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Abstract

Images of the human hand can be effectively deployed to assist with the iden-
tification of the perpetrators of serious crimes. One of the prominent and
distinguishing features of the human hand is found in the skin of the finger
knuckle regions, which includes creases forming complex and distinctive patterns.
Exploiting knuckle skin crease patterning in the identification of perpetrators
requires manual labelling from expert anthropologists, which is both labori-
ous and time-consuming. Existing approaches for automatic knuckle recognition
work in a black-box manner without explicitly revealing the causes of a match
or no match. Whereas, the court-room proceedings demand amore transparent
and reproduciblematching procedure driven from anatomy and comparison of
skin creases. Hence, development of automated algorithms to segment (trace)
the knuckle creases and compare them exclusively can make the whole process
demonstrable and convincing. This paper proposes an effective framework for
knuckle crease identification that can directly work on full hand dorsal images to
(i) localize the knuckle regions effectively, (ii) segment (trace) the knuckle creases
and (iii) effectively compare knuckles through the segmented crease maps. The
novel matching of knuckle creases is achieved through explicit comparison of the
creases themselves and is investigated with a large public dataset to demonstrate
the potential of the proposed approach.
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1 Introduction

The finger knuckles, viewed from the dorsal side of the human hand, have shown poten-
tial to be used as a biometric trait [1]. All three types of finger knuckles formed on
the proximal interphalangeal (PIP), distal interphalangeal (DIP) and metacarpopha-
langeal (MCP) joints can be utilized for identification of human subjects [2]. However,
their potential to provide sufficiently discernible and distinctive features may vary.
Several feature descriptors have been developed to represent the knuckle features effec-
tively [3–7]. These descriptors were mainly derived from traditional mechanisms, such
as Gabor filters [5], phase-only correlation [6] and the Radon transform [3, 4].

These descriptors have been effectively used to provide features of the knuckle
image as a whole, but they fail to provide a comparison which is anatomy-driven
and demonstrable. In other words, the above descriptors largely work in a black-
box matching scenario. When it comes to the application of forensic science in using
knuckle image matching for court-room proceedings, it becomes extremely important
to demonstrate the manner of matching between samples of evidence and the suspect.
Forensic experts use scientific techniques for perpetrator identification and favour
techniques which are transparent and possible to replicate [8]. In other words, if the
identification process is not demonstrable in the criminal court or if the defence expert
cannot repeat it, their legal team can request it to be dismissed. Therefore, there is
a strong demand for the development of transparent and explainable finger knuckle
matching techniques which can be used effectively in practice.

To tackle this issue, this work presents a first-of-its kind knuckle crease segmen-
tation approach, which facilitates transparency and demonstration of knuckle crease
matching. Kumar and Wang [8] proposed a method for segmenting finger knuckles
using a conventional approach of binarization, median filtering, morphological dila-
tion/erosion and thinning. However, due to the dependency on multiple underlying
sub-operations and dependence on empirically selected parameters, their approach is
unlikely to generalize well. Besides, their approach is tested only with a finger dorsal
dataset instead of a full hand-dorsal dataset, where the process deals with the images
acquired under highly controlled conditions making it sensitive to variations in hand
pose. Hence, we propose a more generalizable approach for knuckle crease segmenta-
tion using a data-driven machine learning approach which can handle full hand dorsal
images.

Figure 1 illustrates the overall framework of the proposed demonstrable knuckle
matching approach. The approach commences with the localization of knuckle region
from the input hand dorsal image. It then deals with the knuckle crease segmenta-
tion, where the localized knuckle regions are processed for segmenting (tracing) the
skin creases using fine-tuned deep learning-based segmentation models. Thereafter,
a crease thinning step is performed to obtain the centerline, followed by a detailed
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analysis of the performance metrics pertaining to the region segmentation and center-
line detection. Subsequently, the obtained centerlines of knuckle skin creases from the
gallery and query images are registred to enhance their possible overlap which in turn
aids the matching process to determine whether it was a genuine or imposter match.

The two key terminologies (i.e., demonstrability and anatomy-driven nature) of
the proposed approach arise from the imperative need of the court-room proceed-
ings to demonstrate the reliability of any source of evidence. The jury/judges in any
criminal proceedings do not admit expert evidence unless there are good grounds for
believing that the evidence is reliable [9]. Further, knuckle crease matching usually
requires humongous efforts from expert anthropologists to present as evidence in order
to ascertain the identity of a perpetrator. Hence, any automated method can only
prove admissible in the court-room proceedings, if they are backed by the anatomical
information.

1.1 Contributions

The major contributions of this work are listed as follows:

• A novel framework for segmenting the knuckle creases and establishing identity from
them is presented.

• This is the first work to achieve a generalizable segmentation of the knuckle creases
and explicitly investigate demonstrable knuckle crease matching with a large public
dataset.

• The crease segmentation results are validated through an expert anthropologist and
numerical evaluation is given through segmentation and centerline metrics.

The rest of the paper is organized in the following way: Sect. 2 explains the pro-
posed methodology to achieve the knuckle crease segmentation and crease-matching,
Sect. 3 constitutes the details about datasets, experimental setup, performance metrics
and the results, and finally the paper concludes in Sect. 4.

2 Proposed methodology

The proposed matching algorithm largely builds upon the appropriateness of the crease
segmentation. Therefore, the key steps of crease segmentation are illustrated in Fig.
2. More details about the knuckle crease segmentation (tracing) and matching are
elucidated in the subsequent subsections.

2.1 Knuckle localization

Since the primary focus of the paper is skin crease segmentation of knuckle images,
we need an effective strategy to localize the knuckle regions. To meet this need, we
use the knuckle localization procedure of [10], as this work is established to provide
accurate localization both in terms of the bounding box regression and the centroid
detection. The knuckle localization approach developed by our team in [10] was derived
from the capabilities of single-stage and two-stage deep-learning-based object detec-
tors. In view of the observation that no single detector yields notable localization
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Fig. 1 Overall block diagram

results for the knuckle images with diverse backgrounds, orientations, and illumina-
tion conditions, this method considers ensembling of the single-stage and twostage
object detectors for generalized knuckle localization in varying conditions. The you-
only-look-once (YOLO) class of single-stage detectors and region-based convolutional
neural networks (RCNN) as two-stage detectors were combined through weighted box
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fusion strategy to obtain generalized and more accurate bounding boxes. The tech-
nique in [10] was also tested for cross-dataset evaluation and was demonstrated as
effective with multiple datasets.

2.2 Ground truth preparation

To facilitate the deep learning models with adequate training, a ground truth is pre-
pared for the task of knuckle crease segmentation. The segmentation ground truth is
prepared by performing manual labeling of the knuckle creases by tracing them in a
piece-wise linear way. A sample showing preparation of the ground truth are illustrated
in Fig. 2, where the original knuckle image (left) and the corresponding annotations
overlaid on the image (right) are displayed. The ImageLabelor app of MATLAB is
used to obtain this ground truth. The binary ground truth crease map is created by
tracing the annotations and dilating the lines with empirically fixed width of 3 pixels.

2.3 Knuckle segmentation

Segmentation is a more challenging problem in comparison to the localization. The
knuckle segmentation deals with the tracing of the skin creases formed in the knuckle
images. This paper investigates efficient segmentation models, including UNet [11],
feature Pyramid network (FPN) [12, 13], Pyramid Scene Parsing Network (PSPNet)
[14], DeepLabV3+ [15], UNet++ [16] and provides a numerical comparison for the
knuckle crease segmentation. These models are selected in view of their exemplary per-
formances for the semantic segmentation task [17]. All these models possess exclusive
characteristics to support adequate segmentation. For instance, UNet has an encoder-
decoder architecture which comprises of symmetrical contracting and expanding paths
to capture the context and localize precisely. The FPN architecture consists of multi-
scale hierarchy of deep convolution networks which can produce the feature pyramids
facilitating high-level semantic feature maps at all scales. PSPNet utilizes a pyramid
pooling module which can exploit the global context information through aggregation
of contexts from local regions. DeepLabV3+ attempts to combine the advantages of
both the spatial pyramid pooling module and the encoder-decoder structure in terms of
encoding multiscale contextual information and capturing sharper object boundaries,
respectively. UNet++ deals with minimzing the semantic gap between the feature
maps of encoder and decoder by introducing a series of nested dense skip pathways
between the sub-networks.

2.4 Matching

There has been no established work to match knuckle images through their crease
maps. In the current work, we focus on deriving the matching score through the
predicted centerline crease maps of the knuckle regions. The matching score is obtained
through the proposed registered crease quality (RCQ) descriptor. The segmentation
procedure described in Sect. 2.2 is evaluated with multiple potential performance
metrics, where centerline metrics is the one category to indicate the effectiveness of
the segmentation procedure with respect to the ground truth centerlines allowing
a reasonable distance threshold δ (as specified in Sect. 3.3). Among the centerline
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Fig. 2 (top) Crease segmentation procedure, (bottom-left) Sample knuckle image, (bottom-right)
Overlaid manual annotations

metrics (refer to Eqs. (2–4) in Sect. 3.3), quality is a more general metrics combining
correctness and completeness. For the segmentation accuracy, the quality metric is
measured with the ground truth as the reference. On the other hand, the measurement
of registered crease quality (RCQ) is furnished with the same formulae (of Eqs. (2–4))
but considering the gallery image as the reference. Hence, the RCQ metric yields a
matching score between the gallery image and registered query image.

In this descriptor, the quality metric of the predicted centerlines is obtained after
performing the registration between the query and the gallery image. The registration
step furnishes the geometric transformation estimated from the gallery and the query
images (termed as the reference and sensed images in the related nomenclature) [18].
Owing to its capabilities of multiview, multitemporal and multimodal analyses [18], the
registration step facilitates the aligning of knuckles. This aligning allows for overlap of
the creases and the pixel-wise comparison helps in determining a match or no match.

Figure 3 illustrates the process of the proposed RCQ descriptor for a query and gal-
ley image belonging to the same subject. The first two columns of the figure show the
gallery and query images, respectively, with their predicted masks and the correspond-
ing centerlinemaps in middle and the bottom rows. The third column demonstrates
that if we try to find the quality between the query and gallery images without any
preprocessing, the score is likely to be extremely low because it leads to poor correspon-
dence between the pixels belonging to the knuckle creases. However, the registration
step can make the query image align with the gallery image if they both belong to the
same subject (genuine pairs), and there will be practically no impact if the two images
belong to different subjects (imposter pairs). Therefore, values of the quality metric
will shoot up as a result of registration between the genuine pairs whilst keeping them
unaffected for the imposter pairs. Consequently, the separation between the genuine
and imposter scores would also increase turning into better distinguishing ability and
recognition accuracy. The fifth column of Fig. 3 highlights the impact of registration
on increasing the chances of a correct match.

6



3 Experiments and results

This section presents the details about the datasets used, the training–testing strategy,
performance metrics and numerical results.

3.1 Dataset

Looking at the importance of the crease segmentation task and its subjection to the
pronounced visibility of deep creases, we work with an in-house high-quality hand
dorsal dataset named as H-Unique high quality (HUQ-HQ) dataset to train and
evaluate the segmentation models. This dataset is acquired with a Canon EOS 5DS
R digital single-lens reflex (DSLR) camera and it offers high-resolution images of the
order of 8688×5792 pixels. The HUQ-HQ dataset contains hand dorsal images of
the left and right hands of 66 subjects, leading to 132 distinct classes. The database
has equal contributions from male and female participants of diverse age groups and
ethnicities. A sample image from the HUQ-HQ dataset is shown in Fig. 4(left). The
knuckle regions from the hand dorsal images of 50 subjects are extracted using the
ensemble approach [10]. Further, the manual annotations of knuckle creases from 50
images of PIP knuckles from the HUQ-HQ dataset are obtained as explained in Section
2.1. These manual annotations are then stored in the form of binary creasemaps, so
that they can be utilized for training of the segmentation model. Some knuckle images
and their corresponding annotations and centerline maps are illustrated in Fig. 5.

For the evaluation purposes, another public hand dorsal dataset named as the
PolyU Hand Dorsal (HD) dataset is employed. This dataset comprises of full hand
dorsal images from 502 subjects, where resolution of each image is 1600 × 1200. This
dataset is more generalized in terms of the skin-color and hand orientations. The
paper uses the HD dataset for the evaluation of crease-matching only. The matching
experiments are conducted with the PIP knuckles of middle finger only, coming from
the first 200 subjects of the HD dataset and five samples of each subject. Hence, the
matching investigations are conducted with 1000 knuckle images in total. A sample
image from the HD dataset is depicted in Fig. 4(right).

3.2 Experimental setup

The segmentation models are fine-tuned with the pairs of knuckle images and corre-
sponding annotated crease maps [19]. The segmentation models are initialized with
the weights obtained with ImageNet dataset [20], and fine tuning is performed with
the Adam optimizer for 40 epochs with initial learning rate of 0.0001 which is further
decreased to 0.00001 after 25th epoch [19]. The data is augmentated with horizontal
flip, blur, random crop, affine and perspective transforms to enrich the training set.
Furthermore, five pairs of knuckle image and corresponding crease maps are used for
validation and testing.

3.3 Performance metrics

We evaluate the model’s performance in terms of the segmentation and its match-
ing ability. To evaluate and compare the segmentation performance, we calculate the
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Fig. 3 Effect of map registration over centerline creases, (top row)RGB image, (middle row) Pre-
dicted crease map, (bottom row) Centerline of the predicted map; (1st col.) Gallery image, (2nd col.)
Query image, (3rd col.) Overlaying of images from cols. 1 and 2, (4th col.) Registered query image,
(5th col.) Overlaying of images from cols. 1 and 4

Fig. 4 Sample images; (left) HUQ-HQ, (right) HD dataset

Fig. 5 Sample images; (left) Extracted knuckles, (middle) Corresponding annotated crease maps,
(right) Centerline maps
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intersection over union (IoU), F1 score, sensitivity, specificity and negative predictive
values (NPV). The mathematical definition of various metrics are furnished below:

IoU =
TP

TP + FP + FN

F1 =
2TP

2TP + FP + FN

Sens =
TP

TP + FN

Spec =
TN

TN + FP

NPV =
TN

TN + FN
(1)

where TP, FP, TN, FN represent the true positives, false positives, true negatives
and false negatives respectively. TP are the pixels that belong to the crease and are
predicted as the crease. FP are the pixels that belong to the background and are
predicted as the crease. TN are the pixels that belong to the background and are
predicted as the background. FN are the pixels that belong to the crease and are
predicted as the background.

Centerline performance metrics are employed for a more thorough evaluation. The
advantage of using knuckle predictions as centerlines is to eradicate the varied thickness
of the crease predictions made from different models. By doing so, we can calculate the
completeness (Comp), correctness (Corr) and quality (Qual) of the predicted crease
centerlines [21] of the predicted centreline (Pr) against the ground truth centreline
(GT). The completeness explains howcomplete is the predicted crease map or how
much is missing in the map [22]. Whereas, correctness is related to the probability of a
predicted crease to be indeed a crease [22]. The definitions of centerlinemetrics can be
made clearer from Fig. 6 The completeness can be defined as ratio of length ofmatched
ground truth to the total length of ground truth. On the other hand, correctness can
be expressed as length ofmatched prediction to the total length of prediction.

Comp =
|µPr(GT )|

|GT |
(2)

Corr =
|µGT (Pr)|

|Pr|
(3)

Qual =
|µGT (Pr)|

|Pr|+ |GT | − |µPr(GT )|
(4)

where µA(B) = {a ∈ A|b ∈ B, d(a, b) < δ} is the set of points of A with a
corresponding point in B within reasonable distance d which is smaller than the buffer
threshold δ. We set δ to 3 to allow a very small margin of error in the annotation or
prediction of crease centrelines.

The completeness is the percentage of the ground truth datawhich is explained by
the predicted data i.e., the percentage of the ground truth creases which lie within
the buffer around the predicted creases. On the other hand, the correctness represents
the percentage of correctly predicted creases i.e., percentage of the predicted creases
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which lie within the buffer around the ground truth creases. In addition to the above,
it is pertinent to know that the buffer is created by an empirically chosen threshold
(δ), as depicted in eqs. (2–4) of the manuscript. The same has now been incorporated
in the revised version of the manuscript.

The parameter δ is a distance threshold used to accommodate the potential shifts
in centerline positions by relaxing the notion of a true positive from being a precise
coincidence of points. This parameter is also referred to as the “buffer width” in the
literature, which is there to consider the expected accuracy of the crease prediction
algorithm. If its value is set too large, false extractions close to the actual knuckle
crease will incorrectly be considered as crease. On the other hand, if its value is too
small, correct crease predictions which are only slightly geometrically incorrect will
be rejected. This is the reason the proposed work selects the value of parameter δ
empirically (which is 3 for our experimentations).

Fig. 6 Pictorial definitions of matched prediction and ground truth for calculation of centerline
metrics

Table 1 Numerical results for segmentation models

Model (backbone) Segmentation metrics Centerline metrics

IoU Sens. Spec. F1 NPV Corr Comp Qual
UNet (mobilenet-v2) 0.40 0.51 0.86 0.57 0.78 0.64 0.57 0.42
FPN (densenet121) 0.33 0.45 0.83 0.50 0.75 0.59 0.31 0.25
PSPnet (efficientnet-b3) 0.35 0.50 0.84 0.52 0.80 0.63 0.45 0.35
DeepLabV3+ (resnet152) 0.41 0.53 0.86 0.58 0.80 0.64 0.56 0.42
UNet++ (densenet201) 0.42 0.63 0.85 0.59 0.88 0.71 0.62 0.49

3.4 Segmentation results

This paper constitutes the first work on segmentation of knuckle creases. There have
been numerous works on knuckle recognition which usually build on black-box methods
(like CNN based) or traditional feature extractors from the knuckle image as a whole.
No existing work employs the segmented creases explicitly for establishing the identi-
fiability of knuckles, which has been a bottleneck. Hence, through this paper we target
on segmenting the knuckle creases in a precise manner using semantic segmentation
techniques.
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The performance metrics and sample crease segmentation for various models are
presented in Table 1 and Fig. 7, respectively. The figure depicts the sample knuckle
test image along with the ground truth of knuckle creases in the top row. While the
bottom row constitutes the crease predictions from various segmentation models. It
can be observed from the prediction masks that the mask pertaining to the model
UNET++ is demonstrated to be the most accurate and most close to the ground truth,
among all the predicted masks. A similar inference can be deduced from the metrics
presented in Table 1, where bold entries indicate the best values of the employed
metrics. The model UNET++ exhibits the highest IoU (0.42) and F1 value (0.59)
as compared to the other models. Concurrently, the centerline metrics for UNET++
also outperform those of the other segmentation models. This clearly point towards
choosing the UNET++ model over the other models for the rest of the segmentation
and matching experiments.

The expert anthropologist played a crucial role in validating the segmentation
results by providing anatomical insights into the correctness of the segmented creases.
Specifically, she reviewed the alignment, continuity, and anatomical relevance of the
detected features (such as creases and centerlines) based on her expertise.

Not only has the anthropologist ensured the anatomical relevance through con-
sistent feedback at the time of knuckle crease annotation, but she also provided the
critical feedback about the predictions made with the test cases.One such sample of
expert feedback is depicted below in Fig. 8, where the anthropologist has marked the
regions where the predictions exhibit strong mismatch with the anatomical knuckle
creases. The figure illustrates certain region in the top-left of the predicted image in
the middle, where a crease has been predicted despite of having no crease as is evident
from the anthropologist? s feedback on the right. This spurious prediction is probably
due to the background shadow. Other highlighted regions indicate the instances where
the model misses few shallow creases as observed in the anthropologist’s feedback on
the right. Hence, this qualitative assessment is used to corroborate the quantitative
metrics (segmentation and centerline metrics) reported in the study. This dual evalua-
tion ensured that the results were both anatomically meaningful and computationally
accurate.

Table 2 Comparison of performance
metrics

Approach EER (%) AUC DI

DenseNet 20.94 0.8665 1.3952
ResNet 21.90 0.8651 1.3310
Vgg19 24.65 0.8271 1.1651
AlexNet 22.90 0.8513 1.2736
Proposed 12.82 0.9273 2.1563
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Fig. 7 Segmentation results for sample test images

Fig. 8 Example of feedback from the anthropologist; (left)Knuckle image; (middle) predicted knuckle
creases, (right) feedback from anthropologist

3.5 Matching results

For the matching experiment, current work utilizes a subset of the PolyU Hand Dorsal
(HD) dataset [23], which comprises of extracted knuckle regions from the proximal
interphalangeal (PIP) joints or the major knuckles [10] of the middle fingers from
five different samples of right hands of 200 subjects. It is worth mentioning that the
extractions are derived from the ensemble-based knuckle localization method proposed
by Vyas et al. [10]. Hence, there are 1000 knuckle images constituted in this subset,
and each knuckle image is resized to have the fixed dimension of 512 × 512. The
matching is performed by comparing each image of the database against every other
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image. This one-to-all matching approach generates N×
(

t
2

)
genuine and

(
N
2

)
×t2

imposter scores for N subjects and t samples per subject. In total, this leads to leading
to a total of 2000 genuine and 497,500 imposter scores.

The matching experiment has resulted in promising performance which is reflected
through the low value of equal error rate (EER) and high value of area under the
receiver operating characteristics (ROC) curves (AUC) and decidability index (DI)
[2]. The respective values of these metrics are found to be 12.82%, 0.9273 and 2.1563.
The corresponding ROC curve is presented in Fig. 9(right). The performance of the
proposed approach is compared against multiple pretrained VGG19 and AlexNet con-
volutional neural netwrok (CNN) models, which have been in use in recently reported
works [24, 25] respectively. The ROC curves clearly indicate that the proposed RCQ
descriptor outperforms these state-of-the-artmodels by a huge margin.Concurrently,
other efficient pre-trained CNN models like DenseNet201 [26] and ResNet101 [27] are
also employed in the comparison to make it more comprehensive. It is worth specifying
that the CNN-based matching experiments were conducted using cosine-distance func-
tion. Nevertheless, the proposed matching algorithm emerges as the best performer
in terms of the EER, AUC and DI, as is evident from the ROC of Fig. 9 and val-
ues presented in Table 2, where bold entries indicate the best values of the employed
metrics.

Fig. 9 ROC curves for the matching experiment

4 Conclusion

This paper presents a first-of-its-kind knuckle comparison through the segmenta-
tion of the knuckle creases. The paper facilitates a demonstrable and reproducible
knuckle matching procedure, which strengthens its potential to act as evidence to sup-
port court-room proceedings. The paper explores the potential of segmenting knuckle
creases, a task which remains under-explored by the research community so far. This
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task is accomplished through fine tuning of the segmentation models with ground
truth crease annotations, and exclusive performance analysis of the crease maps and
their corresponding centerline maps. The paper recommends the best model for the
crease segmentation task, which happens to be UNet++. In addition to the above,
the paper investigates the identification ability of the knuckle creases with a public
dataset and exhibits outperforming results. The matching procedure, being demon-
strable, anatomy driven and reproducible, is deemed to be appropriate for the forensic
applications. The EER can further be improved by incorporating knuckle crease fea-
tures from diverse knuckle regions like major (or proximal inter-phalangeal (PIP)),
minor (or distal interphalangeal (DIP)) and base (meta carpophalangeal). However,
annotating the base knuckles is highly subjective, mainly because of the presence of
large number of skin creases in that area making it difficult to annotate the knuckle
creases precisely. Nevertheless, this research direction will prove to be a potential
avenue for the knuckle crease segmentation problem.
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