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Abstract. This paper is concerned with generalising the results for Lie CT -

algebras to Leibniz algebras. In some cases our results give a generalisation

even for the case of a Lie algebra. Results on A-algebras are used to show
every Leibniz CT -algebra over an algebraically closed field of characteristic

different from 2,3 is solvable or is isomorphic to sl2(F ). A characterisation is

then given for solvable Leibniz CT -algebras. It is also shown that the class of
solvable Leibniz CT -algebras is factor closed.

1. Introduction

An algebra L over a field F is called a Leibniz algebra if, for every x, y, z ∈ L,
we have

[x, [y, z]] = [[x, y], z]− [[x, z], y].

In other words, the right multiplication operator Rx : L → L : y 7→ [y, x] is
a derivation of L. As a result such algebras are sometimes called right Leibniz
algebras, and there is a corresponding notion of left Leibniz algebras, which satisfy

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

Clearly, the opposite of a right (left) Leibniz algebra is a left (right) Leibniz algebra,
so, in most situations, it does not matter which definition we use.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra satisfying
[x, x] = 0 for every element is a Lie algebra. They were introduced in 1965 by
Bloh ([3]) who called them D-algebras, though they attracted more widespread
interest, and acquired their current name, through work by Loday and Pirashvili
([8], [9]). They have natural connections to a variety of areas, including algebraic
K-theory, classical algebraic topology, differential geometry, homological algebra,
loop spaces, noncommutative geometry and physics. A number of structural results
have been obtained as analogues of corresponding results in Lie algebras.

The Leibniz kernel is the set I = span{x2 : x ∈ L}. Then I is the smallest ideal
of L such that L/I is a Lie algebra. Also [L, I] = 0.

We define the following series:

L1 = L, Lk+1 = [Lk, L] (k ≥ 1)

and
L(0) = L, L(k+1) = [L(k), L(k)] (k ≥ 0).

Then L is nilpotent of class n (resp. solvable of derived length n) if Ln+1 = 0 but
Ln 6= 0 (resp. L(n) = 0 but L(n−1) 6= 0) for some n ∈ N. It is straightforward to
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check that L is nilpotent of class n precisely when every product of n+ 1 elements
of L is zero, but some product of n elements is non-zero.

The centraliser of an element x of an algebra A is CA(x) = {a ∈ A | ax =
xa = 0}; if the algebra A is clear we will simply write C(x). An algebra A is
called centraliser transitive, or a CT -algebra if x ∈ C(y) and y ∈ C(z) imply that
x ∈ C(z). Such algebras, where A is a Lie algebra, have been studied by Klep
and Moravec ([7]) in 2010, by Arzhantsev, Makedonskii, and Petravchuk ([7]) in
2011, and by Gorbatsevic ([5]) in 2016. In the last two of these references they are
shown to have applications to the classification of finite-dimensional subalgebras
in polynomial Lie algebras of rank one and to Lie algebras of vector fields whose
orbits are one-dimensional. A similar notion for groups was defined and studied by
Weisner [13]) in 1925. Finite nonabelian simple CT -groups had been classified by
Suzuki ([11]) in 1957. He proved that every finite nonabelian simple CT -group is
isomorphic to some PSL(2, 2f ), where f > 1. Suzuki’s result is considered to have
been one of the key stones in the proof of the Odd Order Theorem by Feit and
Thompson ([4]).

Note that x ∈ C(y) if and only if y ∈ C(x). It is clear that CT -algebras are
subalgebra closed. The centre of an algebra A is Z(A) = {z ∈ A | za = az =
0 for all a ∈ A}. We call A a zero algebra if A = Z(A). The following lemma
makes clear the title of the paper.

Lemma 1.1. The algebra A is a CT -algebra if and only if C(x) is a zero algebra
for all 0 6= x ∈ L.

Proof. Let A be a CT -algebra and let y, z ∈ C(x). Then y ∈ C(x) and x ∈ C(z),
so y ∈ C(z); that is yz = zy = 0.

Conversely, suppose that C(x) is a zero algebra for all x 6= 0, and let x ∈ C(y)
and y ∈ C(z). Then x, z ∈ C(y), so xz = zx = 0, whence x ∈ C(z). �

Lemma 1.2. If A is a CT -algebra and Z(A) 6= 0, then A is a zero algebra.

Proof. Let 0 6= x ∈ Z(A). Then A = C(x) is a zero algebra. �

We call an algebra A an A-algebra if every nilpotent subalgebra of A is a zero
algebra. Then CT -algebras are a subclass of the class of A-algebras.

Lemma 1.3. Every CT -algebra is an A-algebra.

Proof. Let N be a nilpotent CT -algebra. Then Z(N) 6= 0, so the result follows
from Lemma 1.2.. �

The next section is concerned with generalising the results for Lie CT -algebras to
Leibniz algebras. In some cases our results give a generalisation even for the case of
a Lie algebra. Leibniz A-algebras were studied by Towers in [12]. The results proved
there are used to show every Leibniz CT -algebra over an algebraically closed field of
characteristic different from 2,3 is solvable or is isomorphic to sl2(F ); the previously
recorded result for Lie algebras asumed characteristic zero. A characterisation is
then given for solvable Leibniz CT -algebras. It is also shown that the class of
solvable Leibniz CT -algebras is factor closed.

From now on, L will denote a finite-dimensional Leibniz algebra over a general
field F (unless specified otherwise). The notation ⊕ will denote an algebra direct
sum, whereas +̇ will denote a direct sum of the underlying vector space structure
alone.
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2. Main results

The following lemma will prove useful.

Lemma 2.1. Let L = A+̇Fx be a Leibniz CT -algebra over a field F , where A is a
zero ideal of L and x2 ∈ A. Then, either L is a zero algebra or Rx|A has no zero
eigenvalue in F and Ax = A.

Proof. Suppose that Rx|A has a zero eigenvalue in F . Let 0 6= y ∈ A be a cor-
responding eigenvector, so yx = 0. If xy = 0, we have that L = C(y) is a zero
algebra. So suppose that xy 6= 0. Then

(xy)x = x(yx) + x2y = 0 and x(xy) = x2y − (xy)x = 0.

Thus, L = C(xy) is a zero algebra again.
Suppose next that Rx|A has no zero eigenvalue in F . Let L = L0+̇L1 be the

Fitting decomposition of L relative to Rx. Then L1 ⊆ A. Suppose that B =
L0 ∩ A 6= 0 and that Rn

x(B) = 0, Rn−1
x (B) 6= 0. Let 0 6= y ∈ Rn−1

x (B). Then
yx = 0 and Rx has a zero eigenvalue in F , a contradiction. It follows that B = 0
and so A = L1 and Ax = A. �

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has
a basis a, a2, . . . , an(n > 1) and product ana = α2a

2 + . . . + αna
n. Let T be the

matrix for Ra with respect to the above basis. Then T is the companion matrix for
p(x) = xn−αnx

n−1− . . .−α2x = p1(x)n1 . . . pr(x)nr , where the pj are the distinct
irreducible factors of p(x). Then we have the following result.

Theorem 2.2. Let L be a cyclic Leibniz algebra. Then the following are equivalent:

(i) L is a CT -algebra;
(ii) L is an A-algebra; and
(iii) α2 6= 0, and then L = L2+̇F (an − αna

n−1 − · · · − α2a) and we can take
p1(x)n1 = x.

Proof. The equivalence of (ii) and (iii) is given by [12, Theorem 12]. Lemma 1.3
gives that (i) implies (ii), so it simply remains to show that (iii) implies (i).

So suppose that L is as described in (iii). Put b = an−αna
n−1−· · ·−α2a. Then

it is easy to check that b2 = 0 and Rb|L2 has no zero eigenvalue in F . Let x = n+λb
where n ∈ L2 and λ ∈ F . Now bL2 = bI = 0, so straightforward calculations show
that

C(x) =

 L2 if λ = 0, n 6= 0
Fb if λ 6= 0, n = 0
0 if λ 6= 0, n 6= 0


Hence L is a CT -algebra �

Note that the above result shows that we may not have xA = A in Lemma 2.1.
For, if L is a cyclic Leibniz A-algebra, then Ix = I, but xI = 0.

Lemma 2.3. If L is a Leibniz algebra and N is a zero ideal of L, we can consider
N as a right L/N -module under the action n(x + N) = nx for all x ∈ L, n ∈ N .
Then, each element Rx+N with x /∈ N has no zero eigenvalue under this action if
and only if CL(n) ⊆ N for all n ∈ N .

Proof. Suppose Rx+N has a zero eigenvalue under the action, where x /∈ N . Then,
there exists 0 6= n ∈ N such that nx = 0. If xn = 0, then x ∈ CL(n)\N . If xn 6= 0,
then x ∈ CL(xn) \N , as in Lemma 2.1 above.
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Conversely, if x ∈ CL(n) \N for some n ∈ N , we have nx = 0 and Rx+N has a
zero eigenvalue. �

Proposition 2.4. Let L be a Leibniz algebra and N be a zero ideal of L such that
L/N is a CT -algebra and CL(n) ⊆ N for all 0 6= n ∈ N . Then L is a CT -algebra.

Proof. Let 0 6= x ∈ L and take y, z ∈ CL(x), so xy = yx = xz = zx = 0. If y ∈ N ,
then x ∈ CL(y) ⊆ N . Hence y, z ∈ CL(x) ⊆ N , giving yz = 0.

So assume that y /∈ N . Then yz ∈ N , by the hypothesis. Now

x(yz) = (xy)z − (xz)y = 0 and (yz)x = y(zx) + (yx)z = 0,

so x ∈ CL(yz) ⊆ N . Thus CL(x) ⊆ N and yz = 0. The result follows. �

Note that If L is a nilpotent cyclic Leibniz algebra of dimension greater than
1, then L/I is a Lie CT algebra, but L is not a CT -algebra. Next we have the two
main classification results.

Theorem 2.5. Let L be a Leibniz CT -algebra over an algebraically closed field F
of characteristic 6= 2, 3. Then L is solvable or is isomorphic to sl2(F ).

Proof. Since F has cohomological dimension 0, L = R+̇S, where R is the radical
of L and S is a direct sum of ideals isomorphic to sl2(F ), by Lemma 1.3 and [12,
Theorem 2]. Suppose that R 6= 0. If S 6= 0, it is clear from Lemma 1.1 that
S ∼= sl2(F ), and there is an element x ∈ S such that Rx is nilpotent. Then Rx

has a zero eigenvalue and A = N+̇Fx, where N is the nilradical of L, must be a
zero algebra, by Lemma 2.1. Thus, x ∈ CL(N). But CL(N) is an ideal of L, and
so S ⊆ CL(N). Pick 0 6= y ∈ N . Then S ⊂ C(y), which is a zero algebra. Hence
S = 0. �

Theorem 2.6. Let L be a solvable Leibniz CT -algebra of derived length n + 1.
Then

(i) L = An+̇An−1+̇ . . . +̇A0, where Ai is an a zero subalgebra of L and L(i) =
An+̇An−1+̇ . . . +̇Ai for 0 ≤ i ≤ n;

(ii) L splits over the nilradical N , which equals L(n); and
(iii) for every element x ∈ L \ N , Rx|N has no zero eigenvalue in F , and

Nx = N .

Proof. (i) We have that L = An+̇An−1+̇ . . . +̇A0 and L(i) = An+̇An−1+̇ . . . +̇Ai,
by [12, Corollary 1].
(ii) Also, N = An ⊕ (N ∩ An−1 ⊕ . . . ⊕ N ∩ A0) and Z(L(i)) = N ∩ Ai for each
0 ≤ i ≤ n, by [12, Theorem 5]. Suppose that N∩Ai 6= 0 for some 0 ≤ i ≤ n−1. Let
0 6= x ∈ N∩Ai. Then CL(x) ⊇ L(i). But L(i) is not a zero algebra for 0 ≤ i ≤ n−1,
so we have a contradiction.
(iii) Let x ∈ L \ N . Then L(x) = N+̇Fx satisfies the hypothesis of Lemma 2.1,
since x2 ∈ I ⊆ N . If L(x) is a zero algebra, then x ∈ CL(N) = N , by [12, Lemma
7], a contradiction. Hence Rx|N has no zero eigenvalue in F , and Nx = N , by
Lemma 2.1. �

Definition 1. A Leibniz algebra L is called completely solvable if L2 is nilpotent.

Over a field of characteristic zero, every solvable Leibniz algebra is completely
solvable, and so every solvable Leibniz CT -algebra has derived length at most 2.
However, this is not the case over fields of positive characteristic, even for Lie
algebras, as the following example, which is taken from [6, pages 52, 53], shows.
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Example 2.7. Let

e =


0 1 0 . . . 0
0 0 1 0 . . 0
...

...
0 . . . . 0 1
1 0 . . . . 0

 , f =


0 0 0 . . . 0
0 1 0 . . . 0
0 0 2 . . . 0
...

...
0 0 0 . . . p− 1

 ,
let F be a field of prime characteristic p and put L = Fe + Ff + F p with product
[a+ x, b+ y] = [a, b] + (xb− ya) for all a, b ∈ Fe+ Ff , x,y ∈ F p.

Then, straightforward calculations show that

C(αe+ βf + x) =


Ff + Fx1 if α = β = 0,x = x1

F p if α = β = 0,x 6= x1

F (αe+ βf + x) if α 6= 0
F (βf + x) + Fx1 if α = 0, β 6= 0,


where x1 = (1, 0, . . . , 0), and all of these are zero algebras.

Theorem 2.8. Let L be a solvable Leibniz CT -algebra over an arbitrary alge-
braically closed field F . Then the nilradical of L has codimension at most 2 in
L.

Proof. We have that L = N+̇A1+̇A0, by Theorem 2.6 and [12, Theorem 14]. Sup-
pose A1 6= 0. Let A be a minimal ideal of B = N+̇A1, inside N . Then A is an
irreducible B-bimodule, and so A1A = 0 or ab = −ba for every a ∈ A, b ∈ B,
by [2, Lemma 1.9]. In either case, A is a minimal right A1-module and A = Fn
is one-dimensional, by [10, Lemma 5]. But CB(A) ⊆ N has dimension at least
dimB − 1, so dimA1 ≤ 1. The same argument shows that dimA0 ≤ 1, whence the
result. �

If the field F in the above result has characteristic zero, then the codimension is
at most one. However, over any field of characteristic p > 0, the codimension can
be two, even if L is a Lie algebra, as Example 2.7 shows.

If L is a Leibniz algebra and y ∈ L, the left centraliser of y in L, is C`
L(y) =

{x ∈ L | xy = 0}. It is easy to check that this a subalgebra of L.

Theorem 2.9. Let L be a completely solvable Leibniz CT -algebra. Then, either L
is a zero algebra, or L = N+̇A0 where N is the nilradical, N2 = A2

0 = 0, Rx|N has
no zero eigenvalue and Nx = N for all x ∈ A0. If A0 and A′0 are two complements
to N in L, then there exists n ∈ N such that (1 + Ln)(A0) = A′0.

Proof. We have that L = N+̇A0 where N is the nilradical and N2 = A2
0 = 0, by

Theorem 2.6. Suppose that L is not a zero algebra. Then A0 6= 0, Rx|N has no
zero eigenvalue and Nx = N for all x ∈ A0, by Lemma 2.1.

For every y ∈ L \ N we have N = Ny ⊆ Ly ⊆ L2 ⊆ N , so N = Ly. Pick
any x ∈ L. Then xy ∈ N = Ny, so there is an n ∈ N such that xy = ny. Thus
(x − n)y = 0 and x − n ∈ C`

L(y). It follows that L = N + C`
L(y). Moreover,

N ∩ C`
L(y) = 0, since y has no zero eigenvalue on N , so C`

L(y) is a complement to
N in L.

Let A0 be any complement to N in L. Then y = n′ + a for some n′ ∈ N = Ny
and a ∈ A0. Hence, there is an n ∈ N such that n′ = −ny and a = (1 + Ln)(y).
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Put θ = 1 + Ln, so θ(y) = a and θ(C`
L(y)) ⊆ C`

L(a). But A0 = C`
L(a) from which

the final claim follows. �

Note that the above result mirrors the corresponding result in Lie algebras (see
[7, Theorem 3]). However, in that result, the complements are conjugate under the
inner automorphism 1 + adn. In our result, 1 + La is not an automorphism, in
general, as the following example shows.

Example 2.10. Let L be the two-dimensional solvable cyclic Leibniz algebra with
basis a, a2 and a2a = a2. It is easy to see that this is a CT -algebra. Put θ = 1+La2 .
Then θ(a2) = a2, whereas θ(a)θ(a) = (a+ a2)(a+ a2) = a2 + a2.

It would have been better if we could have taken θ = 1 + Rn, which is an
automorphism. However, if N = I (as in Example 2.10 above), θ(A0) = A0.

Finally, we have that solvable Leibniz CT -algebras are factor-closed.

Theorem 2.11. Let L be a solvable Leibniz CT -algebra and let J be an ideal of L.
Then L/J is a CT -algebra.

Proof. Suppose that J 6⊆ N and let x ∈ J \ N . Then N = Nx ⊆ J , by Lemma
2.1, so J ⊂ N or N ⊆ J . We use induction on the derived length k of L. Suppose
first that k = 2, so L is completely solvable. If N ⊆ J , we have that L/N is a zero
algebra and so L/J is a CT -algebra.

So suppose now that J ⊂ N . A similar argument to that used in Lemma 2.1
also shows that J = Jx for all x /∈ N . Let x + J ∈ CL/J(n + J) where n ∈ N \ J
and suppose that x /∈ N . Then nx ∈ J = Jx, so nx = jx for some j ∈ J . Thus
(n− j)x = 0. But now n = j, since L is a CT -algebra, and this is a contradiction.
It follows that CL/J(n + J) ⊆ N/J . Now L/N ∼= (L/J)/(N/J) is a CT -algebra
and hence so is L/J , by Proposition 2.4.

So suppose the result holds whenever k ≤ m and let L have derived length m+1.
Then L = N+̇B for some subalgebra B of derived length m of L, by Theorem 2.6
(ii). Now L/N ∼= B is a CT -algebra, by the inductive hypothesis. If N ⊆ J ,
then L/J ∼= (L/N)/(J/N) ∼= B/B ∩ J , which is a CT -algebra, by the inductive
hypothesis. If J ⊂ N , then L/J is a CT -algebra as in paragraph two above. �

Corollary 2.12. Let L be any Leibniz CT -algebra over an algebraically closed field
of characteristic 6= 2, 3, and let J be an ideal of L. Then L/J is a CT -algebra.

Proof. This is immediate from Theorems 2.5 and 2.11. �
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