LEIBNIZ ALGEBRAS IN WHICH ALL CENTRALISERS OF
NONZERO ELEMENTS ARE ZERO ALGEBRAS
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ABSTRACT. This paper is concerned with generalising the results for Lie CT-
algebras to Leibniz algebras. In some cases our results give a generalisation
even for the case of a Lie algebra. Results on A-algebras are used to show
every Leibniz CT-algebra over an algebraically closed field of characteristic
different from 2,3 is solvable or is isomorphic to sla(F'). A characterisation is
then given for solvable Leibniz C'T-algebras. It is also shown that the class of
solvable Leibniz C'T-algebras is factor closed.

1. INTRODUCTION

An algebra L over a field F is called a Leibniz algebra if, for every z,y,z € L,
we have
[ZE, [y’ ZH = Hl‘, y}v Z] - [[.’,E, Z]a y]
In other words, the right multiplication operator R, : L — L : y — [y,z] is
a derivation of L. As a result such algebras are sometimes called right Leibniz
algebras, and there is a corresponding notion of left Leibniz algebras, which satisfy

[,y 2]] = [[=, 9], 2] + [y, [, 2]].
Clearly, the opposite of a right (left) Leibniz algebra is a left (right) Leibniz algebra,
so, in most situations, it does not matter which definition we use.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra satisfying
[z,2] = 0 for every element is a Lie algebra. They were introduced in 1965 by
Bloh ([3]) who called them D-algebras, though they attracted more widespread
interest, and acquired their current name, through work by Loday and Pirashvili
([8]; [9]). They have natural connections to a variety of areas, including algebraic
K-theory, classical algebraic topology, differential geometry, homological algebra,
loop spaces, noncommutative geometry and physics. A number of structural results
have been obtained as analogues of corresponding results in Lie algebras.

The Leibniz kernel is the set I = span{x? : z € L}. Then [ is the smallest ideal
of L such that L/I is a Lie algebra. Also [L,I] = 0.

We define the following series:

LY=L, LM =[LF L] (k>1)
and
LO =1, L*+) = [L® LF] (k> 0).
Then L is nilpotent of class n (resp. solvable of derived length n) if L™ = 0 but
L™ # 0 (resp. L™ = 0 but L~V £ 0) for some n € N. It is straightforward to
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check that L is nilpotent of class n precisely when every product of n 4 1 elements
of L is zero, but some product of n elements is non-zero.

The centraliser of an element = of an algebra A is Cu(z) = {a € A | ax =
xa = 0}; if the algebra A is clear we will simply write C(z). An algebra A is
called centraliser transitive, or a CT-algebra if x € C(y) and y € C(z) imply that
x € C(z). Such algebras, where A is a Lie algebra, have been studied by Klep
and Moravec ([7]) in 2010, by Arzhantsev, Makedonskii, and Petravchuk ([7]) in
2011, and by Gorbatsevic ([5]) in 2016. In the last two of these references they are
shown to have applications to the classification of finite-dimensional subalgebras
in polynomial Lie algebras of rank one and to Lie algebras of vector fields whose
orbits are one-dimensional. A similar notion for groups was defined and studied by
Weisner [13]) in 1925. Finite nonabelian simple CT-groups had been classified by
Suzuki ([11]) in 1957. He proved that every finite nonabelian simple CT-group is
isomorphic to some PSL(2,27), where f > 1. Suzuki’s result is considered to have
been one of the key stones in the proof of the Odd Order Theorem by Feit and
Thompson ([4]).

Note that € C(y) if and only if y € C(x). It is clear that CT-algebras are
subalgebra closed. The centre of an algebra A is Z(A) = {z € A | za = az =
0foralla € A}. We call A a zero algebra if A = Z(A). The following lemma
makes clear the title of the paper.

Lemma 1.1. The algebra A is a CT-algebra if and only if C(x) is a zero algebra
forall0# x € L.

Proof. Let A be a CT-algebra and let y,z € C(z). Then y € C(z) and x € C(z),
so y € C(z); that is yz = 2y = 0.
Conversely, suppose that C(x) is a zero algebra for all  # 0, and let x € C(y)

and y € C(z). Then z,z € C(y), so xz = zx = 0, whence x € C(z). O
Lemma 1.2. If A is a CT-algebra and Z(A) # 0, then A is a zero algebra.
Proof. Let 0 # x € Z(A). Then A = C(x) is a zero algebra. O

We call an algebra A an A-algebra if every nilpotent subalgebra of A is a zero
algebra. Then C'T-algebras are a subclass of the class of A-algebras.

Lemma 1.3. Every CT-algebra is an A-algebra.

Proof. Let N be a nilpotent C'T-algebra. Then Z(N) # 0, so the result follows
from Lemma 1.2.. (]

The next section is concerned with generalising the results for Lie C'T-algebras to
Leibniz algebras. In some cases our results give a generalisation even for the case of
a Lie algebra. Leibniz A-algebras were studied by Towers in [12]. The results proved
there are used to show every Leibniz CT-algebra over an algebraically closed field of
characteristic different from 2,3 is solvable or is isomorphic to sly(F'); the previously
recorded result for Lie algebras asumed characteristic zero. A characterisation is
then given for solvable Leibniz CT-algebras. It is also shown that the class of
solvable Leibniz CT-algebras is factor closed.

From now on, L will denote a finite-dimensional Leibniz algebra over a general
field F' (unless specified otherwise). The notation @ will denote an algebra direct
sum, whereas + will denote a direct sum of the underlying vector space structure
alone.
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2. MAIN RESULTS

The following lemma will prove useful.

Lemma 2.1. Let L = A+Fx be a Leibniz CT-algebra over a field F, where A is a
zero ideal of L and x®> € A. Then, either L is a zero algebra or Ry|a has no zero
eigenvalue in F' and Az = A.

Proof. Suppose that R,|4 has a zero eigenvalue in F. Let 0 # y € A be a cor-
responding eigenvector, so yx = 0. If xy = 0, we have that L = C(y) is a zero
algebra. So suppose that zy # 0. Then

(zy)z = z(yx) + 2%y = 0 and z(zy) = 2%y — (zy)x = 0.

Thus, L = C(zy) is a zero algebra again.

Suppose next that R,|4 has no zero eigenvalue in F. Let L = Lo-+L; be the
Fitting decomposition of L relative to R,. Then L; C A. Suppose that B =
LonN A # 0 and that R?(B) = 0, R"1(B) # 0. Let 0 # y € R""}(B). Then
yr = 0 and R, has a zero eigenvalue in F, a contradiction. It follows that B = 0
and so A = L and Az = A. O

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has
a basis a,a?,...,a"(n > 1) and product a"a = aza® + ... + a,a™. Let T be the
matrix for R, with respect to the above basis. Then T' is the companion matrix for
p(z) = 2™ —a,a" ' — ... —aox = pi1(z)™ ...p(z)", where the p; are the distinct
irreducible factors of p(x). Then we have the following result.

Theorem 2.2. Let L be a cyclic Leibniz algebra. Then the following are equivalent:
(i) L is a CT-algebra;
(ii) L is an A-algebra; and
(iii) g # 0, and then L = L*+F(a" — a,a™ ' — -+ — aga) and we can take
p1(x)™ = x.

Proof. The equivalence of (ii) and (iii) is given by [12, Theorem 12]. Lemma 1.3
gives that (i) implies (ii), so it simply remains to show that (iii) implies (i).

So suppose that L is as described in (iii). Put b = a” —a,a" "t —---—aga. Then
it is easy to check that b2 = 0 and Ry|;> has no zero eigenvalue in F'. Let z = n+\b
where n € L? and A € F. Now bL? = bl = 0, so straightforward calculations show
that

L? if A=0,n#0
Cx)=< Fb if A#0,n=0
0 if A#0,n#0
Hence L is a C'T-algebra O

Note that the above result shows that we may not have x4 = A in Lemma 2.1.
For, if L is a cyclic Leibniz A-algebra, then Iz = I, but I = 0.

Lemma 2.3. If L is a Leibniz algebra and N is a zero ideal of L, we can consider
N as a right L/N-module under the action n(x + N) = nx for allz € L, n € N.
Then, each element R, n with x ¢ N has no zero eigenvalue under this action if
and only if Cr,(n) C N for alln € N.

Proof. Suppose R, has a zero eigenvalue under the action, where x ¢ N. Then,
there exists 0 # n € N such that nz = 0. If zn =0, then x € Cr(n)\ N. If an # 0,
then z € Cr(zn) \ N, as in Lemma 2.1 above.
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Conversely, if z € C(n) \ N for some n € N, we have nx = 0 and R,y has a
zero eigenvalue. ([

Proposition 2.4. Let L be a Leibniz algebra and N be a zero ideal of L such that
L/N is a CT-algebra and Cr(n) C N for all0 #n € N. Then L is a CT-algebra.

Proof. Let 0 # x € L and take y,z € Cp(z),sozy =yr =xz=zx =0. If y € N,
then € Cp(y) € N. Hence y, z € Cr(x) C N, giving yz = 0.
So assume that y ¢ N. Then yz € N, by the hypothesis. Now

z(yz) = (zy)z — (z2)y = 0 and (yz)z = y(2z) + (yz)z = 0,
so x € Cr(yz) € N. Thus Cp(z) € N and yz = 0. The result follows. O

Note that If L is a nilpotent cyclic Leibniz algebra of dimension greater than
1, then L/I is a Lie CT algebra, but L is not a CT-algebra. Next we have the two
main classification results.

Theorem 2.5. Let L be a Leibniz C'T'-algebra over an algebraically closed field F'
of characteristic # 2,3. Then L is solvable or is isomorphic to sly(F).

Proof. Since F has cohomological dimension 0, L = R+S, where R is the radical
of L and S is a direct sum of ideals isomorphic to sly(F'), by Lemma 1.3 and [12,
Theorem 2]. Suppose that R # 0. If S # 0, it is clear from Lemma 1.1 that
S 2 slp(F), and there is an element = € S such that R, is nilpotent. Then R,
has a zero eigenvalue and A = N4+Fz, where N is the nilradical of L, must be a
zero algebra, by Lemma 2.1. Thus, x € CL(N). But Cp(N) is an ideal of L, and
s0 S C Cp(N). Pick 0 #y € N. Then S C C(y), which is a zero algebra. Hence
S =0. O

Theorem 2.6. Let L be a solvable Leibniz CT-algebra of derived length n + 1.
Then
(i) L=Ap,+A,_1+...+Ag, where A; is an a zero subalgebra of L and L™ =
ApFA, 1+, FA; for0<i<n;
(ii) L splits over the nilradical N, which equals L™ ; and
(iii) for every element x € L\ N, Ry|n has no zero eigenvalue in F, and
Nz =N.

Proof. (i) We have that L = A,+A, 1+...+Ag and LY = A, 4+ A, 1+... +A;,
by [12, Corollary 1].

(ii) Also, N = A, @ (NNA, 1©...0 NN A) and Z(LWD) = NN A; for each
0 < i < n, by [12, Theorem 5]. Suppose that NNA; # 0 for some 0 < i <n—1. Let
0+# 2z € NNA;. Then Cp(xz) D LY. But L™ is not a zero algebra for 0 < i < n—1,
so we have a contradiction.

(iii) Let z € L\ N. Then L(z) = N+Fuz satisfies the hypothesis of Lemma 2.1,
since 22 € I C N. If L(z) is a zero algebra, then z € C,(N) = N, by [12, Lemma
7], a contradiction. Hence R.|n has no zero eigenvalue in F, and Nz = N, by
Lemma 2.1. ([l

Definition 1. A Leibniz algebra L is called completely solvable if L? is nilpotent.

Over a field of characteristic zero, every solvable Leibniz algebra is completely
solvable, and so every solvable Leibniz CT-algebra has derived length at most 2.
However, this is not the case over fields of positive characteristic, even for Lie
algebras, as the following example, which is taken from [6, pages 52, 53], shows.
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Example 2.7. Let

01 0 . 0 0 0 0 0
0010 0 010 ... 0
e=| : ;7f:002"' O’
0o . . . .01 : :
10 . . . .0 000 ... p—1

let F' be a field of prime characteristic p and put L = Fe + F f + FP with product
[a+x,b+y] =[a,b] + (xb—ya) for alla,b € Fe+ Ff, x,y € FP.

Then, straightforward calculations show that

Ff+ Fxy if a=p=0,x=x3
) FP if a=p=0,x#x1
Clae+Bf +x) = Flae+pf+x) if a#0
FBf+x)+Fx1 if a=0,8#0,
where x1 = (1,0,...,0), and all of these are zero algebras.

Theorem 2.8. Let L be a solvable Leibniz CT-algebra over an arbitrary alge-
braically closed field F. Then the nilradical of L has codimension at most 2 in
L.

Proof. We have that L = N+A;+A4g, by Theorem 2.6 and [12, Theorem 14]. Sup-
pose A; # 0. Let A be a minimal ideal of B = N+4A,, inside N. Then A is an
irreducible B-bimodule, and so A1A = 0 or ab = —ba for every a € A, b € B,
by [2, Lemma 1.9]. In either case, A is a minimal right A;-module and A = F'n
is one-dimensional, by [10, Lemma 5]. But Cg(4) C N has dimension at least
dim B — 1, so dim A; < 1. The same argument shows that dim Ay < 1, whence the
result. O

If the field F in the above result has characteristic zero, then the codimension is
at most one. However, over any field of characteristic p > 0, the codimension can
be two, even if L is a Lie algebra, as Example 2.7 shows.

If L is a Leibniz algebra and y € L, the left centraliser of y in L, is C%(y) =
{z € L | zy = 0}. It is easy to check that this a subalgebra of L.

Theorem 2.9. Let L be a completely solvable Leibniz CT-algebra. Then, either L
is a zero algebra, or L = N+Ag where N is the nilradical, N> = A3 =0, R,|n has
no zero eigenvalue and Nx = N for all x € Ag. If Ay and A} are two complements
to N in L, then there exists n € N such that (1 + Ly,,)(Ao) = Aj.

Proof. We have that L = N+A4y where N is the nilradical and N? = A2 = 0, by
Theorem 2.6. Suppose that L is not a zero algebra. Then Ay # 0, R,|nx has no
zero eigenvalue and Nz = N for all x € Ay, by Lemma 2.1.

For every y € L\ N we have N = Ny C Ly C L? C N, so N = Ly. Pick
any * € L. Then zy € N = Ny, so there is an n € N such that zy = ny. Thus
(x —n)y =0 and v —n € C¢(y). It follows that L = N + C%(y). Moreover,
N N CE(y) = 0, since y has no zero eigenvalue on N, so C% (y) is a complement to
N in L.

Let Ag be any complement to N in L. Then y = n’ + a for some n’ € N = Ny
and a € Ag. Hence, there is an n € N such that n’ = —ny and a = (1 4+ L,)(y).
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Put =1+ Ly, so 0(y) = a and 6(C%(y)) C C%(a). But Ag = C%(a) from which
the final claim follows. ([

Note that the above result mirrors the corresponding result in Lie algebras (see
[7, Theorem 3]). However, in that result, the complements are conjugate under the
inner automorphism 1 + adn. In our result, 1 4+ L, is not an automorphism, in
general, as the following example shows.

Example 2.10. Let L be the two-dimensional solvable cyclic Leibniz algebra with
basis a,a® and a’a = a®. It is easy to see that this is a CT-algebra. Put = 1+ L,o.
Then 6(a®) = a?, whereas 0(a)f(a) = (a + a®)(a + a®) = a® + a>.

It would have been better if we could have taken § = 1 4+ R,,, which is an
automorphism. However, if N =T (as in Example 2.10 above), 6(A4g) = Aop.
Finally, we have that solvable Leibniz C'T-algebras are factor-closed.

Theorem 2.11. Let L be a solvable Leibniz C'T-algebra and let J be an ideal of L.
Then L/J is a CT-algebra.

Proof. Suppose that J € N and let z € J\ N. Then N = Nz C J, by Lemma
2.1,s0 J C N or N C J. We use induction on the derived length k£ of L. Suppose
first that k = 2, so L is completely solvable. If N C J, we have that L/N is a zero
algebra and so L/J is a C'T-algebra.

So suppose now that J C N. A similar argument to that used in Lemma 2.1
also shows that J = Jx for all x ¢ N. Let 2 +J € Cr/5(n + J) where n € N\ J
and suppose that © ¢ N. Then nax € J = Jx, so nx = jz for some j € J. Thus
(n —j)z = 0. But now n = j, since L is a CT-algebra, and this is a contradiction.
It follows that Cp,;(n +J) € N/J. Now L/N = (L/J)/(N/J) is a CT-algebra
and hence so is L/J, by Proposition 2.4.

So suppose the result holds whenever k < m and let L have derived length m—+1.
Then L = N+B for some subalgebra B of derived length m of L, by Theorem 2.6
(ii). Now L/N = B is a CT-algebra, by the inductive hypothesis. If N C J,
then L/J = (L/N)/(J/N) = B/B N J, which is a CT-algebra, by the inductive
hypothesis. If J C N, then L/J is a CT-algebra as in paragraph two above. O

Corollary 2.12. Let L be any Leibniz CT-algebra over an algebraically closed field
of characteristic # 2,3, and let J be an ideal of L. Then L/J is a CT-algebra.

Proof. This is immediate from Theorems 2.5 and 2.11. (I
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