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Abstract. Every noncompact surface is shown to have a (3,6)-tight triangulation, and
applications are given to the generic rigidity of countable bar-joint frameworks in R

3.
In particular, every noncompact surface has a (3,6)-tight triangulation that is minimally
3-rigid. A simplification of Richards’ proof of Kerékjártó’s classification of noncompact
surfaces is also given.

1. Introduction

Perhaps the first example of a noncompact surface that springs to mind is a sphere,
torus or Klein bottle, with several points or closed discs removed. Further examples are
given by unbounded surfaces, such as an infinite cylinder with infinitely many handles,
and by more exotic variations obtained by deleting a closed totally disconnected subset
C. We show that every noncompact surface has a triangulation whose underlying graph
is a countable union of finite (3, 6)-tight graphs, in the sense of Definition 4.1. This is first
done in a constructive way, with moves that preserve minimal 3-rigidity as well as (3, 6)-
tightness. A second nonconstructive proof follows from a characterisation of general (3, 6)-
tight triangulations of compact surfaces in terms of length constraints on the boundary
walks of superfaces of a given genus.

For compact surfaces the Euler formulae imply that only the sphere has a (3, 6)-tight
triangulation; the (3, 6)-tight cellular embedded graphs G ⊂ S of other compact surfaces
necessarily have a number of nontriangular faces. If the boundary walks of these faces
happen to be disjoint cycles of G then G may be regarded as a (3, 6)-tight triangulation
of the compact bordered surface formed by the excision of these faces.

A motivation for determining (3, 6)-tight triangulations of surfaces comes from their
relevance to the rigidity or otherwise of triangulated bar-joint frameworks in R

3. A finite
connected bar-joint framework (G, p) in R3, with the joints p(v) located generically, is
minimally rigid if it is rigid (infinitesimally or continuously) and if removing any edge
results in a framework that is flexible. If this is the case we say, without ambiguity, that
the graph is minimally 3-rigid. A necessary condition for this, although not a sufficient
one, is that G is a (3, 6)-tight graph. The origins of such graph rigidity can be traced
back to Cauchy’s proof in 1813 that a convex polyhedron in R3 is a continuously rigid
plate-and-hinge structure [2], and to Maxwell’s 1864 observation that the graph of a rigid
bar-joint framework satisfies certain counting rules [17].

The rigidity definitions apply also to countable graphs and their infinite bar-joint frame-
works in R3 [19] and to rigidity with respect to nonEuclidean norms [14], [5]. As a main
application we show in Section 6 that every noncompact surface has triangulations whose
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graphs are minimally 3-rigid. For G ⊂ S\C, with S the sphere or the projective plane
and C closed and totally disconnected, (3, 6)-tightness is in fact equivalent to minimal
3-rigidity but these low genus examples are exceptions and we indicate some related open
problems in Section 6.1.

In the construction of triangulations we first make use of certain model noncompact
surfaces Sγ and the fact that every noncompact surface (without boundary) is homeomor-
phic to an Sγ . Such a model surface is a topological connected sum of low genus compact
surfaces where the structure graph of the connections is a countable tree. These low genus
surfaces are the sphere S0, the torus S1, and the projective plane P. The model surfaces
may also be described as the join of compact bordered surfaces of the form S\rD, where
r = 1, 2 or 3, and S is equal to S0, S1 or P. Here, rD denotes the union of the interiors of
r disjoint embedded closed discs.

The development is organised as follows. In Section 2 we define noncompact surfaces and
model surfaces and give a sketch proof of Theorem 2.2, showing that every noncompact
surface S is homeomorphic to a model surface. The proof requires the construction of
a certain inclusion chain of compact bordered subsurfaces of S and corresponds to the
canonical exhaustion construction in Section 29 of Ahlfors and Sario [1]. In Section 3
we define homeomorphism invariants, namely the totally disconnected Hausdorff space
β(S), known as the ideal boundary of S, and two of its subsets. These invariants are the
ingredients of Kerékjártó’s 1923 classification [12] of noncompact surfaces, Theorem 3.3,
the proof of which has been given in Richards [21]. We give a proof broadly similar to
this although more explicit and economical through the use of Theorem 2.2 and model
surfaces. We note that Goldman [7] has given an algebraic proof involving the calculation
of singular homology groups.

In Section 4 we show that every noncompact surface has a (3, 6)-tight triangulation by
means of an explicit construction sequence for each model surface. This involves vertex-
splitting moves, Henneberg 0-extension moves and joins with appropriately sparse trian-
gulations of low genus compact bordered surfaces. In Section 5 an alternative construction
of such triangulations is given in terms of barycentric subdivision and the satisfaction of
length constraints on the boundary walks of superfaces of a given genus. In the final section
we give applications to the generic rigidity of infinitely triangulated bar-joint frameworks.

For a broad background on compact surfaces, embedded graphs and triangulations see
Gross and Tucker [9] and Mohar and Thomassen [18]. Graver et al [8] give the generic
rigidity theory of finite bar-joint frameworks. Generic rigidity for infinite frameworks is
considered, for example, in [15], [16] and [11].

2. The model surfaces Sγ

A surface is a pathwise connected metrizable Hausdorff space for which every point x
has a neighbourhood that is homeomorphic to the open disc D with the image of x an
interior point. Examples of compact surfaces are obtained by gluing in a pairwise manner
the sides of several polygons whose total side count is even. In this case the (paired) edges
provide an embedded graph in the compact surface, the faces of which are cellular, that is,
homeomorphic to open discs. Since the polygons may be partitioned into triangles such a
surface is said to be triangulable, or to be a triangulated surface. In fact every compact
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surface is homeomorphic to a triangulated surface [23] and it follows readily from this that
every noncompact surface admits a triangulation. See [23] and [18] for example.

A subsurface of a surface S (either compact or noncompact) is a pathwise connected
set in S that is closed in S with boundary consisting of a finite number of disjoint simple
closed curves. We usually refer to a subsurface of S as a bordered surface or bordered
subsurface. The genus g = g(S) of S is defined to be either the maximum of the genus of
a compact bordered subsurface of S or to be infinity if there is no finite maximum. We
recall that the reduced genus gr(A) of a compact bordered surface A is equal to g(A) if A
is orientable and to g(A)/2 otherwise.

The classification theorem for compact surfaces asserts that each such surface is home-
omorphic to either a sphere with g ≥ 0 added handles, or to a sphere with g ≥ 1 added
crosscaps [9], [18]. We now consider a family of model noncompact surfaces that are de-
fined in terms of possibly countable additions of handles and crosscaps in a structured
manner.

2.1. The surfaces Sγ. Let S0, S1 be the sphere and the torus respectively, let P be the real
projective plane, and denote the connected sum surface of a pair Sa, Sb of these spaces as
Sa+Sb. This is obtained by excising the interior of embedded closed discsDa ⊂ Sa, Db ⊂ Sb

and gluing the results together at their boundary curves. Multiple connected sums, such
as Sa + Sb + Sc + Sd = ((Sa + Sb) + Sc) + Sd, may be defined in this way where, prior to
gluing, the first and last component bordered surfaces have a single boundary curve, and
the intermediate bordered surfaces have boundaries consisting of a pair of disjoint simple
closed curves.

The infinite connected sum S =
∑

∞

k=1 Sk, where Sk ∈ {S0, S1,P} for each k, may now
be defined as the noncompact surface given as the union of the compact bordered surfaces

Sn = (S1 + · · ·+ Sn−1) + (Sn\D
0
n), n = 2, 3, . . . ,

where D0
n is the interior of an embedded closed disc Dn ⊂ Sn and the boundary ∂Sn of

Sn is a single closed curve equal to the boundary ∂Dn. In the case that Sk = S0 for all k
this infinite connected sum,

∑
N
S0, is homeomorphic to the plane.

In the construction of S we have component bordered surfaces, prior to any gluing,
namely S1\D and Sk\2D, for k ≥ 2. We now define the more general infinite connected
sums Sγ , where a component bordered surface can also be the branching surface S\3D
(see Figure 2). In this case the structure of the connections is determined by a countable
tree that is a subtree of the binary tree Tbin.

Let Tbin = (Vbin, Ebin) be the binary tree associated with the usual construction of the
middle thirds Cantor set C in [0, 1]. A natural labelling of the vertices is by the symbols

s = φ, 0, 2, 00, 02, 20, 22, 000, . . . , 222, 0000 . . .

where the digit symbols s of length |s| = k label the closed intervals Is of length 3−k in
the construction. The vertex vs of the tree at level k is adjacent to vs0 and vs2 at level
k + 1 and we may view the edges vsvs0 and vsvs2 as directed edges. Since C consists of
the points x in [0, 1] with a ternary expansion 0.s1s2 . . . , with sk = 0 or 2, there is a
bijection between C and the infinite directed paths with source vertex vφ associated with
such ternary expansions.
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Suppose that T = (V,E) is a countable subtree of Tbin with vφ ∈ V and that γ is a map
γ : V → {S0, S1,P} with γ(v) = S0 if v = vφ or if deg(v) = 3. The noncompact surface Sγ

is the associated infinite connected sum, denoted
∑

v∈V γ(v), whose component surfaces
are S0\D or S0\2D if v = vφ, γ(v)\3D = S0\3D if deg(v) = 3, and γ(v)\2D if deg(v) = 2.

Once again, for n ≥ 0, the surface Sγ has a compact bordered subsurface Sn
γ associated

with the finite subtree Tn of T induced by the set of vertices vs of T with |s| ≤ n, and Sγ

is the union of this inclusion chain of bordered surfaces. Note also that the complement of
Sγ\S

n
γ has closure equal to a union of disjoint bordered surfaces, each with a single cycle

as boundary.
The subset CT ⊂ C is defined to be the subset corresponding to the infinite directed

paths π of T that are also paths of Tbin. This is a compact totally disconnected Hausdorff
space in the relative topology. Also it is routine to show that it is homeomorphic to the
ideal boundary of Sγ , as defined in Section 3.

Example 2.1. (i) Let T , as a directed tree with source vφ, have no terminal vertices and
let γ(v) = S0 for all vertices v. If there are only finitely many infinite directed paths
π, with source vφ, then CT is a finite set and Sγ is homeomorphic to the sphere with
finitely many points deleted. In this case triangulations G ⊂ S and the generic rigidity
and flexibility of their bar-joint frameworks were considered in Kitson and Power [16].

(ii) If T = Tbin and γ(v) = S0 for every vertex then Sγ is homeomorphic to S0\X where
X is homeomorphic to a Cantor set. This can be seen through a direct argument or as a
simple case of the proof scheme in Theorem 2.2.

(iii) Let T ⊂ Tbin have the structure indicated in Figure 1. Then CT is equal to
{z1, z2, . . . } ∪ {z∞} where z∞ is the single accumulation point and corresponds to the
rightmost infinite path π.

vφ

v0 v2

v22

v220 v222

v00

v2222

S0

S1

S0

S0

S1

S0

S0

S0

Figure 1. (i) A subtree T of Tbin with vertices vs with digit symbol s. (ii)
An associated connected sum surface Sγ .

Consider the map γ on the vertices of T with, (a) γ(vφ) = S0, (b) γ(vs) = S0 when
deg(vs) = 3, (c) γ(vs) = S1 when |s| is odd and s = 22 . . . 2, (d) γ(vs) = S0 for all other
vertices. The infinite connected sum surface Sγ is orientable and has infinite genus. It can
be shown, using the methods below, that it is homeomorphic to the unit sphere modified
by, (i) the deletion of a convergent sequence of distinct points together with its limit, (ii)
the addition of a sequence of diminishing handles that cluster at z∗.
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We also note the following.

(A) A model surface Sγ for a pair (T, γ) may be viewed in various ways as the union of
compact bordered surfaces with disjoint interiors. For example, let T (v, n,m), for m > n,
be the finite subtree of the tree T with source vertex v = vs at level n = |s|, together
with all the vertices on the paths from v up to level m. Then the restriction of a given
map γ for T to these vertices determines a compact bordered surface S(v, n,m) whose
boundary is the union of a single “entrance cycle” and a finite number of disjoint “exit
cycles” according to the degrees of the terminal vertices of T (v, n,m). Evidently Sγ is
equal to the union of such bordered surfaces coming from a partition of T into subtrees of
the type T (v, n,m). We note that the reduced genus of S(v, n,m) is the sum of the values
gr(γ(w)) over the vertices of T (v, n,m), where gr(S0) = 0, gr(P) = 1/2, gr(S1) = 1.

(B) The classification of compact bordered surfaces S ensures that if S has r+1 boundary
curves, with a distinguished entrance curve and r exit curves, then S is homeomorphic
to a surface of the form S(v, n,m) where the homeomorphism matches the distinguished
entrance curves.

The model surfaces Sγ are connected sums over countable trees that have vertex de-
grees bounded by 3. However, since concatenations of the branching surface S\3D yield
general branching surfaces of the form S\rD it is clear that the surfaces Sγ include, up to
homeomorphism, similar infinite connected sums over a general countable directed tree.

Theorem 2.2. Each noncompact surface S is homeomorphic to a surface Sγ.

Sketch proof. As previously indicated we may assume that S a triangulation G ⊂ S. Since
G is a countable union it follows that S is the union of an inclusion chain of connected
compact subsets A1 ⊂ A2 ⊂ . . . , where we assume that each An is the closure of the union
of a finite set of faces of G, that the interior of An is connected, and that An is contained
in the interior of An+1 for all n. However, A1 need not be a compact bordered subsurface
since a vertex v of G in the boundary of A1 need not have a relative neighbourhood that
is homeomorphic to a disc with the image of v a boundary point. To remedy this an
enlargement A′

1 of A1 is constructed in a sufficiently small neighbourhood of the boundary
of A1. This may be done explicitly by performing barycentric subdivisions on the faces of
G that have closures meeting the boundary of A1, and then defining A′

1, and redefining G
accordingly, by incorporating new faces in the small neighbourhood.

The next step is to enlarge A′

1 to a similar compact bordered surface A′′

1 with the
additional property that each component of the closure of S\A′′

1, has boundary consisting
of a single simple closed curve of A′′

1 corresponding to a cycle in a further local refinement
of G. Suppose, for example, that U is a component with just 2 boundary cycles, c1, c2 of
the triangulation of A′

1. Then there are faces F1, F2, . . . , Fr in the interior of U forming a
path between edges e1, e2, in c1, c2 respectively, in the sense that e1 is an edge of F1, e2
is an edge of Fr, and each pair Fi, Fi+1 share a single boundary edge. Augmenting the
faces of A′

1 by these faces determines a new compact bordered surface with a closed walk
replacing c1, c2. As before, a local barycentric subdivision can be performed to ensure
that the closed walk is a cycle of edges. Repeating this construction gives the desired
compact bordered surface A′′

1, with the components of the complement being in bijective
correspondence with the boundary cycles of A′′

1.
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Repeating such constructions yields an inclusion chain of compact bordered surfaces
B1 ⊂ B2 ⊂ . . . , together with an associated triangulation such that for each n the com-
ponents of S\Bn have closures that are subsurfaces with a single boundary cycle. Such a
chain of bordered surfaces is known as a canonical exhaustion [1].

The inclusion chain determines a general countable directed tree T = (V,E) where, (i)
the vertices at level n are labelled by the boundary cycles of Bn, (ii) a single source vertex
is adjacent to vertices at level 1, (iii) a vertex v at level n is either a terminal vertex or is
adjacent to vertices v′ at level n+1 where the boundary cycle for each v′ is contained in the
component of the complement of Bn with boundary cycle labelled by v. We see then that
S is the infinite join of B1 and the compact bordered subsurfaces that form the connected
components of (Bn+1\Bn)

−, for n = 1, 2, . . . . Such a component bordered subsurface,
S say, has a distinguished entrance boundary cycle and a number, say rn ≥ 0, of exit
boundary cycles, and at least one of these components has rn > 0. Noting (A) and (B)
above, each component bordered surface S is homeomorphic to a topological connected
sum of the form

(S1\D) + S2 + S3 + · · ·+ St−1 + (St\rnD),

where each Si is one of S0, S1 or P. Combining these homeomorphisms, by concatenations,
gives a homeomorphism between S and a surface associated with an infinite connected sum
over a general countable tree and hence, in view of the remark preceding the theorem, to
a homeomorphism between S and a model surface Sγ. �

Corollary 2.3. Each noncompact surface S is homeomorphic to a surface Sγ associated
with a countable tree T with no terminal vertices.

Proof. It suffices to show that any model surface is homeomorphic to a model surface
with no terminal vertices. This follows routinely using the principle (B) and joins of
homeomorphisms of compact bordered subsurfaces. �

Remark 2.4. Theorem 2.2 can also be deduced from Kerékjártó’s theorem by confirming
that the model surfaces exhaust all possibilities for the invariants. This simple confirmation
is Theorem 3.2 below. A quite different set of model surfaces was given in Richards [21]
to obtain this fact.

3. Invariants and Kerékjártó’s theorem

A noncompact surface S is said to be orientable if every compact bordered subsurface
is orientable and to be infinitely nonorientable if there is no compact bordered subsurface
A for which every component of S\A is orientable.

If S fails to be orientable or infinitely nonorientable, in which case S is said to be
finitely nonorientable, then it is said to be of odd or even nonorientability type according
to whether every sufficiently large compact subsurface contains an odd or even number of
cross caps. This may also be expressed in terms of the reduced genus, where even (resp.
odd) nonorientability type holds if every sufficiently large compact bordered subsurface A
is nonorientable and has integral (resp. nonintegral) reduced genus. In our considerations
in subsequent sections we do not need to know that the odd/even nonorientability types
are distinct properties up to homeomorphism but this is the case. Indeed, consider the
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finitely nonorientable surfaces

S1 = P+
∑

N

S1, S2 = P+ P+
∑

N

S1, S3 = P+ P+ P+
∑

N

S1. (3.1)

That S1 and S3 are homeomorphic follows readily from the fact that P+S1 and P+P+P

are homeomorphic. On the other hand all sufficiently large compact bordered subsurfaces
A of S2 for which the complement S2\A has orientable components have the property that
gr(A) is an integer, and so S1 and S2 are not homeomorphic.

The ideal boundary of S is defined as a set of equivalence classes of so-called boundary
components of S. Such a component is a decreasing sequence p = (Pn) of pathwise
connected noncompact sets, p = P1 ⊃ P2 ⊃ . . . , such that, (i) the boundary of Pi in S
is a set of disjoint cycles, (ii) for each compact subset A the intersection A ∩ Pn is empty
for sufficiently large n. The boundary components p = (Pn) and p′ = (P ′

n) are said to be
equivalent if for any n the inclusion Pn ⊆ P ′

N holds for some N , and for any m , P ′

m ⊆ PM

for some M . The ideal boundary β(S) is then the set of these equivalence classes. A class
p∗ is also known as an end of the surface.

The ideal boundary is topologised in the following manner. For any set U in S whose
boundary in S is compact the set U∗ is defined as the set of all boundary components
p∗, represented by a sequence p = P1 ⊇ P2 ⊇ . . . , such that Pn ⊂ U for n sufficiently
large. The collection of sets U∗ is a basis for the topology of β(S) and it can be shown
that β(S) is a nonempty compact, separable and totally disconnected topological space.
It is routine to show that the equivalence classes p∗ of Sγ are in bijective correspondence
with the maximal infinite directed paths π in T , and that the ideal boundary β(Sγ) is
homeomorphic to CT .

A pathwise connected noncompact subset P of S is said to be planar if it is homeomor-
phic to a subset of the plane.

Definition 3.1. A point p∗ in β(S) represented by p = P1 ⊃ P2 ⊃ . . . is planar (resp.
orientable) if the sets Pn are planar (resp. orientable) for all sufficiently large n. The
subset β ′(S) (resp. β ′′(S)) consists of the points p∗ that are planar (resp. orientable).

For a model surface Sγ with tree T the set of all infinite paths πx, for x in CT , that
share a particular vertex v determines an open set and these sets provide a base for the
topology. It follows that β ′(Sγ) and β ′′(Sγ) are open sets. Also the complement of β ′(Sγ)
(resp. β ′′(Sγ)) is the closed subset of points x in CT whose paths π have countably many
vertices that are sources of directed paths that include a vertex w with γ(w) 6= S0 (resp.
with γ(w) 6= S0, S1).

In the next proof it is convenient to consider the inflated binary tree T ∗

bin which we can
take to be the directed subtree obtained from Tbin by replacing each edge vv′ by edges
vw, wv′. Once again there is a bijection between the set of infinite paths π a Cantor set
that we denote as C∗

bin.

Theorem 3.2. Let X be a nonempty compact separable totally disconnected Hausdorff
space with open subsets X ′ ⊆ X ′′. Then there is a surface Sν and a homeomorphism
φ : β(Sν) → X with φ(β ′(Sν)) = X ′ and φ(β ′′(Sν)) = X ′′.

Proof. The space X is homeomorphic to a subset of a Cantor set, with the relative topology
and so we may assume then that X is a subset of C∗

bin. Let T be the subtree of T ∗

bin
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determined by X . We now define a map ν : T → {S0, S1,P}. Note that for any such map
β(Sν) = X .

Suppose first that S is infinitely nonorientable, that is, that the complement of X ′′ in
X is nonempty. Let ν(v) = S0 for v = vφ and for each vertex v with degree 3. For x
in Z with path πx let ν(w) = P for each vertex w in πx with degree 2. For x in X ′′\X ′

with path πx let ν(w) = S1 for each vertex w in πx with degree 2 for which ν(w) is not
yet defined. Finally, for x in X ′ with path πx let ν(w) = S0 for each vertex w in πx with
degree 2 for which ν(w) is undefined. Then β ′(Sν) = X ′, β ′′(Sν) = X ′′ and the proof is
complete in this case. The remaining cases, with X ′′ = X follow similarly. �

We give a simple proof of Kerékjártó’s theorem based on Theorem 2.2 and the trans-
parency of the invariants for model surfaces. The main ingredient is the involvement
of “summand swapping” homeomorphisms. Consider, for example, the infinitely nonori-
entable noncompact surfaces

S4 = S1 + P+ S1 + P+ . . . , S∞ = P+ P+ P+ P+ . . .

where β(S) = β ′(S) = β ′′(S) is a singleton in both cases. Then there is a homeomorphism,
σ4 : S4 → S5 say, where S5 = P+ S1 + S1 +P+ S1 + . . . , that is the identity map between
the complement of the component compact bordered subsurface S1 + P\D in S4 and the
complement of P+ S1\D in S5. Similarly there is a summand swapping homeomorphism
σ5 : S5 → S6, with

σ5 : S5 = P+ (S1 + S1 + P) + S1 + . . . → S6 = P+ (P+ S1 + S1) + S1 + . . .

that is the identity map between the complements of the compact bordered surfaces cor-
responding to the bracketed summands. Continuing, define similarly the maps σ6, σ7, . . . .
For each point x in S4 the compositions σn ◦σn−1 ◦ · · · ◦σ4(x) are eventually constant as n
tends to infinity and so a map σ : S5 → S∞ is defined. This map is continuous, injective
and surjective, and so a homeomorphism.

Similarly, a connected sum
∑

k Sk with Sk = P, S1 or S0 is homeomorphic to such a
sum in standard form in the sense that an S0-summand cannot precede another type of
summand, and an S1-summand cannot precede a P-summand.

Concatenations of swapping homeomorphisms can be similarly defined between model
surfaces, and it similarly follows that every model surface Sγ is homeomorphic to one in
standard form wherein the same precedences prevail in every infinite path.

Theorem 3.3. Let S1 and S2 be noncompact surfaces having the same genus and the same
orientability type. Then S1 is homeomorphic to S2 if and only if there is a homeomorphism
φ : β(S1) → β(S2) such that φ(β ′(S1)) = φ(β ′(S2)) and φ(β ′′(S1)) = φ(β ′′(S2)).

Proof. It remains to show that if φ exists then there is a homeomorphism σ : S1 → S2.
By Theorem 2.2 and Corollary 2.3 we may assume that S1 = Sγ and S2 = Sµ, where Tγ

and Tµ have no terminal vertices. Also we may assume Tγ ⊆ T ∗

bin, Tµ ⊆ T ∗

bin. Since φ
gives a bijection, φT say (with φT (πx) = πφ(x)), between the infinite paths of Tγ and Tµ,
we may assume further that Tγ = Tµ = T and φ is the identity map on X = CT . The
labelling maps γ, µ are now defined on T and we write X ′ for β ′(Sγ) = β ′(Sµ) and X ′′

for β ′′(Sγ) = β ′′(Sµ). Each of the surfaces Sγ and Sµ is homeomorphic by a summand
swapping homeomorphism to a model surface in standard form. Since Sγ and Sµ have the
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same genus and orientability type it follows that these standard forms coincide, and so Sγ

and Sµ are homeomorphic. �

4. Triangulations of noncompact surfaces

We show that every noncompact surface S has a (3, 6)-tight triangulation in the sense
of the next definition. This is done in a constructive manner, in the setting of a model
surface, by means of moves corresponding to Henneberg 0-extension, vertex-splitting and
finite graph substitutions. The Maxwell count f(G) of a finite graph G = (V,E) is
3|V | − |E|.

Definition 4.1. (i) A finite graph is (3, 6)-sparse if it satisfies the local count f(G′) ≥ 6
for each subgraph G′ = (V ′, E ′) with at least 3 vertices and is (3, 6)-tight if in addition
f(G) = 6. (ii) A countable graph G is (3, 6)-sparse (resp. (3, 6)-tight) if there exists a
tower G1 ⊂ G2 ⊂ . . . of finite (3, 6)-sparse subgraphs (resp. (3, 6)-tight subgraphs) whose
union is G.

4.1. Constructive (3, 6)-tight triangulations. The surface S0\3D with boundary ∂B
consisting of disjoint cycles a, b, c is depicted in Figure 2. The next lemma will enable the
extensions of finite (3, 6)-tight triangulations that correspond to the branching aspect of
a subtree T ⊂ Tbin.

a

b c

a

b
c

Figure 2. Depictions of the branching surface B = S0\3D.

The Hennenberg 0-extension move, in the context of (3, 6)-tight graphs, is the graph
move G → G′ that adds a single vertex v of degree 3 and edges w1v, w2v, w3v with
w1, w2, w3 distinct vertices of G. For surface embedded graphs a 0-extension move can be
used to introduce a vertex of degree 3 in a face and in this way we may replace any face
by new faces.

Lemma 4.2. let G be a (3, 6)-tight graph with a cycle d of length |d| ≥ 3. Then for any
values of |b| ≥ 3, |c| ≥ 3 with |d| − 3 = |b| − 3 + |c| − 3 there is a triangulation H of
B = S0\3D, with boundary cycles a, b, c of lengths |a|, |b|, |c| with |a| = |d| such that the
join G+ = G ∪d=a H is (3, 6)-tight. Moreover, there exist such triangulations H that may
be obtained from the cycle d by 0-extension moves.

Proof. Apply a 0-extension move to the graph of the cycle d, viewed as a planar graph, as
illustrated in Figure 3(i), to create further cycles b′, c′ of lengths |b′| = |b|, |c′| = |c|. Apply
further 0-extension moves, within the face for the b′-cycle to obtain a cycle b, of the same
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length, that is disjoint from the cycle d, as illustrated in Figure 3(ii). Doing the same for
c′ we obtain a triangulation H of S0\3D. The 0-extension move preserves (3, 6)-sparsity
and (3, 6)-tightness. Thus the proof of the lemma is completed on observing that G+ is
constructed from G by 0-extension moves. �

Figure 3. (i) A Hennenberg 0-extension move, adding a degree 3 vertex
and 3 incident edges, creating cycles of length 5 and 6. (ii) Further 0-
extension moves giving a 5-cycle that is disjoint from the 8-cycle and the
6-cycle.

The following elementary substitution lemma features in the proof of Lemma 4.4 and
is useful for sequential constructions. It has a companion lemma, with the (3, 6)-tight
condition replaced by minimal 3-rigidity, that we make use of in Section 6.

Lemma 4.3. Let A,A′ be compact bordered surfaces, let G ⊂ A,G′ ⊂ A′ be (3, 6)-tight
triangulations, and let d, d′ be cycles of edges of G,G′ corresponding to one of the boundary
cycles of A,A′. Suppose that B is a compact bordered surface with a triangulation H with
a boundary cycle a and that |a| = |d| = |d′|. Then G ∪d=a H is (3, 6)-tight if and only if
G′ ∪d′=a H is (3, 6)-tight.

Proof. Let G∪H be (3, 6)-tight and let K ⊂ G′∪H be a subgraph with at least 3 vertices.
We claim that f(K) ≥ 6. If K ⊂ G′ or K ⊂ H this is clear and so we may assume that
K has edges in G′ and in H . Now

6 ≤ f(G ∪ (K ∩H)) = f(G) + f(K ∩H)− f((K ∩H) ∩G)

and so f(K ∩H)− f((K ∩H)∩G) ≥ 0. Also, f((K ∩H)∩G) = f((K ∩H)∩G′). Thus

f(K) = f((K ∩G′) ∪ (K ∩H) = f(K ∩G′) + (f(K ∩H)− f(K ∩H ∩G)),

and so f(K) ≥ 6. It follows similarly that f(G′ ∪H) = 6. �

In the proof of the next lemma we make use of the triangulations given in Figure 4.
It is elementary to show that, as graphs, they are generated from K3 by a sequence of
0-extension moves.

We define the discus graph Dr, with r ≥ 3 perimeter vertices, as the (3, 6)-tight graph
obtained from an r-cycle by adding two vertices and the 2r edges from these vertices to
the r-cycle vertices. In particular D3 = K5\e. In the next key lemma we use 0-extension
and vertex-splitting moves on the (3, 6)-tight embedded graphs of Figure 4 to introduce
an embedded discus graph adjacent to an enlargement of the nontriangular face, and this
discus graph is ultimately substituted by a (3, 6)-tight triangulation of the bordered surface
G.
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Figure 4. (3, 6)-tight triangulations of the bordered surfaces (i) B = P\D
with gr(B) = 1/2, (ii) B = S1\D with gr(B) = 1.

a

b

d

B

G

Figure 5. The case B = P\2D for which a triangulation H is required,
with |a| = |d| and |b| = |a|+ 3 so that the join of G and H is (3, 6)-tight.

Lemma 4.4. Let G be a (3, 6)-tight graph with a cycle d of length δ ≥ 3 and let B be one
of the compact bordered surfaces S0\2D,P\2D, S1\2D. Suppose that β = δ+6gr(B). Then
there is a triangulation H of B with boundary cycles a, b of lengths δ, β such that the join
G+ = G ∪d=a H is (3, 6)-tight

Proof. Let H1 be the (3, 6)-tight triangulation of P\D given in Figure 4(i). Let K3 ∪e C6

be the subgraph composed of the boundary 6-cycle, C6, of the nontriangular face together
with a facial 3-cycle K3 sharing an edge e of this 6-cycle. This subgraph is denoted
K3 ∪e C6. Applying two 0-extension moves to K3 creates D3 ∪ C6, where D3 is the discus
graph with a 3-cycle perimeter. This move is depicted by the first arrow in Figure 6.

Figure 6. A double 0-extension move, K3 ∪e C6 → D3 ∪e C6, followed by
a vertex-splitting move D3 ∪e C6 → D4 ∪e C7.



NONCOMPACT SURFACES, TRIANGULATIONS AND RIGIDITY 12

The second arrow of this figure depicts a vertex splitting move on a perimeter vertex of
D3 to create D4 ∪ C7. Such a move, replacing an edge by a vertex and 4 edges in this
manner, preserves (3, 6)-sparsity. Further vertex splitting moves are possible, if necessary,
to create Dδ ∪ Cδ+3.

These construction moves on the subgraph of H1 evidently extend to moves on H1. This
results in a graph that contains the discus graph Dδ, with a perimeter cycle d′ of length
δ, and has the form Dδ ∪d′=aH

′ where H ′ has boundary cycles a′ and b′ of lengths |a′| = δ
and |b′| = δ + 3. The cycles a′, b′ share some vertices, and so H ′ is not yet a triangulation
of P\2D. However, performing 0-extension moves on the vertices of b′ (in the manner of
Figure 3(ii)) yields a (3, 6)-tight graph of the form Dδ ∪d′=a H where H is a triangulation
of P\2D that has disjoint boundary cycles, a and b, with lengths |a| = δ and |b| = δ + 3.
The lemma now follows in this case from Lemma 4.3, by substituting the graph G for the
discuss subgraph Dδ.

The argument for B = S1\2D, starting with the triangulation of S1\D in Figure 4(ii),
is entirely similar, and the argument for B = S0\2D requires only 0-extensions and is a
special case Lemma 4.2. �

Theorem 4.5. Every noncompact surface has a triangulation that is (3, 6)-tight.

Proof. By Corollary 2.3 we may assume that the surface is a model surface Sγ associated
with γ : T → {S0, S1,P} where T is a subtree of T ∗

bin with no terminal vertices. Note that
Sγ is equal to the infinite join of a sequence of component bordered surfaces S0,S1, . . . , of
the forms (i) S0\D (for S0 corresponding to the vertex vφ), (ii) S0\3D (for Sk corresponding
to vertices of degree 3), and (iii) S\2D, where S is S0, S1, or P (coresponding to vertices of
degree 2). The sequence corresponds to a natural exhaustive enumeration of the vertices
of T .

Let G0 be any triangulation of S0 = S0\D with boundary cycle a 3-cycle. This is a
(3, 6)-tight triangulation. Suppose, for some k ≥ 0, that Gk is a (3, 6)-tight triangulation
of the join Sk = S0 ∪ S1 ∪ · · · ∪ Sk. If Sk+1 is obtained from Sk by a join with S0\rD for
r = 2 or 3 then a (3, 6)-tight triangulation Gk+1 of Sk+1 is provided by Lemma 4.4 or
4.2. If Sk+1 is obtained from Sk by a join with S1\2D or P\2D then Lemma 4.4 provides
a triangulation Gk+1 by means of 0-extension moves, vertex splitting moves, and a (3, 6)-
tight subgraph substitution, and so, by Lemma 4.3, Gk+1 is (3, 6)-tight. The union of the
triangulation Gk gives the desired triangulation of Sγ. �

Remark 4.6. In Cruickshank, Kitson and Power [3] a complete characterision of (3, 6)-
tight block and hole graphs [6] with a single block was given in terms of the satisfaction of
girth inequalities. This gives another approach to Lemma 4.4 with the (3, 6)-tight graph
G playing the role of a single block. The girth inequalities here correspond to the genus 0
case of higher genus girth inequalities given in the next section.

5. General (3, 6)-tight triangulations.

We next give the characterisation of (3, 6)-tight triangulations of compact bordered
surfaces in terms of certain higher genus girth inequalities. This leads to an alternative
nonconstructive proof of Theorem 4.5 by making use of barycentric subdivisions to ensure
the satisfaction of the girth inequalities.
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Let G ⊂ S be a cellularly embedded finite graph in a compact surface S. We define a
superface of G to be a face U of a subgraph H of G, where U is not dense and H has no
vertices of degree 0 or 1. In particular the complement of U contains at least one face of
G. A balanced superface is one for which the complement of its closure is connected and
so also a superface. A simple superface U is one whose closed boundary walks, denoted
d1, . . . , ds, are disjoint cycles. For a simple superface U the topological boundary of U
is the union of the disjoint cycles d1, . . . , ds, and so the closure U− of U is a compact
bordered surface.

Let U be a superface of S which is both simple and balanced, with complementary
superfaceW , so that both U− andW− are connected bordered surfaces. Then the following
standard addition formula holds for the reduced genus. See also Richards [21].

gr(S) = gr(U
−) + gr(W

−) + (s− 1).

If G ⊂ S is cellular with f(G) = 3v − e ≥ 6 and with nontriangular faces, U1, . . . , Un,
with closed boundary walks c1, . . . , cn, then the Euler formula for G gives

∑

k

(|ck| − 3) = 6gr(S) + f(G)− 6.

We refer to this equality as the face walk identity for the embedded graph G in S.
LetGW denote the subgraph ofG whose edges lie in the closure ofW , the complementary

superface of U , as above. This embedded graph in S is also an embedded graph in the
bordered surface W−. It is also an embedded graph in the surface, SW say, obtained by
capping the s boundary cycles of U with open discs. Since gr(SW ) = gr(W

−) = gr(W ) we
may use these quantities interchangeably. It follows that we have a face walk identity for
GW in SW , namely

s∑

k=1

(|dk| − 3) +
∑

k∈I(W )

(|ck| − 3) = 6gr(SW ) + f(GW )− 6.

Here we write I(W ) for the set of indices k for which the face Uk of G is contained in W .

Lemma 5.1. Let G be a cellularly embedded graph in the compact surface S with f(G) = 6,
let U be a balanced, simple superface of G with complementary superface W , and let
d1, . . . , ds be the common boundary cycles of U and W . Then the following inequalities are
equivalent.

(i) f(GW ) ≥ 6.
(ii)

s∑

k=1

(|dk| − 3) +
∑

k∈I(W )

(|ck| − 3) ≥ 6gr(W ).

(iii)
s∑

k=1

(|dk| − 3) ≥
∑

k∈I(U)

(|ck| − 3)− 6(gr(U) + s− 1).
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Proof. The equivalence of (i) and (ii) follows from the face walk identity for GW in SW .
By the face walk identity for G observe that (ii) holds if and only if

s∑

k=1

(|dk| − 3) + (6gr(S)−
∑

k∈I(U)

(|ck| − 3)) ≥ 6gr(W ),

and, in view of the reduced genus addition formula, this holds if and only if (iii) holds. �

In the next definition we refer to general balanced superfaces U . Thus U has a set
of closed boundary walks, denoted once again as d1, . . . , ds, and these walks need not be
cycles and need not be disjoint. Also, as simple examples show, the boundary of W need
not be equal to the boundary of U .

Definition 5.2. A cellularly embedded graph G, in the compact surface S, with f(G) = 6,
satisfies the girth inequalities if the inequality (iii) of Lemma 5.1 holds for every balanced
superface U of G with closed boundary walks d1, . . . , ds.

Theorem 5.3. Let G be a cellularly embedded graph in a compact surface with f(G) = 6.
Then the following are equivalent.

(i) G is (3, 6)-tight.
(ii) f(GU) ≥ 6 for every superface U of G.
(iii) G satisfies the girth inequalities.

Proof. That (i) implies (ii) is immediate and the converse is due to Qays Shakir [22]. We
give a proof using superfaces [20]. Suppose then that (ii) holds and (i) is not true. Then
there is a maximal subgraph K of G, with at least 3 vertices and f(K) ≤ 5. Let U be
a face of K and suppose first that the boundary walks of U consist of disjoint cycles.
Then the complement of the closure of U is the union of components, say W1, . . . ,Wr,
that are superfaces of G and have disjoint closures. Let Gc

U be the subgraph of G induced
by the edges of G that lie in the complement of U . In view of our assumption Gc

U is
the union of the disjoint subgraphs, GW1

, . . . , GWr
and so by (ii) f(Gc

U) ≥ 6r. Also,
f(G) = f(GU) + f(Gc

U)− f(GU ∩Gc
U) and so f(GU)− f(GU ∩Gc

U) ≤ 0. Our assumptions
imply ∂U = K ∩ GU = GU ∩ Gc

U . We have f(K ∪GU) = f(K) + (f(GU)− f(K ∩GU)),
and so it follows that f(K ∪GU) ≤ 5. Thus K = K ∪GU by the maximality of K. Since
this is true for all faces U of K it follows that K = G, a contradiction, as required.

In the general case perform vertex splitting moves on all the vertices of the boundary
walks of U , adding the new vertices to the interior of U . The result of these moves, denoted
G → G+, define an embedded graph G+ ⊂ S with superface U− ⊂ U , whose boundary
walks are disjoint cycles. The boundary walks of GU belong to K and the associated move
K → K+ provides a subgraph K+ with K ⊂ K+ ⊂ G+ and f(K+) = f(K) ≤ 5. As
in the previous paragraph, since K+ ∩ GU−

= Gc
U−

∩ GU−
and f(G+) = 6 it follows that

f(K+∪G+
U−

) ≤ 5. SinceK∪GU → K+∪G+
U−

it follows that f(K∪GU) = f(K+∪G+
U−

) ≤ 5
and so by the maximality of K we have K = K ∪GU , leading to a contradiction.

The equivalence of (ii) and (iii) follows in two routine steps. (See also [20].) Firstly,
Lemma 5.1 can be generalised to balanced superfaces U that are not necessarily simple.
This follows from the association of a balanced superface of G with a balanced simple
superface of a larger embedded graph in S obtained by vertex splitting moves. Secondly
(ii) is equivalent to having f(GU) ≥ 6 for every balanced superface. �
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We next consider a local barycentric subdivision move H → H ′ for a triangulation H of
a compact bordered surface S. Such a move, defined on an edge e, is illustrated in Figure
7. Note that f(H ′) = f(H), since e has been replaced by 10 edges and 3 vertices.

e

Figure 7. A local barycentric move for the edge e.

Lemma 5.4. Let S be a compact bordered surface, with boundary curves c1, . . . , cr, and
let G be a triangulation of S with f(G) = 6. Then for some n the result G′ of n-fold
barycentric subdivision is (3, 6)-tight.

Proof. Let S̃ be the compact surface obtained by capping each of the border curves by
a closed disc. We may then view G as a cellularly embedded graph in S̃ with f(G) = 6
and where the boundary cycle of a nontriangular face is ci for some i. Discarding the
cycles ci of length 3 and relabelling, we may assume that G ⊂ S̃ has r nontriangular faces
U1, . . . , Ur with boundary cycles c1, . . . , cr.

By Theorem 5.3 it suffices to show that if n is sufficiently large then for every balanced
superface U of G′ we have δ(U) ≥ 0 where δ(U) is the difference

δ(U) =

s∑

k=1

(|dk| − 3)− (6gr(U)−
∑

k∈I(U)

(|ck| − 3)).

Let B(G) be the set of such superfaces for which this inequality fails to hold and let B′(G)
be the subset for which the left hand side has the minimum value, µ say. If µ ≥ 0 then
G already satisfies the girth inequalities and there is nothing to prove. Suppose then that
µ < 0 and U belong B′(G). We show that there exists a local barycentric move, G → G1

say, such that |B′(G1)| < B′(G)|. Repeating such moves sufficiently often leads to G′ with
δ(U) ≥ 0 for all superfaces, as desired.

Since U is a superface of G, with proper closure, there exists an edge e in one of the
boundary walks, di say, that is not a boundary edge of G and so is incident to 2 triangular
faces. Let G → G′ be the local barycentric subdivision move for e. Let U1 be a superface
of G1 with a boundary walk d that has a subwalk π with edges amongst the 10 replacement
edges for e. Then there is an associated superface W of G with such subwalks replaced by
the edge uv where u, v are the initial and final vertices of π. Since each π has length at
least 2 it follows that δ(U1) > δ(W ) ≥ µ, and so |B′(G1)| < |B′(G)|. �

Lemma 5.5. Let S1, T be compact bordered surfaces and let S2 = S1 ∪d=a T be their join
over boundary curves d, a in S, T respectively. If G1 ⊂ S1 is a (3, 6)-tight triangulation
then there is a triangulation H of T such that the boundary cycle d′ for d has the same
length as the cycle a′ for a and the join G1 ∪d′=a′ H is (3, 6)-tight.
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Proof. An initial triangulation H0 ⊂ T is chosen so that f(G1 ∪d′=a′ H0) = 6. A sim-
ilar argument to the previous proof shows that after sufficiently many local barycentric
subdivision moves H0 → H1 → · · · → Hn = H , the join G1 ∪d′=a′ H satisfies the girth
inequalities. �

An alternative proof of Theorem 4.5 now follows from the previous lemma and the exis-
tence of a canonical exhaustion of a noncompact surface S by compact bordered surfaces,
as given in Theorem 2.2.

Remark 5.6. Lemma 5.1(ii) can be used to show that a periodic surface in R3 with infinite
genus fails to have a periodic (3, 6)-tight triangulation. For example, the bordered surface
in Figure 8 shows a geometric realisation, S0 say, of S0\6D, with the symmetry of a cube.
We assume that the distance between opposite boundary circles is unity. The 3-periodic
surface, S say, formed by an infinite concatenation of translates of S0 has infinite genus
and a singleton ideal boundary. The minimal surface realisation of S is known as the
Schwarz P surface.

Figure 8. Building block for the Schwarz P surface.

Let Sn be the compact bordered subsurface formed by the join of n3 copies of S0, in
cubic form, and suppose that Sn lies in the interior of a similar subsurface Sm with m > n.
Suppose, for simplicity, that G is a periodic triangulation of S, under integral translations,
determined by a triangulation of S0. Let W be the balanced simple superface of Gm ⊂ Sm

that is equal to the interior of Sm\Sn. It has a set of boundary cycles, d1, . . . dt say,
consisting of the union of the boundary cycles for Sn and Sm. From Lemma 5.1(ii) we see
that the condition f(GW ) ≥ 6 is equivalent to

t∑

k=1

(|dk| − 3) ≥ 6gr(W ).

By the periodicity, for fixed n the left hand side is of order m2. However, the right hand
side is of order m3 and so the inequality f(GW ) ≥ 6 cannot hold for large m and so G
fails to be (3, 6)-tight.

6. Bar-joint frameworks

A bar-joint framework (G, p) in R3 consists of a finite or countable simple graph G =
(V,E) and a placement p : V → R3 such that p(v), p(w) are distinct for each edge vw in
E. An infinitesimal flex of (G, p) is a velocity assignment u : V → R3 that satisfies the
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infinitesimal flex condition (u(v)− u(w)) · (p(v)− p(w)) = 0 for every edge vw. A trivial
infinitesimal flex of (G, p) is one that extends to an infinitesimal flex of any containing
framework, which is to say that it is a linear combination of a translation infinitesimal
flex and a rotation infinitesimal flex. The framework (G, p) is infinitesimally rigid if the
only infinitesimal flexes are trivial, and the graph G is 3-rigid if every generic framework
(G, p), where the coordinates of the vertex placements form an algebraically independent
set, is infinitesimally rigid. Also G is minimally 3-rigid if on deleting any edge of G the
resulting graph fails to be 3-rigid. A finite graph G that is minimally 3-rigid is necessarily
(3, 6)-tight, but the converse does not hold as evidenced by the double banana graph. See
also Figure 9 below.

It is well-known that the Henneberg 0-extension move and vertex-splitting preserve
minimal 3-rigidity as well as (3, 6)-tightness. See, for example, Whiteley [24], Graver et
al [8], and the appendix of [3]. A sufficient condition for minimal 3-rigidity is that there
exists a sequence of finite subgraphs G1 ⊂ G2 ⊂ . . . , with union G, each of which is
minimally 3-rigid. That this sequential 3-rigidity condition is not necessary is shown by
examples in Kitson and Power [15], [16].

Let us first note some countable surface graphs corresponding to triangulations of low
genus noncompact surfaces where the ideal boundary is finite.

Example 6.1. Figure 9 (see also [4]) shows an embedded graph in the torus with 12
vertices that is (3, 6)-tight and 2-connected. The 2 nontriangular faces each have a single
boundary walk of length 6 that is not a cycle, and G can be viewed also as a triangulation
of a pseudosurface. Since G is 2-connected it is not 3-rigid.

Figure 9. A finite (3, 6)-tight embedded graph G ⊂ S1 that is not 3-rigid.

We may extend this example to an infinite triangulation of the the noncompact surface S =
S1\{x1, x2} by indefinitely repeated 0-extension moves on the vertices of the 2 boundary
walks, in the manner of Figure 3(ii). This results in a (3, 6)-tight triangulation of S that
is not 3-rigid.

Example 6.2. In Kastis and Power [10] it is shown that every (3, 6)-tight embedded graph
G ⊂ P is minimally 3-rigid and moreover is obtained from K3 by general vertex splitting
moves. (See also [20].) It follows from this that any (3, 6)-tight triangulation of a finitely
punctured projective plane is minimally 3-rigid.

The following rigid subgraph substitution lemma (a companion to Lemma 4.3) is well-
known and follows from the definitions of infinitesimal flexibility and 3-rigidity.

Lemma 6.3. Let A,A′ be compact bordered surfaces, let G ⊂ A,G′ ⊂ A′ be minimally
3-rigid triangulations, and let d, d′ be cycles of edges of G,G′ corresponding to one of the



NONCOMPACT SURFACES, TRIANGULATIONS AND RIGIDITY 18

boundary cycles of A,A′. Suppose that B is a compact bordered surface with a triangulation
H with a boundary cycle a and that |a| = |d| = |d′|. Then G ∪d=a H is minimally 3-rigid
if and only if G′ ∪d′=a H is minimally 3-rigid.

Theorem 6.4. Let S be a noncompact surface. Then there is a (3, 6)-tight triangulation
of S whose graph is minimally 3-rigid.

Proof. In the proof of Theorem 4.5 the (3, 6)-tight triangulation G of a model surface
S is constructed as a union of graphs G1 ⊂ G2 ⊂ . . . , where each Gk is a (3, 6)-tight
triangulation of a compact bordered subsurface Sk. The first embedded graph G0 is a
triangulation of S0\D with a single triangular boundary and this is minimally 3-rigid as
well as (3, 6)-tight. Also, the construction, for any k ≥ 0, of Gk+1 from Gk is by means of
0-extension moves, vertex splitting moves and the substitution of a discus graph by Gk.
A discus graph is a triangulated sphere and is minimally 3-rigid and so by Lemma 6.3 all
the construction moves preserve minimal 3-rigidity. Thus the triangulation of Sγ given by
the union of the graphs Gk is minimally 3-rigid. �

6.1. Further directions. (a) In contrast to Example 6.1 the (3, 6)-tight triangulations
of the singly punctured torus are minimally 3-rigid. This follows from the main result
in [4] that the graph of a (3, 6)-tight triangulation of S1\D is minimally 3-rigid. This
suggests the following interesting problem. For which compact surfaces S are the (3, 6)-
tight triangulations of S\D minimally 3-rigid?

(b) The rigidity of bar-joint frameworks in R3 with respect to nonEuclidean norms,
such as the ℓp norms ‖ · ‖p for 1 < p < ∞, p 6= 2, is a topic of current interest. See,
for example, [14], [13], [5]. Because of the absence of infinitesimal rotations it is the
(3, 3)-tightness of the underlying graph G that is a necessary condition for the minimal 3-
rigidity of a finite framework with respect to these norms. It is conjectured that it is also a
necessary condition. The construction methods of the previous sections for triangulations
of noncompact surfaces S are expected to adapt readily to the the existence of (3, 3)-tight
triangulation when S has nonzero genus. Thus the following general problem arises. For
which compact surfaces S and integers r ≥ 1 are the (3, 3)-tight triangulations of S\D
minimally 3-rigid for the ℓp norms?
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