

=
1

V (x)
E{(V (x+ξ1)−V (x))ξ1; ξ1 >−x}+E{ξ1; ξ1 >−x}

=
1

V (x)
E{(V (x+ξ1)−V (x))ξ1; ξ1 >−x}+o(1/x).
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The finiteness of the second moment also implies that the ladder heights have
finite expectation, so by Blackwell’s renewal theorem (see, e.g. Durrett [56,
Theorem 2.6.4]), for any fixed y > 0,

V (x+ y)−V (x)→ y
Eχ−

as x→ ∞, (11.4)

in the non-lattice case; in the lattice case both x and y are restricted to the
lattice. Hence (V (x+ξ1)−V (x))ξ1 converges to ξ 2

1 /Eχ− as x→∞. By (11.4),

cV := sup
x
(V (x+1)−V (x)) < ∞,

which yields

|V (x+ y)−V (x)| ≤ cV (|y|+1). (11.5)

This allows us to apply the dominated convergence theorem to infer that

E{(V (x+ξ1)−V (x))ξ1; ξ1 >−x}→ Eξ 2
1

Eχ−
=

σ2

Eχ−
as x→ ∞.

By the elementary renewal theorem (see, e.g. Durrett [56, Theorem 2.6.3]),
V (x)∼ x/Eχ− and hence

m1(x)∼
σ2

x
as x→ ∞. (11.6)

For the second moment of jumps we have

m2(x) :=
1

V (x)
E{V (x+ξ1)ξ

2
1 ; ξ1 >−x}

=
1

V (x)
E{(V (x+ξ1)−V (x))ξ 2

1 ; ξ1 >−x}+E{ξ 2
1 ; ξ1 >−x}

=
1

V (x)
E{(V (x+ξ1)−V (x))ξ 2

1 ; ξ1 >−x}+σ
2 +o(1).

It follows from (11.5) that

|V (x+ξ1)−V (x)|ξ 2
1 ≤ cV (1+ |ξ1|)ξ 2

1 ≤ cV (1+ x)ξ 2
1 for all |ξ1| ≤ x,

hence

|V (x+ξ1)−V (x)|
V (x)

ξ
2
1 → 0 as x→ ∞,

and, again by the dominated convergence theorem,

1
V (x)

E{(V (x+ξ1)−V (x))ξ 2
1 ; |ξ1| ≤ x}→ 0 as x→ ∞.
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Therefore,

m2(x) =
1

V (x)
E{(V (x+ξ1)−V (x))ξ 2

1 ; ξ1 > x}+σ
2 +o(1).

If E{ξ 3
1 ; ξ1 > 0} is finite, then we may apply the dominated convergence the-

orem to the expectation over the event {ξ1 > x} too and get that m2(x)→ σ2

as x→ ∞. But if E{ξ 3
1 ; ξ1 > 0}= ∞ then E{(V (x+ξ1)−V (x))ξ 2

1 ; ξ1 > x} is
infinite for all x ≥ 0. Therefore, m2(x) ≡ ∞ for any random walk with infinite
E{ξ 3

1 ; ξ1 > 0}.
Clearly, one can show directly that any random walk conditioned to stay pos-

itive is transient while the classical Lamperti criterion for transience—where at
least the second moment of jumps is assumed to be finite—is only applicable to
a random walk conditioned to stay positive in the case of finite E{ξ 3

1 ; ξ1 > 0}.
Moreover, to the best of our knowledge, all known results on the conver-

gence towards Γ-distribution for Markov chains, see Klebaner [99], Kersting
[94], or Denisov, Korshunov, and Wachtel [42], assume finiteness of m2(x).
However it is well-known that finiteness of σ2 for a random walk is sufficient
for the convergence of X2

n /n towards Γ-distribution for Xn being a random walk
conditioned to stay positive.

Random walks conditioned to stay positive represent an important class of
Markov chains with asymptotically zero drift. So it would be great if general
limit theorems for Markov chains with asymptotically zero drift covered the
well known results for random walks conditioned to stay positive. This obser-
vation motivated us to state conditions for Γ-convergence in Chapter 4 in terms
of truncated moments and tail probabilities.

Repeating the arguments used above for the truncation at level −x, we con-
clude that

m[s(x)]
1 (x) ∼ σ2

x
and m[s(x)]

2 (x) → σ
2 as x→ ∞, (11.7)

where s(x) = o(x) is defined in (11.3). Hence, for any ε > 0,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ 2− ε

x
for all sufficiently large x.

Thus, in order to apply the criterion for transience, Theorem 2.21, it remains
to show that

P{ξ (x)<−s(x)} ≤ p(x)
x

, (11.8)

for some decreasing integrable function p. According to the construction of
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{Xn}, this is equivalent to the following upper bound

1
V (x)

E{V (x+ξ1); ξ1 <−s(x)} ≤ p(x)
x

.

The function V is increasing, hence it suffices to show that

P{|ξ1|> s(x)} ≤ p(x)
x

, (11.9)

which in turn follows from Lemma 2.33 with γ = 2, β = 0, and α = 1. Thus
{Xn} is transient, by Theorem 2.21.

To apply Theorem 4.8 on convergence to a Γ-distribution, we additionally
need to check that

P{|ξ (x)|> s(x)} ≤ p(x)
x

, (11.10)

which is equivalent to, due to (11.9),

1
V (x)

E{V (x+ξ1); ξ1 > s(x)} ≤ p(x)
x

.

Since V has asymptotically linear growth, we may reduce the previous condi-
tion to

E{x+ξ1; ξ1 > s(x)} ≤ p(x),

which follows from (11.3) and (11.9). Therefore, by Theorem 4.8,

X2
n

n
⇒ Γ3/2,2σ2 as n→ ∞, (11.11)

and, by Theorem 4.11, the sequence of processes

X[nt]√
nσ2

, t ∈ [0,1],

converges weakly in D[0,1] to the Bessel process with drift coefficient 1/x,
that is, the three-dimensional Bessel process. In addition, the convergence to
a Γ-distribution is also accompanied by asymptotics for its integral renewal
function; by Theorem 4.12,

H(0,x] :=
∞

∑
n=1

P{Xn ≤ x} ∼ x2

σ2 as x→ ∞.

That random walk conditioned to stay positive converges weakly to a limit
was shown by Iglehart [85]. with further improvements by Bolthausen [20].

Random walk conditioned to stay positive is a special example of a Markov
chain with asymptotically zero drift. Its close connection to ordinary random
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walk allows us to obtain a number of further results. More precisely, by the
definition of the transition kernel of X ,

Pz{Xn ∈ dx}= V (x)
V (z)

P{z+Sn ∈ dx,τ(z)> n}. (11.12)

This allows us to use the fluctuation theory for random walks in order to derive
results for random walk conditioned to stay positive. For example, Caravenna
and Chaumont [32] have proved a functional limit theorem for X , Bryn-Jones
and Doney [30] proved a local limit theorem for X . Using results of Doney [50]
one can also derive asymptotics of local probabilities of small deviations of
{Xn}. Finally, results by Jones and Doney [51] can be transferred into asymp-
totics of large deviation probabilities for a random walk conditioned to stay
positive.

We demonstrate the advantage of this connection to the fluctuation theory
of ordinary random walks by the following version of Blackwell’s theorem for
random walks conditioned to stay positive.

Proposition 11.1. Assume that Eξ1 = 0, σ2 := Eξ 2
1 ∈ (0,∞). Then, for every

fixed ∆ > 0,

h(x) := H(x+∆)−H(x) ∼ 2∆

σ2 x as x→ ∞

if the distribution of ξ1 is non-lattice, and

h(∆x)∼ 2∆

σ2 x as x→ ∞, x ∈ Z,

if ∆Z is the minimal lattice for ξ1.

Proof. Consider the non-lattice case. Define

u(x) := E
τ0−1

∑
n=1

I{Sn ∈ (x,x+∆]} =
∞

∑
n=1

P{Sn ∈ (x,x+∆],τ(0)> n}.

Let χ
+
k be independent copies of the first strict ascending ladder height χ+ :=

Sη+ , where η+ = min{n ≥ 1 : Sn > 0}. Then, by the classical duality lemma,
see e.g. Feller [63, Sect. XII.2],

∞

∑
n=1

P{Sn ∈ (x,x+∆],τ(0)> n} =
∞

∑
k=1

P{χ+
1 +χ

+
2 + . . .+χ

+
k ∈ (x,x+∆]}.

Applying Blackwell’s theorem (see, e.g. Durrett [56, Theorem 2.6.4]), we con-
clude in the non-lattice case that

u(x)→ ∆

Eχ+
as x→ ∞. (11.13)
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This gives us the asymptotics for h in the case of initial value X0 = 0. Indeed,
by (11.12) with z = 0 where V (0) = 0,

∞

∑
n=1

P0{Xn ∈ (x,x+∆]}=
∞

∑
n=1

∫ x+∆

x

V (y)
V (0)

P{Sn ∈ dy,τ(0)> n}

∼V (x)
∞

∑
n=1

P{Sn ∈ (x,x+∆],τ(0)> n}

=V (x)u(x) as x→ ∞,

by (11.4) which implies long-tailedness of the function V , V (x)∼V (x+∆) as
x→ ∞. Recalling that V (x)∼ x/Eχ− and using (11.13), we obtain

∞

∑
n=1

P0{Xn ∈ (x,x+∆]} ∼ ∆

Eχ−Eχ+
x as x→ ∞.

Then it only remains to apply the following identity which holds true for any
zero drifted random walk with finite variance, see e.g. Feller [63, Sect. XVIII.5,
Theorem 1, or Sect. XII.10, Problem 10],

Eχ
−Eχ

+ = σ
2/2. (11.14)

Now let us consider an arbitrary initial value X0 = z. In view of (11.12) and
V (x)∼V (x+∆) as x→ ∞,

∞

∑
n=1

Pz{Xn ∈ (x,x+∆]} ∼ V (x)
V (z)

∞

∑
n=1

P{z+Sn ∈ (x,x+∆],τ(z)> n}

=
V (x)
V (z)

E
τ(z)−1

∑
n=1

I{Sn ∈ (x− z,x− z+∆]}.

Splitting the trajectory of {Sn} by descending ladder epochs into independent
cycles and recalling the definition of u(x), we obtain

E
τ(z)−1

∑
n=1

I{Sn ∈ (x−z,x−z+∆]}= u(x−z)+E
θ(z)−1

∑
k=1

u(x−z+χ
−
1 + . . .+χ

−
k ),

(11.15)
where θ(z) is defined in (11.1). By (11.13),

E
τ(z)−1

∑
n=1

I{Sn ∈ (x,x+∆]} ∼ ∆

Eχ+
Eθz as x→ ∞.

Recalling that Eθ(z) =V (z), see (11.1), and that V (x)∼ x/Eχ− as x→∞, we
finally get

∞

∑
n=1

Pz{Xn ∈ (x,x+∆]} ∼ ∆

Eχ+Eχ−
x =

2∆

σ2 x
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for all fixed z, due to (11.14).
In order to derive the same asymptotics for any initial distribution of the

chain it suffices to show that

sup
z≥0, x≥1

1
x

∞

∑
n=1

Pz{Xn ∈ (x,x+∆]}< ∞, (11.16)

which allows us to apply the dominated convergence. It follows from (11.12)
and (11.15) that

∞

∑
n=1

Pz{Xn ∈ (x,x+∆]}

≤ V (x+∆)

V (z)

(
u(x− z)+E

θ(z)−1

∑
k=1

u(x− z+χ
−
1 + . . .+χ

−
k )
)
.

Since u0 := supx u(x)< ∞,

∞

∑
n=1

Pz{Xn ∈ (x,x+∆]} ≤ V (x+∆)

V (z)
u0Eθ(z) = V (x+∆)u0.

Now (11.16) follows from the asymptotic linearity of V and the proof in the
non-lattice case is complete. The lattice case is similar.

Let us demonstrate an alternative proof based on Corollary 6.12.

Proof. Let us show that under the conditions stated the random walk con-
ditioned to stay positive satisfies all the conditions of Corollary 6.12. Firstly,
the condition (6.2) holds with µ = σ2 and b = σ2 as shown above in (11.7).
Secondly, the condition (6.3) follows from (11.10).

Thirdly, we also need to check the conditions (6.4), (6.5) and (6.53). To
check the first one, we note that,

c1 := sup
x

V (x+ s(x))
V (x)

< ∞,

hence, for t ≤ s(x) = o(x),

P{|ξ (x)|> t, |ξ (x)| ≤ s(x)}=
(∫ −t

−s(x)
+
∫ s(x)

t

)
V (x+u)

V (x)
P{ξ1 ∈ du}

≤ c1P{|ξ1|> t},

and (6.4)–(6.5) follows if we take ξ̂ defined by its tail as

P{ξ̂ > t}= min{1,c1P{|ξ1|> t}},

which is square integrable because ξ1 is so.
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Next, using once again (11.5) we obtain

P{|ξ (x)|> t}

=

(∫ −t

−x
+
∫

∞

t

)
V (x+u)

V (x)
P{ξ1 ∈ du}

≤ P{ξ1 <−t}+
∫

∞

t

(
1+ cV

u+1
V (x)

)
P{ξ1 ∈ du}

≤ P{ξ1 <−t}+
(

1+
cV

V (x)

)
P{ξ1 > t}+ cV

V (x)
E{|ξ1|; |ξ1|> t})

≤ c2(P{|ξ1|> t}+E{|ξ1|; |ξ1|> t}) for all x, t > 0.

The right hand side is integrable due to Eξ 2
1 < ∞, so the condition (6.53) is

satisfied too.
Finally, the asymptotic homogeneity (6.52) is immediate from (11.2), with

ξ = ξ1, because, for any fixed u ∈ R, V (x+ u)/V (x)→ 1 as x→ ∞, and the
proof is complete.

11.2 Reflected random walk with zero drift

Let ηn, n ≥ 1, be a sequence of independent identically distributed random
variables with zero mean and finite variance. The chain defined by

Xn+1 = |Xn +ηn+1|, n≥ 0, (11.17)

is usually called a reflected random walk. It follows from (11.17) that

ξ (x) = (x+η)I{x+η ≥ 0}− (x+η)I{x+η < 0}− x

= η−2(x+η)I{x+η < 0}= η +2(x+η)−.

This representation implies that, for any function s(x)< x,

m[s(x)]
1 (x)

= E{η ; |η | ≤ s(x)}+E{η +2(x+η)−; |η +2(x+η)−| ≤ s(x), η <−x}
= E{η ; |η | ≤ s(x)}−E{2x+η ; |2x+η | ≤ s(x)}.

From this equality and the assumption Eη = 0 we infer that

|m[s(x)]
1 (x)| ≤ E{|η |; |η |> s(x)}+ s(x)P{η ≤−2x+ s(x)}

≤ 2E{|η |; |η |> s(x)}.

The assumption Eη2 < ∞ implies that there exists a function s(x) = o(x) such
that E[|η |; |η | > s(x)] is integrable, see Lemma 2.33 with γ = 2, α = β = 1.
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Consequently, |m[s(x)]
1 (x)| is also integrable. Taking into account that

m[s(x)]
2 (x)→ Eη

2 ∈ (0,∞),

we finally obtain

m[s(x)]
1 (x)

m[s(x)]
2 (x)

= o(p(x))

for some decreasing integrable function p(x) satisfying p′(x)= o(1/x2). There-
fore, the reflected random walk Xn satisfies (8.7) with r(x) ≡ 0. This implies
that U(x) = x in this case. Furthermore, the validity of (8.12), (8.14) and (8.13)
easily follows from the assumption Eη2 < ∞. Consequently, we may apply
Theorems 8.2, 8.18 and 8.24 to the invariant measure π of the reflected ran-
dom walk {Xn}:

π(ax,x]∼ c(1−a)x as x→ ∞, (11.18)

to the down-crossing probabilities, for a sufficiently large x̂,

Px{τx̂ > n} ∼ V (x)

Γ(3/2)
√

2Eη2
n−1/2 as n→ ∞ (11.19)

and to the conditional distribution

P{Xn > u
√

n | τx̂ > n} → e−u2/2Eη2
as n→ ∞. (11.20)

In addition, we can apply Theorem 8.14 to conclude local asymptotics for the
invariant measure π of the reflected random walk

π(x,x+h]→ ch as x→ ∞, (11.21)

for all h > 0 in the non-lattice case; in the lattice case both x and h should be
restricted to the lattice.

Asymptotics in (11.19) and (11.20) coincide with that for ordinary random
walk, only the function V (x) can be different. This difference comes from the
fact that reflection at zero can happen in such a way that the position after the
reflection is again bigger than x̂.

One can also obtain asymptotics (11.19) using the asymptotics for the first
visit of a bounded set by a one-dimensional random walk. Namely one can
interpret τx̂ as the first time the random walk visits a compact interval [−x̂, x̂].
Then, for arithmetic random walks the asymptotics (11.19) follow from the
results of Kesten and Spitzer [97] and for general random walks from Vysotsky
[150], see also references therein.

Relation (11.18) implies that {Xn} is null recurrent. Recurrence of a re-
flected random walk with finite second moments of increments has been shown
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by Kemperman [91]. Non-positivity in the case of zero mean is immediate from
the fact that any ordinary driftless random walk is null-recurrent.

The local asymptotics (11.21) was proven by Brofferio and Buraczewski in
[28, Theorem 1.3] under the assumption that E|η−|3/2 < ∞ and E(η+)2 < ∞.

11.3 State-dependent branching processes with migration

In this section we consider branching processes with reproduction law depend-
ing on the number of particles in the population: If there are k particles in the
population then the number of offspring of every particle is an independent
copy of a random variable ζ (k) ≥ 0. Furthermore, we assume that there is a
migration of particles. This will be modelled by η’s: given k particles in the
system, the number of migrants at time n is an independent copy of a ran-
dom variable η(k)—which may take both positive and negative values. As a
consequence we have the following Markov chain:

Zn+1 :=
( Zn

∑
i=1

ζn+1,i(Zn)+ηn+1(Zn)

)+

, n≥ 0, (11.22)

where {ζn,i(k), n≥ 0, i≥ 1} are independent copies of ζ (k) and {ηn(k), n≥ 1}
are independent copies of η(k). Then {Zn} is a Markov chain on Z+.

There is also an alternative way to introduce migration of particles:

Yn+1 :=
(Yn+ηn(Yn))

+

∑
i=1

ζn+1,i(Yn), n≥ 0. (11.23)

The only difference between these two models consists in the order of branch-
ing and migration at every time step. In (11.22) one performs first branching
and then migration, and in (11.23) these two mechanisms appear in the re-
versed order.

We shall assume that offspring random variables ζ (k) are such that

k(Eζ (k)−1) → aζ ∈ R as k→ ∞, (11.24)

and

σ
2(k) := Varζ (k) → σ

2 ∈ (0,∞), (11.25)

and that the expectation of the migration quantity η(k) converges:

Eη(k) → aη ∈ R as k→ ∞. (11.26)

Under these assumptions the asymptotic behaviour of the first two moments of
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jumps is as follows:

E{Zn+1−Zn | Zn = k} → aζ +aη ,

E{(Zn+1−Zn)
2 | Zn = k} ∼ σ

2k as k→ ∞;

for the second relation we need to assume that Eη2(k) = o(k).
Linear growth of variances significantly complicates the analysis of the Markov

chain {Zn}. In order to get bounded variances we consider a chain

Xn :=
√

Zn, n≥ 0, (11.27)

whose jumps are

ξ (
√

k) d
=

√√√√( k

∑
i=1

ζ1,i(k)+η1(k)

)+

−
√

k

=
√
(S(k)+η1(k))+−

√
k,

where S(k) := ζ1,1(k)+ . . .+ζ1,k(k). It follows from the proof of the first result
in the next subsection that this Markov chain has asymptotically zero drift and
bounded second moment of jumps.

11.3.1 Classification of near-critical branching processes

We start with classification of branching processes satisfying (11.24)—(11.26).
Under some mild conditions on ζ (k) and η(k) we show that

(i) if aζ +aη > σ2/2 then {Zn} is transient;
(ii) if 0 < aζ +aη < σ2/2 then {Zn} is null recurrent;
(iii) if aζ +aη < 0 then {Zn} is positive recurrent.

We start with evaluation of the first two truncated moments of jumps ξ (
√

k)
of the chain {Xn} defined in (11.27) and of their left tails.

Proposition 11.2. Let the moment conditions (11.24)–(11.26) hold and let the
family of random variables {|η(k)|,k ≥ 0} possess an integrable majorant η ,
that is,

|η(k)| ≤st η for all k ≥ 0 and Eη < ∞. (11.28)

Then, there exists an increasing function s(x) = o(x) such that

P{ξ (
√

k)<−s(
√

k)} ≤ p(
√

k)/
√

k for all k ≥ 0, (11.29)
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where a decreasing function p(x) > 0 is integrable at infinity. If, in addition,
for some increasing function t(x) = o(x),

E{ζ 2(k); ζ (k)> t(k)}→ 0 as k→ ∞, (11.30)

then there exists an increasing function s̃(x) = o(x) such that, for all s(x) ≥
s̃(x), as k→ ∞,

m[s(
√

k)]
1 (

√
k)∼

aζ +aη −σ2/4

2
√

k
and m[s(

√
k)]

2 (
√

k)→ σ2

4
. (11.31)

Proof. Let us introduce events

Ak := {|ξ (
√

k)| ≤ s(
√

k)}
=
{∣∣√(S(k)+η(k))+−

√
k
∣∣≤ s(

√
k)
}
. (11.32)

Provided s(x) = o(x), an equivalent way to define Ak for all sufficiently large k
is

(
√

k− s(
√

k))2 ≤ S(k)+η(k) ≤ (
√

k+ s(
√

k))2,

that is,

−2
√

ks(
√

k)+ s2(
√

k) ≤ S(k)− k+η(k) ≤ 2
√

ks(
√

k)+ s2(
√

k).

Therefore, again due to s(x) = o(x), for all sufficiently large k we have

{ξ±(
√

k)> s(
√

k)}
⊆ {(S(k)− k)± > 3

2

√
ks(
√

k)}∪{η±(k)> s2(
√

k)}. (11.33)

The condition (11.24) may be rewritten as ES(k)−k→ aζ as k→∞, hence for
all sufficiently large k,

P{ξ±(
√

k)> s(
√

k)}
≤ P{(S(k)−ES(k))± >

√
ks(
√

k)}+P{η > s2(
√

k)}, (11.34)

owing to the majorisation condition (11.28).
By exponential Chebyshev’s inequality,

P{S(k)−ES(k)<−
√

ks(
√

k)} ≤
(
Ee

Eζ (k)−ζ (k)√
k

)k
e−s(

√
k).

By Taylor’s expansion, for some θ ∈ [0,1],

Ee
Eζ (k)−ζ (k)√

k = 1+
1
2k

E(Eζ (k)−ζ (k))2eθ
Eζ (k)−ζ (k)√

k

≤ 1+
1
2k

Varζ (k) eEζ (k)/
√

k,
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because the ζ (k) is non-negative. Therefore, for some c < ∞,

P{S(k)−ES(k)<−
√

ks(
√

k)} ≤ ce−s(
√

k). (11.35)

Further, since E(√η)2 = Eη < ∞, by Lemma 2.33 there exists an s(x) = o(x)
such that

P{
√

η > s(x)} ≤ p1(x)/x,

for some decreasing integrable at infinity function p1(x). Therefore,

P{η > s2(
√

k)} ≤ p1(
√

k)/
√

k. (11.36)

Substituting (11.35) and (11.36) into (11.34) we obtain

P{ξ (
√

k)<−s(
√

k)} ≤ ce−s(
√

k)+ p1(
√

k)/
√

k,

so (11.29) follows provided s(x)≥ 3logx.
Let us now show the relations (11.31) for the truncated moments. We start

by showing that, as k→ ∞,

E{(S(k)− k)2; |S(k)− k|>
√

ks(
√

k)}= o(k). (11.37)

Since the variance of ζ (k), k ≥ 1, is bounded, taking y = x/2 in (2.127) we
conclude

E{(S(k)−ES(k))2; S(k)−ES(k)> x}
≤ 2C(2)(k/x)2 + kE{(ζ (k)−Eζ (k))2; ζ (k)−Eζ (k)> x/2}

+ k2P{ζ (k)−Eζ (k)> x/2}. (11.38)

For x =
√

ks(
√

k) which is greater than 3t(k) provided s(x)≥ 3t(x2)/x = o(x),
we obtain

E{(S(k)−ES(k))2; |S(k)−ES(k)|>
√

ks(
√

k)}

≤ Ck
( 1

s2(
√

k)
+E{ζ 2(k); ζ (k)> t(k)}

)
, (11.39)

and, by the condition (11.30),

E{(S(k)−ES(k))2; |S(k)−ES(k)|>
√

ks(
√

k)}= o(k) as k→ ∞,

which implies (11.37) because |ES(k)− k| is bounded due to the condition
(11.24).
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It follows from (11.33) and then from (11.37) that

E{(S(k)− k)2; Ac
k}

≤ E{(S(k)− k)2; |S(k)− k| ≥
√

ks(
√

k)}+E{(S(k)− k)2; η(k)≥ s2(
√

k)}
= o(k)+(VarS(k)+(ES(k)− k)2)P{η(k)≥ s2(

√
k)}

= o(k) as k→ ∞,

because the second moment of both ζ ’s and the sequence |ES(k)−k| is bounded
by the conditions (11.24) and (11.25). Hence the condition (11.25) allows us
to conclude that

1
k
E{(S(k)− k)2; Ak}= σ

2(k)+o(1) → σ
2 as k→ ∞. (11.40)

Note also that
1
k
E{|η(k)(S(k)− k)|; Ak} ≤

1
k
E|η(k)(S(k)− k)|

=
1
k
E|η(k)|E|S(k)− k|

≤ 1
k
Eη

√
E(S(k)− k)2

= O(1/
√

k), (11.41)

by the independence of η(k) and S(k), and the majorisation condition (11.28).
Moreover, since

Ak =
{

k−2
√

ks(
√

k)+ s2(
√

k)≤ S(k)+η(k)≤ k+2
√

ks(
√

k)+ s2(
√

k)
}
,

for all sufficiently large k, we have

Ak ⊆ {|η(k)| ≤ 3
√

ks(
√

k)+ |S(k)− k|}, (11.42)

hence

E{η2(k); Ak} ≤ E{η2(k); |η(k)| ≤ 3
√

ks(
√

k)+ |S(k)− k|}.

By the assumption Eη < ∞ on the majorant for η(k)’s, it follows from Lemma
2.26 with V (x) = x and p = 2 that

sup
k
E{η2(k); |η(k)| ≤ x}= o(x) as x→ ∞.

Thus, as k→ ∞,

E{η2(k); Ak} ≤ o(
√

ks(
√

k)+E|S(k)− k|) = o(k). (11.43)

Combining (11.40), (11.41) and (11.43), we conclude convergence

1
k
E{(S(k)− k+η(k))2; Ak} → σ

2 as k→ ∞. (11.44)
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The upper bound (11.37) implies that, for any fixed n≥ 1,

E{|S(k)− k|; |S(k)− k|> k/n} ≤ n
k
E{(S(k)− k)2; |S(k)− k|> k/n}

→ 0 as k→ ∞. (11.45)

Therefore, for some s(x) = o(x),

E{|S(k)− k|; |S(k)− k|>
√

ks(
√

k)}→ 0 as k→ ∞. (11.46)

It follows from (11.33) that

E{|S(k)− k+η(k)|; |ξ (
√

k)|> s(
√

k)}
≤ E{|S(k)− k+η(k)|; |S(k)− k|>

√
ks(
√

k)}
+E{|S(k)− k+η(k)|; |η(k)|> s2(

√
k)}

≤ E{|S(k)− k|; |S(k)− k|>
√

ks(
√

k)}+EηP{|S(k)− k|>
√

ks(
√

k)}
+ E|S(k)− k|P{η > s2(

√
k)}+E{η ; η > s2(

√
k)}, (11.47)

by the independence of S(k) and η(k), and by the majorisation condition (11.28).
Applying now (11.46) and (11.36) we get that

E{|S(k)− k+η(k)|; Ac
k}→ 0 as k→ ∞. (11.48)

In its turn, this implies that

E{S(k)− k+η(k); Ak} = E(S(k)− k+η(k))+o(1)

→ aζ +aη , (11.49)

by the conditions (11.24) and (11.26).
Owing to Taylor’s expansion we conclude that

ξ (
√

k) =
√

k
(√

1+
S(k)− k+η(k)

k
−1
)

=
S(k)− k+η(k)

2
√

k
− 1

8
(S(k)− k+η(k))2

k
√

k
(1+o(1))

as k→∞ uniformly on the event Ak where uniformity of o(1) on this event fol-
lows from the relation s(x) = o(x). Then, using (11.49) and (11.44) we obtain

√
km[s(

√
k)]

1 (
√

k) =
√

kE{ξ (
√

k); Ak}

→
aζ +aη −σ2/4

2
as k→ ∞.

To determine the asymptotic behaviour of the second truncated moment we
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note that, uniformly on the event Ak,

ξ
2(
√

k) =
(

S(k)− k+η√
S(k)+η(k)+

√
k

)2

=
(S(k)− k+η(k))2

4k
(1+o(1)) as k→ ∞.

Using (11.44) once again we conclude that

m[s(
√

k)]
2 (

√
k) = E{ξ 2(

√
k); Ak} → σ

2/4 as k→ ∞.

So, both convergences in (11.31) hold true and the proof is complete.

Theorem 11.3. Assume that (11.24)–(11.28) and (11.30) hold, and

limsup
n→∞

Zn = ∞ with probability 1. (11.50)

If aζ +aη > σ2/2, then {Zn} is transient.

Since {Zn} lives on the non-negative integers, the assumption (11.50) cor-
responds, modulo some periodicity issues, to irreducibility of the state space
of the branching process. This assumption obviously excludes existence of ab-
sorbing states. So, standard non-degenerate critical Galton-Watson processes
do not satisfy this condition, but if one adds a non-trivial immigration at zero,
then (11.50) follows. The same is true in the case of space-homogeneous im-
migration.

Probably the simplest sufficient condition for (11.50) is the following one

P{η(k)> 0}> 0 for all k ≥ 0.

In this case no any further restriction on the offspring numbers ζ (k) is needed
to guarantee (11.50). For a near-critical process satisfying (11.24) and (11.25)
one can relax the restriction on the migration mentioned above. Indeed, (11.24)
and (11.25) imply that

Eζ (k)(ζ (k)−1)→ σ
2 > 0 as k→ ∞.

Consequently, there exists a k0 such that

inf
k>k0

P{ζ (k)≥ 2}> 0.

Therefore, the desired irreducibility then follows from the conditions

P{η(k)> 0}> 0 for all k ≤ k0

and

P{η(k)≥−2k+1}> 0 for all k > k0.
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Proof of Theorem 11.3. It is sufficient to check that the chain {Xn}= {
√

Zn}
satisfies all the conditions of Theorem 2.21. Fulfillment of the condition (2.108)
of Theorem 2.21 follows from (11.31) and assumption aζ +aη > σ2/2, while
(2.109) follows from (11.29) which completes the proof.

Theorem 11.4. Assume that (11.24), (11.26) hold and, for some ε > 0,

P{ζ (k) = 0} ≤ 1−2ε, (11.51)

E{η(k); η(k)<−kε}→ 0 as k→ ∞. (11.52)

If aζ +aη < 0 then the chain {Zn} is positive recurrent.
If, in addition, (11.25), (11.28) and (11.30) hold and aζ +aη < σ2/2, then

the chain {Zn} is recurrent.

Proof. For positive recurrence we show that the drift of {Zn},

E{Zn+1−Zn | Zn = k}= E(S(k)+η(k))+− k

= E(S(k)+η(k))− k+E(S(k)+η(k))−,

is negative and bounded away from zero for all sufficiently large k if aζ +aη <

0, because

E(S(k)+η(k))− = E{(S(k)+η(k))−; η(k)<−kε}
+E{(S(k)+η(k))−; η(k)≥−kε}

≤ E{η−(k); η(k)<−kε}+E(S(k)− εk)−.

The first expectation on the right hand side tends to zero as k → ∞ due to
the condition (11.52). The second expectation tends to zero too, because, by
the condition (11.51), all ζ (k)’s stochastically dominate a Bernoulli random
variable ζ with success probability 2ε , so

E(S(k)− εk)− ≤ E((ζ1− ε)+ . . .+(ζk− ε))−

≤ εkP((ζ1− ε)+ . . .+(ζk− ε)< 0)

≤ εk(1−δ )k for some δ > 0,

owing to E(ζ − ε) = ε > 0; here ζi’s are independent copies of ζ .
Let us now check that the chain {

√
Zn} satisfies all the conditions of Corol-

lary 2.14 in the case aζ +aη < σ2/2. In view of the condition (11.30),

P{ζ (k)> t(k)} ≤ E{ζ 2(k); ζ (k)> t(k)}
t2(k)

= o(1/k2) (11.53)

as k→∞, possibly with a faster growing level t(x). It follows from (11.46) and



11.3 State-dependent branching processes with migration 357

Chebyshev’s inequality that

P{S(k)−ES(k)>
√

ks(
√

k)}= o(1/k) as k→ ∞,

possibly with a faster increasing s(x). Together with (11.36) and (11.33) this
yields an upper bound

P{ξ (
√

k)> s(
√

k)}= o(1/k) as k→ ∞. (11.54)

The condition (2.84) follows from upper bounds

E{ξ 3(
√

k); ξ (
√

k) ∈ [0,
√

k]}
≤ E{ξ 3(

√
k); ξ (

√
k) ∈ [0,s(

√
k)]}+E{ξ 3(

√
k); ξ (

√
k) ∈ (s(

√
k),
√

k]}
≤ s(
√

k)E{ξ 2(
√

k); ξ (
√

k) ∈ [0,s(
√

k)]}+ k3/2P{ξ (
√

k)> s(
√

k)}
= o(
√

k) as k→ ∞,

because the first term on the right hand side is of order O(s(
√

k)) = o(
√

k)
due to the second convergence in (11.31) while the second term is of the same
order by (11.54).

In order to show the validity of (2.85) we first note that, by the concavity of√
y,

ξ (
√

k)≤
√

S(k)− k+η(k) on the event ξ (
√

k)> 0

and

{ξ (
√

k)≥
√

k}= {S(k)− k+η ≥ 3k}.

Then, by the Markov inequality,

E{ξ ε/2(
√

k); ξ (
√

k)≥
√

k}
≤ E{(S(k)− k+η(k))ε/4; S(k)− k+η(k)≥ 3k}

≤ 1
(
√

k)2−ε/2
E{S(k)− k+η(k); S(k)− k+η(k)≥ 3k},

hence (2.85) follows because the expectation on the right hand side tends to
zero as shown in (11.48).

For recurrence, it remains to prove that

2m[
√

k]
1 (
√

k)

m[
√

k]
2 (
√

k)
≤ 1− ε√

k
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for all sufficiently large k. Since s(x)< x, we have

2m[
√

k]
1 (
√

k)

m[
√

k]
2 (
√

k)
≤

2m[
√

k]
1 (
√

k)

m[s(
√

k)]
2 (

√
k)

≤
2m[s(

√
k)]

1 (
√

k)

m[s(
√

k)]
2 (

√
k)

+
2E{ξ (

√
k); ξ (

√
k) ∈ (s(

√
k),
√

k]}

m[s(
√

k)]
2 (

√
k)

.

It follows from (11.31) that

2m[s(
√

k)]
1 (

√
k)

m[s(
√

k)]
2 (

√
k)
∼

aζ +aη −σ2/4
σ2/4

1√
k
.

By (11.54),

E{ξ (
√

k); ξ (
√

k) ∈ (s(
√

k),
√

k]} ≤
√

kP{ξ (
√

k)> s(
√

k)} = o(1/
√

k),

so hence the desired inequality follows because aζ +aη < σ2/2.

Theorem 11.5. Assume that (11.24)–(11.28) and (11.50) hold. Let the family
of random variables {ζ 2(k), k ≥ 1} be uniformly integrable, that is,

sup
k≥1

E{ζ 2(k); ζ (k)> t}→ 0 as t→ ∞. (11.55)

If aζ +aη ∈ (0,σ2/2), then the chain {Zn} is null-recurrent.

Proof. We apply Corollary 2.16. Note that the condition (11.55) implies ful-
fillment of (11.30), so the first two truncated moments of jumps ξ (

√
k) satisfy

the asymptotic relations (11.31).
Now let us show that the family of squares ξ 2(

√
k) is uniformly integrable.

It follows from the definition of ξ (
√

k) that, for all y > 0,

P{ξ (
√

k)> y}= P{
√

S(k)+η(k)>
√

k+ y}
= P{S(k)− k+η(k)> 2

√
ky+ y2}

≤ P{S(k)− k >
√

ky}+P{η > y2}. (11.56)

For the left tail, we have

P{ξ (
√

k)<−y}= P{
√
(S(k)+η(k))+ <

√
k− y}

≤ P{S(k)− k+η(k)<−2
√

ky+ y2}
≤ P{S(k)− k < (−2

√
ky+ y2)/2}+P{η > (2

√
ky− y2)/2}.

Since ξ (
√

k) ≥ −
√

k, we only have to consider the values of y ≤
√

k in the
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last formula. However for such values of y we have −2
√

ky+ y2 ≤−
√

ky and
−2
√

ky+ y2 ≤−y2, therefore

P{ξ (
√

k)≤−y} ≤ P{S(k)− k <−
√

ky/2}+P{η > y2/2}.

Combining this estimate with (11.56), we obtain

P{|ξ (
√

k)| ≥ y} ≤ P
{∣∣∣S(k)− k√

k

∣∣∣> y/2
}
+P{

√
η > y/2}. (11.57)

By the conditions (11.24) and (11.25) and by the uniform integrability of
ζ 2(k), the family of random variables (S(k)− k)2/k is uniformly integrable
too. The random variable

√
η is square integrable. Altogether implies uniform

integrability of the family of squares {ξ 2(
√

k), k ≥ 1}.
The condition (2.60) follows from (11.29) and (11.31), due to ξ (

√
k) ≥

−
√

k. Then uniform integrability and asymptotics (11.31) allow us to apply
Corollary 2.16 in the case aζ +aη ∈ (0,σ2/2) and to conclude the null recur-
rence of {Xn}, and hence of {Zn}.

11.3.2 Convergence to Γ-distribution

Theorem 11.6. Assume that (11.24)–(11.28), (11.30) and (11.50) hold, and
that

P{ζ (k)> t(k)} ≤ q(k)/k (11.58)

for some increasing t(x) = o(x) and a decreasing integrable function q(x) such
that the function q(x)

√
x decreases. If aζ +aη > σ2/2 then

Zn

nσ2/4
=

X2
n

nσ2/4

converges weakly as n→ ∞ to a Γ-distribution with mean 4(aζ +aη)/σ2 and
variance 8(aζ +aη)/σ2. In addition, the sequence of processes√

Z[nt]

nσ2/4
, t ∈ [0,1],

converges weakly in the space D[0,1] to a Bessel process with drift coefficient
(2(aζ +aη)/σ2−1/2)/x and unit diffusion coefficient.

A sufficient condition for (11.58) is the existence of a square integrable ma-
jorant Ξ for the family of random variables {ζ (k),k ≥ 1}, see Lemma 2.33.
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Proof. It is sufficient to check that the chain {Xn} satisfies all the conditions
of Theorems 4.8 and 4.11. By Theorem 11.3, the chain {Xn} is transient and
by Proposition 11.2 the truncated moments of its jumps ξ (

√
k) satisfy (11.31),

so the condition (4.45) follows with µ = (aζ + aη −σ2/4)/2 and b = σ2/4.
Then it remains to show that, for all k,

P{|ξ (
√

k)|> s(
√

k)} ≤ p(
√

k)/
√

k, (11.59)

which in particular implies, due to ξ (
√

k)≥−
√

k, that

E{|ξ (
√

k)|; ξ (
√

k)<−s(
√

k)} ≤ p(
√

k),

where a decreasing function p(x) > 0 is integrable at infinity. It follows from
the Fuk–Nagaev inequality (2.126) with x =

√
ks(
√

k) and y = x/2 that

P{|S(k)−ES(k)|>
√

ks(
√

k)} ≤ C
s4(
√

k)
+ kP{ζ (k)>

√
ks(
√

k)/2}.

Let us choose s(x) = o(x) such that s(x) ≥ x3/4 and xs(x) ≥ 2t(x2) which is
possible because t(x) = o(x). Then, by the condition (11.58),

P{|S(k)−ES(k)|>
√

ks(
√

k)} ≤ C
(
√

k)3
+ kP{ζ (k)> t(k)}

≤ 1√
k

(
C

(
√

k)2
+q(k)

√
k
)
. (11.60)

Together with (11.34) the upper bounds (11.60) and (11.36) imply

P{|ξ (
√

k)| ≥ s(
√

k)} ≤ 1√
k

(
C

(
√

k)2
+ q̃(k)

√
k
)
,

where q̃(x) is a decreasing integrable function. Since∫
∞

1

(
C
x2 + q̃(x2)x

)
dx =C+

1
2

∫
∞

1
q̃(y)dy < ∞,

the chain {Xn} satisfies the condition (11.59) and the proof is complete.

Assume that all the conditions of Theorem 11.6 apart from (11.50) are valid
but P{η(k)≤ 0}= 1, so the state 0 is absorbing and the extinction probability
is positive. Denote

q := P{Zn→ ∞} ∈ (0,1).

In parallel, let us introduce a branching process {Z̃n} governed by the same
stochastic mechanism as {Zn} with just one alteration: we add a transition at
zero, if Z̃n = 0 we put Z̃n+1 = 1; this alternated chain is transient provided it
is irreducible and Theorem 11.6 is applicable to it. Since {Z̃n} visits 0 finitely
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many times, we conclude that the distribution of Zn/nσ2 conditioned on the
event {Zn→∞} converges to the same Γ-distribution as Z̃n/nσ2 is converging
to which implies

P{Zn/nσ
2 ≤ x}→ (1−q)+qΓ(x) as n→ ∞. (11.61)

The next result is aimed at covering the null-recurrent case.

Theorem 11.7. Assume that (11.24)–(11.28) and (11.50) hold, aζ + aη > 0
and there exists a decreasing function ε(y)→ 0 such that

P{ζ (k)> y} ≤ ε(y)
y2 for all k ≥ 1, y > 0, (11.62)

and ∫
∞

1

ε(y)
y

dy < ∞, (11.63)

then 4Zn/nσ2 converges weakly as n→∞ to a Γ-distribution with mean 4(aζ +

aη)/σ2 and variance 8(aζ +aη)/σ2. In addition, the sequence of processes

2

√
Z[nt]

nσ2 , t ∈ [0,1],

converges weakly in the space D[0,1] to a Bessel process with drift coefficient
(2(aζ +aη)/σ2−1/2)/x and unit diffusion coefficient.

The conditions (11.62)–(11.63) imply the existence of a square integrable
majorant Ξ for the family of random variables {ζ (k),k≥ 1}, and not the other
way around. A sufficient condition for (11.62)–(11.63) is the existence of a
majorant Ξ such that EΞ2 log1+ε(1+Ξ)< ∞ for some ε > 0. Note that we use
the monotonicity of the function ε(y) when justify (11.64) below.

Also, instead of the conditions (11.62)–(11.63) we can assume existence of a
majorant Ξ for the family {ζ (k)} such that Ξ2 log(1+Ξ) is integrable, because
then the function E{Ξ2; Ξ > y}/y2 is integrable at infinity.

Proof. Note that the condition (11.62) implies that the family {ζ 2(k),k ≥ 1}
is uniformly integrable, hence (11.30) holds, so the first two truncated mo-
ments of jumps ξ (

√
k) satisfy the asymptotic relations (11.31). Also, by The-

orem 11.5, the chain {Xn} is either null recurrent or transient.
To prove convergence to a Γ-distribution, let us check the conditions of The-

orem 4.10. Firstly, null recurrence or transience of {Xn} implies convergence
Xn → ∞ in probability as n→ ∞. Secondly, the sequence |ξ (

√
k)| possesses
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a square-integrable majorant Ξ. Indeed, using (2.126) with x =
√

ky/2 and
y = x/2 we get from (11.57) that

P{|ξ (
√

k)| ≥ y} ≤ c/y4 + kP{|ζ (k)−Eζ (k)|>
√

ky/4}+P{
√

η > y/2}.

Since ζ (k) ≥ 0 and the sequence Eζ (k) is bounded, there exists an y0 such
that, for y≥ y0,

P{|ξ (
√

k)| ≥ y} ≤ c/y4 + kP{ζ (k)>
√

ky/2}+P{
√

η > y/2}.

Due to (11.62) and monotonicity of the function ε(y),

P{ζ (k)>
√

ky/2} ≤ 4
ε(
√

ky/2)
ky2 ≤ 4

ε(y/2)
ky2 , (11.64)

hence

P{|ξ (
√

k)| ≥ y} ≤ c/y4 +4ε(y/2)/y2 +P{
√

η > y/2} for y≥ y0.

Let Ξ be a random variable taking values in [y0,∞) such that

P{Ξ > y}= min{1, c/y4 +4ε(y/2)/y2 +P{
√

η > y/2}} for y≥ y0.

Clearly, Ξ is a stochastic majorant for the sequence ξ (
√

k). The finiteness of
EΞ2 follows from the condition (11.63) and the assumption Eη < ∞.

So it only remains to determine the asymptotic behaviour of the first two full
moments of jumps, that is, of m1(

√
k) and m2(

√
k). We know from the proof

of Theorem 11.6 that

m[s(
√

k)]
1 (

√
k)∼

aζ +aη −σ2/4

2
√

k
as k→ ∞,

for any s(x) such that s(x)/x→ 0 sufficiently slow. From the existence of the
majorant we infer that

E{|ξ (
√

k)|; |ξ (
√

k)| ≥ s(
√

k)} ≤ 1
s(
√

k)
E{Ξ2; Ξ≥ s(

√
k)}.

Consequently, we can choose s(x) = o(x) such that

E{|ξ (
√

k)|; |ξ (
√

k)|> s(
√

k)}= o(1/
√

k) as k→ ∞.

This yields asymptotics

m1(
√

k)∼
aζ +aη −σ2/4

2
√

k
as k→ ∞.

The existence of a square-integrable majorant also gives that m2(
√

k)→ σ2/4
as k → ∞. Thus, the weak convergence of Zn/nσ2 to a Γ-distribution now
follows from Theorem 4.10 and the functional convergence follows from The-
orem 4.11.
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11.3.3 Tail asymptotics for non-extinction probability of recurrent
branching processes

Basic topics in the theory of critical and near-critical recurrent branching pro-
cesses are the asymptotic behaviour of the non-extinction probability and the
limiting behaviour of the process conditioned on the non-extinction. Let us
demonstrate that corresponding results for general Markov chains—Theorem
8.18 and Corollary 8.22—may be applied to near-critical branching processes.
For that, we have to find restrictions on ζ (k), η(k), and η which guarantee
fulfillment of (8.4)–(8.6) and (8.12)–(8.13).

The hardest task, from the technical point of view, consists in finding a reg-
ular function r(x) such that (8.5) takes place. In what follows we concentrate
on the case when one can take r(x) = c/x.

We first prove a refined version of Proposition 11.2 where we assume re-
fined versions of the conditions (11.24)–(11.28) on the moments of ζ (k)’s and
η(k)’s. Hereinafter we consider s(x) = x/ log1+ε x.

Proposition 11.8. Let, for some ε > 0,

sup
k≥1

Eζ
2(k) log3+3ε(1+ζ (k))< ∞, (11.65)

let the majorisation condition (11.28) hold with η satisfying

Eη log1+2ε(1+η)< ∞, (11.66)

and let there exist a decreasing integrable at infinity function v(x) such that
xv(x2) is decreasing too and, as k→ ∞,

Eζ (k) = 1+aζ/k+o(v(k)), (11.67)

Eη(k) = aη +o(kv(k)), (11.68)

Varζ
2(k) = σ

2 +o(kv(k)), (11.69)

E{ζ 3(k); ζ (k)≤ k} ≤ k2v(k). (11.70)

Then, for s(x) = x/ log1+ε x, there exists a decreasing integrable function p(x)
such that

m[s(
√

k)]
1 (

√
k) =

aζ +aη −σ2/4

2
√

k
+o(p(

√
k)), (11.71)

m[s(
√

k)]
2 (

√
k) = σ

2/4+o(
√

kp(
√

k)) as k→ ∞. (11.72)

Proof. Due to the condition (11.65), the condition (11.30) is valid with any
t(k)→ ∞. Take t(k) =

√
k. Then it follows from the upper bound (11.38) with
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s(x) = x/ log1+ε x and the condition (11.65) that

E{(S(k)− k)2; |S(k)− k|>
√

ks(
√

k)}

≤ C
(

log2+2ε k+ kE{ζ 2(k); ζ (k)>
√

ks(
√

k)}
)

≤ C
(

log2+2ε k+ k
Eζ 2(k) log3+3ε(1+ζ (k))

log3+3ε(1+
√

k)

)
= O(k/ log3+3ε k) as k→ ∞. (11.73)

Therefore,

E{|S(k)− k|; |S(k)− k|>
√

ks(
√

k)}

≤ E{(S(k)− k)2; |S(k)− k|>
√

ks(
√

k)}√
ks(
√

k)

= O(1/ log2+2ε k) as k→ ∞. (11.74)

By Taylor’s expansion,

ξ (
√

k) =
S(k)− k+η(k)

2
√

k
− 1

8
(S(k)− k+η(k))2

k
√

k
+θ

(S(k)− k+η(k))3

k2
√

k
,

(11.75)

where θ = θ((S(k)− k +η(k))/
√

k) is bounded on the event Ak defined in
(11.32). Let us estimate the expectation of every term in (11.75).

Recalling from (11.33) that Ac
k ⊆ {|S(k)− k+η(k)| >

√
ks(
√

k)} for all k
sufficiently large, we obtain∣∣∣∣E{S(k)− k+η(k)√

k
; Ak

}
−

aζ +aη√
k

∣∣∣∣
≤
∣∣∣∣ES(k)− k−aζ√

k

∣∣∣∣+ ∣∣∣∣Eη(k)−aη√
k

∣∣∣∣
+

1√
k
E{|S(k)− k+η(k)|; |S(k)− k+η(k)|>

√
ks(
√

k)}.

The first two terms on the right hand side are of order o(
√

kv(k)) by the con-
ditions (11.67) and (11.68). Taking also into account the upper bounds (11.47)
and (11.74) we derive∣∣∣∣E{S(k)− k+η(k)√

k
; Ak

}
−

aζ +aη√
k

∣∣∣∣≤ o(
√

kv(k))+O(1/
√

k log2+2ε k)

+
1√
k

(
E|S(k)− k|P{η > s2(

√
k)}+E{η ; η > s2(

√
k)}
)
.
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The assumption (11.66) implies that

1√
k
E{η ; η > s2(

√
k)}= 1√

k
E{η ; η > k/ log2+2ε

√
k}

= o(1/
√

k log1+ε k) as k→ ∞,

hence, by the Markov inequality,

P{η > s2(
√

k)} ≤ E{η ; η > s2(
√

k)}/s2(
√

k)

= o((log1+ε k)/k) as k→ ∞,

Combining this with the upper bound E|S(k)− k|= O(
√

k), we conclude that∣∣∣∣E{S(k)− k+η(k)√
k

; Ak

}
−

aζ +aη√
k

∣∣∣∣≤ o(
√

kv(k))+O(1/
√

k log1+ε k)

= o(p(
√

k)), (11.76)

where the function

p(x) := xv(x2)+1/x log1+ε/2 x (11.77)

is decreasing and integrable at infinity because ε > 0 and∫
∞

1
xv(x2)dx =

1
2

∫
∞

1
v(y)dy < ∞.

For the second term on the right hand side of (11.75), we have∣∣∣E{ (S(k)− k+η(k))2

k
; Ak

}
−σ

2
∣∣∣

≤
∣∣∣E(S(k)− k)2

k
−σ

2
∣∣∣+ E{(S(k)− k)2; Ac

k}
k

+2
∣∣∣E{(S(k)− k)η(k); Ak}

k

∣∣∣+ E{η2(k); Ak}
k

=: E1 +E2 +E3 +E4. (11.78)

The first term on the right hand side may be bounded as follows:

E1 =
∣∣∣Varζ (k)−σ

2 +
(ES(k)− k)2

k

∣∣∣ ≤ o(kv(k))+O(1/k), (11.79)

by the conditions (11.67) and (11.69). Using (11.33), we obtain

E2 ≤
E{(S(k)− k)2; |S(k)− k|>

√
ks(
√

k)}
k

+
E{(S(k)− k)2; |η(k)|> s2(

√
k)}

k
≤ O(1/ log3+3ε k)+ c2P{η > s2(

√
k)} as k→ ∞,
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by the upper bound (11.73) and independence of S(k) and η(k). Therefore, by
the condition (11.66),

E2 = O(1/ log3+3ε k). (11.80)

By (11.41),

E3 = O(1/
√

k) as k→ ∞. (11.81)

Finally, due to the condition (11.66) we deduce similarly to (11.43) that

E4 = o(1/ log1+ε k) as k→ ∞. (11.82)

Combining (11.78)–(11.82), we obtain

E{(S(k)− k+η(k))2; Ak}
k
√

k
=

σ2
√

k
+o(p(

√
k)), (11.83)

where p(x) is defined in (11.77).
As follows from the definition of Ak, see (11.32),

|S(k)− k+η(k)| ≤ 3
√

ks(
√

k) on the event Ak,

hence the remainder term in (11.75) possesses the following upper bound:

E{|S(k)− k+η(k)|3; Ak} ≤ 3
√

ks(
√

k)E{(S(k)− k+η(k))2; Ak}
= O(k

√
ks(
√

k)) as k→ ∞, (11.84)

as follows from (11.83).
Combining (11.75), (11.76), (11.83) and (11.84), we colclude that

E{ξ (
√

k); Ak}=
aζ +aη −σ2/4

2
√

k
+o(p(

√
k)), (11.85)

where p(x) is defined (11.77), so (11.71) is proven.
In order to prove (11.72) we first use Taylor’s expansion for the function

(
√

1+u−1)2 =
u2

4
− u3

6
3

4(1+θ1u)5/2 , θ1 ∈ (0,1),

to conclude

ξ
2(
√

k) =
(S(k)− k+η(k))2

4k
+ θ̃

(S(k)− k+η(k))3

k2 ,

where θ̃ = θ̃(S(k),η(k)) is bounded on the event Ak. Then we apply (11.83)
and (11.84) to conclude (11.72).
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Under the conditions of Proposition 11.8 we have that, with s(x)= x/ log1+ε x,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

= −
σ2/4−aζ −aη

σ2/4
1
x
+o(p(x)) as x→ ∞.

This means that (8.5) holds with

r(x) =
ρ−1
1+ x

,

where

ρ =
σ2/2−aζ −aη

σ2/4
.

Theorem 11.9. Assume that all the conditions of Proposition 11.8 are valid
and that aζ +aη < σ2/2.

Assume that Eη log3+3ε(1+η)< ∞ and Eηρ/2 < ∞. Assume that

sup
k≥1

Eζ
ρ/2(k)< ∞. (11.86)

Then, for each starting state z,

Pz{Zk > z∗ for all k ≤ n} ∼ c(z)
nρ/2 as n→ ∞ (11.87)

and, for all u > 0,

Pz

{ 2Zn

nσ2 > u
∣∣∣ Zk > z∗ for all k ≤ n

}
→ e−u as n→ ∞, (11.88)

where z∗ is the minimal accessible state of {Zn}.

It is easy to see that if P{ζ (k) = 0}> 0 and P{η(k)≤ 0}> 0 for all k then
z∗ = 0. Furthermore, if P{η(k) ≤ 0} = 1 then 0 is an absorbing state and we
have typical for branching processes statements:

Pz{Zn > 0} ∼ c(z)/nρ/2 as n→ ∞

and, for all u > 0,

Pz

{
2Zn

nσ2 > u
∣∣∣ Zn > 0

}
→ e−u as n→ ∞.

Proof. We again put s(x) = x/ log1+ε x and check sufficient conditions for
results from Section 8.6. We start with the following auxiliary upper bound,
for all ρ > 0,

E{(S(k)−ES(k))ρ/2; S(k)−ES(k)>
√

ks(
√

k)}= (
√

k)ρ−1o(q(
√

k))

(11.89)
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as k→ ∞, for some decreasing integrable at infinity function q(x). By Lemma
2.38, for all ρ > 0, E|S(k)−ES(k)|ρ/2 = O(kρ/4) and hence E|S(k)− k|ρ/2 =

O(kρ/4). Then, by the condition (11.86),

E{(S(k)−ES(k))ρ/2; S(k)−ES(k)>
√

ks(
√

k)}
≤ E|S(k)−ES(k)|ρ/2

= (
√

k)ρ−1O(1/(
√

k)ρ/2−1)

= (
√

k)ρ−1o(q1(
√

k)) as k→ ∞,

for some decreasing integrable at infinity function q1(x), provided ρ > 4. If ρ ∈
(0,4] then, by the Chebyshev-type inequality and by the upper bound (11.38),

E{(S(k)−ES(k))ρ/2; S(k)−ES(k)>
√

ks(
√

k)}

≤ E{(S(k)−ES(k))2; S(k)−ES(k)>
√

ks(
√

k)}
(
√

ks(
√

k))2−ρ/2

≤ C
(
√

ks(
√

k))2−ρ/2

[
1

s2(
√

k)
+ kE{ζ 2(k); ζ (k)>

√
ks(
√

k)/2}
]
.

Applying the condition (11.65) we conclude that

E{(S(k)−ES(k))ρ/2; S(k)−ES(k)>
√

ks(
√

k)}

≤ C1

(
√

ks(
√

k))2−ρ/2

k
log3+3ε

√
k

=
C1

k1−ρ/2 log(1+ρ/2)(1+ε)
√

k
(11.90)

= (
√

k)ρ−1o(q2(
√

k)) as k→ ∞,

which completes the proof of (11.89) for all ρ > 0.
In Proposition 11.8 we have checked the condition (8.5) for the chain {

√
Zn}.

The fulfilment of the condition (8.12) for the left tail was proven in Proposition
11.2. For the right tail, it is enough to notice that, by the Chebyshev inequality
and by the upper bound (11.90) with ρ = 2,

P{S(k)−ES(k)>
√

ks(
√

k)}

≤ E{(S(k)−ES(k))2; S(k)−ES(k)>
√

ks(
√

k)}
(
√

ks(
√

k))2

= O(1/k log1+ε k) as k→ ∞.

So it only remains to validate the conditions (8.11), (8.13) and (8.14) under the
assumptions of Theorem 11.9.

Since r(x) = ρ−1
1+x , the function U(x) is asymptotically equivalent to cxρ with
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some positive constant c. Thus, we can replace U(x) by xρ in (8.11) and (8.14).
In particular, then (8.11) follows from (8.14).

We start with (8.13). It follows from the upper bound

|ξ (
√

k)| ≤ |S(k)− k+η(k)|√
k

and (11.84) that

E{|ξ (
√

k)|3; |ξ (
√

k)| ≤ s(
√

k)}= O(s(
√

k)) = O((
√

k)2/
√

k log1+ε k).

This implies (8.13) with, say p(x) = 1/x log1+ε/2 x.
Let us now check fulfillment of (8.14). First we note that, due to the concav-

ity of the root function,

E{ξ ρ(
√

k); ξ (
√

k)> s(
√

k)}
≤ E{(S(k)− k+η(k))ρ/2; ξ (

√
k)> s(

√
k)}

≤ E{(S(k)− k+η(k))ρ/2; S(k)+η(k)> (
√

k+ s(
√

k))2}
≤ E{(S(k)− k+η(k))ρ/2; S(k)− k >

√
ks(
√

k)}
+ E{(S(k)− k+η(k))ρ/2; η(k)> s2(

√
k)}. (11.91)

Owing to the independence of S(n) and η(k), the first expectation on the right
hand side is not greater, up to a constant factor, than the sum

Eη
ρ/2P{S(k)−ES(k)>

√
ks(
√

k)}
+E{(S(k)−ES(k))ρ/2; S(k)−ES(k)>

√
ks(
√

k)}
≤ cE{(S(k)−ES(k))ρ/2; S(k)−ES(k)>

√
ks(
√

k)}, c < ∞,

due to the condition Eηρ/2 < ∞. Then it follows from (11.89) that, as k→ ∞,

E{(S(k)− k+η(k))ρ/2; S(k)− k >
√

ks(
√

k)}= (
√

k)ρ−1o(q(
√

k)). (11.92)

The second expectation on right hand side of (11.91) is not greater, up to a
constant factor, than the sum

E(S(k)− k)ρ/2P{η > s2(
√

k)}+E{ηρ/2; η > s2(
√

k)},

owing to the independence of S(n) and η . Again by Lemma 2.38,

E|S(k)− k|ρ/2 = O((
√

k)ρ/2) = O((
√

k)ρ−1/(
√

k)ρ/2−1) for all ρ > 0.

For all ρ > 0,

P{η > s2(
√

k)} ≤ (Eη) log2+2ε
√

k
k

,
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so

E(S(k)− k)ρ/2P{η > s2(
√

k)}= (
√

k)ρ−1O
( log2+2ε

√
k

(
√

k)ρ/2+1

)
= (
√

k)ρ−1o(q3(
√

k)) as k→ ∞.

If ρ > 1 then, due to the condition Eηρ/2 < ∞,

E{ηρ/2; η > s2(
√

k)}= o(1) = (
√

k)ρ−1o(1/(
√

k)ρ)

= (
√

k)ρ−1o(q4(
√

k)) as k→ ∞.

If ρ ∈ (0,1] then, due to the condition Eη log3+3ε(1+η)< ∞,

E{ηρ/2; η > s2(
√

k)} ≤ E{η log3+3ε
η ; η > s2(

√
k)}

(s2(
√

k))1−ρ/2 log3+3ε s2(
√

k)

= (
√

k)ρ−1o
( log(2−ρ)(1+ε)

√
k√

k log3+3ε(
√

k)

)
= (
√

k)ρ−1o(q5(
√

k)) as k→ ∞.

Altogether implies that

E{(S(k)+η(k))ρ/2; η(k)> s2(
√

k)}= (
√

k)ρ−1o(q(
√

k)). (11.93)

Substituting (11.92) and (11.93) into (11.91) we get (8.14).
Relations (11.87) and (11.88) now follow from Corollaries 8.22 and 8.25.

The processes {Zn} and {Yn}—defined in (11.22) and (11.23) respectively—
are formally different. But it is intuitively clear that the difference in their def-
initions should have no influence on their asymptotic behaviour. Let us show
how, in the case of identically distributed ζ (k) and non-positive η , one can
transfer asymptotics for one process into corresponding asymtotics for another
one. Indeed, if we define

W2k+1 := (W2k +ηk+1)
+, W2k+2 =

W2k+1

∑
i=1

ζk+1,i, k ≥ 0,

then Y0 =W0 = m implies that Yn =W2n and Zn =W2n+1 with Z0 = (m+η1)
+.

In the case of emigration process—where P{η ≤ 0} = 1—we have that the
sequence of events {Wk = 0} is increasing. If (11.87) is valid for every fixed
starting point Z0 then it is also valid for Z0 = (m+η)+. As a result, we have

P{Yn > 0 | Y0 = m} ∼
m

∑
j=1

P{m+η = j}P{Zn > 0 | Z0 = j}

∼ c(m)n−ρ/2.
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Furthermore, let {Zn = W2n+1} satisfy the conditions of Theorem 11.9. Then
it follows that

P{Zn ≤ k | Zn > 0}→ 0 as n→ ∞, for all k > 0. (11.94)

Recalling that Yn = ∑
Zn−1
i=1 ζn,i, it implies the following version of the weak law

of large numbers: for all ε > 0,

P
{∣∣∣ Yn

Zn−1
−1
∣∣∣> ε

∣∣∣ Zn−1 > 0
}
→ 0 as n→ ∞. (11.95)

This yields, due to (11.88),

P
{ 2Yn

nσ2 > u
∣∣∣ Zn−1 > 0

}
∼ Pz

{ 2Zn

nσ2 > u
∣∣∣ Zn−1 > 0

}
, u > 0.

We also have inequalities

P{Zn−1 > 0} ≥ P{Yn > 0} ≥ E[1−PZn−1{ζ = 0}].

Combining this with (11.95) we conclude that

P{Zn−1 > 0} ∼ P{Yn > 0} as n→ ∞.

Therefore,

P
{ 2Yn

nσ2 > u
∣∣∣ Yn > 0

}
→ e−u, u > 0.

If infk P{η(k) > 0} > 0 then 0 is not absorbing and, consequently, {Zn} is
irreducible. Then we can apply Theorem 8.2 to

√
Zn and derive the tail be-

haviour of the stationary measure of {Zn}: for any constants a < b we have

πZ(ak,bk)∼C
∫ √bk

√
ak

y1−ρ dy as k→ ∞.

It follows from Theorem 11.9 that {Zn} is positive recurrent when ρ > 2. In
this case we may apply also Theorem 8.17 and obtain tail asymptotics for Zn.

If ρ ∈ (0,2) then the pre-limiting behaviour of Zn is described in Theo-
rem 4.10. If ρ = 2 then, due to (11.87), {Zn} is also null-recurrent but its
behaviour is not covered by Theorem 4.10. Here we can apply Theorem 8.29.
Since G(x)∼ logx under the assumptions of Theorem 11.9, we conclude that

lim
n→∞

P
{

logZn

logn
≤ x
}
= x, x ∈ [0,1]. (11.96)
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11.4 Cramér–Lundberg risk processes with level-dependent
premium rate

In context of the collective theory of risk, the classical Cramér–Lundberg
model (Sparre Andersen model) is defined as follows. An insurance company
receives the constant inflow of premium at rate v, that is, the premium income
is assumed to be linear in time with rate v. It is also assumed that the claims in-
curred by the insurance company arrive according to a homogeneous renewal
process N(t) with intensity λ and the sizes (amounts) ξn ≥ 0 of the claims are
independent copies of a random variable ξ with finite mean. The ξ ’s are as-
sumed independent of the process N(t). The company has an initial risk reserve
x = R(0)≥ 0. Then the risk reserve R(t) at time t is equal to

R(t) = x+ vt−
N(t)

∑
i=1

ξi.

The probability

P{R(t)≥ 0 for all t ≥ 0}= P
{

min
t≥0

R(t)≥ 0
}

is the probability of ultimate survival and

ψ(x) := P{R(t)< 0 for some t ≥ 0}

= P
{

min
t≥0

R(t)< 0
}

is the probability of ruin. We have

ψ(x) = P
{N(t)

∑
i=1

ξi− vt > x for some t ≥ 0
}
.

Since v > 0, the ruin can only occur at a claim epoch. Therefore,

ψ(x) = P
{ n

∑
i=1

ξi− vTn > x for some n≥ 1
}
,

where Tn is the nth claim epoch, so that Tn = τ1 + . . .+ τn where the τk’s
are independent copies of a random variable τ with finite mean 1/λ , so that
N(t) := max{n ≥ 1 : Tn ≤ t}. Denote Xi := ξi− vτi and Sn := X1 + . . .+Xn,
then

ψ(x) = P
{

sup
n≥1

Sn > x
}
.
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This relation represents the ruin probability problem as the tail probability
problem for the maximum of the associated random walk {Sn}. Let the net-
profit condition

v > vc := Eξ/Eτ = λEξ

hold, thus {Sn} has a negative drift: ES1 =Eξ1−vEτ < 0. Hence, by the strong
law of large numbers Sn→−∞ a.s., so ψ(x) ↓ 0 as x→ ∞.

If v≤ vc then ψ(x) = 1 for all x.
The most classical case is when the distribution of X1 satisfies the following

well-known Cramér condition: there exists a β > 0 such that

EeβX1 = 1. (11.97)

Under this condition, the sequence eβSn is a martingale and, by the Doob max-
imal inequality, the following Lundberg’s inequality holds true

ψ(x) = P
{

sup
n≥1

eβSn > eβx
}
≤ e−βx, x > 0. (11.98)

If we additionally assume that

EX1eβX1 < ∞

and the distribution of X1 is non-lattice, then the Cramér–Lundberg approxi-
mation holds, that is, there exists a constant c0 ∈ (0,1) such that

ψ(x)∼ c0e−βx as x→ ∞, (11.99)

see e.g. Theorem VI.3.2 in Asmussen and Albrecher [2]; in the lattice case x
must be taken as a multiple of the lattice step. The most important feature of
these results is the fact that the upper bound (11.98) depends on the distribu-
tion of X1 only via the parameter β . If the moment condition (11.97) on the
distribution of X1 does not hold then the tail asymptotics for ψ(x) are typically
determined by the tail of the claim size ξ . The most prominent situation is
when the distribution of ξ is of subexponential type, see the discussion on the
maximum of random walk in Section 1.3.

The risk models with non-constant premium rates have also become rather
popular in the collective risk literature. There are two main approaches, one
of them leads to a Markovian model when the premium rate is a function of
the current level of the risk reserve R(t), see e.g. Asmussen and Albrecher
[2, Chapter VIII], Albrecher et al. [3], Boxma and Mandjes [26], Czarna et
al. [40], Marciniak and Palmowski [120]. The second approach considers the
premium rate that depends on the whole claims history, see e.g. Li, Ni, and
Constantinescu [117].
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In this section we follow the first approach and consider a risk process where
the premium rate v(y) depends on the current level of risk reserve R(t) = y, so
R(t) satisfies the equality

R(t) = x+
∫ t

0
v(R(s))ds−

N(t)

∑
j=1

ξ j; (11.100)

v(y) is assumed to be a bounded càdlàg function bounded away from zero
on each interval; as v is a càdlàd function, there are countably many at the
most discontinuity points of v, which together with boundedness of 1/v on
any interval implies by the Lebesgue–Vitali theorem that the function 1/v is
Riemann integrable. The probability of ruin given initial risk reserve x is again
denoted by ψ(x), it is a decreasing function of x as it is in the classical case.

Since the ruin can only occur at a claim epoch, the ruin probability may be
reduced to that for the embedded Markov chain Rn := R(Tn), n ≥ 1, R0 := x,
that is,

ψ(x) = P{Rn < 0 for some n≥ 0}.

In this section we consider the case where v(y) approaches the critical value
vc at infinity, that is,

v(y)→ vc as y→ ∞. (11.101)

Then the Markov chain {Rn} has asymptotically zero drift and, as follows from
Theorem 3.1, the ruin probability decays slower than any exponential function,
that is, for any λ > 0,

eλx
ψ(x)→ ∞ as x→ ∞.

The main goal in this section is to investigate how the rate of convergence in
(11.101) is reflected in how quickly the ruin probability ψ(x) is vanishing for
large x. Let us get some intuition on what kind of phenomena we could expect
here by considering a model where ψ(x) is known in closed form.

To the best of our knowledge, the only case where ψ(x) is explicitly calcu-
lable is the case of exponentially distributed τ and ξ , say with parameters λ

and µ respectively, so hence vc = λ/µ . In this case, for some c0 ∈ (0,1),

ψ(x) = c0

∫
∞

x

1
v(y)

exp
{
−µy+λ

∫ y

0

dz
v(z)

}
dy

= c0

∫
∞

x

1
v(y)

exp
{

λ

∫ y

0

( 1
v(z)
− 1

vc

)
dz
}

dy, (11.102)

provided the outer integral is convergent from 0 to infinity, see, e.g. Corollary
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1.9 in Albrecher and Asmussen [2, Ch. VIII]. Then, by (11.101),

ψ(x)∼ c0

vc

∫
∞

x
exp
{

λ

∫ y

0

( 1
v(z)
− 1

vc

)
dz
}

dy as x→ ∞.

If the premium rate v(z)≥ vc approaches vc at the rate of θ/z, θ > 0, more
precisely, if ∣∣∣v(z)− vc−

θ

z

∣∣∣≤ p(z) for all z > 1, (11.103)

where p(z)> 0 is an integrable at infinity decreasing function, then we get

1
v(z)

=
1
vc
− θ

v2
cz

+O(p(z)+ z−2)

and consequently

λ

∫ y

0

( 1
v(z)
− 1

vc

)
dz =−θ µ2

λ
logy+ c1 +o(1) as y→ ∞,

where c1 is a finite real. Let θ > λ/µ2. Then, for C := c0ec1/(θ µ−λ/µ)> 0,

ψ(x)∼ C
xθ µ2/λ−1

as x→ ∞. (11.104)

A similar asymptotic expression can be obtained also in the case where the
Laplace transforms of variables ξ1 and τ1 are rational functions, see Albrecher
et al. [3].

If the premium rate v(z) approaches vc at the rate of θ/zα , θ > 0 and α ∈
(0,1), more precisely, if∣∣∣v(z)− vc−

θ

zα

∣∣∣≤ p(z) for all z > 1, (11.105)

where p(z)> 0 is an integrable at infinity decreasing function, then we get

1
v(z)

=
1
vc

∞

∑
j=0

(
− θ

vc

) j 1
zα j +O(p(z)).

Let γ := min{k ∈ N : kα > 1}. Then

1
v(z)

=
1
vc

γ−1

∑
j=0

(
− θ

vc

) j 1
zα j +O(p1(z)),

where p1(z) = p(z)+ z−γα is integrable at infinity. Consequently, if 1/α is not
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integer, then

λ

∫ y

0

( 1
v(z)
− 1

vc

)
dz =

λ

vc

∫ y

1

γ−1

∑
j=1

(
− θ

vc

) j 1
zα j dz+ c2 +o(1)

=
λ

vc

γ−1

∑
j=1

(
− θ

vc

) j y1−α j

1−α j
+ c3 +o(1) as y→ ∞,

where c3 is a finite number because p1(x) is integrable. In the case of integer
1/α ,

λ

∫ y

0

( 1
v(z)
− 1

vc

)
dz

=
λ

vc

γ−2

∑
j=1

(
− θ

vc

) j y1−α j

1−α j
+

λ

vc

(
− θ

vc

)γ−1
logy+ c4 +o(1) as y→ ∞.

Let, for example, α ∈ (1/2,1). Then

λ

∫ y

0

( 1
v(z)
− 1

vc

)
dz =− θ µ2

λ (1−α)
y1−α + c3 +o(1) as y→ ∞.

Therefore, for C1 := c0ec3/θ µ > 0 and C2 := θ µ2/λ (1−α)> 0,

ψ(x)∼C1xα e−C2x1−α

as x→ ∞. (11.106)

Let us extend these results to not necessarily exponential distributions where
there are no closed form expressions like (11.102) available for ψ(x). In that
case we can only derive lower and upper bounds for ψ(x) which have the same
decay rate at infinity.

11.4.1 Approaching critical premium rate at rate of θ/x

Denote the jumps of the embedded Markov chain {Rn = R(Tn)} by ξ (x) and
by m[s(x)]

k (x) its kth truncated moment.
To avoid trivial case where ψ(x) = 0 for all sufficiently large x, we assume

that

ψ(x)> 0 for all x. (11.107)

A sufficient condition for that is that, for all x0 > 0 there exists an ε = ε(x0)> 0
such that

P{ξ (x)≤−ε}> ε for all x ∈ [0,x0].
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In its turn, for that it suffices to assume that the random variable ζ is un-
bounded, due to the inequality ξ (y) ≤ vτ − ζ which is valid for all y, where
v := supz>0 v(z).

Theorem 11.10. Assume (11.107) and that both Eξ 2 and Eτ2 are finite. If

θ >
Varξ + v2

cVarτ

2Eτ
,

then Rn is transient in the sense that ψ(x)< 1 for all sufficiently large x. Set

ρ = θ
2Eτ

Varξ + v2
cVarτ

−1 > 0.

If both Eτ2 log(1+ τ) and Eξ ρ+2 are finite, then there exist positive constants
c1 and c2 such that

c1

(1+ x)ρ
≤ ψ(x) ≤ c2

(1+ x)ρ
for all x > 0.

To prove this result we firstly need to establish some truncated moments
relations.

Proposition 11.11. Assume the rate of convergence (11.103) and that both
Eτ2

1 and Eξ 2
1 are finite. Then there exists an increasing function s(x) = o(x)

such that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ ρ +1
x

+o(p1(x)) as x→ ∞,

for some decreasing integrable function p1(x), where

ρ :=
2θEτ

Varξ + v2
cVarτ

−1.

If, in addition, both Eτ2 log(1+ τ) and Eξ 2 log(1+ ξ ) are finite, then there
exists an increasing function s(x) = o(x) such that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

=
ρ +1

x
+o(p2(x)) as x→ ∞,

for some decreasing integrable function p2(x).

Proof. The dynamics of the risk reserve between two consequent claims is
governed by the differential equation R′(t) = v(R(t)) where by R′ we mean the
right derivative of V . This equation is solvable in R because the function 1/v
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is Riemann integrable, due to the boundedness of 1/v and its right continuity.
Let Vx(t) denote its solution with the initial value x, so then

Vx(t) = x+
∫ t

0
v(Vx(s))ds.

By (11.103),

v(y)≤ vc +θ/y+ p(y)

≤ vc +θ/x+ p(x) for all y≥ x,

therefore

Vx(t)− x≤ vct +θ t/x+ p(x)t, t > 0. (11.108)

On the other hand, again by (11.103),

v(y)≥ vc +θ/y− p(y)

≥ vc +θ/y− p(x) for all y≥ x,

Hence,

Vx(t)− x≥ vct +θ

∫ t

0

ds
Vx(s)

− p(x)t

≥ vct +θ

∫ t

0

ds
x+(vc +θ/x+ p(x))s

− p(x)t

= vct +
θ

vc +θ/x+ p(x)
log
(
1+(vc +θ/x+ p(x))t/x

)
− p(x)t,

where the second inequality follows from the upper bound (11.108). Therefore,

Vx(t)− x≥ vct +
θ

vc +θ/x+ p(x)
log
(
1+ vct/x

)
− p(x)t. (11.109)

Since ξ (x) =Vx(τ)− x−ξ , it follows from (11.108) and (11.109) that

vcτ−ξ +
θ

vc +θ/x+ p(x)
log
(

1+
vcτ

x

)
− p(x)τ

≤ ξ (x) ≤ vcτ−ξ +
θτ

x
+ p(x)τ. (11.110)

Recalling that vc = Eξ/Eτ , we get

θ

vc +θ/x+ p(x)
E log

(
1+

vcτ

x

)
− p(x)Eτ ≤ m1(x) ≤

θ

x
Eτ + p(x)Eτ.

By the inequality log(1+ z)≥ z− z2/2 for z≥ 0,

E log
(

1+
vcτ

x

)
≥ vcEτ

x
− v2

cEτ2

2x2 .
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Therefore,

m1(x) =
θEτ

x
+O(p(x)+1/x2) as x→ ∞. (11.111)

From this expression we have

m2(x) = Varξ (x)+m2
1(x)

= Var(Vx(τ)− x−ξ )+O(p2(x)+1/x2)

= Var(Vx(τ)− x)+Varξ +O(p2(x)+1/x2) as x→ ∞.

Recalling that

vct− p(x)t ≤Vx(t)− x ≤ vct +
θ

x
t + p(x)t,

we get

(vc− p(x))Eτ ≤ E(Vx(τ)− x) ≤ (vc +θ/x+ p(x))Eτ

and

(vc− p(x))2Eτ
2 ≤ E(Vx(τ)− x)2 ≤ (vc +θ/x+ p(x))2Eτ

2.

Hence,

Var(Vx(τ)− x) = v2
cVarτ +O(1/x) as x→ ∞,

which in its turn implies

m2(x) = Varξ + v2
cVarτ +O(1/x) as x→ ∞. (11.112)

Together with (11.111) it yields that

2m1(x)
m2(x)

=
2θEτ

Varξ + v2
cVarτ

· 1
x
+O(p(x)+1/x2) as x→ ∞.

Recall that we need such kind of expansion for the truncated moments. For
any truncation level s(x) we have

|Vx(τ)− x−ξ |I{|Vx(τ)− x−ξ |> s(x)}
≤ (Vx(τ)− x+ξ )I{Vx(τ)− x > s(x) or ξ > s(x)}
≤ (Vx(τ)− x)I{Vx(τ)− x > s(x)}+ξ I{ξ > s(x)}

+ξ I{Vx(τ)− x > s(x)}+(Vx(τ)− x)I{ξ > s(x)}. (11.113)

Since Vx(t)− x≤ vt where v = supz v(z)< ∞, we get

|m1(x)−m[s(x)]
1 | ≤ E{|Vx(τ)− x−ξ |; |Vx(τ)− x−ξ |> s(x)}

≤ vE{τ; τ > s(x)/v}+E{ξ ;ξ > s(x)}
+EξP{τ > s(x)/v}+ vEτP{ξ > s(x)}.
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It follows from the finiteness of Eτ2 and Eξ 2 that there exists an increasing
function s1(x) = o(x) such that both E{τ; τ > s1(x)/v} and E{ξ ; ξ > s1(x)}
are integrable, see Lemma 2.33. Consequently, |m1(x)−m[s1(x)]

1 (x)| is bounded
by a decreasing integrable function. Combining this with (11.111), we con-
clude that

m[s1(x)]
1 (x) =

θEτ

x
+o(p2(x)) as x→ ∞, (11.114)

where p2 is a decreasing integrable function.
It follows from (11.112) and (11.114) that

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥
2m[s(x)]

1 (x)
m2(x)

≥ 1+ρ

x
+o(p3(x)) as x→ ∞,

and the first result follows.
Similar to (11.113),

(Vx(τ)− x−ξ )2I{|Vx(τ)− x−ξ |> s(x)}
≤ 2[(Vx(τ)− x)2 +ξ

2]I{Vx(τ)− x > s(x) or ξ > s(x)}
≤ 2(Vx(τ)− x)2I{Vx(τ)− x > s(x)}+2ξ

2I{ξ > s(x)}
+2ξ

2I{Vx(τ)− x > s(x)}+2(Vx(τ)− x)2I{ξ > s(x)}.

Then, due to the upper bound Vx(t)− x≤ vt, for some c2 < ∞,

0 ≤ m2(x)−m[s(x)]
2 (x) = E{(Vx(τ)− x−ξ )2; |Vx(τ)− x−ξ |> s(x)}

≤ c2

(
E{τ2; τ > s(x)/v}+E{ξ 2; ξ > s(x)}

+Eξ
2P{τ > s(x)/v}+Eτ

2P{ξ > s(x)}
)
.

It follows from the finiteness of Eξ 2 log(1+ ξ ) and Eτ2 log(1+ τ) that there
exists an increasing function s2(x)= o(x) such that both x−1E{τ2; τ > s2(x)/v}
and x−1E{ξ 2; ξ > s2(x)} are integrable at infinity, see Lemma 2.36. Then
(m2(x)−m[s2(x)]

2 (x))/x is integrable too. From this fact and (11.112) we get

m[s2(x)]
2 (x) = Varξ + v2

cVarτ +o(xp4(x)) as x→ ∞, (11.115)

for some decreasing function p4(x) integrable at infinity. Taking now s(x) =
max(s1(x),s2(x)) = o(x) we conclude the desired result from (11.114) and
(11.115).

Proof of Theorem 11.10. By Proposition 11.11,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

≥ 1+ ε

x
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for some small ε and for all x≥ x0(ε). Furthermore, from the elementary bound
P{ξ (x) < −s(x)} ≤ P{ξ > s(x)} and the finiteness of Eξ 2 we infer that, for
some increasing function s(x) = o(x),

P{ξ (x)<−s(x)} ≤ p(x)/x,

where p(x) is a decreasing integrable at infinity function, see Lemma 2.33. In
addition, there exists a sufficiently large x0 such that the Markov chain {Rn}
dominates above the level x0 a similar Markov chain generated by a risk pro-
cess with constant premium rate vc. The latter represents a zero-drift random
walk which is null-recurrent and hence satisfying the condition (2.100). Thus,
all the conditions of Theorem 2.21 are valid and, consequently,

Px{Rn > x0 for all n} → 1 as x→ ∞,

which implies the first conclusion of the theorem.
To prove the second part of the theorem, let us firstly show that all conditions

of Theorem 3.2 hold true. The conditions (3.9)–(3.11) are valid for {Rn} with
r(x) = (ρ+1)/(x+1) as follows from Proposition 11.11. For this r(x) we have
U(x) = 1/ρ(x+1)ρ for x > 0 and U(x) = 1/ρ for x≤ 0. The condition (3.14)
on the right tail of ξ (x) holds because

P{ξ (x)> s(x)} ≤ P{Vx(τ)− x > s(x)}
≤ P{τ > s(x)/v} = o(p(x)/x) as x→ ∞,

due to the assumption Eτ2 < ∞, see Lemma 2.33, and due to the relation
U(x)∼ xe−R(x)/ρ . By the same argument, the condition (3.15) holds because

E{U(x+ξ (x)); ξ (x)<−s(x)} ≤ cP{ξ (x)<−s(x)}
≤ cP{ξ > s(x)}
= o(p(x)/xρ+1) as x→ ∞,

due to the assumption Eξ ρ+2 < ∞, again by Lemma 2.33. Obviously,

|ξ (x)| ≤Vx(τ)− x+ξ ≤ c1τ +ξ =: Ξ,

where Ξ is square integrable, so by Lemma 2.27 with α = 1 and γ = 2, the
condition (3.13) on the third truncated moment is also met for {Rn}.

Hence, Theorem 3.2 applies, thus we conclude a lower bound, for some
x̂≥ 0 and c > 0,

Px{Rn ≤ x̂ for some n} ≥ cU(x) for all x≥ x̂,

and hence the second conclusion of theorem follows, because by the strong
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Markov property, for all x > 0,

ψ(x) = Px{Rn < 0 for some n} ≥ Px{Rn ≤ x̂ for some n} inf
y∈[0,x̂]

ψ(y)

≥ cU(x)ψ(x̂), (11.116)

since the ψ(x) is decreasing; here ψ(xλ )> 0 owing to the condition (11.107).

11.4.2 Approaching critical premium rate at the rate of θ/xα

In this subsection we consider the case (11.105) with some α ∈ (0,1). Define

γ : = min{k ≥ 1 : αk > 1}.

The main result in this subsection is as follows.

Theorem 11.12. Assume (11.107) and the rate of convergence (11.105). Let
Eτγ+1 < ∞ and Eerξ 1−α

< ∞ for some

r >
r1

1−α
,

where

r1 :=
2θEτ

Varξ + v2
cVarτ

. (11.117)

Then there exist constants r2, r3, . . . , rγ−1 ∈R, defined recursively in the proof
below, and 0 <C1 <C2 < ∞ such that

(i) if α = 1/(γ−1) for an integer γ ≥ 2, then, for all x > 1,

C1xα

xrγ−1
exp

{
−

γ−2

∑
j=1

r j

1−α j
x1−α j

}
≤ ψ(x)

≤ C2xα

xrγ−1
exp

{
−

γ−2

∑
j=1

r j

1−α j
x1−α j

}
,

(11.118)

(ii) if α < 1/(γ−1) then

C1xα exp

{
−

γ−1

∑
j=1

r j

1−α j
x1−α j

}
≤ ψ(x)

≤C2xα exp

{
−

γ−1

∑
j=1

r j

1−α j
x1−α j

}
.

(11.119)



11.4 Risk processes 383

As seen from these bounds, the ruin probability is decaying, roughly speak-
ing, as a Weibullian distribution with shape parameter 1−α . However further
terms in the exponent are needed to make lower and upper bounds precise up
to a constant multiplier.

To prove these bounds for the ruin probability under the rate of approaching
the critical value vc (11.105), we firstly derive asymptotic estimates for the
moments of Vx(τ)− x.

Lemma 11.13. Let Eτγ < ∞ and

v−(x)≤ v(x) ≤ v+(x) for all x, (11.120)

where both v−(x) and v+(x) are decreasing functions. Then, for all k ≤ γ ,

Eτ
kv−(x+ τv+(x)) ≤ E(Vx(τ)− x)k ≤ vk

+(x)Eτ
k. (11.121)

If, in addition, Eτγ+1−α < ∞ and (11.105) holds true, then there exists an
integrable decreasing function p1(x) such that, for all k ≤ γ ,

E(Vx(τ)− x)k = (vc +θ/xα)kEτ
k +O(p1(x)) as x→ ∞. (11.122)

Proof. Due to (11.120), v(z)≤ v+(x) for all z≥ x. Hence,

Vx(t) = x+
∫ t

0
v(Vx(s))ds

≤ x+
∫ t

0
v+(x)ds = x+ tv+(x), (11.123)

and the inequality on the right hand side of (11.121) follows. It follows from
the left hand side inequality in (11.120) and from the last upper bound for Vx(t)
that

Vx(t)− x≥
∫ t

0
v−(Vx(t))ds ≥ tv−(x+ tv+(x)), (11.124)

and the left hand side bound in (11.121) is proven.
Owing to (11.105), v(z) is sandwiched between the two eventually decreas-

ing functions v±(z) := vc + θ/zα ± p(z). Therefore, applying the right hand
side bound in (11.121) we get

E(Vx(τ)− x)k ≤ (vc +θ/xα + p(x))kEτ
k

= (vc +θ/xα)kEτ
k +O(p(x)) as x→ ∞. (11.125)

From the lower bound in (11.121) we deduce, for all k ≤ γ ,

E(Vx(τ)− x)k ≥ Eτ
k
(

vc +
θ

(x+ τv+(x))α
− p(x)

)k

≥ Eτ
k
(

vc +
θ

(x+ vτ)α

)k
+O(p(x)), v = sup

z
v(z)< ∞.
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By the inequality 1/(1+ y)α ≥ 1−αy∧1, we infer that, for c2 = αv,

1
(x+ vt)α

≥ 1
xα

(
1− c2t

x
∧1
)
.

Therefore, for all k ≤ γ ,

E(Vx(τ)− x)k

≥ Eτ
k
(

vc +
θ

xα
− c2θτ

xα+1 I{τ ≤ x/c2}−
1

xα
I{τ > x/c2}

)k
+O(p(x))

≥
(

vc +
θ

xα

)k
Eτ

k− c3

xα
E{τk; τ > x/c2}

−c3

k

∑
j=1

1
x j(α+1)E{τ

k+ j; τ ≤ x/c2}− c3 p(x), (11.126)

for some c3 < ∞. Then, due to the integrability of p(x), in order to prove that

E(Vx(τ)− x)k ≥ (vc +θ/xα)kEτ
k− p1(x) (11.127)

for some decreasing integrable function p1(x), it suffices to show that

x−αE{τγ ; τ > x}

and

x− j(α+1)E{τγ+ j; τ ≤ x}

are bounded by decreasing integrable at infinity functions. Indeed, the integral
of the first function—which decreases itself—is finite due to the finiteness of
the (γ +1−α) moment of τ . Concerning the second function, first notice that

x− j(α+1)E{τγ+ j; τ ≤ x} ≤ E{τγ+1; τ ≤ x}
x1+α

, j ≥ 1.

The right hand side is bounded by a decreasing integrable at infinity function
due to the moment condition on τ and Lemma 2.27. So, (11.127) is proven
which together with (11.125) completes the proof.

Proposition 11.14. Assume the rate of convergence (11.105). If both Eτ1+γ

and Eξ 1+γ are finite, then there exists s(x) = o(xα) such that, for all k ≤ γ ,

m[s(x)]
k (x) =

k

∑
j=0

ak, j

xα j +O(xα(k−1)p2(x)) as x→ ∞,

where p2(x) is a decreasing integrable at infinity function and

ak, j :=
(

k
j

)
θ

jEτ
j(vcτ−ξ )k− j, j ≤ k ≤ γ.
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Proof. It follows from the definition of ξ (x) that

Eξ
k(x) = E(Vx(τ)− x−ξ )k =

k

∑
i=0

(
k
i

)
E(Vx(τ)− x)iE(−ξ )k−i.

Applying Lemma 11.13, we then obtain

mk(x) := Eξ
k(x)

=
k

∑
i=0

(
k
i

)(
vc +

θ

xα

)i
Eτ

iE(−ξ )k−i +O(p1(x))

=
k

∑
i=0

(
k
i

)
Eτ

iE(−ξ )k−i
i

∑
j=0

(
i
j

)
vi− j

c

(
θ

xα

) j
+O(p1(x))

=:
k

∑
j=0

ak, j

xα j +O(p1(x)) as x→ ∞,

where

ak, j :=
(

k
j

)
θ

j
k

∑
i= j

(
k− j
i− j

)
Eτ

iE(−ξ )k−ivi− j
c

=

(
k
j

)
θ

jE
k− j

∑
i=0

(
k− j

i

)
τ

i+ j(−ξ )k− j−ivi
c

=

(
k
j

)
θ

jEτ
j(vcτ−ξ )k− j.

Now, in view of (11.113) we have

|mk(x)−m[s(x)]
k (x)|

= O
(
E{(Vx(τ)− x)k; Vx(τ)− x > s(x)}+E{ξ k;ξ > s(x)}

+ Eξ
kP{Vx(τ)− x > s(x)}+E(Vx(τ)− x)kP{ξ > s(x)}

)
= O

(
E{τk; τ > s(x)/v}+E{ξ k;ξ > s(x)}

)
as x→ ∞.

Since Eτγ+1 < ∞, for all k ≤ γ ,

x−α(k−1)E{τk; τ > s(x)/v}= o(1/xα(k−1)sγ+1−k(x))

= o(1/sγ(x)) as x→ ∞,

for any s(x) = o(xα). By the definition of the γ , αγ > 1. Therefore, for an
increasing function s(x) = xα/ logx of order o(xα), the function 1/sγ(x) is
integrable at infinity. The same arguments work for ξ , hence the function
x−α(k−1)|mk(x)−m[s(x)]

k (x)| is dominated by a decreasing integrable at infin-
ity function, and the proof is complete.
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Proof of Theorem 11.12. We first show that there exist constants r1, r2, . . . ,
rγ−1 such that the function

r(x) :=
γ−1

∑
j=1

r j

(b+ x)α j

satisfies (3.45); here b is a positive number. We can determine all these num-
bers recursively. Indeed, as proven in Proposition 11.14,

m[s(x)]
1 (x) =

θEτ

xα
+o(p2(x)) as x→ ∞

and

m[s(x)]
2 (x) = Varξ + v2

cVarτ +O(x−α) as x→ ∞.

For r1 defined defined in (11.117),

−m[s(x)]
1 (x)+

γ

∑
j=2

(−1) j m[s(x)]
j (x)

j!
r j−1(x) = O(x−2α) as x→ ∞,

for any choice of r2, r3, . . . , rγ−1. Then we can choose r2 such that the coeffi-
cient of x−2α is also zero,

r2 =
E(vcτ−ξ )3r2

1/3−2θEτ(vcτ−ξ )r1

Varξ + v2
cVarτ

,

and so on. It is clear that the numbers r1, r2, . . . , rγ−1 do not depend on the pa-
rameter b. Therefore, we can take b so large that the function r(x) is decreasing
on [0,∞). The conditions (3.44) and (3.46) are satisfied for r(x).

We have

U(x) =
∫

∞

x
exp
{
−
∫ y

0

γ−1

∑
j=1

r j

(b+ z)α j dz
}

dy.

The conditions (3.47), (3.48) and (3.49) are immediate from the moment as-
sumptions on τ and ξ . Thus, the announced bounds for the ruin probability
follow from Theorem 3.10, as in (11.116).

11.5 Stochastic difference equations: approach via
asymptotically homogeneous chains

Let (An,Bn) be a sequence of independent identically distributed random vec-
tors in (R+)2 and let R0 be independent of them. Consider a stochastic linear
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recursion

Rn = AnRn−1 +Bn, n≥ 1, (11.128)

with starting point R0. The sequence {Rn} is a Markov chain. The assumption
Bn ≥ 0 is by far not standard but we choose it, because non-negative stochas-
tic difference equations allow us a more straightforward analysis via Markov
chains on R+.

We also assume that P{A1 > 1}> 0 which guarantees that

P
{

limsup
n→∞

Rn = ∞

}
= 1.

It is immediate from (11.128) that

Rn = R0

n

∏
j=1

A j +
n

∑
k=1

Bk

n

∏
j=k+1

A j, n≥ 1.

Then, for every n≥ 1, the distribution of the variable Rn coincides with that of

Dn := R0

n

∏
j=1

A j +
n

∑
k=1

Bk

k−1

∏
j=1

A j, (11.129)

which is called a perpetuity. The coincidence of marginal distributions is not
the only connection between sequences {Rn} and {Dn}. Vervaat [147] has
shown that the Markov chain {Rn} is positive recurrent if and only if

D∞ :=
∞

∑
k=1

Bk

k−1

∏
j=1

A j < ∞ a.s.

In this case, the sequence {Rn} converges weakly to the distribution of D∞ and,
furthermore, this distribution is a unique solution to a fixed point equation

D∞

d
= A1D′∞ +B1,

where D′∞ is independent of (A1,B1) and D′∞ and D∞ are identically distributed.
We are going to show how one can determine the asymptotic behaviour of

the invariant distribution of {Rn} by using results from Chapter 10. First we no-
tice that the chain {Rn} is not asymptotically homogeneous in space. In order
to transform it to an asymptotically homogeneous chain we define a function

f (x) :=
{

logx for x≥ e,
x/e for x ∈ [0,e],

(11.130)

so f (x) :R+→R+ is a continuous strictly increasing function such that f (x)≥
logx for all x≥ 0. Since f (x) is strictly increasing, the sequence

Xn = f (Rn), n≥ 0, (11.131)



388 Applications

is a Markov chain on the state space R+. Let ξ (x) denote the jumps of this
chain. It is immediate from the definition of f (x) that, for all x≥ 1,

ξ (x) =

{
log(A1 + e−xB1) , if A1ex +B1 ≥ e,
A1ex+B1

e − x, if A1ex +B1 ∈ [0,e].
(11.132)

Therefore,

ξ (x)⇒ logA1 ∈ [−∞,∞),

that is, {Xn} is asymptotically homogeneous. Furthermore,

P{Rn > x}= P{Dn > x}= P{Xn > logx}, x≥ e. (11.133)

11.5.1 Positive recurrent case

If E logA1 ∈ [−∞,0) then, according to Lemma 1.7 in [147], D∞ < ∞ provided
E log(1+B1) < ∞. In the following theorem we describe the asymptotic be-
haviour of the distribution of D∞, which is also a stationary distribution for the
chain {Rn}.

Theorem 11.15. Suppose that EAβ

1 = 1 for some β > 0 and E(A1+B1)
β < ∞.

Then

logP{D∞ > x} ∼ −β logx as x→ ∞. (11.134)

If, in addition,

E(log+(A1 +B1))(A1 +B1)
β < ∞. (11.135)

and the distribution of logA1 is non-lattice then, for some c > 0,

P{D∞ > x} ∼ c
xβ

as x→ ∞. (11.136)

Proof. The logarithmic asymptotics follow from the asymptotic homogenuity
of the chain {Xn = f (Dn)} and Theorem 10.7.

It follows from (11.132) that

ξ (x)≤ log+(A1 +B1), x≥ 1.

For x≤ 1 we have

ξ (x)≤ f (A1ex+B1)≤ 1+ log+(A1 +B1).

As a result,

ξ (x) ≤ Ξ := 1+ log+(A1 +B1) for all x≥ 0, (11.137)
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and EΞeβΞ < ∞. Thus, to apply Theorem 10.8, it is sufficient to check that
|Eeβξ (x)−1| is dominated by a decreasing integrable function.

Using (11.132), we get the following lower bound, for all x > 1,

Eeβξ (x) ≥ E{(A1 + e−xB1)
β ; A1 + e−xB1 > e1−x}

≥ EAβ

1 −E{(A1 + e−xB1)
β ; A1 + e−xB1 ≤ e1−x}

≥ 1− eβ−βx.

To obtain an upper bound, we first notice that, for all x > 1,

Eeβξ (x) = E{eβξ (x); ξ (x)≤ 1− x}+E{eβξ (x); ξ (x)> 1− x}
≤ eβ−βx +E{(A1 + e−xB1)

β ; A1 + e−xB1 > e1−x}
≤ eβ−βx +E(A1 + e−xB1)

β .

If β ≤ 1 then (u+ v)β ≤ uβ + vβ for all u, v ≥ 0. Set u = A1 and v = e−xB1,
then

Eeβξ (x) ≤ EAβ

1 +(eβ +EBβ

1 )e
−βx.

If β > 1 then

(u+ v)β ≤ uβ +βv(u+ v)β−1

≤ uβ + cβ vuβ−1 + cβ vβ ,

where cβ = β2β−1. Therefore,

Eeβξ (x) ≤ EAβ

1 +(eβ + cβEBβ

1 )e
−βx + cβ e−xEAβ−1

1 B1

= 1+(eβ + cβEBβ

1 )e
−βx + cβ e−xEAβ−1

1 B1,

where EAβ−1
1 B1 < ∞, because

Aβ−1
1 B1 ≤ (A1 +B1)

β−1(A1 +B1) = (A1 +B1)
β .

As a result,

|Eeβξ (x)−1|= O
(
e−(1∧β )x),

which completes the proof.

11.5.2 Null-recurrent case

As mentioned above, the distribution of Rn is the same as that of Dn defined in
(11.129). The sequence Dn dominates an increasing sequence

Tn :=
n

∑
k=1

Bk

k−1

∏
j=1

A j.
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If E logA1 = 0 then Sn := logA1 + . . .+ logAn is an oscillating random walk,
so Sn > 0 infinitely often with probability 1. Equivalently,

k−1

∏
j=1

A j > 1 infinitely often with probability 1,

which implies convergence Tn→∞ as n→∞ with probability 1. Hence, in the
case E logA1 = 0,

Rn→ ∞ in probability as n→ ∞. (11.138)

Theorem 11.16. Assume that E logA1 = 0, σ2 :=E log2 A1 ∈ (0,∞), and E log2 B1 <

∞. Then
logRn√

σ2n
⇒ |η | as n→ ∞,

where η has a standard normal distribution. In addition, the process

logR[tn]√
σ2n

, t ∈ [0,1],

converges weakly in D[0,1] to a Bessel process with drift 0 and diffusion coef-
ficient 1 as n→ ∞, that is, to a reflected Brownian motion |B(t)|.

Proof. Note that the weak convergence of logRn√
σ2n

to |η | is equivalent to the

weak convergence of X2
n

σ2n = f 2(Rn)
σ2n towards η2. Since η2 is Γ-distributed with

parameters 1/2 and 1/2, the desired convergence would be proven if it was
shown that the conditions of Theorem 4.10 hold with µ = 0. Then automati-
cally the functional convergence follows too, see Theorem 4.11.

We start by construction of a square integrable majorant for the jumps ξ (x).
It follows from the definition of f (x) that

ξ (x) = f (A1ex +B1)− x≥ log(A1ex +B1)− x≥ logA1,

because B1 ≥ 0. Furthermore, according to (11.137),

ξ (x)≤ 1+ log+(A1 +B1).

From these two inequalities we infer that

|ξ (x)|2 ≤ 2
(
1+ log2 A1 + log2(A1 +B1)

)
.

Since the random variable on the right hand side is integrable, we have con-
structed a suitable majorant.

Recalling that ξ (x)⇒ logA1 and using the Lebesgue theorem, we infer that

m2(x) = Eξ
2(x) → E log2 A1 = σ

2 as x→ ∞.
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Therefore, it remains to determine the asymptotic behaviour of m1(x) =Eξ (x).
We start with the following decomposition, for all x > 1,

Eξ (x) = E f (A1ex +B1)− x

= E{log(A1 + e−xB1); A1ex +B1 > e}

+E
{A1ex +B1

e
− x; A1ex +B1 ≤ e

}
.

Hence the following upper bound∣∣Eξ (x)−E log(A1 + e−xB1)
∣∣

≤
∣∣∣E{log(A1 + e−xB1)+

A1ex +B1

e
− x; A1ex +B1 ≤ e

}∣∣∣.
We have, by the positivity of B1,

E{| log(A1 + e−xB1)|; A1ex +B1 ≤ e}
= E{| log(A1 + e−xB1)|; log(A1 + e−xB1)≤ 1− x}
≤ E{| logA1|; logA1 ≤ 1− x}
= o(p1(x))

and, since A1ex+B1
e − x ∈ [−x,1− x] if A1ex +B1 ≤ e,

E
{∣∣∣A1ex +B1

e
− x
∣∣∣; A1ex +B1 ≤ e

}
≤ xP{logA1 ≤ 1− x}

= o(p1(x))

for some decreasing integrable at infinity functions p1(x), due to the assump-
tion E log2 A1 < ∞, see Lemma 2.33. Therefore,∣∣Eξ (x)−E log(A1 + e−xB1)

∣∣= o(p1(x)) as x→ ∞. (11.139)

By the assumption E logA1 = 0,

E log(A1 + e−xB1) = E logA1 +E log(1+ e−xB1/A1)

= E{log(1+ e−xB1/A1); B1/A1 ≤ ex/2}
+E{log(1+ e−xB1/A1); B1/A1 ∈ (ex/2,ex]}
+E{log(1+ e−xB1/A1); B1/A1 > ex}

=: E1 +E2 +E3.

Using the inequality log(1+ u) ≤ u we derive E1 ≤ log(1+ e−x/2) ≤ e−x/2.
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Next,

E2 ≤ (log2)P{B1/A1 > ex/2}
≤ P{logB1− logA1 > x/2}
≤ P{logB1 > x/4}+P{− logA1 > x/4}
= o(p2(x)) as x→ ∞,

for some decreasing integrable at infinity function p2(x), due to the assump-
tions E log2 A1 < ∞ and E log2 B1 < ∞, see Lemma 2.33. Finally, by the same
moment conditions,

E3 ≤ E{log(2B1/A1); log(B1/A1)> x} = o(p3(x)) as x→ ∞,

for some decreasing integrable at infinity function p3(x), see Lemma 2.33.
Combining altogether, we obtain

m1(x) = o(p4(x)). (11.140)

for some decreasing integrable at infinity function p4(x). Thus, all moment
conditions of Theorem 4.10 are met with µ = 0. Together with the convergence
to infinity (11.138) this completes the proof.

Theorem 11.17. Under the conditions of Theorem 11.16, the chain {Rn} is
null recurrent. In addition, if πR is an invariant measure of {Rn} satisfying
πR[0,x]< ∞ for all x, then

πR(x1,x2] ∼ c log(x2/x1)

as x1, x2→ ∞ in such a way that

1 < liminf
logx2

logx1
≤ limsup

logx2

logx1
< ∞.

Proof. We start with checking the moment condition of Corollary 2.16 for
{Xn}. It follows from the existence of a square integrable majorant for the
family of jumps that, for any s(x)→ ∞,

m[s(x)]
2 (x) → σ

2 > 0 as x→ ∞,

and that there exists an s(x) = o(x) such that

E{|ξ (x)|; |ξ (x)| ≥ s(x)}= o(p5(x)) as x→ ∞, (11.141)

for some decreasing, integrable at infinity function p5(x), see Lemma 2.33.
Together with (11.140) it implies that

m[s(x)]
1 (x) = o(p4(x)+ p5(x)), (11.142)
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and, hence,

2m[s(x)]
1 (x)

m[s(x)]
2 (x)

= o(p4(x)+ p5(x)) = o(1/x) as x→ ∞.

Thus, applying Corollary 2.16, we conclude that the chain Xn = f (Rn) is null
recurrent. Consequently, {Rn} is null recurrent as well.

Furthermore, (11.142) and m[s(x)]
2 (x)→ σ2 imply that the function U(x) de-

fined in (8.9) has asymptotically linear growth, U(x) ∼ Cx as x→ ∞. Notice
that the chain {Xn} satisfies the moment conditions (8.12), (8.13), and (8.14)
from Theorem 8.2. Indeed, the condition (8.12) is immediate from the exis-
tence of a square integrable majorant, For the same reason, the condition (8.13)
follows from Lemma 2.27 with α = 1 and γ = 2. The condition (8.14) follows
from (11.141) and from the fact that U(x)∼Cx.

Then it follows from Theorem 8.2 that the stationary measure of {Xn} has a
linear growth:

πX (y1,y2)∼ c(y2− y1)

provided y1, y2→ ∞ in such a way that

1 < liminf
y2

y1
≤ limsup

y2

y1
< ∞.

But it is clear that πR(x1,x2] = πX (logx1, logx2] for all x1 < x2 sufficiently large
and the proof is complete.

11.6 Application to the ALOHA network

We also illustrate the results with the Markov chain arising from the model of
the original ALOHA packet switching network, originally proposed by Abram-
son [1], and which was indeed a motivation for Borovkov, Fayolle and Kor-
shunov [25]. Let us first briefly recall the salient features of the system.

(a) A single error-free channel is shared among an infinite population of
users (or stations), which retransmit messages of constant length (packets).
Time is slotted and may be considered discrete. Users are syncronised with
respect to the slots, so that packets are transmitted at the beginning of slots
only. Each slot is equal to the time required to transmit a packet.

(b) Each transmission is within reception range of every user. When more
than one user transmits simultaneously, packets collide (interfere) and none
is received correctly. These collisions are treated as transmission errors, the
corresponding users (stations) become blocked, and each user must strive to
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retransmit its colliding packet until it is correctly received. The users all em-
ploy the same algorithm for this purpose and have to resolve the contention
without the benefit of any other source of information on other user’s activity
save the common channel.

(c) Each user with a colliding packet will repeatedly transmit each time with
a certain probability, until it hits a free slot and thus succeeds.

The main drawback of the ALOHA protocol described above is that, left to
their own devices, the nodes congest the channel which, in the absence of addi-
tional control, is non-ergodic. The approach suggested by Lam and Kleinrock
in [110] was to let retransmission probabilities be a function of the number of
blocked stations at time t. Such a retransmission control policy can stabilise
the channel.

Let An be the number of new packets generated by the stations which are not
blocked during the nth slot. We shall assume the An, n≥ 1, form a sequence of
independent identically distributed random variables, with P{A1 = k}= p(k),
k ≥ 0, and finite expectation. Let Xn, n ≥ 0, be the number of blocked sta-
tions at time n (i.e. observed at the beginning of the nth slot) and f (Xn) the
probability that a blocked station retransmits during this nth slot; so we con-
sider centralised ALOHA algorithm where information about the number of
blocked stations is available to the stations. Given Xn = k, the random number
of messages in the nth slot has a binomial distribution with success probability
f (k). Hence, {Xn} forms a Markov chain with transition probabilities

P(0, j) =
{

p(0)+ p(1) for j = 0;
p( j) for j ≥ 2,

and, for i≥ 1,

P(i, j) =


p(0)i f (i)(1− f (i))i−1 for j = i−1;
p(1)(1− f (i))i for j = i;
p(1)(1− (1− f (i))i) for j = i+1
p( j− i) for j ≥ i+2.

Define the quantity

q(k) = p(0)k f (k)(1− f (k))k−1 + p(1)(1− f (k))k, (11.143)

which represents the probability of successful transmission in the nth slot,
given the event Xn = k. Clearly, if

EA1 < liminf
k→∞

q(k),

then {Xn} is positive recurrent and possesses a probabilistic invariant measure.



11.6 ALOHA 395

If

EA1 > limsup
k→∞

q(k),

then {Xn} is transient.
Our goal is to describe the asymptotic behaviour of {Xn} in the asymptoti-

cally zero drift case. Assume that, for all sufficiently large k,

f (k) = f/k for some f > 0. (11.144)

Then (11.143) gives the following limiting probability of successful transmis-
sion:

q = lim
k→∞

q(k) = e− f ( f p(0)+ p(1)). (11.145)

Its maximal value p(0)ep(1)/p(0)−1 is attained at f = 1− p(1)/p(0).
By direct computation, the first and second moments of the jumps of {Xn}

are equal to

m1(k) = EA1−q+µ/k+O(1/k2), (11.146)

m2(k) = b+O(1/k) as k→ ∞, (11.147)

where

µ =
f 2e− f

2
[p(1)+ p0( f −2)], b = EA2

1 +(p(0) f − p(1))e− f .

It can never happen that µ ≤−b/2 because

e f (2µ +b) = f 2[p(1)+ p0( f −2)]+ e fEA2
1 +(p(0) f − p(1))

≥ f 2[p(1)+ p0( f −2)]+(1+ f )p(1)+(p(0) f − p(1))

= ( f 2 + f )p(1)+ p0 f ( f −1)2 > 0.

Theorem 11.18. Let EA1 = q. Then the Markov chain {Xn} of the ALOHA
protocol is non-ergodic and the following main situations can take place:

(i) If µ > b/2 then {Xn} is transient;
(ii) If −b/2 < µ < b/2 then {Xn} is null recurrent.
In addition, X2

n /n converges weakly as n→ ∞ to a Γ1/2+µ/b,2b-distribution
and, moreover, the process

logX[tn]√
bn

, t ∈ [0,1],

converges weakly in D[0,1] to a Bessel process with drift µ/bx and diffusion
coefficient 1 as n→ ∞.
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Proof. It is immediate from Corollaries 2.19, 2.16 and Theorems 4.10 and
4.11.

11.7 Comments to Chapter 11

11.7.1 Cramér–Lundberg risk processes with level-dependent
premium rate

This section is based on Denisov et al [45].

11.7.2 Near-critical branching processes

Apparently Lamperti [114] was the first who applied Markov chains to the
study of branching processes and, in particular, Markov chains with asymptoti-
cally zero drift, see [115]. The use of square root transform for critical Galton–
Watson branching processes has been suggested by Nagaev and Wachtel in
[131].

Kersting [92] has studied transience and recurrence criteria for sequences of
the form Xn+1 =Xn+g(Xn)+ξn+1 where {ξk} are square integrable martingale
differences. It is worth mentioning that state-dependent branching processes
with migration—which were considered in Section 11.3—can be represented
in this form.

For state-dependent processes without migration the weak convergence to a
Γ-distribution has been obtained in several papers. Klebaner [98] has shown
this convergence for processes satisfying maxk≥1Eζ m(k) < ∞ for all m ≥ 1.
Höpfner [81] has proved the same result under weaker moment assumptions.
He has shown that (11.61) holds for processes satisfying Eζ (k) = 1+ a/k,
|σ2(k)− σ2| = O(1) and maxk≥1Eζ 2(k) log(1+ ζ (k)) < ∞. Restrictions in
Theorem 11.6 are significantly weaker than those in the papers cited above.

Convergence of critical branching processes with immigration to a Γ-distri-
bution has been first proven by Seneta [140]. More precisely, he has shown
that if ζ (k) are identically distributed with expectation 1 and variance σ2 and
if η is non-negative with finite expectation then Zn/n converges weakly to a
Γ-distribution. If Eη > σ2/2 then this is a particular case of our Theorem
11.6. If Eη ≤ σ2/2 then, in order to apply Theorem 11.7, we have to check
the validity of (11.62) and (11.63). For identically distributed variables this
condition is particularly satisfied if Eζ 2 log1+ε(1+ζ )< ∞ for some ε > 0.

For size-dependent processes without migration the asymptotic behaviour of
the non-extinction probability and the corresponding conditional distribution
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has been studied earlier by Höpfner [82]. Assumptions in that paper are quite
restrictive: Eζ (k) = 1+a/k with some a ∈ (0,σ2/2], |σ2(k)−σ2| = O(1/k)
and maxk≥1Eζ 2+δ (k)< ∞ for some δ > 0. If a < σ2/2 then the results in [82]
coincide with that in Theorem 11.9, but if a= σ2/2 (this corresponds to ρ = 0)
then (11.88) is still valid and P{Zn > 0} ∼ c/ logn. This particular case is not
covered by Theorem 11.9.

Zubkov [153] has investigated the recurrence times to zero for branching
processes with immigration. He has shown that if Eη < σ2/2 then there exists
a slowly varying function L such that

P{min
k≤n

Zk > 0} ∼ L(n)n2Eη/σ2−1.

It is also shown there that one can take L(n)≡C > 0 if and only if Eη log(1+
η)< ∞. Vatutin [146] has shown that (11.88) holds under the same conditions.
Zubkov’s result shows that the restrictions E|η | log(1+ |η |) < ∞ and (11.65)
in Theorem 11.9 are optimal for purely power tail of the recurrence times.

Vatutin [145] has initiated the study of branching processes with emigration.
More precisely, he has considered sequence {Yn} given by (11.23) with identi-
cally distributed ζ (k) with mean one and η ≡−1. For σ2 = E(ζ −1)2 > 2 he
has proven that P{Yn > 0 |Y0 = m} ∼ Lm(n)n−1−2/σ2

and that Lm(n)≡ cm > 0
if anf only if Eζ 2 log(1+ ζ ) < ∞. Moreover, for σ2 < 2 he has shown that
P{Yn > 0|Y0 = m} ∼ cmn−1−2/σ2

if and only if Eζ 1+2/σ2
< ∞. Finally, as-

suming that all moments of ζ are finite, he has proved that 2Yn/nσ2 condi-
tioned on non-extinction converges weakly to a standard exponential distri-
bution. Kaverin [89] has generalized this results to all processes Yn satisfying
E(−η)[2+2/σ2] < ∞, Eζ 1+2/σ2

< ∞ in the case σ2 < 2 and Eζ 2 log(1+ζ )< ∞

in the case σ2 = 2. Specialising Theorem 11.9 to identically distributed ζ (k)
and non-positive η , we conclude that (11.87) and (11.88) hold for all processes
Zn satisfying E(−η) < ∞, Eζ 2 log(1+ζ ) < ∞ and Eζ 1+2/σ2

< ∞ in the case
σ2 < 2. We see that our restrictions on the emigration component η are much
weaker than that in [89].

Kosygina and Mountford [108] have proved (11.87) for a special model of
branching processes with migration. This model appears in the description of
excited random walks on integers.

First result of this type has been obtained by Foster [69] for a critical Galton–
Watson process with immigration at zero. Formally, we cannot say that Foster’s
result follows from (11.96). But since all calculations we have made in the
proof of Theorem 11.9 are valid for processes without migration, it is easy to
see that adding immigration at zero does not change the asymptotic behaviour
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of truncated moments. Therefore, Theorem 8.29 is applicable to the process
from [69] if the number of immigrating individuals has finite mean.

Nagaev and Khan [130] have proved (11.96) for a critical process with
migration. More precisely, they have considered the sequence Yn defined in
(11.23) with identically distributed ζ (k) with mean one and finite variance.
Let us compare our moment assumptions with that in [130]. First we note that
if ζ (k) are identically distributed and have finite variance then (11.67)-(11.70)
hold automatically. The assumption (11.65) which states Eζ 2 log1+ε(1+|ζ |)<
∞ is a bit more restrictive than the second moment assumption in [130]. Fur-
ther, we have assumed that E|η | log(1+ |η |) is finite, which is weaker than
the corresponding condition in [130]. It is assumed there that Eη2 < ∞ and
P{η >−m}= 1 for some m≥ 1.

Comparing our theorems with the known in the literature results for branch-
ing processes with migration, we conclude that the only weakness of the trans-
formation

√
Zn is the fact that it is not clear how to deal with the case when

one has tail asymptotics with non-trivial slowly varying functions. Recall that
the only obstacle is to show (8.5) in the case when 2m[s(x))]

1 (x)/m[s(x))]
2 (x)−c/x

is not integrable for any constant c.

11.7.3 Stochastic difference equations

Theorem 11.15 is due to Kesten [95, Theorem 5]; for a complete proof and
further related results see Goldie [73, Theorem 4.1]. In these papers a weaker
moment condition E(logA1)A

β

1 < ∞ has been used. We have imposed (11.135)
since we have to construct a majorant Ξ for the jumps ξ (x) such that ΞeβΞ <∞.
One can prove the Kesten–Goldie result by using results for asymptotically
homogeneous chains under optimal moment assumptions. Such a proof can be
found in Korshunov [103].

Theorem 11.16 has been proven by Hitczenko and Wesolowski in [78].
The asymptotic behaviour of πR in the null recurrent case discussed in Theo-

rem 11.17 has been studied in the literature. The most general results have been
proven by Babillot, Bougerol, and Elie [11] and by Brofferio and Buraczewski
[28]: if E logA1 = 0 and E| logA1|2+δ +E| logB1|2+δ < ∞ then it was proven
in [11] that there exists a slowly varying function L(x) such that

πR(ax,bx]∼ log(b/a)L(x), x→ ∞;

it was shown in [28, Theorem 1.1] that L(x) is a constant.
Theorem 11.17 says nothing about πR(ax,bx], since log(bx)/ log(ax)→ 1 as

x→∞. But our result implies that a slowly varying function from the previous
relation cannot converge to either zero or infinity. Based on our Theorem 11.17
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it is plausible to expect that L(x) is a constant under the assumption that the
second moment of both A1 and B1 is finite.

For thorough discussion on the topic see the book by Buraczewski, Damek,
and Mikosch [31].
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Höpfner, R., 396, 397
Harris, T. E., 16, 88
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Klüppelberg, C., iii, 220
Klebaner, F. C., 152, 342, 396
Kleinrock, L., 394
Korshunov, D., 88, 220, 279, 305, 328, 337,

338, 342, 393, 398
Kortchemski, I., 153
Kosygina, E., 397
Kozlov, M. V., 340
Kurtz, T. G., 135

Lam, S.S., 394
Lamperti, J., iii, 9, 10, 15, 40, 68, 88, 135,

152, 189, 396
Levin, D., 222, 235
Li, B., 373

Maejima, M., 219
Malyshev, V. A., iv, 88
Mandjes, M., 373
Marciniak, E., 373
McDonald, D. R., 220, 337
McGregor, J., 153, 279
Menshikov, M. V., iv, 10, 41, 88, 190, 279,

280, 305
Meyn, S., 8, 44
Mikosch, T., iii, 399
Mountford, T., 397
Moustafa, M. D., 88

Nagaev, S. V., 85, 219, 396, 398
Ney, P., 220
Ni, W., 373

Orey, S., 219

Palmowski, Z., 373
Peres, Y., 222, 235
Pergamenchtchikov, S., 220
Petrov, V. V., iii, 327
Pitman, J., 152
Popov, S., iv, 222, 235, 279, 305

Rolski, T., iii
Rosenblatt, M., 88
Rosenkrantz, W. A., 153
Rosler, U., 189
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