
Cognitive Science 49 (2025) e70064
© 2025 The Author(s). Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science
Society (CSS).
ISSN: 1551-6709 online
DOI: 10.1111/cogs.70064

Discovering Dynamical Laws for Speech Gestures

Sam Kirkham
Department of Linguistics and English Language, Lancaster University

Received 23 August 2024; received in revised form 28 March 2025; accepted 6 April 2025

Abstract

A fundamental challenge in the cognitive sciences is discovering the dynamics that govern behavior.
Take the example of spoken language, which is characterized by a highly variable and complex set of
physical movements that map onto the small set of cognitive units that comprise language. What are
the fundamental dynamical principles behind the movements that structure speech production? In this
study, we discover models in the form of symbolic equations that govern articulatory gestures during
speech. A sparse symbolic regression algorithm is used to discover models from kinematic data on
the tongue and lips. We explore these candidate models using analytical techniques and numerical
simulations and find that a second-order linear model achieves high levels of accuracy, but a nonlinear
force is required to properly model articulatory dynamics in approximately one third of cases. This
supports the proposal that an autonomous, nonlinear, second-order differential equation is a viable
dynamical law for articulatory gestures in speech. We conclude by identifying future opportunities and
obstacles in data-driven model discovery and outline prospects for discovering the dynamical principles
that govern language, brain, and behavior.

Keywords: Speech production; Dynamical systems; Model discovery; Symbolic regression; Computa-
tional modeling; Articulatory phonology; Task dynamics; Nonlinear dynamics

1. Introduction

A longstanding goal in the cognitive sciences is the development of models that capture the
dynamics of mind and motion. In the seventeenth-century, Newton proposed the fundamental
laws of motion and gravitation, which synthesized a diverse range of observations into a
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unified mathematical framework. This identification of common mathematical laws has come
to represent a core goal of modern science (e.g., Anderson, 1972; Newton, 1687; Noether,
1918), but it has long been acknowledged that the dynamics of living systems are structured by
other laws beyond fundamental physics (Schrödinger, 1944). For example, within decades of
Newton’s discoveries, a new paradigm emerged that was focused on discovering fundamental
laws behind human behavior and cognition (Hume, 1739), thus laying the foundations for
contemporary cognitive science. Two central questions in this line of inquiry are (1) what are
the principles that govern behavior and cognition? and (2) can these principles be expressed
as mathematical laws?

An exemplary distillation of this challenge is the case of spoken language. Spoken (and
signed) languages involve mapping a set of high-dimensional continuous physical movements
to a low-dimensional set of discrete tasks that comprise the combinatorial units of language.
A fundamental issue concerns the relation between these two components: the qualitative
aspects of phonological knowledge and their physical realization. One view proposes a trans-
lation between discrete symbolic units and continuous physical properties, such that phonetic
realization is a matter of translation or an “interface” between symbolic and physical domains
(Chomsky & Halle, 1968; Guenther, 2016; Keating, 1990; Turk & Shattuck-Hufnagel, 2020).
An alternative view holds that the relation between discrete and continuous aspects of phono-
logical cognition can be explained using the language of nonlinear dynamics (Browman &
Goldstein, 1986). In this sense, phonetics and phonology are isomorphic, rather than separate
modules requiring translation, and can be cast as intrinsically linked elements within a single
dynamical system (Browman & Goldstein, 1992; Gafos, 2006; Kelso et al., 1986).

The dynamical view of phonology emerges from a broader perspective in dynamical sys-
tems theory, which views the world through the mathematical language of change: differential
equations. Dynamical thinking has a long history in the cognitive sciences (e.g., Fowler, 1980;
Kelso, 1995; Port & van Gelder, 1998; Smolensky, 1988) and is typically set in opposition to
highly modular models of mind (e.g., Fodor, 1975; Turing, 1950). The overarching goal is to
identify the appropriate dynamical laws that govern brain and behavior across task-specific
domains, including the relations between microscopic and macroscopic scales. For example, a
key analytic concept is identifying the appropriate “order parameters” (Haken, 1977) or low-
dimensional variables that govern qualitative states in the dynamical system (Haken, Kelso, &
Bunz, 1985). This does not necessarily mean doing away with symbolic representations; for
example, Gafos (2006) outlines a cogent theory of the relation between dynamics and phono-
logical grammar that recasts the “interface” as a “dynamic linkage.” Indeed, many dynamical
theories maintain representations and symbolic systems, but the primary hypothesis is that
cognitive agents are dynamical systems that can be cast in terms of states, paths, and flows,
rather than modules, computations, and translations (van Gelder, 1998).1

Given the immense complexity of human cognition, accompanied by our highly variable
and noisy behavioral measurements, how do we begin to identify appropriate dynamical
models of brain and behavior? In this study, we focus on developing models of articulatory
trajectories—or “gestures”—in the human vocal tract. This is a well-studied and tractable
problem, as it is possible to collect lots of high-quality data on the movements of speech
articulators, which we can use to derive the lawful regularities that govern such movements.
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We approach this problem as one of data-driven model discovery and, in doing so, leverage
recent developments in physics-informed machine learning and symbolic regression, which
allow us to learn simple and interpretable dynamical equations directly from large datasets.
The outcome is a small set of candidate models, from which new predictions can be generated
and tested. Before outlining this approach in more detail, we first review extant dynamical
models of speech, before motivating the search for new models.

1.1. Dynamical models of speech

In their article “The dynamical perspective on speech production,” Kelso, Saltzman, &
Tuller (1986) argue that the task for a dynamical model of speech is “less one of trans-
lating a ‘timeless’ symbolic representation into space-time articulatory behavior, as it is
one of relating dynamics that operate on different intrinsic time scales.” The dynamical
timescales involved in speech production span macroscopic forms of organization (syllables,
words, prosodic structure) to microscopic physical activity (articulators, biomechanics, neu-
ral dynamics) and may even expand to contextualize speech production in terms of a larger
agent–environment dynamical system (perception–action dynamics, interactions with other
speakers, etc.). The most thoroughly worked out theory of dynamical systems in the study
of spoken language is articulatory phonology/task dynamics (Browman & Goldstein, 1992;
Fowler, 1980; Gafos & Benus, 2006; Iskarous, 2017; Saltzman & Munhall, 1989; Tilsen,
2016), henceforth AP/TD. In this theory, the fundamental unit is the gesture, an abstract force
acting on the vocal tract that drives it from its current state towards a new target state (Brow-
man & Goldstein, 1992). To this end, the gesture is both a model of articulatory motion
and a model of the “cognitive control of abstract linguistic units” (Byrd & Saltzman, 2003,
p. 154).

A common mathematical model of speech gestures in AP/TD is the damped mass-spring
model, which is visualized in Fig. 1 and captures the dynamics of forces on the vocal tract
(Saltzman and Munhall, 1989). The model approximates an idealized physical system, with
a physical mass attached to a spring, plus a damper or shock absorber. Variants of this model
have been well-studied since the seventeenth century (Hooke, 1678) and the model can
be easily understood by way of its physical properties, such as the analytical relationship
between spring damping/stiffness and the system’s position, velocity, and acceleration. These
insights can then be generalized to the dynamics of vocal tract tasks during speech, allowing
us to advance a specific and testable model of speech dynamics based on a well-understood
physical analogy.

The dynamics of the speech gesture can be explicitly formalized as a second-order, criti-
cally damped harmonic oscillator, as in (1):

mẍ + bẋ + kx = 0 (1)

In the above equation, x represents the state of the system, such as the current state of an
articulatory variable, while ẋ and ẍ, respectively, represent the velocity and acceleration of
x. The system’s mass m is typically set to m = 1 and k is a stiffness constant. The damping
constant is b = 2

√
mk in critically damped versions of the model. Eq. 1 specifies the system’s
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Fig. 1. The damped-mass spring model is a model of vocal tract task dynamics. The left diagram shows a midsagit-
tal view of the vocal tract, with a box centered on the Tongue Tip task space. The middle diagram shows a physical
damped mass-spring system representing the forces that act on the Tongue Tip gesture, where m is a mass, k is
spring stiffness, and b is the strength of the damping force. The right diagram shows simulated trajectories from
the damped mass-spring model, with the Tongue Tip moving from a low to a high position (arbitrary units).

equilibrium or target position as zero, but non-zero targets can be introduced by adding a
target parameter (which we denote T ) to the kx term as in (2). We assume that T is implicit
in any subsequent formulations of these equations.

mẍ + bẋ + k(x − T ) = 0 (2)

This equation defines the relationships between parameters as invariant over an instance of
the system, where the system evolves until the value of T is reached. Research on the neural
encoding of speech movements has identified signatures of critically damped oscillations in
the neural populations of the ventral sensorimotor cortex, supporting a neural basis for the
kinds of oscillatory models used in AP/TD (Chartier, Anumanchipalli, Johnson, & Chang,
2018).

The state of a gestural system evolves towards its equilibrium or target position, after which
the target parameter changes and the system evolves towards a new state. This affords move-
ment between different vocal tract postures, which is a fundamental characteristic of speech.
Change in parameters requires a notion of gestural activation; if we cast gestural activation as
a function of time a(t ) then we can transform (1) into (3).

mẍ + a(t )[bẋ + kx] = 0 (3)

In the standard model of Saltzman and Munhall (1989), a(t ) in Eq. 3 corresponds to the
rectangular pulse function in (4). This means that gestural parameters change instantaneously
at the point of gestural activation a(t ) = 1 and remain constant until activation ends a(t ) = 0,
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where activation is bounded by the temporal interval [ta, tb].

a(t ) =
{

1, t ∈ [ta, tb],

0, otherwise
(4)

Eq. 3 is a critically damped harmonic oscillator with step activation. It is well-established
that this model fails to capture many empirical characteristics of speech movements. This
includes overly short time-to-peak velocity and highly asymmetric velocity trajectories com-
pared with those seen in empirical data (Byrd & Saltzman, 1998; Sorensen and Gafos, 2016).
An alternative approach is to introduce time-varying activation (Byrd & Saltzman, 1998).
Eq. 5 is an example of a continuous activation function from Kröger, Schröder, and Opgen-
Rhein (1995).

a(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, t < ta

sin
(

2π (t−ta )
4(tb−ta )

)
, ta ≤ t < tb

1, tb ≤ t < tc

sin
(

2π (t−td )
4(tc−td )

)
, tc ≤ t < td

0, t ≥ td

(5)

The activation function in (5) defines a quarter sine rise over [ta, tb), steady activation over
[tb, tc), and a quarter sine fall over [tc, td ). The ramped activation function corrects for the short
time-to-peak velocities and velocity asymmetries of step activation (Byrd & Saltzman, 1998).
In both step and continuous activation, gestures are active when they exceed a threshold of
zero (with possible values of 0 or 1). An alternative view casts gestures as continuously active
(Tilsen, 2020), which we discuss in Section 6.

Common to models of continuous gestural activation is that the system is explicitly time-
dependent (i.e., non-autonomous) during activation. An alternative approach is to reformulate
the dynamical equations that govern gestural dynamics, instead of using a more complex acti-
vation function. For example, Sorensen & Gafos (2016); Sorensen and Gafos (2023) intro-
duce a cubic term in (6) but retain the rectangular pulse function in (4) for the activation
variable a(t ). Note that the m term has been omitted from (6) and all subsequent related equa-
tions because it is conventional to define m = 1 (although see Šimko & Cummins, 2010, for
a task dynamic model where different gestures are defined over different masses).

ẍ + a(t )[bẋ + kx − dx3] = 0 (6)

The cubic term in (6) has the effect of acting as a nonlinear restoring force on the spring
in the mass-spring model, with d governing the strength of the nonlinear force. This means
that the effect of the nonlinear force is greater with larger movement displacement, thereby
reproducing observed nonlinear empirical relations between movement amplitude and peak
velocity (Ostry & Munhall, 1985). The model also generates the symmetrical velocity profiles
observed in empirical data, while retaining the step-function activation, which yields constant
forcing during periods of gestural activation. The effects of this can be seen in Fig. 2, which
compares the linear and nonlinear task dynamic models under step activation.
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Fig. 2. Position and absolute velocity trajectories simulated using a linear damped mass-spring model and a nonlin-
ear (cubic) damped mass-spring model. In both cases, x0 = 1, ẋ0 = 0, T = 0, k = 2000, b = 2

√
k. The nonlinear

cubic coefficient is d = 0.95k.

The prevailing philosophy in the above research seeks minimal and autonomous mod-
els that capture fundamental dynamics without recourse to extrinsic timing mechanisms
(Iskarous, Cole, & Steffman, 2024; Sorensen & Gafos, 2016). But we should be open to
the possibility that further good models may be possible. For example, Turk and Shattuck-
Hufnagel (2020) propose a General Tau model for articulatory movements, as part of a
broader symbolic theory of phonology. Their model fits position and velocity trajectories bet-
ter than the nonlinear dynamical model in Sorensen & Gafos (2016), although a comprehen-
sive evaluation of how different models fit acceleration data is yet to be established (Sorensen
& Gafos, 2016). There are also reasons beyond quantitative fit to search for new models, such
as the trade-off between simplicity and accuracy and the value of interpretable parameters.
Standard models may also not capture all kinds of speech and may require modifications or
extensions to reproduce phenomena observed in disordered speech (Mücke, Roessig, Thies,
Hermes, & Mefferd, 2024), speech development (Abakarova, Fuchs, & Noiray, 2022), differ-
ent languages (Geissler & Nellakra, 2024), and so on. Finally, discovering new models is a
core part of evaluating the success of existing models; if we can develop better models then
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Fig. 3. A Pareto curve showing the schematized relationship between model accuracy and model complexity, after
Brunton and Kutz (2022). An ideal model occupies the Pareto optimal space, which strikes a balance between
accuracy and simplicity.

this would represent a major advance, but if extant models prove more successful than the
discovered models then this is also an important empirical finding.

2. Discovering dynamical models from data

2.1. What does a good model look like?

There is a near-infinite number of potential models that could have generated a spoken
utterance, but the number of good models is likely few in number. How do we know which
models are good? A typical approach in model discovery is to strike a balance between two
characteristics—parsimony and accuracy—which is schematized as complexity versus error
in Fig. 3.

A maximally parsimonious model is a very simple model with as few terms as possible
in the equation (top left of Fig. 3). A parsimonious model is highly interpretable because we
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have a small number of model terms that make clear predictions. The downside is that those
predictions are likely to be inaccurate, as they are a poor fit with the real world due to insuf-
ficient complexity. At the other extreme, a maximally accurate model would have a very high
number of terms, which offer immense flexibility in fitting the model to highly variable data
(bottom right of Fig. 3). An example of this would be a deep neural network, which can have
upwards of many hundreds of parameters. The downside is that such a model is likely to be
incredibly complex and uninterpretable, meaning we learn little about the system’s fundamen-
tal dynamics. Our aim is to discover models that fit into the “Pareto optimal” space in Fig. 3,
representing models that are simple but show high accuracy. The following section addresses
the conceptual and technical solutions to this approach.

2.2. Sparse identification of nonlinear dynamics

A popular technique for data-driven model discovery in physics and engineering is the class
of SINDy (Sparse Identification of Nonlinear Dynamics) methods that have emerged over the
past decade (Brunton, Proctor, & Kutz, 2016). SINDy is based on the principles of symbolic
regression (Schmidt & Lipson, 2009), which aims to approximate an unknown function from
some data X, Ẋ as a combination of nonlinear functions.

Ẋ = �(X ) (7)

where �(X ) is a feature library composed of an arbitrary number of mathematical functions.

�(X ) = [1X X 2X 3 . . . sin X cos X ] (8)

The aim is to discover coefficients for the functions in �(X ) that explain variation in Ẋ .
A known problem of symbolic regression is that the above procedure will produce many
non-zero coefficients, leading to a complex model that contains many terms from the feature
library. Such models are likely overfitted to the data and may be more complex than desirable.
How can we only retain the terms that contribute substantially to the system under study?
SINDy solves this by discovering the optimal sparse coefficient matrix � corresponding to
the functions in �(X ).

� = [ξ1ξ2ξ3 . . . ξn] (9)

The aim is to discover a coefficient matrix � that provides an excellent fit to Ẋ while being
as sparse as possible; that is, containing the smallest number of terms required to produce a
good fit. This can be cast as Eq. 10.

Ẋ = �(X )� (10)

A range of sparsity-promoting algorithms exist to solve this problem, two of which are
reviewed in Section 3.3. The sparsity-promoting characteristics of SINDy mean that a sym-
bolic model derived from data often performs better at estimating parameters from new data
than a higher dimensional neural network. Subsequent research has expanded the range of
optimization methods for diverse problems in physics, biology, and engineering, providing a
valuable toolkit for data-driven model discovery (e.g., Champion, Zheng, Aravkin, Brunton,
& Kutz, 2020; Kaiser, Kutz, & Brunton, 2018).
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SINDy holds great promise for learning interpretable and parsimonious models of brain
and behavior. Dale and Bhat (2018) review extant approaches to equation discovery in the
cognitive sciences and outline some prospects and challenges for applying SINDy to social
and cognitive systems. They highlight difficulties associated with discovering models from
noisy and continuously changing systems and pose a number of valuable recommendations
for future research. To date, however, there have only been very limited applications of SINDy
in cognitive science. In terms of related methods, Iskarous (2016) shows how least squares
regression can be used to estimate dynamical models of action and perception from data,
while Nalepka et al. (2019) model human multi-agent activity in games using dynamical
motor primitives. Specific applications of SINDy include discovering mechanisms of human
learning from experimental data (LaFolette, Yuval, Schurr, Melnikoff, & Goldenberg, 2024)
and a proof-of-concept study on discovering dynamical models of speech (Kirkham, 2024).

2.3. An example: Discovering known models from simulated data

We now turn to a brief illustration of model discovery using SINDy on simulated data.
This outlines the conceptual steps involved in model discovery and validates that the method
can discover a known model. As an example, we generate simulated data using the damped
harmonic oscillator in (11), as this is a widely used model of articulatory gestures in speech
production. The equation is written with acceleration ẍ on the left-hand side and damping
bẋ and stiffness k(x − T ) terms on the right-hand side, where T is the target or equilibrium
position of the system. The damping coefficient b is typically defined as b = 2

√
k, which

makes (11) a critically damped harmonic oscillator that will asymptotically approach the
target. Note that ẍ is typically written as mẍ, but as m = 1 it is omitted from here onwards.

ẍ = −bẋ − k(x − T ) (11)

We solve a trajectory from this equation based on a set of initial position x0 and veloc-
ity ẋ0 values, and a stiffness k and target T value, all of which remain invariant over
the time-course of the simulation. Numerical solutions were computed using Python’s
scipy.integrate.solve_ivp function (Virtanen et al., 2020), with a Runge–Kutta method
of order 5(4) and a timestep of �t = 0.001. Position and velocity trajectories were simulated
using initial conditions x0 = 1, ẋ = 0, and parameter values k = 2,000, b = 2

√
k = 89.44,

and T = 0.2.
We pass the simulated position and velocity trajectories to a SINDy algorithm, with a

first-degree polynomial library and a coefficient threshold of 0.1. Fig. 4 shows a predicted
trajectory from the discovered model plotted on top of the data, with no visible differences
between data and prediction, resulting in a fit of R2 = 1.00. The discovered symbolic equa-
tion is ẍ = −bẋ − kx + kT , and we can rearrange terms to get ẍ = −bẋ − k(x − T ), which
is the original equation that generated the simulated data. The discovered coefficients are
kT = 400.299, k = 2,001.31, and b = 89.47. If we calculate T = kT

k then T = 0.2, showing
that all discovered coefficients are within 0.1% of their true values. This shows that SINDy
is able to accurately discover symbolic models and coefficient values from data; Kirkham
(2024) shows that the same model can be accurately discovered even when considerable noise
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Fig. 4. Simulated position and velocity trajectories plotted against SINDy model predictions.

is added to simulated trajectories. The rest of this article applies this method to empirical data
on movements of the tongue and lips during speech, with the aim of discovering accurate and
interpretable models of gestural dynamics.

3. Methods

3.1. Data

We report an experiment demonstrating the use of the SINDy framework for discovering
the articulatory dynamics of continuous speech. We use data from the X-Ray Microbeam
(XRMB) corpus (Westbury, 1994), which contains articulatory speech data from a rela-
tively large number of speakers. The XRMB corpus contains data from 57 speakers, most
of whom speak an Upper Midwest dialect of American English (32 female, 25 male), with
a median age of 21. We use a subset of 48 speakers, corresponding to those who have exist-
ing forced-aligned phone-level annotations available in the database at https://github.com/
rsprouse/xray_microbeam_database. The data comprise small pellets of 2.5–3.0 mm in size
attached to the upper (UL) and lower (LL) lips, surface of the tongue (T1, T2, T3, T4),
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mandible, and head. The pellets were tracked using a narrow X-ray beam at 160 Hz for T1,
80 Hz for T2, T3, T4, and LL, and 40 Hz for UL, after which all pellets were resampled at
160 Hz and translated/rotated to an anatomically defined coordinate system. (See Westbury,
1994, for comprehensive technical documentation of the data and speaker sample.)

We discover models using data from XRMB tasks #11 and #101, both of which feature
continuous speech of varying durations. Task #11 involved each speaker reading the following
passage:

You wish to know all about my grandfather. Well, he is nearly 93 years old, yet he
still thinks as swiftly as ever. He dresses himself in an old black frock coat, usually
several buttons missing. A long beard clings to his chin, giving those who observe him
a pronounced feeling of the utmost respect. When he speaks, his voice quivers a bit.
Twice each day he plays skillfully upon a small organ.

Task #101 involved each speaker producing the following three sentences in a single
recording, with a short pause between each phrase:

• Elderly people are often excluded.
• When all else fails, use force.
• The dormitory is between the house and the school.

3.2. Data processing

Four articulatory variables were extracted from every recording: lip aperture (LA), tongue
tip (TT, based on T1), tongue dorsum (TD, based on T3), and tongue root (TR, based on
T4). We model gestural dynamics in one dimension, so we reduce all articulatory motions
as follows. LA is the Euclidean distance between the vertical coordinates of the upper and
lower lips, while TT, TD, and TR are the first principal component projected from the two-
dimensional x/y coordinates, which was calculated separately for each speaker and each sen-
sor (Birkholz, Kroger, & Neuschaefer-Rube, 2011; Elie, Lee, & Turk, 2023). We focus on
discovering autonomous dynamical models that assume step activation of the type in Eq. 4,
which has direct consequences for our approach to gestural segmentation. All signals were
first divided into interpause intervals, based on the forced aligner’s segmentation, and then
gestural segmentation was calculated on the basis of zero-crossings in the velocity signal. A
gesture is defined as a velocity peak or trough bounded by two velocity zero crossings. Some
velocity trajectories have a peak that never crosses zero, meaning that such trajectories often
have two or more peaks. Trajectories with two or more peaks were identified algorithmically
and excluded from the analysis, which corresponds to 13.3% (N = 2,924) of trajectories.
These trajectories were excluded because existing task dynamic models do not predict multi-
ple velocity peaks per gesture. We also excluded trajectories longer than 200 ms in duration,
because many of these represent passive speech movements during periods in which that
articulatory variable was not actively involved in the production of a constriction. This corre-
sponds to 24.4% (N = 5,383) of trajectories, which also includes a small number of additional
trajectories that were clearly erroneous based on visual inspection.
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12 of 40 S. Kirkham / Cognitive Science 49 (2025)

In total, we analyze 62.3% (N = 13,742) of the segmented trajectories from the dataset.
While this is a conservative approach to data filtering, it is likely that a large number of the
excluded trajectories represent uncontrolled movements, anomalies at signal edges, segmen-
tation errors, and inaccurate velocity calculations. We nonetheless retain a very large number
of target gestures that are far beyond the amount possible to check manually. In total, we
analyze 13,742 individual gestures across four articulatory variables (LA 3894, TT 3715, TD
3027, TR 3106). We discover models from each articulatory variable separately in order to
test whether model discovery is robust across articulatory tasks.

3.3. Computational implementation

Our computational modeling is based on the Python package pySINDy, which is a com-
putational framework for discovery of governing dynamical equations from data (de Silva
et al., 2020). Each step of the model discovery procedure is explained below. Data and code
for reproducing every analysis in this article are available at http://doi.org/10.5281/zenodo.
15101639.

3.3.1. Model inputs
This study involves the discovery of two kinds of models: (1) first-order models, where the

models only depend on the position and velocity of the system; and (2) second-order models,
where the system includes position, velocity, and acceleration. The task dynamic models in
Saltzman and Munhall (1989) and Sorensen & Gafos (2016) are both examples of second-
order models, and it is well known that modeling skilled movements typically requires a
second-order model (Saltzman & Kelso, 1987). To provide a point of comparison, however,
we also test the hypothesis that articulatory movements can be approximated by first-order
models, with no information about acceleration. First-order models can accurately model
other physical dimensions of speech, such as fundamental frequency contours (Iskarous et al.,
2024), although note that the models in Iskarous et al. (2024) are a series of coupled agonist-
antagonist equations, which are more complex than the single-order models examined here.

The target system to be modeled is the intrinsic dynamics of the speech gesture, as defined
in Section 3.2. This corresponds to an interval including the initiation of a gesture, its
movement towards its target, and target achievement. The movement away from the target
represents a new gesture, which is either a release gesture (e.g., returning to a rest position),
or a movement towards a different target. The input data are a position signal for first-order
models and a position signal with its associated velocity signal for second-order models.
In no cases do we find substantially better model fits for opening versus closing gestures,
which are instead reflected in simple parameter differences, so all models collapse across this
distinction. The technical details of data processing are reported in Section 3.2.

3.3.2. Sequential thresholded least squares
We now review algorithms that promote sparsity in the discovered models. Recall from

Section 2.2 that Eq. 12 defines the goal of model discovery, where the aim is to discover
the sparse coefficient matrix � corresponding to features in the library �(X ) that optimally
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model the time-derivative Ẋ .

Ẋ = �(X )� (12)

One of the simplest methods is sequential thresholded least squares (STLSQ) (Brunton
et al., 2016). STLSQ aims to (1) obtain a least squares solution for �, (2) eliminate any
coefficients below a pre-defined threshold, and (3) iterate until the procedure converges on an
optimally sparse model. This procedure can be cast as the objective function in (13), where
� is the sparse coefficient matrix to be optimized and α defines the �2 regularization weight,
which makes the problem a form of sequentially thresholded ridge regression. Note that the
threshold parameter λ is not explicitly specified in the objective function as it is applied post
hoc over repeated iterations of (13).

min
�

||Ẋ − �(X )�||22 + α||�||22 (13)

In the present study, we use STLSQ for first-order models because it provides an effective
and simple technique for sparse model discovery. We set α = 0.05, use a maximum of 20
optimization iterations to allow for convergence of the thresholding algorithm, and a coeffi-
cient threshold optimized to maximize R2 model fit from the set λ ∈ {0.001, 0.01, 0.1}.

3.3.3. Sparse relaxed regularized regression
While STLSQ works well for first-order models that only involve a single time deriva-

tive (i.e., velocity), a second-order model introduces additional complexity that can be better
constrained using alternative techniques. For example, when we numerically solve a second-
order differential equation as in (14), we split it into two coupled first-order equations as in
(15) and (16). This involves the introduction of a new variable y, requiring us to solve for y and
ẏ.

ẍ = −bẋ − kx (14)

y = ẋ (15)

ẏ = −by − kx (16)

A SINDy algorithm will simultaneously discover two equations for a second-order model.
If the equations are of the form in (15) and (16) then we can simply substitute y into (16)
and rearrange to obtain our second-order model for ẍ. However, one consequence of the
model discovery procedure is that SINDy will try to fit all terms in the library to both equa-
tions. In principle, this means that Eq. (15) could be something other than y = ẋ, such as
(17).

y = 0.97ẋ + 0.21x − 0.13 (17)

If we then substitute the value of y in (17) into (16), we will end up with the more complex
model in (18). This represents a form of the generalized Liénard equation (Burton, 1965),
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where h(x, ẋ) is a damping or forcing function that depends on both position and velocity.

ẏ = −b(0.97ẋ + 0.21x − 0.13) − kx (18)

While this level of complexity is not necessarily a problem, it results in a much less par-
simonious model and probably contains more complexity than necessary. To solve this prob-
lem for second-order models, we use sparse relaxed regularized regression (SR3) (Champion
et al., 2020). This allows to incorporate constraints on the model, such as placing bounds on
coefficient values, forcing terms to be in a particular proportion to one another, or incorpo-
rating other forms of physical knowledge about the system. We use SR3-based constraints to

enforce the following weak assumptions: (1) y in (15) is always equal y
!= 1.00ẋ, (2) all other

potential terms in (15) always equal zero. This essentially constrains the damping function to
−bẋ and prohibits additional complexity.

We use a constrained version of the SR3 algorithm that is conceptually analogous to
STLSQ but with some important differences, such as the addition of a constraint matrix that
makes the solution conditional on the specified constraints. This can be cast as the objective
function in (19), where � is the coefficient matrix to be optimized.

min
�,W

1

2
||Ẋ − �(X )�||2 + λR(W ) + 1

2ν
||� − W ||2

subject to Cξ = d

(19)

The term 1
2 ||Ẋ − �(X )�||2 measures the fit between data and model based on the sum of

squared differences, where 1
2 is a scaling factor that simplifies the derivatives. R(W ) is a reg-

ularization function that acts as a prior on sparsity promotion; we specifically use weighted
�0 regularization, which is a non-convex function that can handle multiple local minima in
the optimization landscape. The term W is a proxy variable for � that allows us to decouple
model fitting and regularization, such that � can be optimized on the data and subsequently
regularized to promote sparsity, with this sequence iterated during the optimization proce-
dure. This improves numerical stability and admits greater flexibility in determining a well-
fitting model. The coupling term 1

2ν
||� − W ||2 ensures that W and � remain close and do

not substantially diverge from one another. The λ parameter weights the regularization func-
tion, where λ = η2/2ν. This is sparsity promoting, where η is the threshold for the minimum
coefficient magnitude in � and ν determines the closeness of the match between � and W .

We use a constrained variant of SR3, where optimizing the objective function in (19) is
subject to a matrix of linear constraints, using the vectorized form ξ = vec(�). The optimiza-
tion must meet the condition that Cξ = d , where C is a matrix specifying which terms in ξ

are subject to constraints, and d is a vector defining the constraint values. In our case, Cξ

defines the terms in the first equation y = ẋ that are subject to constraints, with d specifying
a value of 1.0 for the term ẋ. This is what allows us to impose the specified constraints on the
damping term in second-order differential equations. A proof of the convergence properties
of the constrained SR3 algorithm can be found in Champion et al. (2020). In terms of hyper-
parameters, we use a maximum of 30 iterations to allow for convergence of the optimization
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algorithm, with ν = 1 and a coefficient threshold optimized to maximize R2 model fit from
the set η ∈ {0.001, 0.01, 0.1}.

3.3.4. Train-test data split
For the purposes of modeling, we randomly split the data for each articulatory variable into

80% training and 20% test sets. The training set is used for library comparison and an initial
fit, where the number of discovered terms is allowed to vary between tokens. We then fit the
best overall model to the test set, where the model must fit the full library (representing the
best model structure) to each trajectory. We also report visualizations of model predictions on
a random sample of tokens from the test set. Note that the training set is used to discover a
symbolic model, rather than a statistical model, and it is this symbolic model that is fitted to
the test set.

3.3.5. Library selection
We begin by sensitivity testing the candidate feature library because the number of terms

in a final model can be highly sensitive to the thresholding parameter, especially with single
token fits, and this allows us to compare the fits across different feature libraries. As articula-
tory signals are well approximated as the sum of polynomials, we use a series of polynomial
libraries across first (x), second (x, x2), third (x, x2, x3), and fourth (x, x2, x3, x4) degrees. We
fit each polynomial library to the training data using the model ensembling technique reported
below and calculate summary statistics for each library. This allows us to establish the rela-
tive merits of different polynomial libraries and make transparent decisions when two libraries
perform very similarly. The selected feature library is then refitted to the training data, and
we report a wider range of summary statistics, which is outlined in more detail below.

The threshold hyperparameter for library comparison was optimized for each articulatory
variable from the set {0.001, 0.01, 0.1}, with the final threshold value based on the highest R2

value. In some cases, lower thresholds did not converge due to an ill-conditioned or stiff model
that resulted in numerically unstable predictions. In other cases, higher polynomial libraries
performed worse than lower polynomial libraries. This can appear surprising because adding
an additional polynomial term to a well-performing model should not harm performance. This
phenomenon arises, however, because a greater number of terms often reconfigures the model
in a way that changes the magnitude of each coefficient term. In other words, a quadratic
model is not necessarily the linear model with its original coefficients plus a quadratic term
but can sometimes be a fundamentally different model in terms of the relationship between
coefficients. As a result, even a very small threshold can eliminate key terms in such models,
or result in higher polynomials fitting to noise in the signal. We address this by sensitivity
testing threshold values as above and selecting feature libraries that exhibit stability across
the dataset. In cases where additional complexity provides only minor performance improve-
ments, we subsequently explore whether greater complexity simply improves the quantitative
fit of models or reveals fundamentally different qualitative dynamics of the system.

3.3.6. Model ensembling
In order to discover models across large datasets, we use a model ensembling technique,

whereby models are fitted to each token separately and then an ensemble model is derived
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16 of 40 S. Kirkham / Cognitive Science 49 (2025)

from this set of models. While a single SINDy model can be fitted using multiple trajecto-
ries, simulations show that this is generally only effective for speech gestures if the target
or equilibrium position is the same or very similar across tokens. In such a case, a single
model and a single set of coefficient values will be returned for the whole dataset. However,
when key parameters vary—such as stiffness, damping, or target—then the resulting SINDy
model will contain values for these parameters that are the average best fit to all of the tokens.
As we seek good symbolic models and accurate parameters, we instead construct an ensem-
ble model from models fitted to individual trajectories. As the model discovery procedure is
repeated for each token, each trajectory could theoretically be fitted with different numbers
of terms, especially in the case of larger feature libraries. We leverage this fact in order to
obtain distributions on the number of terms in each model across the dataset, which allows
us to then arrive at an ensemble model based on the majority model structure. Once this final
model structure is determined, we then fit it to the test data, forcing the same structure on
each test trajectory.

3.3.7. Generating predictions
Once we have discovered a model for each token, we then use this model to make a pre-

diction. Predictions are generated by taking the discovered model, the discovered parameter
coefficients, and a set of initial conditions from the data, which comprise the initial position
and velocity value in each empirical trajectory. These initial conditions are then used to solve
the discovered model forwards in time, determined by the discovered coefficient values. In an
ideal scenario, this should generate position and velocity trajectories that are identical to the
original data. In practice, however, the prediction is only as good as the discovered model,
which allows us to use the prediction as an estimate of model fit. We quantify the fit using
by-trajectory R2 scores. All R2 values are variance weighted, meaning that the R2 for model fit
is an average over position and velocity, weighted by the variance of each signal, which pro-
vides a more informative assessment of model performance given that position and velocity
are on different numerical scales. In conventional regression analysis, R2 values are bounded
between [0,1], but the lower bound is a consequence of allowing either the intercept or the
slope to vary, which is the aim of regression analysis. With a constrained intercept, however,
R2 is negative when the prediction is worse than simply fitting a horizontal line through the
data (Chicco, Warrens, & Jurman, 2021). We fix the intercept for each model prediction as
the initial conditions from empirical data, so R2 will be negative when the model prediction
is worse than a horizontal line through the data.

4. Discovering new models from data

4.1. First-order models

4.1.1. Library comparison
Table 1 shows the results for library comparison on first-order models. The optimal thresh-

old for the models was λ = 0.001 (LA), 0.1 (TT), 0.01 (TD), and 0.001 (TR). The first-degree
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Table 1
Comparison of different polynomial libraries in first-order models across articulatory variables (training set). The
model scores are R2 mean (standard deviations)

Number of Polynomials LA TT TD TR

1 0.40 (0.57) 0.56 (0.17) 0.53 (0.24) 0.51 (0.29)
2 0.96 (0.05) 0.96 (0.05) 0.96 (0.05) 0.96 (0.03)
3 0.96 (0.04) 0.97 (0.04) 0.96 (0.03) 0.96 (0.03)
4 0.98 (0.02) 0.98 (0.02) 0.99 (0.02) 0.99 (0.02)

Table 2
Model fit statistics for first-order models with polynomials up to third-degree. All values rounded to two decimal
places

Training Set LA TT TD TR

mean(R2) 0.96 0.97 0.96 0.96
σ (R2) 0.04 0.02 0.03 0.03
min(R2) 0.63 0.66 0.63 0.45
max(R2) 1.00 1.00 1.00 1.00

Test Set LA TT TD TR

mean(R2) 0.95 0.95 0.95 0.95
σ (R2) 0.01 0.02 0.01 0.02
min(R2) 0.77 0.78 0.84 0.84
max(R2) 0.99 0.99 0.99 0.99

library performs poorly, with R2 values across the four articulatory variables of {0.40, 0.56,
0.53, 0.51}. Libraries with two to four polynomials perform well with R2 between 0.96 and
0.99. Overall, while the second-degree library performs well on average, it contains some
negative R2 values for LA, TT, and TD. By contrast, the lowest score for any articulatory vari-
ables in the third-degree library is R2 = 0.63 (LA). For this reason, we select the third-degree
library containing x, x2, x3, which we more thoroughly evaluate in the following section.

4.1.2. Results
Table 2 shows summary statistics for the first-order models with a third-degree polynomial

library fitted to the training data. All four terms (a constant, x, x2, x3) were found for the
majority of models (LA = 99.78%, TT = 64.67%, TD = 93.68%, TR = 99.64%), but some
models omitted the cubic term (LA = 0.22%, TT = 35.23%, TD = 6.28%, TR = 0.36%) and
a small percentage comprised only linear terms (TT = 0.1%, TD = 0.04%)

All models perform fairly well, with mean R2 = 0.96 or above and minimum R2 of 0.45–
0.66. The test data were then fitted using the same algorithm, but all trajectories were forced
to have linear, quadratic, and cubic terms. The test data show comparable performance, with
mean R2 = 0.95 for each articulatory variable and higher minimum R2 values in each case,
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18 of 40 S. Kirkham / Cognitive Science 49 (2025)

Fig. 5. Ten randomly sampled trajectories for each articulatory variable showing the fit between data and model
predictions for first-order models with a third-degree polynomial library on the test data.

ranging from 0.77 to 0.84. The higher performance in the test data is because every token is
forced to contain all terms in the library (i.e., λ = 0).

Fig. 5 shows 10 randomly sampled position and velocity trajectories for each variable, with
a comparison of data and model prediction from the test data. The quantitative fit is good but
with some errors in the intercept and also errors in the fit along the curves. As a result of
minor errors in the position data, the resulting velocity signals show bigger errors. This is a
consequence of a limited degree of flexibility in the possible shape of the velocity curve, due
to the lack of an acceleration term governing change in velocity.

4.1.3. Summary
The discovered model takes the form of the symbolic equation in (20), where a is a constant

and b, c, d are the coefficients of x, x2, x3. This makes the discovered model a cubic equation,
where velocity is dependent on a constant, as well as the current position multiplied by a
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Table 3
Comparison of different polynomial libraries in second-order models across articulatory variables (training set).
The model scores are R2 mean (standard deviations)

Number of Polynomials LA TT TD TR

1 0.99 (0.02) 0.98 (0.03) 0.98 (0.02) 0.99 (0.02)
2 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)
3 0.99 (0.05) 0.98 (0.08) 0.99 (0.07) 0.99 (0.03)
4 −1.14 (6.26) −3.24 (14.26) −3.05 (19.57) −2.00 (10.73)

coefficient, the square of the current position multiplied by a coefficient, and the cube of the
current position multiplied by a coefficient. The presence of x2, x3 makes it a nonlinear model.

ẋ = a − bx + cx2 − dx3 (20)

In summary, a first-order nonlinear model appears to be a reasonable quantitative fit across
four different articulatory variables.

4.2. Second-order models

4.2.1. Library comparison
Table 3 shows the library comparison of second-order models. In this instance, the first,

second, and third-degree libraries perform near-identically in terms of summary statistics,
with mean R2 = 0.98–0.99, although the first-degree models have slightly lower standard
deviations. The optimal threshold for all models was η = 0.001. The fourth-degree library
performs poorly with a very small threshold of η = 0.001; if we relax the threshold to zero
then the fourth-degree library performs marginally better than all other libraries, but there is
clearly no need for a model of this level of complexity. In addition to this, all models above
second-degree have some negative R2 fits, suggesting that the greater complexity forces some
important coefficients to values smaller than the threshold. Overall, there appears to be little
benefit in higher polynomial libraries based on this comparison. As a result, we select the
first-degree library but evaluate the impacts of any additional complexity in Section 5.4.

4.2.2. Results
Table 4 shows summary statistics for the second-order models with the first-degree polyno-

mial library. In the training data, 100% of models contain three terms, with mean R2 > 0.98
in all cases. The test data show comparable performance, with minimum R2 values of {0.77,
0.72, 0.66, 0.76}.

Fig. 6 shows 10 randomly sampled position and velocity trajectories for each variable, with
a comparison of data and model prediction from the test data. The quantitative fit is excellent,
with near-perfect fits for all trajectories. Notably, the fits look substantially better than those
in Fig. 5, suggesting that the second-order model is superior in quantitative fitting accuracy.
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Table 4
Model fit statistics for second-order models with polynomials up to first-degree. All values rounded to two decimal
places

Training Set LA TT TD TR

mean(R2) 0.99 0.98 0.98 0.99
σ (R2) 0.02 0.03 0.02 0.02
min(R2) 0.75 0.70 0.64 0.70
max(R2) 1.00 1.00 1.00 1.00

Test Set LA TT TD TR

mean(R2) 0.99 0.98 0.99 0.98
σ (R2) 0.02 0.03 0.02 0.02
min(R2) 0.77 0.72 0.66 0.76
max(R2) 1.00 1.00 1.00 1.00

Fig. 6. Ten randomly sampled trajectories for each articulatory variable showing the fit between data and model
predictions for second-order models with a first-degree polynomial library on the test data.

 15516709, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70064 by Sam

 K
irkham

 , W
iley O

nline L
ibrary on [04/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



S. Kirkham / Cognitive Science 49 (2025) 21 of 40

4.2.3. Summary
The discovered model takes the form of the symbolic equation in (21).

ẍ = kT − kx − bẋ (21)

Note that SINDy models sometimes discover a constant term, but the analysis in Section 2.3
shows that this is often the term kT , such as that kT − kx = −k(x − T ). As such, this model
takes the form of the harmonic oscillator in (22), which is a standard task dynamic model
(Saltzman and Munhall, 1989).

ẍ = −bẋ − k(x − T ) (22)

In summary, a second-order linear model is a very good fit to data across four different
articulatory variables. The mean accuracy of the fit is R2 = 0.98 and above in all cases, with
no trajectories being scored less than R2 = 0.64 in either the training or test datasets. In
Section 5, we conduct further interpretation of these terms and explore the implications of
this model.

4.3. Interim summary

Two models fit the data very well: a first-order nonlinear model with quadratic and cubic
terms, and a second-order linear model. The performance of both models is quantitatively
similar, but this may be a consequence of the mean scores for both models being relatively
close to ceiling. An inspection of random trajectories plotted from each model reveals that
while both models fit the data well, the second-order fits are more accurate, likely a conse-
quence of the acceleration term in the second-order models. The following sections take the
two broad classes of models discovered here and explore them in greater detail. Specifically,
we interpret the meaning of each model’s terms in light of known systems and explore the
model space via computational simulations.

5. Exploring the discovered models

5.1. Overview

So far, we have two well-fitting models, but at this point we must go beyond treating
these simply as effective fits to data and understand the ways in which they govern the
dynamical laws of speech. In this section, we take two models from Section 4—a first-order
model and a second-order model—and explore them deeper, focusing on how to interpret
the different terms in the equations as well as what predictions and assumptions they make
about speech gestures. In doing so, we also explore the effects of adding complexity to the
second-order model.

The analysis for each section proceeds as follows. We first plot representative examples
of the data against model predictions, followed by plotting the qualitative dynamics of the
system in the form of phase portraits and Hooke portraits (Beek and Beek, 1988; Mottet &
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22 of 40 S. Kirkham / Cognitive Science 49 (2025)

Fig. 7. First-order model predictions showing time-varying position (row 1), time-varying velocity (row 2), phase
portrait (row 3), and Hooke portrait (row 4). The R2 scores for each model are LA = 0.96, TD = 0.95, TR = 0.96,
and TT = 0.95.

Bootsma, 1999). This is an essential step in moving beyond model assessment via simple data
fitting because a fundamental characteristic of dynamical models of skilled movement is how
they specify the relationship between position, velocity, and acceleration. We then explore
the equations analytically, deriving algebraic properties that expose similarities to other well-
understood systems, before exploring the dynamics of the relevant terms using computational
simulations. We note that a comprehensive investigation of every aspect of each model and its
numerical parameterization is beyond the scope of the current article; instead, we here focus
on elucidating fundamental aspects of each system.

5.2. First-order model

Fig. 7 shows representative examples of the first-order model predictions, with position
and velocity trajectories, as well as a phase portrait (position ∼ velocity) and Hooke portrait
(position ∼ acceleration). While the position data are predicted with good accuracy, the higher
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Fig. 8. Hooke portraits for the top-scoring (top row) and median-scoring (bottom row) first-order models for each
articulatory variable.

derivatives and phase portraits show the inadequacy of a first-order model. The velocity tra-
jectory and phase portrait show how the velocity estimates at signal edges are systematically
incorrect as well as showing small but systematic errors in peak velocity and time-to-peak
velocity. The Hooke portrait particularly highlights the poor predictions of the first-order
model, where uniform nonlinearity is predicted despite quasi-linearity in the empirical data.

The above suggests that R2 scoring of position and velocity leads to misleading conclusions
about the true capacity of the first-order model. To explore this further, Fig. 8 shows Hooke
portraits of data and predictions for the best scoring (top row) and median-scoring (bottom
row) first-order nonlinear models. The best fitting model is a case with extensive nonlinear-
ity between position and acceleration, especially for the TD articulatory variable. However,
similarly nonlinear predictions are also made for the median-scoring models, despite the data
showing a quasi-linear relation in these cases. This is a consequence of the first-order model
containing no information about the system’s higher derivatives, such as acceleration; this
makes it impossible to accurately model change in velocity, which is particularly evident at
movement onsets.

In conclusion, this analysis shows that a first-order nonlinear equation is not an appropriate
model of articulatory control. While the SINDy analysis revealed a good fit to the empiri-
cal position and velocity trajectories, this did not take into account the nature of the mis-
matches between the model and data. In this instance, the phase portrait and Hooke portrait
point towards a fundamental issue with the model, rather than minor errors in quantitative fit.
These findings suggest that this model is insufficient for capturing the dynamical character-
istics of articulatory movements. In addition, the first-order model contains a greater number
of parameters (with quadratic and cubic terms), which is inevitable given the lack of terms
for controlling higher derivatives. This shows that the first-order model’s complexity is not
warranted due to its theoretical inadequacy. As a consequence, we do not consider this model
any further and move on to the second-order linear model.
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Fig. 9. Linear second-order model predictions showing the time-varying position (row 1), time-varying velocity
(row 2), phase portrait (row 3), and Hooke portrait (row 4). The SINDy scores for each model are LA = 0.999,
TD = 0.999, TR = 0.999, and TT = 0.999.

5.3. Second-order linear model

Fig. 9 shows data and predictions for the best fitting second-order model for each articu-
latory variable. In contrast to the first-order model in Section 5.2, the second-order model
is an excellent fit across position and velocity, the corresponding phase portrait, and the
Hooke portrait. Notably, the Hooke portraits show quasi-linearity, suggesting that the dynam-
ics are well approximated by harmonic motion (Beek & Beek, 1988). This is a key sig-
nature of a linear oscillator, in contrast to the anharmonicity that would suggest nonlinear
dynamics.

We note that Fig. 9 captures cases that correspond to highly linear models. The remainder
of this section focuses on these cases and their interpretation, but in Section 5.4 we explore
cases where the linear model fits worse and consider whether additional complexity is war-
ranted. For now, we turn to the second-order model that was discovered in Section 2. This
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Fig. 10. Dynamics of the second-order linear model with SINDy-discovered parameters. The dashed black line is
the empirical trajectory with the best fitting model, the orange line is the SINDy model prediction (T = 17.22, k =
592, b = 0.264, R2 = 0.999), the dashed blue line represents the coefficients needed to reach the empirical target
under the assumption of critical damping (T = 19.75, k = 2,500, b = 2

√
k). The gray-shaded area corresponds

to the duration of the empirical trajectory, with the subsequent unshaded region showing the effects of continuing
the simulation beyond this duration. The label “SINDy target” corresponds to the SINDy-discovered value of T ,
whereas the label “empirical target” is the empirical position value corresponding to the final velocity minimum.

equation took the form in (23):

ẍ = −bẋ − k(x − T ) (23)

This corresponds to the form of a linear harmonic oscillator, but it is clear that the system
is not critically damped, as a critically damped version of (23) is unable to fit the symmetrical
empirical velocity profiles as accurately as seen in Section 4.2 (Sorensen & Gafos, 2016).
How, then, does the system achieve its equilibrium position? Fig. 10 shows the trajectory
with the best fitting SINDy model (R2 = 0.999), which is a Tongue Root trajectory produced
by speaker JW45. The gray-shaded area shows the empirical duration of the trajectory, with
the dashed black line showing the empirical data. The orange line shows SINDy predictions,
which are near-perfect fits to the data, but with an important characteristic: this is only true

 15516709, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70064 by Sam

 K
irkham

 , W
iley O

nline L
ibrary on [04/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26 of 40 S. Kirkham / Cognitive Science 49 (2025)

during the time period that corresponds to the empirical trajectory. If we continue the simula-
tion beyond the trajectory’s original duration the system begins to oscillate.

To unpack this further, the dashed blue trajectory shows the trajectory that a critically
damped oscillator would need to take to reach the empirical target. This does reach the tar-
get, but with a very early time-to-peak velocity, demonstrating the poor empirical fit of a
critically damped model. In contrast, the behavior that the SINDy parameters capture is as
follows. It drives the system towards an equilibrium value T = 17.22, which is the SINDy
discovered coefficient for T . This is below the empirical target T = 19.75 and is clearly not
the true target in the sense of the gestural system (i.e., the position value at the final veloc-
ity zero-crossing). To disambiguate, we henceforth refer to the actual empirical target at the
velocity zero-crossing as T and SINDy’s discovered virtual target as Tv (the term “virtual
target” is used entirely to refer to the SINDy discovered target and we make no claims about
its theoretical status at this stage). Importantly, the SINDy discovered trajectory shows oscil-
latory behavior if extended beyond the empirical duration, as shown by the period after the
gray-shaded area (i.e., t > 0.13).

How are we to relate the SINDy target Tv = 17.22 to the empirical target T = 19.75? The
horizontal dashed line in Fig. 10 shows the value of Tv. We can see that the orange line reaches
this target twice: once before empirical T and once after empirical T , which is only visible if
we extend the simulation beyond the empirical duration of the fitted trajectory. The oscillation
is due to the lack of damping b ≈ 0, but there is a strong intrinsic relationship between T and
Tv, such that Tv can be easily derived from (24), which is equivalent to saying that the virtual
target is half the distance between the initial condition and T . We can then solve for T as in
(25).

Tv = x0 + T − x0

2
(24)

T = 2Tv − x0 (25)

If we substitute (25) into our second-order harmonic oscillator model and rearrange
terms then we get (26). This suggests an alternative hypothesis, where the model contains
k
2 (T + x0). This new equation still requires tuning of b, k to avoid the system producing oscil-
lations when b < 2

√
k, which we address below, but it allows us to formulate a model where

T captures the empirically observed target of the system. The only new parameter in the
model is x0 (initial position), which any dynamical system necessarily already has access to
in calculating a trajectory, so it is still an autonomous system. The only modification here is
the use of a more complex constant term k

2 (T + x0).

ẍ = −bẋ − kx + k

2
(T + x0) (26)

The new equation captures cases where the velocity trajectory is very close to a half-cycle
sine wave, representing an undamped or minimally damped oscillator where b ≈ 0. For exam-
ple, if we use absolute-valued SINDy-discovered parameters for T, x0 based on Eq. 25 then
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Fig. 11. The effect of varying k on time-to-target achievement when x0 = 14.65, T = 19.75, b = 0. The dashed
line in the upper panel represents the value of T . (left). The effect of varying b for the same trajectory, where
k = 592.74 (right).

|T | is strongly correlated with the positional value of |x| at the final velocity minimum for
LA (r = .94) and TR (r = .91), but only moderately correlated for TT (r = .71) and TD
(r = .82). There appears to be no discernible difference between opening/closing gestures,
with only minimally higher correlations for closing gestures (e.g., largest difference is LA
closing r = .94 vs. LA opening r = .92). The differences between articulatory variables could
be a consequence of potential differences in velocity segmentation quality. For example, cor-
relations under the simpler formulation ẍ = −bẋ − k(x − T ) are LA = −0.79, TT = −0.72,
TD = −0.83, and TR = −0.91, suggesting that only LA benefits from the formulation in (26).
The other articulatory variables show greater variability in this respect, although the above
example shows a case where TR velocity is highly symmetrical, suggesting that it improves
model fit for some tokens but is not otherwise detrimental. Despite this, we note that the
mean b values differ only slightly between articulatory variables, so this model’s improved
performance for LA could be a consequence of data processing (e.g., one-dimensional
lip aperture vs. compression of horizontal/vertical movements into a single dimension) or
other properties of lip movements (e.g., reduced coarticulation from neighboring lingual
movements).

Given the above, how are the appropriate parameters determined for a given duration?
Fig. 10 shows simulated trajectories based on the best fitting model, where x0 = 14.65, T =
19.75. The left panel of Fig. 11 shows how changing k ∈ {500, 1,000, 2,000} results in the
target being met at shorter durations as k is increased (when b = 0). The system oscillates after
target achievement, due to the system being undamped, so the gesture must be deactivated at
target achievement. The right panel of Fig. 11 shows that, for this example, target achievement
occurs when b = 0; when b is positive the trajectory is damped and undershoot occurs, when b
is negative overshoot occurs. We note that the version of the model with k

2 (T + x0) represents
a specific case where the intended target is met, velocity trajectories are symmetrical, and the
dynamics are highly linear.
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In summary, the best linear model appears to be an under-damped harmonic oscillator. The
model can be slightly improved by adding k

2 (T + x0), which relates the target to the initial
condition. This adds some degree of complexity, largely in the dynamics around the equilib-
rium position, but note that this is not substantial and it fundamentally only involves adding
a constant term to the standard harmonic oscillator model. It is worth further probing the the-
oretical implications of such a model, but note that recent advances in nonlinear modeling
of speech gestures also incorporate information on initial position and movement distance
directly into the differential equation (Kirkham, 2025).

5.4. Adding complexity: Second-order nonlinear model

Section 5.3 shows that a linear model can capture movement dynamics with high accuracy,
but recall that the selected examples were the best fitting models. It should not be a surprise
that a linear model accurately models dynamics that show strong linear signatures. How
representative is this of the second-order model’s overall performance? Fig. 12 repeats the
Hooke portrait for the best scoring models (top row) and compares this with median-scoring
models (second row), fifth percentile scoring models (third row), and first percentile scoring
models (fourth row) for each articulatory variable in the linear model. The first and fifth
percentile models are those where only 1% or 5% of tokens are lower scoring than these
models. Note that the median scoring models the R2 values range between [0.989, 0.992],
the fifth percentile models are in the range [0.936, 0.965], and the first percentile models
are in the range [0.849, 0.915]. Recall that these scores are based on position and velocity,
not acceleration, which is why they look more optimistic about the model’s performance
compared with the Hooke portraits. The median model is a good approximation of the data,
while the fifth and first decile models struggle with the greater nonlinearity between position
and acceleration. Note that this failure of the model is much clearer in the relationship
between higher derivatives because the comparison of position and velocity trajectories for
these tokens do not obviously reveal this behavior.

The lower scoring models in Fig. 12 correspond to cases where there is greater nonlinearity
in the relation between position and acceleration. This indicates anharmonicity and is not
within the scope of a linear harmonic oscillator (Sorensen & Gafos, 2016). In summary, while
the first-order model can capture nonlinearity in the Hooke portraits, it overpredicts the extent
of nonlinearity and fails to adequately model the empirical characteristics of most of the data.
In contrast, a second-order linear model is a better empirical fit but lacks the ability to capture
the nonlinearity present in some of the data. It stands to reason that a second-order nonlinear
model should combine the strengths of the two approaches.

Thus far, the results suggest a role for a nonlinear term in the second-order model. How
extensive is nonlinearity in the data? Fig. 13 shows the degree of linearity in the Hooke por-
trait for all trajectories, based on R2 values from by-trajectory linear regression fits between
position and acceleration (Mottet & Bootsma, 1999). Note that these R2 values only corre-
spond to the data and capture the linear fit between position and acceleration; they do not
refer to any fit between the second-order model predictions and the data. To disambiguate, we
subsequently refer to R2 values for the Hooke portraits as R2

H .
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Fig. 12. Hooke portraits for second-order linear models with the highest score (top row), median score (second
row), fifth percentile score (third row), and first percentile score (fourth row) for each articulatory variable.

It is obviously challenging to pose a specific R2
H value that indicates nonlinearity in the

Hooke portrait, as opposed to an underperforming fit due to measurement or segmentation
errors. The lower row of Fig. 13 (first percentile) provides sufficient context, however, because
the empirical trajectories here are clearly nonlinear, with associated R2

H values of 0.9 (LA),
0.85 (TD), 0.82 (TR), and 0.83 (TT). This suggests that R2

H ≤ 0.9 certainly indicates sub-
stantial nonlinearity that is outside of the scope of a linear model. Across all trajectories,
an average of 69% of tokens across articulatory variables have R2

H > 0.95, whereas 15% of
tokens have R2 < 0.9. From this, we can assume that approximately 30% of tokens have a
substantial degree of nonlinearity and that around half of these show extensive nonlinearity.
Note that correlations between R2

H and spatial displacement are r < .1 for all articulatory
variables. This suggests that nonlinearity does not straightforwardly interact with the magni-
tude of spatial displacement, as is predicted by a nonlinear model (Sorensen & Gafos, 2016),
although see Kirkham (2025) for a nonlinear model where these dynamics are optionally
under the control of the speaker.
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Fig. 13. Distribution of R2
H values for each sensor, based on a by-token linear regression of position against accel-

eration in the empirical trajectory data.

Fig. 14. Hooke portraits for linear and cubic second-order models. Note that the models for LA and TT contain x3

and ẋ3, whereas TD and TR only contain x3.

That the majority of tokens show linearity in the Hooke portrait is why the linear model
in Section 5.3 shows good performance, but this analysis makes clear that a nonlinear term
is required in order to account for the full dynamics of articulatory trajectories. In this case,
the Hooke portraits reveal that some of the additional complexity in the higher polynomial
libraries from Section 4.2 may be warranted. Fig. 14 shows the same Hooke portraits for the
first percentile trajectory fits as in Fig. 12 (lower row), but with an additional cubic term in the
feature library. Models were fitted using the same SINDy SR3 algorithm but with a custom
library comprising linear terms and a cubic term. The cubic term was initially constrained to
position-only, but the LA and TT models required both x3 and ẋ3 in order to improve on the
linear model. This is not necessarily unusual for models of human movement (Beek & Beek,
1988; Schöner, 1990), and there may be an advantage to the inclusion of nonlinear velocity
terms more generally, especially for modeling qualitatively distinct movement dynamics, such
as limit cycles (Kuberski and Gafos, 2023).
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The nonlinear model clearly provides a better fit than the linear model for trajectories in
Fig. 14, with the exception of TD, where SINDy fails to find an optimal model. This suggests
that the anharmonicity indicated by nonlinear relations between position and acceleration is
well within the scope of a nonlinear model, as shown by Sorensen & Gafos (2016). It is
clear that a single cubic term on position x3 can provide an excellent nonlinear fit for the TR
variable in Fig. 14, while the poor fit for TD and the presence of ẋ3 for LA and TT are more
likely to represent either (i) fitting to errors in the data or (ii) a failure of the SR3 algorithm to
find an optimal solution.

Parameterization of the cubic model is clearly more challenging than the linear model and
further tests showed that the SR3 algorithm failed to find an optimal fit for a cubic model
in many cases, despite the empirical data clearly being within the model’s scope. Indeed, a
cubic model cannot be easily derived by taking the SINDy coefficients for the linear model
and adding a cubic term. For example, the linear coefficient values in the discovered linear and
cubic models differ substantially, such that the linear model’s damping coefficient indicates
very weak damping, whereas the cubic model involves more substantial (but still subcritical)
damping. One potential source of difficulty in model fitting may be the complexity of the
cubic coefficient, which can take on a very wide range of values depending on movement
amplitude, even if movement characteristics are otherwise similar. Kirkham (2025) outlines
a method for scaling the cubic coefficient by (actual or potential) movement amplitude. This
constrains the parameter search to the range [0, 1), which should improve model fitting and
interpretability. It may also be the case, as discussed above, that a cubic term on velocity is
necessary to fully encompass the range of speech movements, which remains an open line of
inquiry for future research.

5.5. Interim summary

In summary, we have explored and interpreted three candidate models. The first-order
model is nonlinear, but analysis of phase and Hooke portraits revealed the insufficiency of
this model for capturing the full dynamics of the trajectories. We show that the second-order
linear model is a good approximation of the majority of the data, accurately capturing the
dynamics for around 2/3 of trajectories, but there is significant nonlinearity in the Hooke
portrait for around one third of trajectories. This is to be expected given our liberal veloc-
ity threshold, as Kuberski & Gafos (2023) show that thresholded segmentation can lead to
underestimates of the extent of nonlinearity. It should be noted that we still find considerable
evidence of quasi-linear relations in the Hooke portrait, but a straightforward comparison
between studies is challenging. For example, Kuberski & Gafos (2023) only examine closing
movements (whereas we examine opening and closing movements) and they only examine
repeated syllables at different metronome rates (whereas we include a wider range of speech
materials). Regardless, the presence of nonlinearity points towards the need for greater model
complexity, which can be adequately captured with the addition of a cubic term.

Recall that in all cases the models are only minimally damped, which deviates from
previous models that assume critical damping. Specifically, a perfectly symmetrical veloc-
ity trajectory can be achieved when the linear model is undamped, where the value of k
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determines time-to-target achievement, but this requires a mechanism to deactivate the
gesture upon reaching the target. Finally, a nonlinear model is clearly required to account
for around one third of the data. This suggests that the movement dynamics of speech are
fundamentally nonlinear, even though the nonlinear force may be minimal in some cases. In
summary, the nonlinear model that best captures the full range of variation in the current data
corresponds to a version of Sorensen & Gafos (2016) model without critical damping

ẍ + a(t )[bẋ + k(x − T ) − d (x − T )3] = 0. (27)

A more complex version of this model optionally transforms the linear damping term bẋ
into a nonlinear damping force bẋ3

ẍ + a(t )[bẋ3 + k(x − T ) − d (x − T )3] = 0. (28)

In both cases, gestural dynamics are autonomous during activation, where a(t ) is step acti-
vation

a(t ) =
{

1, t ∈ [ta, tb],

0, otherwise.
(29)

The following section now discusses the theoretical implications of these models, as well
as limitations and prospects for model discovery in cognitive science.

6. Discussion

6.1. An evaluation of discovered models

The first-order model initially shows good accuracy, in the sense that it provides an approx-
imate fit to position and velocity trajectories. At first glance, any issues with the first-order
model may appear to concern small deviations in fitting accuracy, but an analysis of the Hooke
portraits reveals more fundamental issues. Specifically, the first-order model fails to accu-
rately reproduce the relations between position and acceleration. In other words, what might
look like minor differences in quantitative accuracy for position and velocity estimation is
actually a failure to capture the fundamental dynamics of the system. This renders a first-
order autonomous model insufficient for capturing articulatory dynamics and highlights the
importance of exploring the scope of the discovered model’s predictions, rather than only
fitting to empirical trajectories.

The second-order model shows better empirical fits than the first-order model and the high-
est performing cases show excellent fits in the phase and Hooke portraits. Under the linear
interpretation, we find that the target, stiffness, and damping terms need to be tuned in just
the right way to meet the target in the specified time interval. The biggest differences between
the second-order model presented here and previous task dynamic models are (1) we relax
the critical damping constraint; (2) target achievement is non-asymptotic. In other words, the
specific target value is achieved, rather than the system becoming asymptotically close.
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A second-order linear model with minimal damping and a reformulation of the target term
is capable of accurately modeling the majority of articulatory trajectories. As with the first-
order model, however, cases of underperformance do not simply reflect minor issues in quan-
titative fit or data quality issues. Instead, the Hooke portraits show that the linear model is
incapable of capturing the observable nonlinearity between position and acceleration, which
occurs in approximately one third of trajectories. This motivated a second-order nonlinear
model with a cubic term (Sorensen & Gafos, 2016), which is typically under-damped rather
than critically damped. While the nonlinear model is significantly more difficult to parame-
terize, it is able to accurately model the observed nonlinearities. This confirms that the artic-
ulatory dynamics of speech are fundamentally nonlinear and adds considerable support to the
Sorensen & Gafos (2016) model of articulatory control.

6.2. Autonomous dynamics and beyond

Beek & Beek (1988) outline a typology of dynamical models of rhythmic movement,
including (1) simple linear models with complex external forcing, (2) nonlinear autonomous
models, and (3) nonlinear models with minimal external forcing. Approach (1) is a relatively
common theme in computational and modular models of mind, where movement models are
simple and most of the work is offloaded to a complex forcing function. This essentially
reflects a view in which physical movement is the implementation stage of highly complex
cognitive processing. In contrast, the present analysis has focused mainly on the second of
Beek and Beek’s (1988) typology, if we also allow the inclusion of some good-performing
linear models. Indeed, we confirm that the intrinsic dynamics of articulatory trajectories can
be modeled without any explicit time dependence across a large database of 13,742 seg-
mented trajectories. Our approach has been to assume very simple step-activation driving
of the system, with instantaneous change in parameters at specific landmarks. However, this
rather simple driving mechanism is likely insufficient, given that it does not explain how the
gestural system is driven from one target to another.

A more comprehensive dynamical model would likely occupy the third category of Beek
and Beek’s (1988) typology, with nonlinear gestural dynamics and an external forcing func-
tion F (t ) that drives between system states. A clear example concerns the forces that drive the
initiation and termination of gestures. This is particularly pertinent to the present study as the
linear second-order model is close to undamped and the coefficients discovered for a cubic
second-order model are almost never critically damped (but significantly more damped than
the linear model). This means that both models require some form of gestural suppression
mechanism, otherwise the system will inherently oscillate around the target. One proposal is
state feedback on target achievement (Burroni & Tilsen, 2022; Tilsen, 2022), where speakers
use a combination of internal and external feedback to open and close a gestural gating
function. Parrrell, Ramanarayanan, Nagarajan, and Houde (2019) also outline a model of
hierarchical state feedback control, which combines task dynamics with nonlinear state
estimation.

An alternative proposal rejects the idea that gestures have bounded activation intervals alto-
gether, instead casting gestures as always active but varying in their force on the vocal tract
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(Tilsen, 2018). Under this view, movement preparation is represented as a dynamic neural
planning field (Erlhagen & Schöner, 2002; Schöner, 2020), where articulatory control vari-
ables correspond to a parameter field. Gestures act as inputs to the planning fields, with the
field’s activation centroid determining the parameter value. In this view, the parameters of
minimal dynamical models are recast as dynamic neural fields that generate continuous values
from activation across neural populations (Kirkham & Strycharczuk, 2024; Kirov & Gafos,
2007; Roon & Gafos, 2016; Stern & Shaw, 2023; Tilsen, 2019a). The task of model discovery
thus becomes uncovering the dynamics of neural fields that continuously parameterize gestu-
ral systems. This view clearly situates gestural systems as explicitly non-autonomous because
parameters are no longer constant and are constantly being fed by movement planning fields.

At this juncture, it should be noted that the distinction between autonomous and non-
autonomous does not necessarily have to correspond to a distinction between intrinsic versus
extrinsic timing (Fowler, 1980), where the latter is associated with a central clock or time-
keeper (e.g., Turk and Shattuck-Hufnagel, 2020). It is self-evident that no living system is
autonomous because interaction is a signature of life (Suprunenko, Clemson, & Stefanovska,
2013), but the present study shows that the intrinsic dynamics of independent gestures can
be adequately modeled as autonomous systems. That said, even if non-autonomous models
turn out to be the correct direction, any time-varying parameters may still be a consequence of
coupling to other dynamical mechanisms with their own intrinsic dynamics, rather than a cen-
tral timekeeper. This is consistent with accounts of interoceptive rhythms in brain and body
that can be coupled with the surrounding environment (e.g., Engelen, Solcà, & Tallon-Baudry,
2023). To this end, the most productive perspective may be a view of brain and behavior as
a complex multiscale system with interacting, coupled, and emergent dynamics (e.g., Favela,
2024; Goheen et al., 2024; Kluger, Allen, & Gross, 2024; Senkowski & Engel, 2024; Tilsen,
2009). It is the task of future research to understand the nature of these dynamics of their
coupling relations.

6.3. Prospects for data-driven model discovery in cognitive science

A major aim of the present work was to discover dynamical models from data. In doing
so, we discovered some new models but also leveraged extant models in improving on these
discoveries, such as the second-order nonlinear model in Sorensen & Gafos (2016). It is worth
noting that articulatory trajectories are comparably easier to model than some other dynamical
mechanisms in the cognitive sciences, but there remain a range of areas in which data-driven
model discovery represents a promising direction.

For example, any model that is concerned with the relationship between discrete categories
and their physical realization must take seriously both signed and spoken languages. While
there is a very small amount of work exploring the possibility of a task dynamics of signed
languages (e.g., Mertz, Pagel, Turco, & Mücke, 2024), this represents a space where model
discovery would be particularly useful as a starting point, given appropriate kinematic corpora
on signing. Debates also abound on the appropriate dynamical representation of various kinds
of disordered speech, such as whether the addition of noise is sufficient (Mücke et al., 2024)
or whether a different set of compensatory dynamics is involved.
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While physical movements are obvious candidates for model discovery, this does not
preclude data-driven discovery of higher level cognitive processes. This includes decision-
making, perception, and working memory, all of which can be cast as relatively simple
dynamical models (Schöner, Spencer, & The DFT Research Group, 2016) and are, there-
fore, potential areas where data-driven model discovery could be productive. More broadly, it
is likely that moving beyond intrinsic speech dynamics towards a larger agent–environment
system will also require a broader reconceptualization of the dynamical models we deploy,
with an open system tending towards massive degrees of interactivity and complexity. This is
likely to require a focus on how interacting task demands constrain the dynamics of brain and
behavior, rather than attempting to model specific cognitive processes (Iskarous, 2016; Nau,
Schmid, Kaplan, Baker, & Kravitz, 2024).

6.4. Limitations and future research

A productive avenue for future research would be more extensive comparisons between
models (e.g., Elie et al., 2023), especially on languages other than English (Geissler &
Nellakra, 2024). This is important given the emergence of new nonlinear models (Stern &
Shaw, 2024) and ongoing developments in theories of articulatory control (Tilsen, 2016,
2018, 2020). It will be particularly important to compare the qualitative predictions made
by different models in order to distinguish quantitative fit from qualitative adequacy (e.g.,
via phase and Hooke portraits). In future research, we also hope to examine bidirectional
coupling between the dynamics of neural fields and the dynamics of nonlinear gestural
models, which are likely mediated by dynamical feedback mechanisms (e.g., Parrrell et al.,
2019; Tilsen, 2022). There is extensive scope for model development in these areas, but
attention should also be directed towards developing rigorous ways of testing the predictions
of different models.

A limitation of the current approach is the temporal segmentation of gestures and
the method’s reliance on accurate segmentation. We segmented signals at velocity zero-
crossings, based on well-understood characteristics of skilled movement dynamics. If two
gestures overlap then we are not able to distinguish them or estimate the parameters of each
gesture separately. But this conceptualization is likely to be a gross simplification of the
actual dynamics of gestures. As discussed above, Tilsen (2019a) outlines a model in which
gestures are always active, but most are subthreshold at any point in time. In terms of model
discovery, this becomes a significantly more complex task, but it is possible that a combina-
tion of sparse symbolic regression, predictive control algorithms, and neural networks may
prove a fruitful avenue for model discovery in this area (Kaiser et al., 2018; Tilsen, 2020).

7. Conclusions

Discovering the dynamics that govern brain and behavior is a major challenge in the cog-
nitive sciences. We have demonstrated one approach to meeting this challenge, applied to
articulatory movement dynamics in spoken language. Building upon decades of research in
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task dynamics and articulatory phonology, combined with recent developments in machine
learning and equation discovery, we discover interpretable models directly from data. While
a linear second-order equation accurately models around two thirds of trajectories in the data,
a nonlinear (cubic) model is fundamentally necessary for accurately capturing the qualitative
dynamics of speech movements. This supports the proposal that articulatory dynamics are
well-modeled as a nonlinear autonomous system during periods of constant gestural activa-
tion. This leads us to propose that the discovered models represent the dynamical laws of
motion that structure articulatory control in spoken language.
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Note

1 For excellent introductions to dynamical systems and nonlinear dynamics, see Strogatz
(2015) (a mathematical introduction); Abraham and Shaw (1992) (a visual introduction);
van Gelder (1998) (a perspective from the cognitive sciences); Kelso (1995) (coordi-
nation), (Haken, 1977) (synergetics); Gafos (2006) (phonology); and Tilsen (2019b)
(an impressive application of dynamical theory to syntactic structures). For arguments
against computational metaphors of mind, see Gibson (1979), Carello, Turvey, Kugler,
and Shaw (1984), Spivey (2007), Chemero (2009), and Barrett (2011).
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