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Physically unclonable functions (PUFs) are a physical security primitive with important applications in authentication,
such as in anti-counterfeiting technologies. They can be used to generate unique identities, linked to their structure,
by measuring features associated with them. Optically-read PUFs (O-PUFs) are a subset that utilises optical imaging
techniques to create these IDs. They offer a promising solution to the perpetual challenge of counterfeiting by pro-
viding a robust authentication solution. The metrics chosen for evaluation are varied across the field; there is a lack
of consensus in the figures of merit used for evaluation, as well as the protocols and standards used for assessing this
specific subset of PUFs. This work reviews the progress in the development of evaluation techniques to date, and it
highlights important differences in the statistical assessment of O-PUFs. A summary of the most popular metrics used
in the literature in the past decade is presented, and the core metrics are isolated and mathematically defined. These
are then distilled into recommendations of best practice for assessing and comparing different technologies. An open-
source package, providing a full testing suite, is presented to standardise testing in this field. Finally, novel methods for
evaluating the performance of O-PUFs over time are also proposed. A unified approach to assessment is essential for
advancing anti-counterfeiting technologies, especially as these systems are now being used in commercial applications.

I. INTRODUCTION

Physically unclonable functions (PUFs) leverage inherently
non-reproducible properties to generate unique IDs making
them a technology with high potential for enhancing secu-
rity and preventing counterfeiting. When an Optical-PUF (O-
PUF) is read, or challenged, it produces a response which
can be used for authentication. A challenge refers to a con-
trolled stimulus applied to the PUF, while the response is the
resulting output uniquely determined by the PUF’s physical
randomness. O-PUFs use optical imaging techniques as their
method of measurement, for example microscopic photogra-
phy. In terms of a large-scale use case for anti-counterfeiting,
O-PUFs can be used in the following way. A database of iden-
tities (IDs) can be populated in a registration stage, for ex-
ample directly after production. Later, this database is cross-
referenced for authentication when the IDs are re-measured in
the field. Authentication solutions that are: low cost, physical,
and mass-producible are in high-demand. Recent advances
in digital technologies have developed to a point where ID
database storage, connectivity and scanning for an O-PUF im-
plementation are now easily accessible and can be produced
by a mobile phone. The random nature of manufacturing
processes means it can be physically impractical to replicate.
This is unlike a traditional anti-counterfeit technology, such
as a hologram, which is easier to reproduce with access to
the original manufacturing technology. PUFs, by their nature,
rely on inherent randomness and are termed ‘unclonable’.

Whilst a variety of O-PUF technologies have been created
and explored in the past decade, the methods for analysing
their effectiveness vary substantially across studies. As shown
in FIG. 1, evaluation of an O-PUF begins with selection of
a candidate system. The sample (or ’tag’) must be tested
for its ability to contain a unique ID. To achieve this, many

FIG. 1. A generalised overview of the O-PUF assessment process.
Starting with the selection of a suitable candidate, then following on
to the imaging. The images that are recorded are the ’responses’
of the O-PUF. After which the images are binarized using a chosen
algorithm or technique. Finally, this process ends by producing the
chosen metrics by testing the 2D arrays.

repeat images are taken of the same tag (intra-images) and
of different tags (inter-images). The intra-images are com-
pared, to determine how repeatable imaging the tag is, and the
inter-images are compared to demonstrate the randomness and
uniqueness of tags. To achieve this, the images are converted
to a set of 2D binary arrays using algorithms that down-sample
the image data to extract fingerprints (patterns), with an aim of
reducing noise in the process. After this process, the similar-
ity of the binary arrays is compared by counting the number of
bits of difference between each other (defined more formally
as the Hamming distance, HD). This is the starting point for
calculating a variety of figures of merit (or metrics) that can
be used to compare different PUF technologies. Metrics, such
as the effective number of independent bits (ENIB, defined in
section III C 5), or decidability (defined in section III C 6) are
used. The intra-HD and inter-HD distributions, which are fits
to histograms formed from HD data, have been used in the
majority of previous works to date, however the metrics that
are taken from these plots vary. These range from intra-HD
means (related to reliability) and inter-HD means (related to
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FIG. 2. Illustrating the two key phases involved in O-PUF imple-
mentation. (a) Registration; (b) Verification. A challenge is applied
to the O-PUF in the form of incident light (e.g., a camera flash), and
an image is captured. After binarization, the image forms a response
in the challenge-response pair (CRP) architecture used to understand
PUFs. The registration process involves capturing these images for
individual tags and registering their IDs with associated metadata in
a secure database. The binarization process is applied to the different
tags (pink squares), each individual ID leading to a registration. (b)
Verification: The registered database is used for anti-counterfeiting.
A unique tag is attached to the product, imaged, and the resulting bi-
nary array is compared to the database. If the array is similar enough,
the ID verifies the product’s authenticity.

uniqueness) to more complex metrics such as ENIB or false
positive rates. Many papers analyse the HD distributions and
also provide secondary statistics such as the results of random
number predictability analysis. Additionally, there are many
other metrics, some only used in a few papers, that need stan-
dardised definitions and evaluation. There have been many
attempts at producing comprehensive testing suites for PUFs
in general, however, for O-PUFs, these are limited. As the
main figures of merit vary in the papers published in the last
decade on the field of O-PUFs, further work is needed to in-
crease accessibility to the necessary code. The registration
and verification steps for O-PUF implementation are shown
in FIG. 2.

Contribution: This paper is divided into four main sec-
tions. Firstly, a review of the literature from 2013 to 2024,
highlighting the key metrics used to evaluate O-PUFs. Sec-

ondly, a complete set of mathematical definitions and expla-
nations for these metrics. Thirdly, recommendations and con-
siderations for improving the use of certain metrics. Lastly,
an introduction to a custom Python package, ‘pyopticalpuf’,
designed to facilitate easy access to analysis code for future
research.

The first section evaluates a selection of O-PUF research
papers from the past decade, summarising and analysing their
primary figures of merit. Key findings from this review in-
clude the widespread use of HD-based measurements and the
diverse range of metrics employed across different studies. A
list of the most frequently used metrics is presented in TABLE
I, providing insights into the most popular evaluation meth-
ods. The pros and cons of these metrics are also assessed.
While previous review papers have provided metric recom-
mendations for general PUFs, O-PUFs are a distinct subcat-
egory that requires unique considerations. This is primarily
due to O-PUFs typically deviating from the “Independent and
Identically Distributed” (IID) assumption1. While a useful as-
sumption and typically true for more conventional electronic
PUFs, any PUF can display a certain level of correlation (i.e.
to not be IID) and still maintain security, provided the ID pro-
duced is complex enough to produce a large database for au-
thentication. In these cases, popular metrics such as reliabil-
ity and uniqueness, which depend on the means of the HD
distributions, may not fully capture the behaviour of O-PUFs.
In this paper, we argue that, due to their non-IID nature, the
standard deviations of these distributions can deviate from ex-
pected values for simple distributions, necessitating the in-
troduction of additional figures of merit when comparing O-
PUFs. This paper also provides clear mathematical definitions
for the key metrics used in the last decade of research. Follow-
ing on from this, recommendations are made on the metrics
to use for non-IID O-PUFs. Finally, a Python package is in-
troduced, enabling time-of-manufacture and time-dependent
testing for various O-PUFs across a range of metrics. The
package provides a range of options for binarization, followed
by full metric evaluations for the input data. A novel method
for time-dependent assessment is also proposed and integrated
into the package, alongside other metrics, in the form of a dis-
tribution evolution test.

Outline: This review is structured into the following sec-
tions. In section II, the metrics used in the literature from
2013 to 2024 are detailed, with popular figures of merit high-
lighted. Next, section III, titled "Mathematics and Methodol-
ogy," clearly defines the metrics and summarises the methods
required for data collection. The primary methods used for
analysing O-PUFs are detailed in subsection III B, which also
covers the foundational concepts needed to understand the re-
maining sections. The main metrics are then presented math-
ematically, and the methods for obtaining these metrics are
discussed. Section IV contains an evaluation of the different
metrics, including key findings and important recommenda-
tions, leading to the construction of a full set of testing met-
rics. Following this, section V introduces a Python package
that aims to simplify the process of performing a thorough
testing procedure for future work. Finally, the conclusion is
presented in section VI.
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II. PREVIOUS WORK

Since the conceptualisation of PUFs in 2002 by Pappu et
al.2, numerous O-PUFs have been developed, ranging from
imaging random fibres in paper to analysing quantum dot
emission patterns3,4. Notably, the first PUF proposed by
Pappu et al. was an optical PUF, which utilised laser speck-
les to generate responses. While general testing frameworks
for PUFs have been widely explored5–7 , much of the field’s
focus has been on electronic PUFs (E-PUFs), operating under
the assumption that their metrics can be applied universally to
all PUF types.

However, this assumption oversimplifies the challenges
specific to optical imaging, particularly when comparing IID
and non-IID behaviour. The unique properties of optically-
read tags often mean that standard figures of merit used for
E-PUFs may not function as intended for O-PUFs. This paper
aims to add nuance to this established methodology by evalu-
ating the specific needs of O-PUF testing. To that end, it will
first review the primary figures of merit used in O-PUF re-
search over the last decade. Following this, it will critique the
most commonly applied metrics and introduce a Python pack-
age alongside a set of recommended tests designed to address
the distinct requirements of O-PUF evaluation.

Hamming
distance means
(µ1 and µ2)

µ1 and µ2 are means of distributions
fitted to the intra- and inter-HD
histograms, respectively.

III B

Reliability A measure of how similar repeat
measurements of the same tag are.

III C 1

Uniqueness A measure of how distinct the
measured responses from different
tags are.

III C 2

Uniformity/Bias The overall proportion of ’0’ bits to
’1’ bits in the binary representation
of the response.

III C 3

False Positive
Rate (FPR)

How often the measurement of an
incorrect tag is mistaken for the
correct one.

III C 7

NIST SP-800-22 A suite of pass/fail tests to check the
determinability (that is, any hidden
patterns) of a random bit-string.

III C 10

Bit Error Rate
(BER)

The amount of difference between
the measurement of a tag and a
measurement of the same tag taken
later, typically in the study of
response deterioration.

III C 11

TABLE I. A summary of the most popular figures of merit used in O-
PUF literature over the past decade, excluding some of the less-cited
metrics. Each figure of merit, such as uniqueness, is accompanied by
a simplified definition to clarify the metric’s general meaning. The
final column lists the relevant sections in this document where each
metric is discussed in detail.

A brief introduction to the main figures of merit used in the
last decade to evaluate O-PUFs are shown in TABLE I.

The metrics found in the literature can be divided into three
main categories:

• µ-based metrics - these are defined as metrics which
mathematically use only the mean of the HD values for
the intra-image and inter-image sets.

• µ & σ -based metrics - similar to the previous category,
however these metrics also rely on the standard devia-
tion of the Normal fits placed on the HD histogram for
both the intra-HD and inter-HD data (σ1 and σ2, respec-
tively).

• Other metrics - This operates as a catch-all category for
metrics which do not rely on the HD means or standard
deviations.

Sample Size
Range (N)

Binomial
Scaling

(N
2
)

(Number of
Comparisons)

References

100 ≤ N <
1000

4950 - 49500 8(2018);9(2024);10(2022);

11(2023);12(2018)
50 ≤ N < 100 1125 - 4851 13(2014)
20 ≤ N < 50 190 - 1176 3(2022);14(2022);15(2021);

16(2023);17(2023);18(2023);
19(2022)

N < 20 0 - 171 20(2020);21(2021);22(2018)

TABLE II. Sample sizes (N) used in intra-image and inter-image sets
for O-PUF analysis. The sample size directly affects the accuracy
of the main figures of merit by determining the number of compar-
isons used to construct the fractional Hamming distance (HD) distri-
butions. The table also provides the corresponding binomial scaling,(N

2
)
, which indicates the number of data points on the HD plots, as

the HD is derived from pairwise image comparisons.

Another insight from the literature comes from the variation
in the quantity of readings taken for the HD fits. The ranges
of N values are displayed in TABLE II. As shown in TABLE
II, the number of images differs widely between studies, of-
ten influenced by factors like the use of simulated data, which
allows for higher N values. Since the data points in the HD
plots scale binomially, as described in equation 2, the number
of pairwise comparisons increases rapidly with larger N. This
means that larger sample sizes generally improve the accuracy
of the Normal fits applied to the HD data, potentially leading
to more reliable metrics. It is worth noting that this table as-
sumes all combinations of comparison within and across PUF
instances were performed to calculate the HDs.

Now that the main metrics have been generally defined, ta-
bles III shows the more popular metrics - those with four or
more instances of use in the literature. Table IV then shows
other, less popular metrics. This work shows the prevalence of
µ-based metrics for the HD analysis, with less-common use
of µ & σ -based metrics. With an additional clear presence of
‘other’ metrics for longevity and randomness testing. There
is a clear, varied and wide range of metrics used in different
combinations in different papers in the literature.
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13 9(2024)
12 11(2023)
11 16(2023)
10 3(2022)
9 23(2022)
8 21(2021) 16(2023) 18(2023)
7 15(2021) 3(2022) 16(2023)
6 18(2023) 24(2020) 18(2023) 23(2022) 17(2023)
5 25(2022) 14(2022) 26(2019) 23(2022) 24(2020) 19(2022)
4 27(2020) 24(2020) 22(2018) 16(2023) 3(2022) 27(2020) 25(2022)
3 26(2019) 26(2019) 28(2017) 11(2023) 15(2021) 22(2018) 3(2022)
2 29(2016) 30(2015) 30(2015) 31(2022) 12(2018) 29(2016) 22(2018)
1 30(2015) 13(2014) 10(2022) 13(2014) 22(2018) 30(2015) 28(2017)

Uniqueness Reliability HDmeans FPR* NIST BER* Uniformity*
µ-based metrics µ&σ metrics Other metrics

TABLE III. Main figures of merit tested are shown for O-PUF papers reviewed from the last decade of research. This shows the most popular
metrics by listing the papers, including references. ‘µ-based’ metrics are based on the means of the HD distributions, while ‘µ&σ -based’ are
based on the mean and standard deviations. The category ‘other’ describes the range of metrics that do not fit the first two categories. Metrics
with an asterisk have been used for time-dependent metrics.

2 10(2022) 9(2024) 25(2022) 10(2022)
1 3(2022) 8(2018) 31 (2022) 28(2017) 29(2016) 8(2018) 30(2015)

ENIB Prob of Cl* Accuracy Bit-aliasing* Randomness Robustness CRP
µ&σ -based metrics Other metrics

TABLE IV. Uncommon figures of merit. ‘µ&σ -based’ are metrics based on the mean and standard deviation of the HD distributions. The
category ‘other’ describes all other kinds of figures of merit. The metrics with an asterisk have been used in the literature for analysis of
time-dependent performance.

1. Key findings

• Wide variation in metrics: There was no clear consen-
sus in the literature on the key metrics used for time-of-
manufacture or time-dependent testing. A wide range
of metrics were employed in the assessment of O-PUFs.

• Ubiquitous use of HDs: HDs form the basis for a sub-
set of metrics used to investigate the properties of the
ID. Of the papers surveyed, all calculated sets of HDs
using intra-image and inter-image sets as part of their
analysis.

• Use of HD for fitting distributions: HD distribu-
tions are fit to the histograms of the two sets of HD
data. These Normal distributions have means and stan-
dard deviations that are used to calculate some metrics.
While µ-based metrics do not require distribution fit-
ting, µ-and-σ metrics do. Therefore, not all studies will
fit distributions or display HD histograms if their met-
rics do not involve σ .

• Other metrics: Some metrics are not based on HD;
these metrics assess a wider range of properties of the
O-PUF. An example is bit-aliasing, which checks for re-
peating image patterns in the inter-image dataset. These
metrics are usually used in addition to the HD methods.

• Use of NIST-800-22: A commonly used metric that
does not rely on HD is the NIST-800-22 testing suite.

Developed by the National Institute of Standards and
Technology (NIST), this suite of 15 tests is used to as-
sess the level of randomness in a 1D binary bit-string.

• Variation in methods: The literature highlights vari-
ation in methods used to test O-PUF data. A key dif-
ference lies in image binarization techniques, ranging
from simple hashes to complex algorithms, which sig-
nificantly influence data quality and metric results. Ad-
ditionally, the number of intra-image and inter-image
samples varies, with simulated studies typically using
larger image sets (N) than experimental ones.

• Impact of previous reviews: Although a review spe-
cific to O-PUFs is lacking, general PUF reviews have
influenced metric selection in the literature. Com-
monly used metrics include reliability, uniqueness, bit-
aliasing, and uniformity, though studies often focus on
one or two rather than the full set. Previous reviews
are generalised for all types of PUF, a specific review is
required.

A. Previous review and recommendations papers

Over the past decade, several significant reviews have
shaped the understanding of PUF metrics, but a gap remains
in addressing the unique requirements of optical PUFs, which
often diverge from IID assumptions. In 2013, Maiti et al.
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consolidated four primary metrics-reliability, uniqueness, bit-
aliasing, and uniformity- designed to assess PUFs across di-
mensions such as time and bit position5. A 2014 tutorial em-
phasised intra-image and inter-image PUF evaluations using
Normal fits and false positive/negative rate measurements, es-
tablishing a framework for PUF testing7. In 2016, Vijayaku-
mar et al. refined uniqueness testing through inter-fHD met-
rics and advanced analysis procedures32.

A 2020 paper on quantifying PUFs proposed additional
metrics, including steadiness and diffuseness, while ref-
erencing definitions from earlier reviews33. In the same
year, a conference talk examined the evaluation of elec-
tronic PUFs as IID systems, focusing on reliability, unique-
ness, and randomness6. Finally, Wilde’s 2021 PhD thesis
offered an extensive discussion of potential metrics, though
it primarily concentrated on electronic PUFs adhering to IID
assumptions34.

For open-source code solutions, notable progress includes
the creation of the ‘Pypuf‘ Python package in 2021 for general
PUF analysis35, and a MATLAB GUI designed to evaluate the
four primary metrics highlighted by Maiti et al. in 201336.
Building on these efforts, this work introduces the ‘pyopti-
calpuf‘ Python package, specifically tailored for the analysis
of O-PUFs. As most PUF research is rooted in computer sci-
ence and focuses on E-PUFs, this work aims to support scien-
tists in material science, chemistry, and related fields by pro-
viding tools to quantify the cryptographic potential of O-PUFs
with minimal coding effort.

III. MATHEMATICS AND METHODOLOGIES

This section begins by looking at the IID assumption of a
PUF’s response, which is often a baseline assumption for met-
ric choice in PUFs. Next, the mathematical building blocks
needed to understand these metrics are introduced. Then, key
mathematical definitions for the most commonly used O-PUF
evaluation metrics are stated. These metrics are categorised
into µ-based or µ&σ -based metrics. These are derived us-
ing the means and standard deviations of a Normal fit to the
HD curves for intra-HD and inter-HD values (section III B).
Additional metrics, such as NIST-800-22 randomness testing,
are then described. Finally, we analyse metrics used for time-
dependent evaluation in the literature (section III E).

A. Why O-PUFs should be treated differently from E-PUFs

Firstly, let us looks at the IID assumption. In the context
of a binary sequence, also known as a binary bit-string, com-
posed of 1s and 0s - it means:

• Identically distributed: Each bit in the sequence fol-
lows the same probability distribution. This ensures that
no specific bit position is inherently more likely to be 0
or 1 than another.

• Independently distributed: The value of any given bit
does not depend on the values of other bits. In other

words, knowing the previous bits does not help predict
the next bit37.

When the IID assumption holds, pairwise comparisons of
binary sequences, such as fHD calculations, follow a pre-
dictable binomial distribution. This can be approximated by
a normal distribution, where the mean (µ) and standard de-
viation (σ ) have a fixed mathematical relationship: µ = np
and σ =

√
np(1− p), where n is the number of comparisons

and p is the probability of success1. However, without the IID
assumption, as in optical PUFs, this relationship breaks down.

Another key definition to clarify is the boundaries of the
different classifications of types of PUFs:

• E-PUFs: These PUFs rely on variations in semicon-
ductor manufacturing processes, such as differences in
transistor threshold voltages or circuit delays, to gener-
ate unique and unclonable responses. Common exam-
ples include: Ring Oscillator PUFs38, SRAM PUFs39

and Arbiter PUFs40.

• O-PUFs: Also known as ’optically-read’ or ’optically-
imaged’. These PUFs leverage optical properties of a
material to gain a imaged response. The complexity of
light propagation from emission or variation in the man-
ufacture processes - which is picked up in the imaging
process, allows for an unclonable response. Common
examples include: Quantum Dot PUFs4,41 and laser
speckle2,42.

Both E-PUFs and O-PUFs enhance security by generating
unique responses to challenges. One of the distinctions is that
while E-PUFs rely on electronic responses and therefore can
be implemented at the infrastructure level for large-scale secu-
rity, O-PUFs produce optical responses and can therefore be
integrated at a consumer-level. This enables new consumer-
driven O-PUF authentication techniques, particularly through
imaging technology such as smartphones, which have been
explored in recent studies43–49.

O-PUF characteristics affect compliance with the IID as-
sumption. Locally correlated features present in the images
captured to produce O-PUF responses, post-binarization, can
result in runs of 1s or 0s - as shown in FIG. 3.

This paper also suggests that testing with the NIST-800-
22 suite for randomness may yield a higher failure rate for
O-PUFs compared to E-PUFs. This is because NIST-800-22
tests require unbiased and IID bit-strings. IID is also not es-
sential for a valid PUF, as long as a functional fingerprint of
sufficient uniqueness can be maintained and identified then
the core function of the PUF in this context, which is authen-
tication, can be performed. O-PUF studies use differing bi-
narization and post-processing techniques that help to reduce
noise and improve ID between repeated images. This can vary
the level of correlation between adjacent pixels in the array, in
turn affecting the IID nature of the data50. It is noteworthy that
some O-PUFs in the literature pass NIST-800-223,12,15,18,22,23.
We can hypothesise that with specific setups or feature-size-
to-pixel-size ratios these studies can achieve IID and demon-
strate favourable NIST-800-22 results. However, the majority
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FIG. 3. Comparison of binary responses from Electronic PUFs and
Optically-read PUFs. The figure illustrates how the IID assump-
tion holds for E-PUFs, resulting in predictable Binomial distribu-
tions and passing NIST-800-22 test results. In contrast, O-PUFs do
not normally adhere to the IID assumption, this is due to 2D structure
and features in the binary arrays from their responses. This necessi-
tates considering both the mean and standard deviation in compari-
son metrics. In this context, ‘dimensionality reduction of figures of
merit’ refers to how a full curve fit will be reduced to a single sum-
mary statistic such as the mean (reliability).

of the examined O-PUF papers avoid NIST-800-22 testing,
as sufficient uniqueness and reliability can be demonstrated
without the randomness indicated by NIST-800-22 tests.

Since the standard deviation is not directly linked to the
mean mathematically, the traditionally used mean-only met-
rics - such as reliability and uniqueness, often employed as
primary summary statistics in PUF analysis - may overlook
crucial information, leading to potentially flawed conclusions.
Incorporating metrics that account for both the mean and stan-
dard deviation is therefore essential for non-IID PUFs.

B. Mathematical building blocks

This section outlines the foundational methods and con-
cepts required for O-PUF analysis. These building blocks
serve as a basis for the mathematical definitions of the main
figures of merit, which are detailed in the following section.
The discussion begins with an explanation of the method used
for calculating HD.

Firstly, let’s outline the general process outlined in FIG. 4
and FIG. 5. To start, consider two sets of images: ‘Intra-
images’, a set of images which are repeated images of individ-
ual tags and ‘Inter-images’, a set of images of different tags.
These two sets are binarized using a binarization algorithm,
of which there are many options. This ensures a clearer ID
and minimises noise. Following this, each set of arrays is then
used to plot a HD histogram, to which a Normal distribution
can be fit. Not all metrics use this approach, but the final step
can be replaced with alternative analysis. However, HD cal-
culations were found in most of the papers reviewed over the
past decade. Additional metrics that do not rely on HD values
are often incorporated alongside these calculations.

FIG. 4. Two image sets are collected for analysis: the intra-images
set, consisting of repeated readings of a specific ID, and the inter-
images set, containing images of different tags. After binarization,
which converts the images into 2D binary arrays, the intra-HDs and
inter-HDs are plotted on a graph. Normal fits are then applied to
these plots to facilitate the extraction of key metrics for evaluating
O-PUF performance.

For optimal results, one should choose a large N for the
inter-image set and a set of intra-images such that both HD
histograms contain a similar number of data points. Methods
for collecting intra-images vary; some studies use small sets
of repeat measurements from each ID to capture a wider range
of data variation, while others use a larger set of images from
a single ID for the intra-image set. The first approach benefits
from its breadth, offering a more comprehensive view of the
dataset’s ability to provide a unique ID for each piece. How-
ever, this method can be more labour-intensive, depending on
the acquisition process. In contrast, the second method allows

FIG. 5. General schematic illustrating the differences in data col-
lection for each O-PUF candidate. Separate tags are fabricated
and tested, with repeated imaging of each tag enabling comparisons
within the same tag and between different tags. This approach pro-
vides a comprehensive statistical understanding of the O-PUF candi-
dates’ behaviour.
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for a more in-depth analysis of a specific example of an ID.
FIG. 6 illustrates the definitions of the intra-array and inter-

array sets, C and D, which are derived from the binarized
intra-image and inter-image data. These arrays, represented as
binary matrices, require precise mathematical characterisation
to ensure clarity in the subsequent definitions of the metrics.

FIG. 6. a) A generic array A is shown in, in which a single pixel
is denoted as A(I,J). Arrays of size a× b are shown, with elements
indexed by I and J corresponding to positions of the pixels in the
array. b) The intra-arrays form set {C}, consisting of repeat bina-
rized images of the same tag. The inter-arrays are represented in set
{D}, these are the arrays produced from the images of different tags.
These arrays, composed of 1s and 0s, represent the binary IDs of the
samples.

The key mathematical comparison performed on the arrays
in set {C} and {D} is the fractional hamming distances, fHD.
This mathematical operation can be understood in one of two
ways. As the proportion of bits that would need to be flipped
to go from one array to another or as a 2D version of the pixel-
by-pixel application of XOR gate rules. fHD is ’fractional’
due to its normalisation to the bit string length.

As shown in the FIG. 7, the fHD is calculated between two
arrays and produces a single metric of similarity/difference.
The two arrays are compared using XOR rules, pixel by pixel.
Then the average is found of this bit-string.

Mathematically, this fHD operation is performed on a pair
of images in this form:

f HD(A,B) =
1

ab

a

∑
I=1

b

∑
J=1

(A⊕B)IJ (1)

where A and B are the binary arrays representing two im-
ages being compared, a and b are the dimensions of these ar-

FIG. 7. Calculation of the fHD value using two pixel arrays of iden-
tical dimensions. Each corresponding pixel is compared using the
XOR operation, resulting in a binary bit-string of 0s and 1s. The
mean of this bit-string represents the fHD, which ranges from 0
(identical arrays) to 1 (completely opposite arrays).

rays, and ⊕ denotes the XOR operation. The summation is
carried out over all pixel positions I (1, 2, ..., a) and J (1, 2, ...,
b) in the images. The result, represents the similarity between
the two images. This calculation is later applied to full sets of
arrays, such as the {C} intra-array set and then the mean value
of the fHD is found for the full set.

The meaning of the different values for HD are shown be-
low in TABLE V.

Hamming
Distance

Meaning

0 All pixels are the same; the two 2D arrays are
identical.

0.5 50% of the pixels are different.
1 All pixels are the opposite; the two 2D arrays

are opposite.

TABLE V. Fractional Hamming distance calculations between two
arrays produce results in the range of 0-1. The value for the calcula-
tions determines the relationship between the two different arrays.

Another building block to understand is how the quantity
of data points for the fHD plots scales proportionally with the
number of images captured, denoted as N, for each set of tags.
This is because each fHD is derived from comparing a pair of
arrays. Hence, the total number of combinations for N images
is represented by the binomial coefficient.

C(N,2) =
(

N
2

)
=

N!
2!(N −2)!

(2)

where C(N,2) denotes N choose 2. This exemplifies a bino-
mial distribution where N signifies the quantity of images in
both intra-images and inter-images sets. The escalating count
of combinations with increasing N allows for substantial data
scaling with manageable experimental time frames.

These fHD values are represented in the fHD distribution
fits shown below in FIG. 8. These distributions are then used
to determine the means and standard deviations of the two sets
{C} and {D} which are then used as the mathematical base of
future metrics.
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FIG. 8. Distributions of intra-arrays and inter-arrays fHD. Intra-fHD
values typically range from 0 to 0.4, while inter-fHD values cluster
around 0.5. The histograms are generally approximated by a Normal
distribution, which facilitates the calculation of mean and standard
deviation values utilised in subsequent metrics. This is due to 0 fHD
signifying identical arrays and tending towards 0.5 signifying ran-
domly different arrays. For the intra-fHD distribution, µ1 is the mean
and σ1 is the standard deviation. For the inter-fHD distribution, µ2
is the mean and σ2 is the standard deviation.

C. Metrics

Now that the core building blocks have been discussed, they
can be put together to explain the key metrics for O-PUF anal-
ysis. Firstly, fHD is used to directly make a set of metrics from
the means and standard deviations of the distributions that are
fit from the fHD histograms.

FIG. 9. A summary of the mean (µ −based) and means & standard
deviation (µ&σ − based) metrics mentioned in this paper and how
they are taken from the Normal fits of the intra-fHDs and inter-fHDs
plots. Reliability is based on the intra-fHDs mean, while uniqueness
is based on the inter-fHD mean. Decidability is based on both means
and standard deviations. ENIB is based on the inter-fHD mean and
standard deviation. For the intra-fHD distribution, µ1 is the mean
and σ1 is the standard deviation. For the inter-fHD distribution, µ2
is the mean and σ2 is the standard deviation.

FIG. 9 shows how the fHD-based metrics are related to each
other and the ways in which they are interdependent. With
the intra-fHDs curve producing the reliability and part of the
decidability and the inter-fHDs producing ENIB, uniqueness
and part of the decidability. Then the whole plot is used for
FPR calculations.

Note that in this set of mathematical definitions, the 2D ver-

sion - where the input for the calculations consists of binary
arrays - has been chosen over the 1D bit-string version. If the
2D arrays are collapsed into a 1D bit-string, the 1D formalism
becomes equivalent.

1. Uniqueness

Uniqueness is a metric based on the inter-fHD mean, mea-
suring the difference in IDs produced from measurements of
the different tags. For two tags, in the set of inter-arrays {D}
which contains N images total, sets of two tags Di and D j
are compared using the fHD function, described in equations
/ref. These fHD are accomplished in all unique pairs in set
{D}. The value µ2 is found as the mean of these fHD mea-
surements. To find uniqueness, the value of µ2 must be deter-
mined:

µ2 =
1(N
2

) N−1

∑
x=1

N

∑
y=x+1

f HD(Dx,Dy) (3)

where µ2 is the inter-HD mean, N is the number of inter-
images. Dx and Dy are arrays in the inter-array set {D}. N
is therefore also the total number of arrays in the set {D}.

Uniqueness = µ2 x 100% (4)

where the ideal value for this parameter, µ2 is 0.5. This is re-
ferred to as ‘uniqueness’ as if the inter-fHD mean is 0.5 that
means that the N different tags produce fHDs around 0.5. This
shows that the tags are unique and the pixels are 50% differ-
ent, showing random variation51.

Metric Simple Definition Ideal Value
Uniqueness (µ2) inter-fHD mean x 100% 50%

2. Reliability

Reliability is based on the intra-fHD mean and is therefore
a measure of the difference between the readings of the same
ID. This metric uses µ1, which is calculated using the fHD
between all combinations of pairs of binarized 2D arrays in
the set of intra-images. The set {C} is composed of N images,
with x and y representing the arrays in the set that are paired.
Reliability is considered a time-dependence-negligible met-
ric, while the time-dependent evaluation of µ1 discussed when
considering BER, in section III C 11, as these readings are
taken over a set and non-negligible time intervals. The mean
of the fHD between the arrays in set {C} is µ1:

µ1 =
1(N
2

) N−1

∑
x=1

N

∑
y=x+1

f HD(Cx,Cy) (5)

Reliability = (1−µ1)×100% (6)
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where µ1 is the mean intra-fHD. Ideally, µ1 would be 0.0,
indicating identical IDs from repeated measurements of the
same tag. However, achieving an intra-fHD mean of 0.0
is challenging for reasonably sized IDs due to factors such
as noise, alignment errors, and other mitigating influences,
which increase the intra-fHD between IDs.

Metric Simple Definition Ideal Value
Reliability (1 - (µ1) intra-fHD mean) x 100% 100%

3. Uniformity

Unlike the previous two metrics, uniformity is not µ-based.
It is simply a measure of the binary bias of the 2D array. Gen-
erally, it is used to indirectly represent if the array contains
enough information to be considered a good fingerprint. Bi-
nary IDs with a uniformity that is much higher or lower than
50% are likely too uniform, mostly white or black, to con-
tain sufficient information. Uniformity for a single array Dn
is defined below as Un:

Un =
1

a x b

a

∑
I=1

b

∑
J=1

Dn,I,J (7)

U =
1
N

N

∑
n=1

Un (8)

where the binary array Dn is composed of a rows and b
columns and a pixel in this array is Dn,I,J where (I,J) are the
pixel coordinates. Un will be a number between 0-1 and rep-
resent the average pixel value of the array. For the use in the
categorisation of O-PUFs, the set {D} is often used. Also
known as ’Hamming weight’ or ’bias,’ uniformity quantifies
the proportion of 0s and 1s in the binary fingerprint produced
by the O-PUF. A value of 50% indicates maximum informa-
tion density, with an equal probability of obtaining a 0 or 1 at
each pixel location, resulting in the highest entropy. To further
assess uniformity, it may be useful to evaluate subsections of
the image to identify local deviations from the expected dis-
tribution. This approach provides additional insight into the
consistency of the fingerprint’s information density. As shown
in FIG. 10, a white fingerprint has a uniformity of 0%, while
a fully white square yields 100%.

FIG. 10. Illustration of pixel array uniformity. A uniformity value
of 100% corresponds to an array where all pixels are white, while
a value of 0% represents a fully black square. An array with 50%
white and 50% black pixels has a uniformity value of 50%.

Metric Simple Definition Ideal Value
Uniformity 0/1 pixel bias for individual tags 50%

4. Bit-aliasing

Bit-aliasing is a metric used to check for features that repeat
over arrays which should be randomly varying. It can be use-
ful for checking for errors in the O-PUF production process.
Bit-aliasing, in the context of O-PUFs, is used to check that
specific pixels in the inter-array set {D} are not repeating or
biased towards 0 or 1. The bit-aliasing at specific pixel (I,J)
is the percentage mean value of the specific binarized pixel,
which can hold the value 1 or 0:

(Bit - aliasing)I,J = (
1
X

X

∑
x=1

Dx,I,J)×100% (9)

In the time-dependent case, X=T representing the total num-
ber of time measurements and x=1 is replaced with t=1. In
the other case, where bit-aliasing is used to determine pat-
terns in the inter-image dataset, X represents the number of
inter-arrays. Dx,I,J represents the pixels in the inter-array set.
Note that even in the time-dependent case, the {D} set is used
and bit-aliasing is performed over different tags so that the ID
should not be the same in each instance.

FIG. 11. Bit-aliasing is assessed across a specific pixel (I,J) in differ-
ent O-PUF responses. An average is then found, the example value
of 0.52 implies no pattern between the tags. This would demonstrate
the IDs are good unique objects. This is often done over set {D},
the inter-arrays, which are different tags. An additional case involves
sampling of the D set over time to check for anomalies.

Estimating the bias of a particular response bit across sev-
eral tags provides insight into any systematic or spatial ef-
fects present in the fingerprint. Bit-aliasing is a simple cor-
relation test that does not require considering the order of the
tags. Ideally, there should be no positional relationship with
bias, meaning each specific area of the fingerprint will have
an equal likelihood of having a 0 or 1. As shown in FIG. 11,
a specific bit is tested over the inter-array set to check for any
inconsistencies or repeating patterns in the data.

While bit-aliasing tests are straightforward, they can reveal
underlying issues and systematic errors. In the context of
O-PUFs, repeating bit-specific errors may result from factors
like dust on the lens, faulty pixels in the measuring device, or
manufacturing defects during fabrication. However, since the
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manufacturing process involves a sequential or ordered pro-
duction of tags, more complex correlation testing might be
necessary to diagnose issues. In such cases, checking for cor-
relations based on the order of manufacture could help detect
patterns that simple bit-aliasing analysis may overlook.

This is a good example of a metric primarily applicable to
E-PUF testing and less relevant to O-PUFs. In the case of ran-
domly generated electronic signals an issue with the system
can cause a stuck bit in the bit-string that will always fall one
way or another over different tags - which should vary ran-
domly, this was the reason for including this metric in general
PUF analysis. However, this is much less likely with imaging
setups and any issues would be visible by eye in the image
data sets - therefore this metric is not often used in O-PUF
data.

Metric Simple Definition Ideal Value
Bit-aliasing 0/1 pixel weighting for a specific pixel

between different tags
50%

5. Effective number of independent bits

ENIB, initially created for evaluation of the human iris by J.
Daugman52, is a measure of usable information content stored
in the tag and is calculated based on the inter-fHD distribution
mean and standard deviation. To calculate ENIB the formula
is as follows:

N =
µ2(1−µ2)

σ22 (10)

where N is the ENIB, µ2 is the mean of the inter-fHD distri-
bution and σ2 is its standard deviation. By extension, (σ2)

2

is the variance. Note that in some literature, such as the 2022
paper by Kim et al.3, this metric is referred to as ‘Degrees of
Freedom (DoF)’.

ENIB provides a measure of the randomness and indepen-
dence of bits within a tag, with higher values indicating that
a single PUF is effective in providing a good ID for secu-
rity applications. ENIB is maximised when the mean of the
inter-fHD distribution (µ2) is near 0.5, as this reflects max-
imum random variation between tags, ensuring the bits are
highly independent. Conversely, as the mean deviates from
0.5, ENIB decreases, signalling less randomness and a reduc-
tion in the effective number of independent bits. Additionally,
a narrower inter-fHD distribution, characterised by a lower
standard deviation (σ2), increases ENIB. This narrower distri-
bution indicates that most values are clustered closer to 0.5,
further supporting the randomness and independence of the
bits within the tag.

Metric Simple Definition Ideal Value
ENIB Number of effective independent bits in

the IDs, calculated based on µ2 and σ2

Higher

In contrast to the directly binary nature of electronic PUF
logic levels, Optical PUFs often encode from a much larger

amount of information per unit, or pixel, of unprocessed re-
sponse. To capture and compare this level of unique input
availability to the PUF response, the metric of encoding ca-
pacity can be used. This is specifically relevant for multi-
factor O-PUFs as showcased in recent studies16,53–55. This
metric quantifies the total number of possible unique PUF re-
sponses, and can be calculated as the size of the permutation
space of the response of a PUF. A common formula for this
calculation is as follows:

Encoding capacity =C×LN (11)

Where L is the number of possible response states for each
unit or pixel of the response, N is the total number of units or
pixels that make up that response, and C is the number of sep-
arate channels over which this response is being measured56.
For a digitised binary response L=2, with 0 and 1 being the
two outcomes, however for a multi-factor PUF that produces
three separate output states per pixel L=3 and so on16. If these
2 or more response states are being extracted from a single
channel, for instance in greyscale, then C=1, but if the same
process is being applied over 3 separate channels, such as each
of some RGB channels, then C=3. For a 100x100 response
array N=10’000, for instance. It is worth noting here that
this metric does not address the probability of each response
permutation outcome and assumes each response is equally
likely. Deviations from equiprobability can be addressed ei-
ther after some form of binarization using the other metrics in
this work, or directly using the state-likelihood based entropy
estimation metric found in section III C 12. In accounting for
correlations, the entropy estimation (or ENIB where L = 2)
for the number of bits (or state units) in practice can then be
represented in the encoding capacity equation by modifying
the number of response units N into the effective number of
response units. In doing so, the number of channels and re-
sponse unit states can remain in consideration alongside any
deviation from ideal unpredictability (or IID distribution) in
states or responses.

6. Decidability

Used in the field of human iris recognition57, decidability
is assessed using curve fits on fHD histograms for two image
sets. Decidability is calculated as follows:

d′ =
|µ1 −µ2|√

σ12+σ22

2

(12)

where d′ represents decidability, µ1 is the mean intra-fHDs,
µ2 is the mean inter-fHD, σ1 is the standard deviation of the
intra-fHDs, and σ2 is the standard deviation of the inter-fHD.
A decidability of zero indicates no distinguishable features
between tags, rendering them ineffective as O-PUFs. In the
iris study, decidabilities as high as 14.7 were observed, with a
threshold as low as 7.2 for practical use57.
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Decidability provides a concise summary statistic that en-
capsulates the relationship between the intra-fHD and inter-
fHD distributions in a single value. Unlike ENIB, which fo-
cuses solely on the inter-fHD distribution, decidability evalu-
ates both distributions simultaneously to determine how dis-
tinguishable they are. Decidability is optimised when the
difference between the means (µ1 and µ2) is large, indicat-
ing greater separation between the distributions. Additionally,
lower standard deviations (σ1 and σ2) improve decidability
by narrowing the distributions, making it easier to discern be-
tween the two. This aligns with the purpose of decidability:
to quantify how effectively the two distributions can be sepa-
rated for reliable identification or authentication.

Metric Simple Definition Ideal Value
Decidability Quantifies how easy it is to decide be-

tween one ID and another
Higher

7. False positive rate

The false positive rate (FPR) quantifies the proportion of in-
correct positive identifications, representing instances where
the system incorrectly classifies an incorrect PUF evaluation
as a correct one, and is a key metric for evaluating system
misclassification likelihood over time. Favourable FPR+ val-
ues will mean effective authentication during the verification
stage if the O-PUF is used in industry. Depending on the type
of FPR, the value can be derived from the Normal distribution
of intra-fHD and inter-fHD areas or from True/False readings
from testing. Note that in this section FPR+ is used to refer to
the full set of 4 metrics found in the confusion table.

When calculating FPR it is important to consider the fol-
lowing:

• Experimental FPR: A threshold point must be calcu-
lated: an fHD value used to classify results. If an in-
coming fHD calculation is less than this threshold, it is
categorised as the same tag; if it is greater, it is cate-
gorised as a different tag. Test this with a large sample
set of intra-arrays (if only doing FPR) and inter-arrays
(if expanding to fill the rest of the confusion table). As
shown in FIG. 12 and TABLE VI.

• Theoretical FPR: Using a pre-measured set of fHD
values the means and standard deviations are deter-
mined. Then using the fitted curves, new fHD measure-
ments are converted into FPR+ using the areas under
the curves. As shown in FIG. 12, part (b).

• Readings over time: Using either method the FPR+
over time can be determined. Therefore, the perfor-
mance of the fingerprint over time can be plotted and
evaluated.

Mathematically, the experimental FPR+, as shown in TA-
BLE VI, is calculated using proportions of areas. Depending
on the specific research or commercial application, different
metrics may have different importance, but in general lower
FPRs are most useful for reliable security.

FIG. 12. In panel (a), Experimental FPR+ are calculated on a set of
data, whereas in panel (b) Theoretical FPR+ are calculated. In this
example, 30 tests are considered. The values for both sets of rates
are different. The Normal fits in (b) are previously generated before
the testing phase and are used to calculate theoretically FPR+ as this
is based on the areas of the fitted curves to the left and right of the
fHD value.

TABLE VI. Table displaying the formulas used to calculate the ex-
perimental rates for False Positive Rates (FPR), True Positive Rates
(TPR), True Negative Rates (TNR), and False Negative Rates (FNR).
This table summarises key performance metrics delivered from the
confusion matrix. FPR represents the proportions of negatives in-
correctly identified as positives, TPR measures the proportions of
correctly identified positives. TNR captures the correctly identified
negatives and FNR indicates the proportion of positives that were
missed.

Predicted Positive Predicted Negative

Actual Positive TPR =
Nt p

Nt p+N f n
FNR =

N f n
Nt p+N f n

Actual Negative FPR =
N f p

N f p+Ntn
TNR = Ntn

N f p+Ntn

Where N is the total number of tests of the tags and N f p is
the number of inter-images tested that were incorrectly iden-
tified as intra-images, while Nt p is the number of inter-images
correctly identified as inter-images. Ntn is the number of
intra-images correctly identified as intra-images and N f n is the
number of intra-images incorrectly identified as inter-images.
For context, Nt is the total number of intra-images and N f is
the total number of inter-images. This method requires large
quantities of testing for high levels of accuracy and precision
in the FPR, but can be considered a more authentic reflection
of the performance of the O-PUF than theoretical FPR. This
could be considered experimental FPR as it is tested directly
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through experiment.
In order to calculate experimental FPR, a threshold point

must be calculated or decided. This value will provide the
points for the threshold for which the True/False decision is
made. Mathematically, this can be calculated as the x value
of the intercept between the two distributions. The threshold
point can also be adjusted to adapt an O-PUF to a specific
application that requires different proportions of FPR+.

The Theoretical FPR can be calculated from as little as one
reading or comparison, and is computed by comparing the re-
sult to previously fitted curves, as shown in FIG. 12. Since
this metric relies on the curve fits of the data, it benefits from
a large sample set to ensure the accuracy of these fits. The
FPR is considered theoretical because it is computed using
the following formulas:

However, it should be noted that the Theoretical FPR is not
simply the height at a point x on one curve over the sum of
the heights of the two curves. Instead, it is the area under the
"false" curve (the inter-array distribution) to the left of point x,
normalised by the total area under both the "true" and "false"
curves. Mathematically, this is expressed as:

finter(x) =
1

σ2
√

2π
exp

(
− (x−µ2)

2

2σ2
2

)
(13)

where µ2 is the mean of the inter-fHD distribution and σ2 is
the standard deviation. Equation 13 shows a normal distribu-
tion. Taking this area the following proportion is calculated:

Theoretical FPR(x) =
∫ x
−∞

finter(x)dx∫
∞

−∞
finter(x)dx

(14)

where this equation computes the proportion of the "false"
curve’s area (to the left of x) relative to the total area under
both the "inter" (false) and "intra" (true) curves.

Finally, the mean theoretical FPR across all samples can be
computed as:

Mean Theoretical FPR =
1
n

n

∑
i=1

TheoreticalFPR(xi) (15)

Where x is the value of the measurement fHD and
‘Falseinter’ represents the inter-fHD distributions. n is the
number of readings that the mean is taken over. The Normal
distributions are integrated over to gain area under the curve.
The integral on the top of the fraction represents the parts of
the false curve that lies to the left of the fHD measurement,
x, over the area of the total false curve. Theoretical FPR is
calculated as the mean of multiple readings. In the summary
below, x is the fHD reading inputted into the equation 15.

Metric Simple Definition Ideal Value
Experimental FPR The fraction of N f p

N f
Lower

Theoretical FPR Area <x in false distribution
divided by total area of false
distribution

Lower

8. Accuracy, precision & recall

Used in a small number of the papers surveyed31, these met-
rics are based on the probability rates from the mechanisms
shown in the above section. It should be made clear when
these are used if they are calculated with theoretical FPR etc.
or experimental FPR. These metrics are calculated using these
forms:

accuracy =
T PR+T NR

T PR+T NR+FNR+FPR
×100% (16)

precision =
T PR

T PR+FPR
×100% (17)

recall =
T PR

T PR+FNR
×100% (18)

where TPR are the true positive rates, TNR are true negative
rates, FPR are false positive rates and FNR are false negative
rates. By converting the rates into easy-to-understand percent-
age metrics on a scale of 0-100, this allows for more compa-
rable and easy-to-understand communication of performance.

9. Probability of cloning

Used in a limited number of the papers reviewed, this niche
metric quantifies the area of overlap between the two fitted
curves10. In this case, Normal fits are presented as the distri-
bution shapes.

fintra(x) =
1

σ1
√

2π
exp

(
− (x−µ1)

2

2σ2
1

)
(19)

finter(x) =
1

σ2
√

2π
exp

(
− (x−µ2)

2

2σ2
2

)
(20)

Pcloning =
∫

∞

−∞

min( fintra(x), finter(x))dx (21)

fintra is the probability density function of the intra-fHDs
which contains µ1, the mean of the intra-fHD distribution. σ1
is the standard deviation of the intra-fHD distribution. finter is
the probability density function of the inter-distribution which
is based on µ2 and σ2. x represents the variable over which
the integration is performed. The integral is taken over the
entire real line (−∞,∞), representing the overlap region of
the two distributions. Smaller overlaps, and therefore smaller
‘probability of cloning’ statistics, indicate a robust security
system where individual IDs are unlikely to be mistaken for
other IDs in the database.

Metric Simple Definition Ideal Value
Prob. of cloning The area of the overlap region between

the two fHD distributions
Lower
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10. NIST-800-22 randomness testing

The NIST-800-22 test suite, developed by the National
Institute of Standards and Technology (NIST), is a well-
established method for evaluating the randomness of binary
sequences, primarily in the context of random number genera-
tor (RNG) testing. The suite consists of 15 statistical tests that
check for predictable elements in a binary sequence to identify
overrepresented patterns that might compromise randomness.
The first test in the suite is the ’Frequency (Monobit) Test’,
which checks for the proportion of 1s and 0s in the bit-string
and the deviation from the expected 50/50 split. Another ex-
ample would be the ’Runs test’, which counts the length and
frequency of same-parity runs of bits. These are then com-
pared to what is expected from an ideally random source. Full
documentation of the suite can be found in the 2010 revision
of the documentation by Bassham et al.58 and further explana-
tions of the tests can be found in the Appendix IX. While pass-
ing these tests suggests a high degree of randomness, it cannot
guarantee unpredictability, as certain patterns may evade de-
tection, or repeat over longer periods than is tested for. Further
to this, even simulated random data can fail some NIST-800-
22 tests when input lengths increase significantly59.

FIG. 13. The process of NIST-800-22 randomness testing. A number
of inter tags (N) are imaged, then the 2D arrays are converted into a
1D bit-string. The NIST-800-22 randomness tests are then applied
and their pass rate stated.

When applied to O-PUFs, NIST-800-22 is adapted to anal-
yse the 1D bit-string generated by flattening the 2D binary
arrays as shown in FIG. 13. This flattening can be performed
along the rows or columns, with the resulting 1D bit-string
serving as the test input. These tests provide insights into the
randomness of the binary bit-string, a property distinct from
the ID-centric metrics previously discussed. While random-
ness testing is relevant for PUFs that hope to have each re-
sponse bit ideally unpredictable, this is not a requirement for
anti-counterfeiting and authentication applications. As such,
true mathematical randomness, as assessed by NIST-800-22,
is not essential for their performance.

O-PUFs most often fail NIST-800-22 tests due to their non-
IID nature, as shown in FIG. 3 and FIG. 14. This limita-
tion reflects the challenges posed by feature sizes in binarized
IDs, which affect array randomness. Similar to this test suite,
as part of their series of recommendations for random num-
ber generators (NIST SP800-90 series, here 90B), NIST sug-

FIG. 14. A non-random array derived from an O-PUF source is
shown on the left along with the binary code of the first 50 digits.
The same is shown for an array produced with a random number
generator. The pass/fail outcomes of the NIST-800-22 tests are listed.
Note that O-PUF arrays that are not IID and therefore fail the NIST
tests can still provide unique and unpredictable patterns which lead
to valid anti-counterfeit properties.

gests a series of entropy (or predictability) estimation tests for
non IID data, which may be more applicable. Nevertheless,
approximately a quarter of O-PUF studies sampled employ
NIST-800-22 testing, with varying results. Passing of these
tests may be due to post-processing methods such as hashing,
or where the binarization or sampling distances across an im-
age are much larger than any local feature correlation on the
physical tag. Despite its limitations, NIST-800-22 remains a
useful, if imperfect, tool for exploring certain aspects of O-
PUF behaviour.

Metric Simple Definition Ideal Value
NIST-800-22 A series of 15 tests for randomness in a

1D bit-string
15/15 Pass

11. Bit error rate

The BER quantifies the extent of deviation between cap-
tured fingerprint images and their expected array, as enrolled
as the ‘true’ PUF response. This metric is pivotal in assessing
the fidelity and consistency of O-PUFs over various evalua-
tions. BER is computed using the fHD metric, as illustrated
by Lu et al.22, and is defined as:

Bit Error Rate = (
1
X

X

∑
x=1

f HD(Ct ,Cx))×100% (22)
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where X is the number of arrays, corresponding to the same
tag, that the calculation is being performed on. fHD is the
fractional hamming distance between arrays Ct , which repre-
sents the ground truth array and Cx which is the array in the
set it is being compared to. Cx can either be a set of readings
to a different time interval or different conditions. These ar-
rays are in set {C}. These comparisons are completed in set
of X and averaged to give BER. If the BER is the time case,
reliability can be determined. Reliability is a metric used in a
few papers which ties directly to bit error rate when measured
over time:

Reliability = 1−BER (23)

FIG. 15. Bit Error Rate. The ‘errors’ are shown in red and represent
the deviation from the ground truth fingerprint matrix. The BER is
calculated by taking the average intra-fHD between the initial image
set and the final image.

Using the process illustrated in FIG. 15, the initial finger-
print is compared to subsequent readings. This enables the
determination of any deterioration of the ID over time. BER
is reported using various metrics, including Hamming values,
percentages, the number of bits per 100 pixels, or total bit loss.

Metric Simple Definition Ideal Value
Bit Error Rate The deviation between a response & ac-

cepted value
0%

12. Entropy

A range of entropy-measuring techniques and systems can
be applied to analyse any image, including those that are pro-
duced as the ‘response’ of an O-PUF. Theoretically, higher
entropy in images should correlate with better O-PUF perfor-
mance. However, practical challenges such as noise and ex-
posure often result in inaccurate assessments or comparisons.
Despite these challenges, discussing these methods is impor-
tant.

A small subset of papers use entropy metrics. The method-
ology for this analysis is as follows:

• Setup: Capture a variety of sample images, controlling
variables to minimise noise such as: overexposure, un-
derexposure, glare, and other extraneous factors.

• Analysis: Ensure uniform pixel size, a critical con-
trol variable, and process the images, calculating en-
tropy from the pixel data using a chosen mathematical

method. Calculate the mean entropy across the image
dataset.

In the work by Cao et al.30, 1D entropy, also known as
‘Shannon Entropy’ is defined as:

H(X) =− ∑
x∈X

px log px (24)

where H(X) represents the entropy of a discrete random vari-
able X with a maximum state probability px. In the case of
an IID binary array, this value is equal to the maximum of the
probabilities of either the 0 or 1 state in a binary array, directly
relating to bias. This connection highlights how Shannon en-
tropy, which is derived from px, captures the global distribu-
tion of bit states. However, it does not account for local or di-
mensional variations in the array, such as alternating 0/1 rows,
which can produce localised biases. Another relevant entropy
metric for PUFs would be that of min entropy60. This value
is calculated as the negative logarithm of the most probable
state in a distribution, and is considered the most conservative
estimate of the entropy of a system.

While not frequently referenced in O-PUF literature, a
binary-specific variant of Shannon entropy exists and was first
introduced in Shannon’s seminal 1948 work61. Binary en-
tropy is commonly used to analyse the entropy of binary bit-
strings:

binary entropy =−[p log2 p+(1− p) log2(1− p)] (25)

where p represents the probability of one of the two states (0
or 1) in a binary distribution. Binary entropy provides a direct
measure of randomness and bias in binary sequences in terms
of bits.

While the standard form of Shannon entropy, seen in equa-
tion 24, provides a useful measure of randomness for non-
binary sources, its limitations make it less comprehensive for
evaluating non-IID sources. For such cases, entropy metrics
like the Equivalent Number of Independent Bits (ENIB) or
non-IID entropy estimates can offer more meaningful insights.
These metrics aim to estimate the number of truly entropic bits
per raw bit, rather than providing a simple pass-fail result as
with traditional methods.

Advanced standards like NIST SP-800-90B provide en-
tropy estimation techniques tailored to non-IID sources, en-
abling per-bit entropy analysis for a more nuanced under-
standing of randomness62. Examining entropy and bias in
smaller subsections of the array can further reveal regional
variations, offering a detailed view of randomness across di-
mensions.

The definition of "entropy" in metrics is broad, and differ-
ent tools are suited to different purposes. ENIB is better for
assessing the effective randomness of inter-fHD distributions,
while NIST-800-22 provides insights into bit-string random-
ness. Each metric serves distinct applications, highlighting
the importance of choosing appropriate tests based on the spe-
cific requirements of O-PUF evaluation. While NIST-800-22
testing is effective for evaluating randomness in IID sources,
its relevance to non-IID data is limited. Incorporating non-
IID entropy estimation methods, such as those in SP-800-90B,
could enrich the analysis of O-PUFs.
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D. Weak and strong PUFs

In the context of PUFs, the classification of weak or strong
is based on the number of cryptographic keys or challenge-
response pairs that can be reliably extracted from the hard-
ware. This typically derives from the rate at which the CRP
space increases with the physical size of the unique disorder
of the tag, and directly affects their applicability in crypto-
graphic security models63:

• Weak PUFs provide only a small number of stable re-
sponses and are often used as unique tags. Their secu-
rity depends on the difficulty of reproducing the same
response, but once extracted, the key is static. This is
primarily used for identification or cryptographic seeds,
making them suitable for applications where a static se-
cret key is needed, such as secure storage or authentica-
tion.

• Strong PUFs have a large CRP space that allows
for dynamic, on-demand cryptographic key genera-
tion. The key advantage is that individual responses are
not reused, making them resistant to replay and mod-
elling attacks. The vast number of CRPs also enables
challenge-response authentication schemes, where dif-
ferent challenges can be used to continuously verify au-
thenticity.

The security strength of a strong PUF is typically assessed us-
ing the intra-fHD and inter-fHD distributions of challenge re-
sponses within each PUF instance, as well as across different
PUF instances as with weak PUFs earlier. While the intra-
fHD metric is the same as before (repeated measurements of
the same response on the same device), the definition of intra-
fHD is extended to include the fractional hamming distance
across the space of CRPs within each PUF, as separate to the
mean bit distances for responses at the same CRP location
across multiple different devices. For a PUF to be secure,
the challenge responses within a PUF must be unique and
unpredictable between themselves, as well as being unique
and unpredictable between different PUF instances. A fur-
ther method of evaluating the security of a strong PUF is to
compute the Shannon entropy or min-entropy over the space
of observed response distributions within each PUF instance.
The total entropy of a strong PUF can be considered as the
equivalent number of independent CRPs that can be generated
without pattern repetition or correlation.51.

While most optical PUFs (O-PUFs) have traditionally been
weak7,11,17,64, certain optical scattering-based designs, such
as that proposed by Pappu et al.2, demonstrate the potential
for strong PUF behaviour. In such designs a large set of inde-
pendent CRPs can be extracted. However, achieving practical
strong PUF implementations in optical systems remains chal-
lenging due to measurement noise, environmental variations,
and physical stability constraints. Despite these challenges,
designing optical systems with higher rates of CRP scaling
remains an active area of development. As an example, recent
research has explored multi-factor O-PUFs, which typically
involve 2-5 layered responses per challenge9,16,53,65. These

designs explore a variety of methods to collect a larger set of
responses for the same size of tag.

It is important to note here that since strong PUFs tend to
have multiple CRPs that derive their response from the same
unique physical disorder, there is a risk of higher-order pre-
dictability across the CRP set66. This means that there is the
risk of an attacker deriving, or gaining undue insight into, the
nature of a certain challenge response pair from a different
subset previously captured - typically via machine learning
based attacks29,67–69. This is tested for by evaluating against
such attacks in the design stage, or computing metrics (such
as Pearson’s Correlation Coefficient70,71) for dependency be-
tween responses. However, due to the limited use of strong
PUFs in the subdomain of physical authentication, this work
does not seek to review these methods in detail. To be secure,
the CRPs within the same PUF instance should still be maxi-
mally unique on a per-bit basis, and can be broadly considered
as a set of separate tags when using the metrics discussed in
this work.

E. Metrics for performance over time

Understanding how well the array ID of a specific O-PUF is
maintained over time is crucial. The ID or ‘digital fingerprint’
of the O-PUF should remain readable over extended periods.
This is particularly vital for O-PUFs generated from materi-
als prone to decay, such as organic or fluorescent substances.
Fluorescence-based O-PUFs must combat photobleaching72.
Some other material-based O-PUFs must resist harsh environ-
mental conditions such as high temperature and humidity - de-
pending on their intended application7. This is especially true
for commercial applications, where the long-term fidelity and
security of products or important documents are of utmost im-
portance. Among the studies that analysed performance over
time, the following metrics were used:

• FPR: Following either the experimental FPR or the
theoretical FPR method, which is laid out in section
III C 7.

• BER: Testing the differences between the initial finger-
print and resulting fingerprint is important. This process
is shown in FIG. 15 in section III C 11.

• Uniformity: As shown in section III C 3, uniformity is
the 0/1 bias proportion for IDs. The average uniformity
taken over time shows if the tags are maintaining high
information density.

By capturing images at set intervals after sample creation,
the fidelity of the O-PUF over time can be evaluated. Metrics
such as BER and FPR can be derived from the same dataset,
allowing for simultaneous calculations of accuracy, recall, and
precision. Uniformity can also be tracked over time by exam-
ining changes in the inter-fHD images.

In fact, all metrics can be adapted for time-dependent anal-
ysis with the appropriate data collection. A comprehensive
evaluation of an O-PUF’s performance over time would not
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be unfeasible, transforming static tests into dynamic ones to
assess long-term reliability.

IV. COMPREHENSIVE EVALUATION AND
RECOMMENDATIONS

This section addresses a number of key considerations for
evaluating O-PUFs. We discuss the limitations of mean-based
metrics, the impact of curve fits with low (N)choose(2) val-
ues, and the effects of array size. We also advocate for us-
ing decidability and the probability of cloning as crucial fig-
ures of merit, examine the reliance on Normal fits for theo-
retical FPR, and suggest metrics for ensuring accurate time-
dependent testing. Additionally, we highlight important con-
siderations for NIST-800-22 testing and recommend an effec-
tive testing suite.

A. The problems with only using mean-based metrics for
O-PUFs

A significant proportion of papers use only the intra-fHD
means (related to reliability) and inter-fHD means (related to
uniqueness) as their figures of merit. When the intra-fHD
and inter-fHD curves are plotted, an overlap between the two
distributions indicates a difficulty to distinguish between dif-
ferent PUF instances. However, without access to the fHD
plots, the reader of these papers cannot determine whether the
O-PUF is genuinely reliable or unique. This is because the
standard deviations of the fits determine the overlap in fHD
between the instances of repeat measurements of the O-PUF
ID and measurements of different IDs. As detailed in section
III A, greater variability in them standard deviations may be
present as the data does not follow the binomial dependence
between the µ , n and σ .

FIG. 16 highlights the limitations of relying solely on
mean-based summary statistics. In the first scenario, with
µ1 = 0.1 and µ2 = 0.5, the reliability (90%) and uniqueness
(50%) metrics appear favourable. However, these metrics can
be misleading, as the O-PUF may perform poorly in other
critical statistics such as False Positive Rate or ENIB/DoF.
The standard deviations of the Normal distributions are cru-
cial for accurately assessing the quality of the O-PUF. An al-
most ideal PUF is depicted in the second scenario, where all
statistical measures are consistent. This oversight is under-
standable, as these tests were designed to compare PUFs that
follow IID, unlike some O-PUFs. As illustrated in FIG. 3, for
other PUF types, the standard deviation remains constant as
σ(µ1,n). However, in the case of O-PUFs, the standard devi-
ation can vary significantly, potentially leading to substantial
overlap and rendering the O-PUF ineffective.

By failing to account for these variations, researchers may
overestimate the performance of O-PUFs. Thus, a more rig-
orous evaluation framework, which includes metrics beyond
mean values, is essential for accurately determining the effi-
cacy of O-PUFs.

FIG. 16. An example scenario illustrating a curve fit for a lower per-
forming, high σ O-PUF in scenario 1 as contrasted with a better per-
forming, low σ , O-PUF in the second scenario. Due to the identical
means of both distributions, mean-based metrics alone erroneously
classify both as high-quality IDs. However, the introduction of met-
rics that consider both mean and standard deviation, such as ENIB,
accurately reflects the true nature of the O-PUFs. Standard devia-
tions can vary more as this data does not follow IID.

Key Findings Using only µ-based metrics for non-IID O-
PUFs is insufficient.
Include standard-deviation-based metrics or
state standard deviation (σ ).

B. Curve fits with low quantities of data

The accuracy of metrics derived from Normal fits of fHD
depends heavily on the robustness of the fits, which in turn re-
lies on well-determined goodness-of-fit parameters. Achiev-
ing this robustness requires a sufficiently large sample size.
Since fHD values are computed for all possible pairs of arrays,
the number of data points scales combinatorially with the sam-
ple size, following the binomial coefficient

(N
2

)
. This scaling

provides ample data for reliable curve fitting while keeping
the experimental workload manageable.

As illustrated in TABLE II, the number of samples (N)
utilised in different experiments varies significantly. Although
there is no definitive cut-off for an insufficient number of
data points, a larger N yields a more accurately fitted curve.
The quality of this fit may be assessed through the use of
‘goodness-of-fit parameters’. Notably, deviations in the val-
ues of standard deviation σ from theoretical IID predictions
may indicate interdependence within the data.

The value of N is often constrained by the practicalities of
O-PUF manufacturing. In simulation studies, N can be ex-
ceptionally high, providing a more robust dataset for analy-
sis. Conversely, in experimental scenarios where N is low,
researchers have sometimes mitigated this limitation by di-
viding tags into multiple CRPs21. Thus, while larger datasets
are preferable, smaller datasets can still provide valuable in-
sights, albeit with increased consideration for the fit quality
and potential inter-dependencies.
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A Chi-squared (χ2) test can be used to evaluate the quality
of the Normal fit by comparing the observed frequency distri-
bution of the fHD values to the expected frequency distribu-
tion derived from the fitted Normal curve. The test statistic is
given by:

χ
2 = ∑

(Oi −Ei)
2

Ei
(26)

where Oi is the observed frequency and Ei is the expected fre-
quency for the i-th bin. A smaller χ2 value indicates a closer
match between the observed data and the expected distribu-
tion, suggesting a robust fit. The p-value associated with the
χ2 statistic can further indicate whether deviations from the
fit are statistically significant.

In addition to the Chi-squared test, other goodness-of-fit
metrics such as Root Mean Square Error (RMSE), adjusted
R2, and the Kolmogorov-Smirnov (K-S) test can provide valu-
able insights. RMSE measures the average magnitude of
residuals, adjusted R2 evaluates the proportion of variance ex-
plained while accounting for model complexity, and the K-S
test compares the observed cumulative distribution function
(CDF) to the theoretical CDF. Employing multiple tests can be
a method of ensuring a comprehensive evaluation of the Nor-
mal fit, which is particularly important for datasets exhibiting
non-IID behaviour or limited sample sizes, thereby enhancing
the reliability of derived metrics.

Key Finding N must be sufficient for a good Normal fit, in-
creased N is generally better.

C. The effects of array size

The size of digital keys or IDs generated by O-PUFs varies
significantly across studies. Smaller arrays, when derived
from the same initial imaged tags and feature sizes, may
reduce noise by averaging over fewer pixels per array ele-
ment, while larger arrays capture finer details and allow for
more dataset variability. In arrays that are truly random, the
inter-fHD should tend towards the 0.5 mark. For IID PUFs,
the fHD distributions should follow the binomial distribution
which means that the array size should affect the standard
deviations of the inter-fHD distribution with the relationship
σ =

√
nµ . As shown in FIG. 17, the randomised IID data

generated, increasing array size improves the distribution of
fHD for the array. This observation aligns with the ‘Law of
Large Numbers’73, which states that as sample size increases,
averages converge closer to their true values.

However, when conducting this analysis with a non-IID
dataset, the patterns observed in the samples used are not com-
pletely random. A small-scale pilot study was conducted on
a set of N = 20 O-PUF tags, where the samples consist of a
mixture of fluorescent dyes and were imaged using a high-DPI
image scanner. The results of this study are illustrated in FIG.
18.

For each set, the images were binarized using modified ver-
sion R-LBP (Reduced Local Binary Patterns) with radius = 3

FIG. 17. Simulated data: showing the IID arrays follows the bino-
mial σ relationship as the array size increases. While this does not
affect the mean of the distribution, it does effect the standard devi-
ation. This would give higher µ&σ -based metrics for higher array
sizes.

and neighbourhood = 16. The only variation across tests was
in the ‘keysize’, which determines the size of the output array.
This was calculated for each fingerprint size from 2 to 100,
and intra-fHD and inter-fHD plots were generated for each
set. The means and standard deviations of these distributions
were then stored and plotted in the final graph depicted in FIG.
18.

FIG. 18. Non-IID arrays: Variation in array size can be used to check
for consensus in the means and standard deviations for the intra-fHD
and inter-fHD metrics. It can be seen that in this case, array sizes
below 20x20 do not capture the true nature of the O-PUF. This was
tested on a N=20 inter-images and intra-images set for fluorescent
molecule tags. These arrays were binarized using R-MLBP with dif-
ferent key sizes giving different array sizes.

FIG. 17 demonstrates that the standard deviations and
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means stabilise around an array size of n = 20. However, this
stabilisation is specific to the feature size of the test samples.
The choice of key size or array size is critical for produc-
ing a fingerprint that effectively conveys information while
minimising noise. As n (array size) increases, higher res-
olution increases the likelihood of capturing physical inter-
dependencies among features or patterns.

In conclusion, if an array is IID (passes NIST-800-22), the
array size will influence the σ value. As a result, µ- and σ -
based metrics are not suitable for comparison unless the ar-
ray size is explicitly stated, allowing other studies to use the
same dimensions for consistency. However, for non-IID ar-
rays (those that fail NIST-800-22), the standard deviation is
not impacted by array size. This is due to the breakdown of
statistical relationships for non-IID described in the section
III A. As discussed in section IV A, metrics must incorporate
σ to ensure valid comparisons in such cases.

Key Findings If O-PUFs do not follow IID, array size doesn’t
affect standard deviation (σ ).
µ & σ -based metrics are a useful tool for anal-
ysis that are not affected by array size.

D. A case for the use of decidability or probability of cloning
as key metrics.

Decidability, which is increasingly used in various bioinfor-
matics fields57, serves as a robust summary statistic for com-
paring the means and standard deviations of the two fHD fits
for the O-PUFs. Although none of the reviewed papers have
utilised this metric, this review advocates for its inclusion in
future research efforts. Decidability is maximised when the
intra-fHD and inter-fHD curves are well-separated with min-
imal standard deviations, indicating a higher ease of distin-
guishing an ID from other samples.

Another significant metric that holds potential as a com-
mercial benchmark is the probability of cloning, discussed in
Section III C 9. This metric quantifies the overlap between
two fitted curves, indicating the material’s effectiveness as an
O-PUF in a generalised context. Decidability is a comprehen-
sive metric providing a concise summary statistic for com-
paring materials, encapsulating both the reliability (intra-fHD
mean) and uniqueness (inter-fHD mean) of O-PUFs and their
level of security.

E. Relying on Normal distributions for theoretical FPR

When it comes to the difference in FPR calculation
between studies, O-PUFs exemplify their interdisciplinary
reach. While more biochemical studies often list experimental
FPR, more cryptographic studies use theoretical FPR. While
experimental rates rarely go below values such as 0/200 as this
would require 200 tests, the theoretical rates can be as low as
10−300 as they are derived from calculations based sometimes
on the tail-ends of gaussian/normal fHD distributions. Despite

the fact that theoretical FPR can give a good security mea-
surement that can be compared to other metrics for security
and can extrapolate the potential of the system FPR outside
of the experimental testing range, this can yield misleading
results when considering the materials practically. For con-
text, here is a table illustrating the estimated time required for
experimental verification of different Theoretical FPR values,
assuming one testing image can be taken per second and that
the calculations are conducted to yield a True/False result.

TABLE VII. Comparison of theoretical FPR with the estimated time
required to experimentally conclude these rates, expressed in billions
of years. The table demonstrates that for FPR values below 10−2,
experimental verification becomes impractical within a reasonable
time-frame. The time estimates are based on imaging one sample
per second.

Theoretical FPR Estimated time for same conclusion via Experi-
mental FPR (billion years)

10−2 3.17×10−15

10−10 3.17×10−7

10−50 3.17×1033

10−100 3.17×1083

10−300 3.17×10283

TABLE VII presents the estimated time required to experi-
mentally validate theoretical FPR. Testing FPR values below
10−2 becomes impractical, as verifying an FPR of 1/100 re-
quires testing 100 tags, taking approximately 100 seconds.
Given variations in imaging techniques, testing FPRs below
10−7 would take over a week, making them increasingly
impractical. This challenge is amplified in optically-read
PUFs due to time constraints imposed by the material system,
though it is more feasible with E-PUFs.

Both theoretical and experimental FPRs require the same
data collection process, involving sets of intra-images tested
against fHD distributions. While theoretical FPRs yield more
impressive results, experimental data provides practical vali-
dation. Presenting both together ensures transparency in data
processing. Additionally, stating the total number of images
tested is crucial, as experimental results like 0/200 images
support a theoretical FPR of 1× 10−10 more effectively than
theoretical values alone. Conversely, a 1/200 experimental
FPR indicates possible system noise, questioning the validity
of extremely low theoretical FPRs.

Key Findings When theoretical FPR is calculated, experimen-
tal FPR should also be calculated.
Extremely low theoretical FPR should be con-
sidered as a hypothetical lowest bound.

F. Choosing figures of merit for longevity

When selecting FoM for determining the longevity of an O-
PUF, researchers have employed various approaches. Metrics
such as BER, FPR, and uniformity have been adapted to anal-
yse how well an O-PUF maintains its fingerprint over time.
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These metrics, already used in time-of-manufacture analysis,
can be extended for time-dependent evaluations, as discussed
in section V. This consistency in methodology ensures more
reliable and comparable results across different studies.

Uniformity is widely used in the literature to assess the bias
of an O-PUF’s fingerprint, providing insight into the balance
of 0s and 1s and, consequently, the information density. How-
ever, uniformity does not measure changes to the fingerprint
ID over time. While it evaluates the presence of information,
it does not determine whether that information is preserved,
as metrics like BER or other ID-tracking methods do. For this
reason, uniformity should not be used in isolation but rather as
part of a broader suite of metrics that collectively assess both
the quantity and stability of the information over time.

In addition to traditional metrics, the use of distribution
evolution provides a powerful tool for visualising changes in
the O-PUF’s performance over time. By analysing the evolu-
tion of key distributions at regular intervals, researchers gain
an intuitive understanding of how the fingerprint’s uniqueness
and reliability evolve. This method complements quantita-
tive metrics by offering a direct, visual assessment of tempo-
ral performance, which is particularly valuable for identifying
trends or anomalies in O-PUF behaviour.

Overall, combining these established and emerging meth-
ods provides a comprehensive framework for evaluating the
long-term reliability of O-PUFs, ensuring their suitability for
applications requiring sustained performance and security.
This method is provided in the python package in later sec-
tions alongside more conventional metrics.

Key Findings BER paired with FPR provides a useful metric
for fingerprint longevity.
For a fully comprehensive analysis, this re-
search proposes ‘distribution evolution’ testing.

G. Important notes on NIST testing

NIST-800-22 testing, which is used to evaluate the random-
ness of cryptographic sequences, is one of the tests used in the
literature. Different NIST-800-22 tests require varying mini-
mum input bit-string lengths, derived from flattening 2D inter-
fHD arrays into a 1D bit-string. While typically applied to
help prove the unpredictability of each bit of a PUF by them-
selves, understanding these requirements is important for the
subject of this review. Achieving the necessary 1 million bits
can be challenging, but it is highly recommended for this type
of testing.

As shown in FIG. 19, it’s possible to get to 1000000 bits
if a fingerprint of 100x100 is generated and 100 inter-images
are taken. If the array size is smaller, more inter-images are
needed - however with appropriate experiment planning, it is
possible. Additionally, it is worth noting that Section 4.2.2 of
the NIST-800-22 documentation mentions and recommends
that, in order to obtain statistically significant results, the
tests - each requiring a 106-bit input - should be repeated 55
times, with a p-value calculated from these repetitions. How-
ever, this is unfeasible for most O-PUFs, as it would require

5.5×107 bits. Therefore, this recommendation should be con-
sidered based on the specific research scenario.

FIG. 19. A depiction of varying array setups illustrating the ca-
pability to achieve bit-string lengths (n) suitable for NIST-800-
22 tests. The figure showcases two distinct fingerprint configura-
tions: one with bits=n=72000, another with n=1000000. These data
sets demonstrate the feasibility of generating bit-string lengths of
1000000 bits, a prerequisite for certain NIST-800-22 evaluations.

A note on ‘Entropy’: When considering 1D entropy
metrics, such as Shannon entropy (as discussed in section
III C 12), and the NIST-800-22 test suite, it’s important to note
the distinctions between these approaches. Both assess as-
pects of randomness, but they do so differently. The NIST-
800-22 suite comprises 15 tests that evaluate a sequence’s un-
predictability, detecting certain predictable patterns across a
range of criteria. In contrast, Shannon entropy provides an
actual continuous entropy rate estimate, assuming the data is
IID, which theoretically offers direct insight into the random-
ness level of the data itself. Importantly, the NIST tests are
also limited to a 1D framework, as is the Shannon entropy cal-
culation when applied to binary bit-strings. Neither approach
captures the full spatial relationship between bits that might be
better represented through 2D approaches to entropy metrics,
which, as of yet, have not been explored in the literature.

A note on hashing: When applying hashing or seeded ex-
tractors to improve the randomness of O-PUF responses, it
is crucial to consider their potential to mask underlying is-
sues in the data. Hashing can spread local patterns, such as
bias or correlation, across a wider scale, making the bit-string
appear IID, which can result in the incorrect application of
metrics. For instance, a biased or highly correlated input may
yield a seemingly uniform hash output, but the underlying pre-
dictability remains.

While some PUFs are suitable for random key generation,
O-PUFs are not. NIST-800-22 testing evaluates randomness
in bit-strings, but non-IID O-PUFs fail the tests58, as patterns
emerge as the array size increases relative to feature size. FIG.
14 illustrates these limitations, discussed further in section
III A.
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Key Findings NIST-800-22 testing recommends at least
1’000’00 bits for the full 15 tests.
NIST-800-22 will fail on O-PUFs which are not
IID.

H. Recommended metrics for a testing suite.

This section provides a comprehensive set of recommended
metrics for evaluating O-PUFs, aimed at standardising the
analysis and facilitating comparison across different studies.
By adhering to these guidelines, researchers can ensure their
work is both rigorous and comparable to other investigations
in the field.

TABLE VIII. Summary of metrics and recommended components of
the testing plan, including secondary variables necessary for compa-
rability with other studies. This testing plan is implemented in the
Python package.
Metric Figure of merit/metric Secondary Vari-

ables
Intra-hamming µ1 and σ1 stated, Reliabil-

ity (%)
N1, Array size

Inter-hamming µ2 and σ2 stated, Unique-
ness (%), ENIB

N2, Array size

Whole ham-
ming Plot

Shown plot, Decidability

Experimental
& Theoretical
Metrics

Experimental & Theoreti-
cal FPR, TPR, FNR, TNR

n, decision point

Randomness NIST tests, Average unifor-
mity (inters)

N1,N2 NIST
variables

Over-time
metrics

FPR, BER (or uniformity)
and full Gaussian evolution

N1, N2, Array size

TABLE VIII shows the main recommended figures of merit
for future O-PUF research, along with any secondary vari-
ables that should also be listed.

Secondary Variables:

• Array Size: The nxn size of the binarized fingerprint
produced by the analysis.

• N1: the number of repeat images inputted for the intra-
fHDs calculations.

• N2: the number of different images inputted for the
inter-fHDs calculations.

• n: the number of testing instances (intra-images/inter-
images) for experimental and theoretical FPR+ testing.

• Decision point: (also known as threshold value) the
specific value at which an experimental test distin-
guishes between a True and False outcome.

• NIST variables: the NIST-800-22 documentation can
be consulted for the specifics of variable input needed
to run the 15 tests.

Using this suite of tests, which includes means and standard
deviations from Normal fits, ensures comprehensive analysis
and facilitates direct comparison across studies. It accounts
for variables like array size and input sample count, aiding
interpretation of anomalies in the data. NIST-800-22 testing
is included to help inform about the IID or non-IID nature
of the O-PUF and therefore can be used to inform the tests
the researcher chooses to focus on. Additionally, by moving
beyond mean-based metrics, this approach addresses the lim-
itations of non-IID O-PUFs, promoting standardisation and
comparability, even for those not employing the Python pack-
age discussed in the next section.
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V. ACCOMPANYING OPEN-SOURCE PYTHON
PACKAGE

The Python package described in this report enables cal-
culation of all the main figures of merit, facilitating compa-
rability across studies and streamlining future research ef-
forts. Freely accessible on GitHub, it will be installable
using ‘pip install pyopticalpuf‘ and requires minimal
Python knowledge for use on a wide variety of imaged sam-
ples. Comprehensive documentation and .ipynb Jupyter
notebooks are also included on the Github page, providing
step-by-step guides to installation, function usage, and pro-
ducing final displays. An example testing set is also provided
to verify the code.

The package supports pre-processing steps like cropping
and binarization, offering four main algorithms: Reduced
Local Binary Pairs (R-LBP), Adaptive High Boost (AHB),
Sauvola, and Otsu’s method. Each algorithm includes op-
timisable parameters to suit specific patterns in the imaged
O-PUF. Custom binarization methods can also be added, of-
fering flexibility and adaptability for diverse applications.
Flowcharts describing the processing present in both forms
of testing can be found in FIG. 20 and FIG. 21. The outputs
themselves, in the form of FIG. 22 and FIG. 23 can be found
on the subsequent pages.

A. Time-of-manufacture testing

FIG. 20. A flowchart illustrating the inputs, process, and output of
the code. The process begins with a set of N intra-images and inter-
images, divided into setup and testing sections. These images are
then binarized using either a pre-defined algorithm from the package
or a custom-built one. All relevant metrics are subsequently calcu-
lated and displayed in the output report .png file.

This section provides an overview of the comprehen-
sive testing capabilities enabled by the Python package
pyopticalpuf. By running the code provided in the reposi-
tory, all major figures of merit and supporting metrics for O-
PUF analysis can be calculated and visualised. The output in-
cludes key metrics, fHD histograms, confusion matrices, and
NIST-800-22 results, ensuring reproducibility and facilitating
comparisons across studies. FIG. 22 demonstrates an example
of the output in detail while FIG. 20 shows a generalised flow
chart of the process.

As shown in FIG. 20, the code takes sets of images from
the user and produces a full output report, as shown in FIG.
22. The code binarizes the images and then calculates fHDs,
plotting the fHDs and calculating the relevant metrics. The
IDs that are produced are also analysed using non-fHD-based
metrics such as NIST-800-22 and uniformity. By consolidat-
ing all the definitions and providing easy-to-access code, the
package offers a valuable tool for researchers to standardise
their analysis, ensuring consistency and comparability across
studies.

B. Time-dependent testing

FIG. 21. Flowchart demonstrating the inputs, output, and process of
testing O-PUF samples over time. Each day, a set of intra-images
and a set of inter-images are taken. These images are binarized using
either an algorithm from the package or a custom choice. The fHD
comparisons between the sets are then used for Normal fits and met-
ric calculations.

This Python package introduces a novel approach to O-PUF
analysis over time. Beyond standard BER and FPR, it enables
over-time fHD distribution analysis. ’Distribution evolution’
examines intra-fHD and inter-fHD distributions and their key
metrics, including reliability, uniqueness, ENIB, decidabil-
ity, and cloning probability. This complements standard FPR
and BER tests, where a database image from day 0 is com-
pared to later readings. However, distribution evolution offers
deeper insights into O-PUF behaviour over time. FIG. 21 de-
fines the inputs and outputs of time-dependent testing, while
FIG. 23 shows the display output, generated via ‘over-time-
testing.ipynb’ in the GitHub repository.
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FIG. 22. Time-of-manufacture testing output of pyopticalpuf. By following the code in the file ‘Instantaneous-testing.ipynb’ all major
figures of merit for the O-PUF can be calculated. (top-left) The main µ − based and µ&σ − based metrics are listed including: Reliability,
Uniqueness, ENIB, Decidability, Probability of Cloning and Uniformity. Additional important secondary variables are also listed including
N (the number of total images) and array size. Additionally, the threshold point, which is the point chosen for True/False determinations in
experimental FPR calculations. (top-right) The histogram of the fHDs is plotted and the Normal fit applied. The intra-fHDs are seen on the
left and the inter-fHDs on the right. (bottom-right) NIST-800-22 testing results are shown with all the tests having their result, score, name
and time-taken to complete. (bottom-left) True Positive Rates (TPR), FPR, FNR and TPR of both the experimental and theoretical variety
are shown here. Above this the inter-example and intra-examples allow a look at how the binarization affected the image and a check for the
researcher to verify no essential detail has been lost. Below the FPR+ table, also known as a confusion matrix, the algorithm used is specified
along with the input parameters. (whole) This is an example output in .png form. This allows for comprehensive testing, backwards-compatible
testing and useful data for comparison studies of future O-PUFs. Any results can also be displayed separately as well as in the final output.
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FIG. 23. The output of pyopticalpuf for time-dependent testing. (top-left) The Normal distribution plots over time illustrate the variability
of individual sets of fHD measurements taken across different days. Changes in intra-fHD and inter-fHD are observed as the response of the
O-PUF evolves over time. Ideally, the fitted curves show little variation, indicating stable ID. (top-right) Main metrics derived from the curves
are tracked over time, including Reliability, Uniqueness, ENIB, and Decidability. Higher values on the y-axis indicate better performance for
all four metrics, enabling a conclusive evaluation of stability. (bottom-left) Bit Error Rate is calculated by comparing each set of IDs to the
original set from day 0. (bottom-right) The False Positive Rate (FPR), here theoretical, is calculated by comparing fHD from later days to
the Normal-fitted histogram plot from day 0. (whole) This display encompasses the main tests used in the literature, augmented by the novel
Normal evolution plot.
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VI. CONCLUSION

O-PUFs represent a significant area in the field of anti-
counterfeiting, offering a low-cost, easily mass-producible
method of authentication that could revolutionise security for
products and documents. As a subset of Physically Un-
clonable Functions, O-PUFs provide a unique fingerprint ID
through the characterisation of a physical authentication mate-
rial. However, unlike other PUFs, O-PUFs do not always ad-
here to the IID assumption, as demonstrated in section III A,
which necessitates the use of modified analytical methods. As
O-PUF technology transitions from research to commercial
application, it is imperative to establish a standardised method
for its analysis to support consistent and reliable implementa-
tion.

O-PUF analysis has employed a diverse array of metrics
over the past decade. In this study, a set of 30 papers on opti-
cal physically unclonable functions from the past decade was
reviewed. This broad range of metrics includes: fHD means
(reliability and uniqueness), uniformity, NIST-800-22, FPR,
entropy, and BER. Each metric has been evaluated in this re-
view, and the mathematical definitions are explicitly defined
in section III C.

Key findings include:

• O-PUF IID behaviour cannot be assumed as it typi-
cally is for electronic PUFs. This is due to the 2D na-
ture of the input array and the presence of multi-pixel
visible features in the fingerprint, meaning the bit-string
produced by O-PUFs may not follow IID. This informs
later decisions as this results in the Normal fits of the
intra-fHD and inter-fHD data not following the bino-
mial distribution shape where the standard deviation
can be predicted mathematically. This results in more
need for distribution evolution analysis and standard de-
viation based metrics for analysis.

• NIST-800-22 testing can be used to detect if the O-PUF
that is being evaluated is IID. An O-PUF that fails a ma-
jority of the NIST-800-22 tests is most likely non-IID
and therefore should rely on σ -related metrics instead
of only µ-based metrics. However, if the O-PUF is IID,
then σ -related metrics must be used with caution as σ

is affected by the array size chosen.

• Mean-based metrics were used as the only metrics
used in a large proportion of studies. This allows for
easy comparison but makes it difficult to assess the ef-
fectiveness of the O-PUF material if IID. Mean-based
metrics (such as the means, reliability and uniqueness)
should ideally be supported with other fHD-based met-
rics such as standard deviations, ENIB, Decidability,
Probability of cloning and FPR, which involve the stan-
dard deviation or have clear proof that the data is IID.

• An Open-source, easy-to-use Python testing package
has been coded and is described in section IV H, which
includes all relevant figures of merit that may be needed

to compare the work to others. Frameworks for testing
over time are also provided, including BER, FPR and
Normal distribution evolution.

• Secondary variables should be stated clearly, such as
the number of images binarized and inputted into the
fHD plot, denoted N. Additionally, one should include
the pixel size of the array - as these can affect the key
figures of merit if the images follow IID. N can affect
the fidelity of the fit and the array size affects the stan-
dard deviation of the inter-fHD curves.

• Distribution evolution over time is a novel method for
O-PUF analysis over time. By taking a full set of read-
ings and constructing Normal distributions for the intra-
fHDs and inter-fHDs at each time step, the full proper-
ties of the O-PUF can be tracked over time. This will
allow for more thorough comparisons and evaluation in
addition to FPR and BER - which are used more gener-
ally in the literature.

In summary, this study introduces primary testing criteria
that, combined with the mathematical definitions in Section
III C, enable comprehensive O-PUF analysis across both in-
stantaneous and longitudinal assessments. By encompassing
key metrics from the past decade of literature, this frame-
work ensures compatibility with prior studies while improv-
ing clarity through secondary variables like N and array size.
A Python package, with additional GitHub jupyter notebook
walk-throughs, consolidates these definitions to streamline
analysis and enhance usability.

Looking into the future of the field, as O-PUFs continue to
cross from the realms of research into the commercial space,
the testing procedure requires a clear outline to avoid inef-
ficient use of time and resources on materials which cannot
be transformed into viable security products. Additionally, a
clear comparison architecture could allow for the optimisation
of binarization algorithms - which is another key area of ad-
vancement in the field. A clear testing suite may assist new re-
searchers whose existing materials may have O-PUF potential
to avoid pitfalls in the analysis. In future works, a database
or comparison of various O-PUF technologies could be de-
veloped and standards for acceptability established. These
standards would expand on ideal values for specific figures
of merit and would set lower limits for what these parameters
should be to make a good O-PUF.

Whilst this study endeavoured to find a majority of O-PUF
publications released in the 2013-2024 range, it is likely some
papers may not have been found. It should still be a represen-
tative sample of the field. The definition of an O-PUF can be
broad but in this study any system that used optical imaging
techniques to get the data were considered, with some varia-
tion. Also included were one or two review papers on specific
subsets of the field, purely to evaluate the metrics in their con-
tents. It will be interesting to see another review assessing
any progress in the use of metrics in this field in the coming
decades.

A key area for future work would be the development of
a standardised framework for evaluating O-PUF quality. Es-
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tablishing clear thresholds and benchmarks for what consti-
tutes a "good" O-PUF would enable more consistent compar-
isons across studies. A thorough investigation into this, sup-
ported by numerical results from the literature, would help
define reliable performance criteria. Additionally, a future re-
view assessing the evolution of metric usage in the field over
the coming decades would provide valuable insights into ad-
vancements in O-PUF evaluation and standardisation.

In conclusion, the recommendations for testing procedures
and the code attached to this research should foster greater
standardisation in the field as it continues to mature. As O-
PUFs move toward commercial applications, this report aims
to serve as a centralised resource for the mathematical and
computational definitions of key figures of merit in O-PUF
analysis, supported by the accompanying Python package.
Additionally, this study underscores the critical importance of
testing for IID within datasets during metrics evaluation, en-
suring the reliability and validity of comparisons across stud-
ies. By adopting these practices, future research can achieve
greater comparability and effectively benchmark against past
O-PUF studies.

Data availability statement: The data that support the
findings of this study are available from the corresponding au-
thor upon reasonable request.
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VIII. APPENDIX A

Glossary of terms (excluding terms explicitly defined in the
text) in alphabetical order:

• Array - A 2D matrix which is used to represent a re-
sponse. A binary array is a type of array containing
only 1s and 0s.

• Authentication - The process of verifying the authen-
ticity of a product or connection. The most common
use-case for PUF work. (= anti-counterfeiting)

• Binarisation algorithms - Algorithms used to convert
intra-images and inter-images into two-dimensional bi-
nary arrays, with the choice of algorithm depending on
the researcher.

• Bit-string (=string) (=sequence) - 1D data. A binary
version would be composed of 1s and 0s.
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• Challenge-response pairs (CRPs) - A pair consisting
of an input (challenge) and its corresponding response,
which is used by PUFs for authentication.

• Challenge - A controlled stimulus applied to the PUF.

• Electronic Physically Unclonable Functions (E-PUFs)
- A subset of PUFs that exploit variations in semicon-
ductor manufacturing, such as differences in transistor
threshold voltages or circuit delays, to produce unique
and unclonable responses. Defined and compared to O-
PUFs in section III A.

• Figures of merit (=metrics) - Mathematical methods
used to numerically evaluate the quality of a PUF.

• Fractional Hamming distance (fHD) (=HD in the in-
troduction) - A mathematical measure of similarity be-
tween two arrays, as defined in equation 1. A value of 0
indicates identical arrays, 0.5 indicates significant dif-
ference, and 1 indicates completely opposite arrays.

• fHD distributions (=intra-fHD and inter-fHD distribu-
tions) - The fraction hamming distance values are plot-
ted as a histogram and the normal fits applied are the
distributions, these have means and standard deviations.

• FPR+ - A short-cut term for: False Positive Rate, False
Negative Rate, True Negative Rate and True Positive
Rate.

• HD-based measurements (=HD-based metrics) - Met-
rics based on comparisons involving Hamming dis-
tances. These include ’mean-based’ and ’mean-and-
standard-deviation-based’ metrics.

• Identity (ID) (=fingerprints) (=patterns) - A PUF re-
sponse, often represented as an array for 2D data and
a sequence for 1D data.

• Independently and Identically Distributed (IID) - A
mathematical assumption that is used to describe the na-
ture of the responses to PUFs. IID response will behave
differently to non-IID and this will result in different re-
lationships between the means and standard deviations
of the fHD distributions as shown in FIG. 3. Defined
formally in section III A.

• Inter-images - The second set of images, images of dif-
ferent IDs, used to determine uniqueness.

• Intra-images - As part of the main O-PUF analysis
mechanism, repeat images are taken of the same IDs.
This is later used to determine reliability of the ID.

• µ-based metrics; µ&σ -based metrics; other metrics -
As stated in section II, these are classification based on
which elements of the fHD distributions are used in the
metric calculations.

• µ1 - Mean of the intra-hamming distribution.

• µ2 - Mean of the inter-hamming distribution.

• Optical Physically Unclonable Functions (O-PUFs) -
A subset of PUFs that use image-based challenge-
response pairs, defined further in section III A.

• Physically Unclonable Functions (PUFs) - A physi-
cal security primitive that relies on inherently non-
reproducible properties to produce challenge-response
pairs.

• Pixels (=bits (when considering an optical response)) -
Pixels, often indexed as (I, J), represent locations in an
image or array. After binarization, each pixel takes a
value of 0 or 1. This term can refer to the bits in the
image pre-binarization and the bits in the array post-
binarization.

• Response - The output uniquely determined by the
PUF’s physical randomness.

• Sample (=tag) (=material) - for O-PUFs which rely on
a physical material that is imaged for the challenge-
response, the sample is the individual physical entity
used for unique identification.

• Sample Size (N) - The number of intra-image and inter-
images. This assumes that both are the same. N1 and
N2 can be used if these numbers are different. Analysis
of the samples sizes used in the literature can be found
in TABLE II.

• Set {C} - The set of the intra-arrays.

• Set {D} - The set of the inter-arrays.

• time-dependent (=over-time) - Metrics that assess per-
formance over time, enabling evaluation of ID degrada-
tion.

• Time-of-manufacture (=static) - Metrics that assess the
PUF at a specific moment, assuming negligible time
variation.

• Weak and Strong PUFs - As defined in section III D,
these are PUF subcategories distinguished by the num-
ber of CRPs they generate.

• XOR - A binary operator that takes pairs of 1s and 0s
and when performed follows the rules shown in FIG. 7.
It is used in the calculation of fHD.

• σ1 - Standard deviation of the intra-hamming distribu-
tion.

• σ2 - Standard deviation of the inter-hamming distribu-
tion.

IX. APPENDIX B

The following are brief descriptions of the tests that con-
stitute the NIST SP800-22 Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic
Applications:58
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• Test 1: Frequency (Monobit) Test: This test examines
the proportion of zero to ones across the entire input
sequence, verifying the level of equality between the
two states falls within expected confidence bounds.

• Test 2: Frequency Test within a block: This test ex-
amines the proportion of zero to ones across smaller, lo-
cal blocks of bits within the input sequence, again test-
ing that the level of equality between the two states falls
within expected limits.

• Test 3: Runs Test: This test examines the length and
frequency of occurrence for continuous sub-sequences
that contain the same bit parity (known as runs), over
the total input sequence. The resulting distribution is
then analysed to verify that it conforms to what is ex-
pected for ideal randomness (within appropriate cer-
tainty bounds).

• Test 4: Test for the Longest Run of Ones in a Block:
This test splits the input sequence into smaller blocks,
counts the length of the largest contiguous subsequence
of one bit within the block, and checks that the resulting
distribution conforms to that which is expected for ideal
randomness (within appropriate certainty bounds).

• Test 5: Binary Matrix Rank Test: This test evaluates
the rank (the number of independent columns or rows)
of matrices formed from the input sequence, looking to
detect linear dependencies that would not be part of an
ideally random sequence (within appropriate certainty
bounds).

• Test 6: Discrete Fourier Transform (Spectral) Test:
This test applies a Discrete Fourier Transform to the in-
put sequence, converting from the sequential domain to
a distribution in the frequency domain. The heights of
whatever peaks may be in this resulting spectrum is then
evaluated to test for non-random periodic features in the
initial input sequence.

• Test 7: Non-overlapping Template Matching Test:
This test searches across the length of the input se-
quence to find, or match with, a defined collection of
small bit sequences, known as templates. The fre-
quency of occurrence for these bit patterns is then anal-
ysed to ensure they conform to what is expected for
ideal randomness (within appropriate certainty bounds).
In this version of the test there is no overlapping, which
is to say that any bit in the input sequence that is part
of the matching template once would not be included
in further matching of the same template as the search
window moves further along. The moving search win-
dow ’skips’ bits that have already been matched.

• Test 8: Overlapping Template Matching Test: This
test counts the number of matches of the input sequence
with a defined collection of small bit sequence tem-
plates, as with the Non-overlapping Template Matching
Test. However, in this test bits that have already counted
for the matching of a certain template can be included

in matches with the same template as the search win-
dow moves along, and so overlapping of the template is
possible.

• Test 9: Maurer’s “Universal Statistical” Test: This
test examines the number of non-matching bits that lie
between matched recurring patterns. This test evaluates
the level of compressibility of the input sequence, in
other words to what level the sequence can be encoded
using fewer bits than it actually contains (through the
reuse of recurring patterns) without the loss of any in-
formation about the sequence. Here an ideally random
sequence should be maximally incompressible.

• Test 10: Linear Complexity Test: This test evaluates
the length of the linear feedback shift register (LFSR)
required to emulate subsequence blocks of the total in-
put sequence. A linear feedback shift register is a pseu-
dorandom number generator based on the shift register,
which can be considered as a length of cells (or register)
each containing a bit state, where the contents of each
cell is passed along one cell (shifted) on a certain cue.
In the form LFSR used in this test, the input bit state
to the shift register depends on a linear (XOR-ed) com-
bination of the bit states taken at certain points (known
as taps) across the register’s length, with output at the
far end being the next PRNG output state. The more
random a sequence is, the longer and therefore more
complex the LFSR needs to be to emulate it.

• Test 11: Serial Test: This test searches for, and counts
the frequency of, the patterns or templates that make up
every permutation of bits for of a certain length, allow-
ing for overlapping as with the Overlapping Template
Matching Test. In other words, for a pattern of length 3
this test would search for and count each of the 8 possi-
ble bit states patterns across the sequence. Every com-
bination of bit states in a pattern subsequence should be
equally likely, and so this test checks that the number
of matching patterns found for each possible bit state
template of the same length is equal (within appropriate
confidence bounds).

• Test 12: Approximate Entropy Test: This test com-
pares the (overlapping) frequency of occurrence for
each possible combination of bit states at a certain pat-
tern length (as with the Serial Test), alongside the fre-
quencies of each state for a pattern one bit longer. This
is equivalent to the sum of occurrence for each different
pattern of bits found in an overlapping and moving win-
dow of a certain length, and length one bit more, passed
across the sequence under test. For these two sets of
state counts the Shannon entropy (as seen in the body
of this work) is calculated and the difference between
the two window size entropies is found. This difference
in entropy estimates for the two window sizes is then
compared to what is expected in a theoretical ideally
random distribution.

• Test 13: Cumulative Sums (Cusum) Test: This test
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first remaps the bits of the input sequence from 0, 1 to
-1, 1, changing the zero bit to -1. From this, the test
examines the highest magnitude value reached by sum-
ming along sub-sequences of increasing length in for-
ward and reverse directions (the maximal excursion of
the random walk here defined). For ideally random se-
quences this maximum cumulative sum should be close
to zero.

• Test 14: Random Excursions Test: Using the same -1,
1 remapping as in the Cumulative Sums (Cusum) Test,
this test examines the number of times summing over
the sequence reaches a certain sum value (across the
range ±1-4) and returns back to a sum value of zero.
This can be considered as the number of cycles to and
from a certain (1 dimensional) location in a random ex-

cursion defined by the sequence, and is evaluated to en-
sure each count follows the distribution expected for an
ideally random source (within appropriate confidence
bounds).

• Test 15: Random Excursions Variant Test: Using
the same -1, 1 remapping as in the Cumulative Sums
(Cusum) and Random Excursions Test, this test exam-
ines the number of times the cumulative sum of the se-
quence equals a certain value (across the range ±1-9) as
the summation is performed. This can be considered as
the number of visits to a certain (1 dimensional) loca-
tion that occurs during a random excursion defined by
the remapped input sequence. This distribution is then
evaluated to ensure each count follows the distribution
expected for an ideally random source (within appropri-
ate confidence bounds).


