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Abstract—Deepfake videos are synthetic media generated using
advanced deep learning techniques that manipulate or replace
the visual and audio content of an original recording, enabling
the creation of highly realistic yet entirely fabricated audiovisual
content. The proliferation of such manipulated media poses
significant societal risks, including potential misinformation,
reputation damage, psychological manipulation, and erosion of
trust in digital visual communication. Recent deep learning
methods for deepfake detection have emerged, leveraging sophis-
ticated machine learning models that analyze multi-modal cues,
including facial inconsistencies, unnatural temporal dynamics,
and visual misalignments to distinguish between authentic and
synthetic content. However, these state-of-the-art detection ap-
proaches often struggle with the domain-shift challenge, where
models trained on specific deepfake datasets fail to generalize
effectively when confronted with unseen generation techniques or
evolving synthesis technologies. To address this critical limitation,
we propose a self-supervised contrastive learning framework
called CPDD, introducing contrast between features and pro-
totypes of original data to alleviate domain-specific distractions
(i.e., deepfake generative models or datasets). We calculate the
cosine similarity between two features or prototypes to scale the
original distance, clustering the features around closely related
prototypes. This process encodes the semantic structures discov-
ered through clustering into the learned embedding space. The
extensive experiments show that, compared to various benchmark
deepfake detection models and domain generalization techniques,
the proposed model achieves state-of-the-art performance on the
cross-domain deepfake detection task across a wide range of
scenarios.

Index Terms—Deepfake video detection, self-supervised learn-
ing, contrastive learning, domain generalization, prototype learn-
ing

I. INTRODUCTION

The widespread adoption of smart devices combined with
the ubiquity of social media platforms, has driven an expo-
nential surge in online multimedia content. Technological ad-
vancements, particularly deep generative models [1]–[3], have
further accelerated this trend. However, this proliferation raises
significant concerns about the authenticity of such content, as
many individuals continue to follow the outdated notion that
”seeing is believing,” often sharing media without verifying its
integrity. Deepfake technology, powered by advanced AI and
deep learning (DL) techniques, enables the creation of hyper-
realistic fake content by altering media—such as swapping
faces in videos, modifying speech in audio, or both. The
abundance of online data used to train these models makes
detecting such forgeries increasingly complex. Deepfakes un-

Fig. 1. Example prototype learning results on Celeb DF [6]. The samples
from original videos are clustered, while two outliers, i.e., deepfake videos
are kept away from these clusters. Specifically, even though the hair style,
presence of a mustache, and apparent age vary across data samples within
the green cluster (class 1), the samples are clustered effectively to enable
successful classification of the celebrity.

dermine trust in visual and auditory evidence due to their
highly convincing nature, made possible by sophisticated pro-
duction tools [4]. The unchecked dissemination of fake media
poses serious threats, including eroding trust in journalism,
inciting political or religious conflict [5], spreading misin-
formation, enabling fraud and identity theft, and facilitating
harmful activities like revenge porn and celebrity defamation.
Consequently, deepfake detection has become a critical area
of research, drawing increasing attention from researchers.

AI-generated videos can generally be categorized into three
primary types [4]. (1) Head puppetry [7], or puppet master
technique, involves animating a target individual’s video as
if controlled like a puppet. (2) Face swapping [8] replaces
the target person’s face with that of a source individual while
preserving the target’s original facial expressions, creating a
realistic yet deceptive video. (3) Lip-syncing [9] modifies the
movements of a person’s lips to align with specific audio,
making it appear as though the individual is speaking words
they never actually said. This method focuses on manipulating
the lip region to synchronize seamlessly with the target audio,
enhancing its deceptive effect.

Recent advances in deep learning have significantly en-
hanced the effectiveness of deepfake detection, achieving
substantial performance improvements [10]. Detection meth-



ods can be broadly classified into two categories: artifact-
specific [11] and undirected approaches [12], depending on the
data and techniques involved. Artifact-specific methods focus
on identifying inconsistencies in deepfake human faces by
analyzing features such as edges and optical flow. In contrast,
undirected approaches aim to train general-purpose classifiers
that analyze entire datasets without relying on specific arti-
facts, enabling them to learn features autonomously. However,
undirected methods have notable limitations.

Most modern deepfake detection techniques [10], [13]–[18]
face two primary challenges. First, deepfake detection models’
performance can drop significantly when applied to unseen
deepfakes created with previously unencountered generative
methods or collected under different conditions—a problem
known as domain-shift [19], [20]. This challenge occurs be-
cause the features or artifacts learned during training may not
generalize well to new data distributions, making the model
less effective. For instance, differences in resolution, lighting,
or compression artifacts can obscure detection-relevant pat-
terns, further reducing accuracy. Addressing domain-shift is
crucial, as practical systems must handle the diversity and
unpredictability of real-world scenarios without frequent re-
training. Second, many detection techniques lack interpretabil-
ity due to their complex architectures and reliance on high-
dimensional feature representations, making their decisions
difficult to explain or justify.

To overcome these drawbacks, our contributions are sum-
marized as follows:

• We propose a contrastive prototype learning framework
for deepfake video detection (CPDD). The model is pre-trained
in a self-supervised manner without the need of any pairs of
labelled data.

• Building upon data augmentation (Sec. III-A) and pro-
totype clustering in Sec. III-B, in Sec. III-C, we propose a
prototype bank to distinguish individual instances for each
prototype from the embedding space. We demonstrate that
the instance-wise feature maps capture richer information
compared to the prototype-based approach, resulting in per-
formance improvements.

• We provide interpretability to understand the prototype-
based classification as the degree to which a human can
consistently predict the model’s output.

• We demonstrate the efficiency and effectiveness of our
proposed methods by comparing them to state-of-the-art deep-
fake detection models across multi-modal data, i.e., deepfake
images and videos.

II. RELATED WORK

A. Deepfake Video Detection

Recently, deep learning techniques [10], [13]–[18] for deep-
fake video detection have advanced significantly, leveraging
a wide range of neural networks to identify subtle spatial-
temporal inconsistencies and manipulated features in videos.
These techniques can be categorized into temporal sequence
analysis methods [15], [17], end-to-end generative adversarial
network (GAN) based methods [18], and feature learning [10],

[14], [16]. Particularly, GAN-based methods apply adversarial
training where detection networks compete against generation
networks to detect deepfakes. However, these methods share
a common weakness that GANs can be notoriously difficult
to train because the generator and the discriminator are con-
stantly competing against others, which can make training
unstable and slow. Temporal sequence analysis methods use
time-dependent models such as Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) to detect
inconsistencies across video frames and temporal dynamics.
For instance, Zheng et al. found that reducing the spatial con-
volution kernel size to 1, which can improve the detector for
extracting the temporal features as well as the generalization
capability [17]. In contrast, feature learning-based methods
focus on identifying unique audio or visual characteristics that
distinguish authentic from manipulated content. For example,
Raza et al. extracted audio-visual features from deepfake
videos and fed them to multi-label classification head [10].
However, these methods suffer a performance degradation
when transferring the trained models to unseen domains (i.e.,
different data sources, different recording devices, diverse
social media platforms, and distinct cultural contexts).

B. Domain Generalization

Recent domain generalization techniques can be divided into
several categories based on their motivating intuition.

1) Optimisation Algorithms: Recent optimisation algo-
rithms (e.g., meta-learning and evolving system) solve domain
shift problems by minimizing discrepancies between source
and target domain distributions [21]. Xie et al. proposed
Mutual Information-Based Sequential Autoencoders (MISTS)
to adopt information theoretic constraints onto sequential au-
toencoders to disentangle the dynamic and invariant features,
and leverage a domain adaptive classifier to make predictions
based on both evolving and invariant information [21].

2) Data Augmentation: In recent data augmentation studies
[19], [22], additional training data is synthesized to further im-
prove the model robustness to target domains. Particularly, data
augmentation and domain distance minimisation are combined
at a high dimensional space in which each axis corresponds
to an independent augmentation function.

3) Domain Invariant Features: Assuming that invariant
features from source domains perform well in target do-
mains, these features aim to minimize the discrepancy between
source domains, facilitating the learning of domain-invariant
representations [23]. In adversarial training with generative
adversarial networks (GANs), explicit features are generated to
deceive the decoder or domain discriminator, ensuring source
features become indistinguishable from target features [1].

C. Prototype Learning

Prototype learning is a powerful technique that leverages
representative examples, or prototypes, to improve both the
performance and interpretability of models [24]. This involves
generating latent variables that encapsulate the core features of
different classes or clusters within the data, enabling models



Fig. 2. The proposed contrastive prototype learning framework for cross-domain deepfake video detection.

to generalize more effectively from these prototypes [25]. By
focusing on the most distinguishing features of each class,
prototype learning simplifies the learning process, enhancing
both accuracy and efficiency in decision-making. Prototypes
provide concrete examples of what the model deems character-
istic of each class, significantly improving the interpretability
of deep learning systems [26].

Recent prototype learning advances have yielded notable
successes across various domains, including image recognition
[27], adversarial attack detection [28]–[30], and generative
modeling tasks [31]. These results highlight its ability to foster
robust and transparent outcomes, addressing critical challenges
in real-world applications. As a result, prototype learning has
become an increasingly important tool in advancing both prac-
tical implementations and foundational research in artificial
intelligence.

III. PROPOSED METHOD

We propose a contrastive prototype learning framework to
learn robust representation for cross-domain deepfake video
detection. The framework is shown in Fig. 2, which includes
three contrastive losses as the training objectives.

A. Data Augmentation

As the first training objective of the Transformer-based
encoder, we aim to train the parameter θ to transform input
data X to feature vectors V = {v1, v2, ..., vI}, such that V best
describes X . Inspired by domain generalization techniques
[19], [22], we introduce a contrastive data augmentation loss
LDA to learn an invariant representation of xi by minimizing
the risk

∑
i L (xi, vi; θ). Particularly, we adopt a pair of trans-

formations, denoted as t and s, in some set of transformations
T (e.g. flipping, rotation, etc.) to the input xi, to produce the
augmentation xoi

i and xqi
i . We define the loss as:

LDA = − log
exp

(
fDG (xoi

i )
T · fDG (xqi

i ) /τ
)

∑B
b=1 exp

(
fDG (xob

b )
T · fDG (xqi

i ) /τ
) (1)

where T and B are the transpose symbol and batch size, re-
spectively. We use L2-normalized [32] for all the embeddings
in the Eq. 1. While prior data augmentation studies [33] have
demonstrated the importance of transformation techniques in
self-supervised pre-training, they share a common weakness
that lacking the considerations of specific choices of oi and qi
for frame pairs, instead uniformly sampling transformations

from the set T . Therefore, to address this limitation, the
proposed data augmentation technique focuses on selecting the
optimal transformation algorithm for each sample xi. This is
achieved by choosing transformations that maximize the risk
defined by the loss function LDA:

{oi, qi} = argmax
{oi,qi}∈T

n∑
i=1

LDA (xoi
i , xqi

i ; θ, T ) (2)

In the proposed contrastive data augmentation loss, we priori-
tize the difference between oi and qi for each frame over their
absolute values.

B. Contrastive Prototype Learning

As the second training objective of the encoder, we clus-
ter instances based on prototypes. We apply a channel-wise
attention to dynamically impose cross-view weights on each
single channel to obtain the most discriminative pixels across
different views. Specifically, we define i-th pair of the original
feature and augmented feature as zi and z′i for a single image
in a batch, respectively. Then, we obtain the channel-wise
integration weight W after a softmax normalization:

W =

[
exp (zi)

exp (zi) + exp (z′i)
,

exp (z′i)

exp (zi) + exp (z′i)

]
(3)

We obtain the prototype pi by applying the weights to the
features as:

pi = W × [zi, z
′
i] (4)

As the core of this work, the proposed contrastive prototype
learning (CPL) can leverage interactions between different
instances that share one prototype via a channel-wise attention
to enable prototypes focus on encoding the semantic structure
of instances into the embedding space. Different from conven-
tional deepfake detection methods, by using the CPL, proto-
types eliminate domain-specific features, preserving essential
domain-invariant information that facilitates robust generaliza-
tion across diverse domains. To achieve this, we introduce two
contrastive losses, i.e., the feature-prototype contrastive loss
LFP and the prototype-prototype contrastive loss LPP to mine
hard pairs for robust representations of feature extractor:

LFP =

n∑
i=1

− log
exp

(
zi · p+i /τ

)∑r
j=0 exp

(
zi · p−j /τ

) (5)

LPP =

n∑
i=1

− log
exp

(
pi · p+j /τ

)∑r
j=0 exp

(
pi · p−k /τ

) (6)



where p+i is the positive prototype to the feature zi and p−j
includes one postiive embeddings and r negative embeddings
for other instances. Moreover, τ is a temperature hyper-
parameter. We apply cosine similarity between two features
or prototypes, with its reciprocal used to scale the original
distance. This means that smaller cosine similarity values
result in a larger scaling coefficient applied to the original
distance, and vice versa. Additionally, we introduce constraints
based on domain information to reduce the number of positive
pairs. By leveraging domain labels, this approach minimizes
redundancy from easily identifiable positive pairs, guiding
the model’s learning more effectively. At the same time, the
cosine similarity encourages the model to focus on extremely
hard positive pairs. Consequently, the combined contrastive
prototype loss function maximizes the utility of knowledge
from these challenging pairs, addressing domain shifts more
robustly:

LCPL = LFP + LPP (7)

In the proposed contrastive losses, LFP pulls original features
closer to prototypes from the same category but different
domains to resolve domain confusion caused by hard positive
pairs. Moreover, LFP between prototypes obviates domain
confusion to resolve hard negative pairs and form more
domain-invariant pairs.

The conventional channel-wise attention generates attention
maps that guide the model to focus on specific channels
of feature. However, in this work, we apply a channel-wise
attention to generate a cross-instance weights that can integrate
diverse instances related to the same prototype to effectively
cluster the instances. To achieve this, the channel-wise at-
tention focuses on the most semantic pixel across different
instances to obtain domain-invariant information.

C. Prototype Bank

As the third training objective of the encoder, we establish
a connection between prototype and instance features to facili-
tate instance clustering. To achieve this, inspired by the recent
success of memory banks [34], we propose a prototype bank to
cluster instances sharing a common prototype. Specifically, we
initialize K independent prototype banks to enhance instance
discrimination across different clusters. Much like a memory
bank, the prototype bank facilitates contrastive learning by
leveraging a large pool of data, enabling the model to acquire
more robust and generalizable representations. We assume a
contrastive set Ji for the t-th bank At as:

Ji = {z′i | z′i ∈ At∀t ∈ [1, C]} (8)

where z′i is the estimated representation of xi. Particularly,
our prototype memory is set up with size M × B × D for
each training batch with B samples, D dimensions of pixel
embeddings and M prototypes. We use an average pooling
on all the embeddings of pixels labeled as pm prototype in
the b-th batch to obtain the a D-dimensional feature vector in
the prototype memory, denoted as the (pm, b)-th element in
the memory. Then, to update the prototype bank, we enqueue

each instance to the nearest prototype and add the new one in
each backpropogation cycle:

LPB =
exp(cos(mi, zi) · cos (mi, p

m
i /ϕ))∑

z′∈At

∑r
j=0 exp(cos(mi, z′j) · cos

(
mi, pmj /ϕ

)
) · Ji

(9)
where mi is the m-th momentum feature and cos(·, ·) is the
cosine similarity between a pair of representations. Moreover,
ϕ denotes the concentration level of LPB and is estimated as:

ϕ =

∑n
i=1 ∥pm − zmi ∥2

n log n
(10)

Therefore, LPB helps discriminate representations associated to
the same prototype bank. To uncover underlying concepts with
distinct visual characteristics, we infer decision boundaries
by minimizing visual redundancy among clusters. This is
achieved by maximizing the visual similarity of samples within
the same cluster while minimizing the similarity between
clusters. Specifically, since representations of samples with
different pseudo labels are stored independently in the proto-
type bank, these representations serve as anchors to describe
and define their corresponding clusters effectively. The overall
cost-function used to train the encoder is now a combination
of the above loss terms with hyper-parameters λ1 and λ2:

L = LDA + λ1 · LCPL + λ2 · LPB (11)

We use a Vision Transformer-Base (ViT-B) as the encoder
backbone with different additional layers for contrastive losses.
Specifically, we use two Conv1D layers with ReLU for LCPL.
The prototype bank consists of two Conv1D layers with
ReLU and faiss [35] for efficient instance clustering. For
each prototype, we set the maximum size of the instance
queue as 10. It is highlighted that these additional layers are
discarded after the pre-training, therefore they do not introduce
extra computational cost in deployment. Furthermore, channel
attention is usually made up of additional blocks that consume
extra additional parameters, while our design is a purely
computational module without any additional parameters.

IV. EXPERIMENTS

A. Data and Deepfakes
We extensively conduct experiments over three public

datasets [6], [36], [37] to evaluate the performance of CPDD
over deepfake videos.

1) CIFAKE: In the CIFAKE dataset [36], deepfake data
includes non-human classes such as airplanes, frogs, and cats.
There are 60,000 pairs of real images collected from CIFAR-
10 [38] and synthetically-generated images by using a fine-
tuned Stable Diffusion Model [3], [39].

2) Celeb-DF: Different from CIFAKE [36], Celeb-DF in-
cludes 590 real videos and 5,639 deepfake videos. These real
videos featuring 59 celebrities of diverse genders, ages, and
ethnic groups are collected from publicly available sources
such as YouTube. These deepfake videos are generated by
improved synthesis methods, including temporal flickering,
inaccurate face masks, and color mismatch, which leads to
a significantly enhanced overall visual quality.



3) FaceForensics++: FaceForensics++ [37] comprises 977
videos sourced from YouTube and 1,000 original video se-
quences featuring unobstructed, easily trackable faces. These
sequences are further augmented with manipulated ver-
sions created using four techniques: Deepfakes, Face2Face,
FaceSwap, and NeuralTextures. Additionally, the dataset in-
cludes all the Deepfakes models used in the generation
process. Similarly, the DeepFakeDetection dataset features
over 363 original video sequences recorded with 28 paid
actors across 16 unique scenes, along with more than 3,000
manipulated videos generated using the DeepFakes method.

B. Implementation Details

In the pre-training, we use a ViT-B as the encoder backbone.
Due to the limitation of industrial-level computational costs
to conventional ViT-based video processing methods [40], in
this work, we use frame aggregation [41] to efficiently lower
the computational cost with linear complexity in time, at the
expense of not considering inter-frame correlation. We pre-
train the model using the AdamW optimizer with a momentum
of 0.9, an accumulated batch size of 512, and a learning rate of
0.0002. We pre-train for 400 epochs for the encoder. In terms
of hyper-parameters, we set τ = 0.1, λ1 = 1 and λ2 = 1. The
supportive experiments for backbone setting are presented in
Section IV-G. All experiments are run on Tesla V100 GPUs.

We pre-train the model on 1000 hours of video segments
randomly selected from AVSpeech [42]. The dataset is de-
rived from publicly available instructional YouTube videos,
including talks, lectures, and how-to tutorials. Each video clip
features a single speaking individual as the sole visible face
and audible voice in the soundtrack. We sample each video
clip at 1 frame per second (FPS).

As aforementioned, after the pre-training, we discard the
prototype bank and use the average-pooled top-layer outputs
for downstream tasks. We use standard video augmentations
[43]. During the fine-tuning stage, we fine-tune the model
using different datasets in various experiments, as described
in the following subsections.

C. Competitor Models

Our model is evaluated and compared to state-of-the-art
competitor models. We reproduce five state-of-the-art deep-
fake detection techniques [10], [15]–[18], utilizing the best-
reported implementations available in the literature. For exam-
ple, Wang et al. [16] achieve superior results over real image
denoising network (RIDNet) [44]. Therefore, we reproduce it
with our dataset to serve as a competitor in our comparison
experiments. Secondly, we fine-tune two pre-trained domain
generalization models [21], [45].

D. Transferring to Unseen Datasets

We first evaluate the transferability of our model in unseen
datasets. To update the learned prototype clusters for the
downstream task (i.e., deepfake detection), we fine-tune the
model using 10% of labeled training videos from one dataset
in [6], [36], [37] and evaluate its performance on both real

and deepfake videos from the other two datasets. We present
the results in Table I.

TABLE I
CROSS-DATASET DEEPFAKE VIDEO DETECTION COMPARISON ON CIFAKE

[36], CELEB-DF (Celeb), AND FACEFORENSICS++ (FF) [37]. FT REFERS
TO THE FINE-TUNING DATASET.

FT: Celeb FT: CIFAR FT: FF
Test in → CIFAKE FF Celeb FF CIFAKE Celeb

MISTS [21] 76.1 88.4 79.6 76.0 73.3 84.2
D3G [45] 76.3 89.3 80.2 76.4 73.8 85.0

DDGAN [18] 61.0 72.5 65.7 64.1 62.6 67.9
NoiseDF [16] 65.8 77.1 69.6 67.2 64.7 70.1
MMtrace [10] 71.3 84.2 73.7 69.8 69.2 78.5

FTCN [17] 76.7 89.0 80.5 76.8 74.3 86.9
ISTVT [15] 77.1 89.9 81.1 77.0 72.8 84.1

CPDD 78.2 91.5 82.9 78.8 74.3 87.1

From Table I, it can be observed that: (1) In all the evaluated
models, our model obtains the state-of-the-art deepfake video
detection accuracy over all unseen data. This can be attributed
to the benefits of learned domain-invariant prototypes and the
learned embedding space which encodes the semantic structure
of data by prototypical contrastive learning. (2) The detection
accuracy is relatively low when CIFAR is used for training
or CIFAKE is used for testing. This is because the classes
in these classes entirely differ from other datasets. However,
our model demonstrates robust performance in addressing this
challenge. We also provide the confusion matrices of D3G,
FTCN [17], and our model to show the detailed cross-domain
detection accuracy (FaceForensics++ → Celeb-DF) in Fig. 3.

Fig. 3. Confusion matrices on Celeb DF [6].

The proposed CPDD framework learns prototypes from
data samples to enhance interpretability. By calculating the
cosine similarity between an input image and all identified
prototypes, we generate rule-based linguistic representations
for each specific sample, enabling a clear explanation of the
model’s behavior.

E. Transferring to Unseen Deepfake Generation Models

As aforementioned, a wide range of deep generative models
[2], [3], [46] are employed in deepfake generation. To assess
the robustness of our learned representation, we evaluate its
performance across these generative models. Notably, when
evaluating on a specific deepfake dataset, we incorporate
videos from a mixture of other datasets during the fine-tuning
of our model or the reproduction of competitor models. The
results are presented in Table II.



TABLE II
DEEPFAKE VIDEO DETECTION COMPARISON OVER STYLEGAN (SG) [2],
LATENT FLOW DIFFUSION (LFD) [46], STABLE DIFFUSION (SD) [3] ON

CIFAKE [36], CELEB-DF (Celeb) [6], AND FACEFORENSICS++ (FF) [37].

Celeb CIFAR FF
SG LFD SD SG LFD SD SG LFD SD

MISTS [21] 81.2 78.6 73.5 75.4 73.1 70.2 76.6 74.4 74.7
D3G [45] 83.0 78.9 72.8 75.5 74.2 69.1 77.4 75.2 74.2

DDGAN [18] 67.5 65.2 58.7 61.0 59.3 56.2 66.6 65.0 61.4
NoiseDF [16] 70.6 68.8 63.1 64.7 63.5 60.0 69.9 66.9 63.7
MMtrace [10] 77.2 73.4 68.6 70.3 69.2 66.1 73.7 72.5 69.0

FTCN [17] 81.7 78.1 71.9 74.8 73.9 69.7 77.3 74.7 73.2
ISTVT [15] 83.8 79.6 74.3 74.9 75.0 70.4 79.1 76.8 74.0

CPDD 86.8 84.7 80.1 78.0 78.8 75.6 83.4 79.2 76.5

Table II shows a robust performance of our model over
different deepfake geeration models and datasets. Compared
to ISTVT [15], our model has a significant improvement (i.e.,
5.2%).

F. Transferring to Unseen Deepfake Techniques

Since real-world applications are often applied to unseen
deepfakes created with previously unencountered generative
techniques, we then evaluate the transferability of our model
in these techniques (head puppetry [7], face swapping [8] and
lip-syncing [9]). The results are presented in Table III.

TABLE III
DEEPFAKE VIDEO DETECTION COMPARISON OVER HEAD PUPPETRY (HG)

[7], FACE SWAPPING (FS) [8] AND LIP-SYNCING (LS) [9] ON CELEB-DF [6]
AND FACEFORENSICS++ [37].

Celeb-DF FaceForensics++
HG FS LS HG FS LS

MISTS [21] 81.5 84.0 80.6 89.5 91.9 89.0
D3G [45] 81.9 85.1 81.4 90.2 92.0 89.8

DDGAN [18] 66.3 68.3 64.8 81.5 82.2 81.0
NoiseDF [16] 67.2 69.8 65.7 81.9 83.5 81.3
MMtrace [10] 77.5 78.1 77.3 85.9 86.5 86.0

FTCN [17] 82.9 86.7 81.3 86.6 87.4 86.8
ISTVT [15] 80.7 84.4 79.2 89.3 90.0 89.5

CPDD 88.0 89.5 86.6 94.9 95.6 95.1

From Table III, it can be observed that: (1) Our model
outperforms competitor models across various deepfake gen-
eration techniques and datasets. (2) Self-supervised deepfake
detection models [21], [45] outperform supervised models,
highlighting the robustness of the self-supervised approach and
further supporting our motivation.

G. Hyper-parameters

We then examine the deepfake detection accuracy of our
model against hyper-parameters on Celeb-DF. The results are
presented in Fig. 4.

As Fig. 4(a) shows, detection accuracy starts to increase
with τ = 0.01 and reaches its peak around τ = 0.1. Fig.
4(b) presents detection accuracy against λ1 and λ2. There
is no significant accuracy drop even when the importance of
loss terms is significantly weighted, such as by as much as
tenfold that of LPM (λ1, λ2 = 1). This demonstrates that the

Fig. 4. Ablation study for (a) hyper-parameter τ and (b) λ1&λ2.

features derived from each loss terms contribute positively to
the learning process.

H. Ablation Study

In this section, we evaluate the effectiveness of each pro-
posed contrastive loss in each training objective and compare
them to recent contrastive losses [47], [48]. Since each of the
three losses proposed in this paper depends on the preceding
one, conducting an ablation study without the previous loss
while retaining the current loss is not feasible. We train
the models on FaceForensics++ and test on Celeb-DF. The
ablation study results are presented in Table IV.

TABLE IV
ABLATION STUDY OF THREE CONTRASTIVE LOSSES IN THE PROPOSED

METHOD.

Method Accuracy (%)

ViT (baseline) 57.0

Baseline
+ LInfoNCE [47] 54.0
+ LUCL [48] 56.8
+ LSupCon [49] 59.3

+ LDA 60.4

Baseline+LDA
+ LCPL 79.6

Baseline+LDA+LCPL
+ LPB 87.1

Table IV shows that: (1) Each of our proposed losses
contributes significantly to the improvement in performance.
Specifically, LCPL contributes the most improvement (e.g.,
19.2%). (2) Our contrastive losses outperform the conventional
losses [47]–[49].

I. Visualizations

As qualitative analysis, Fig. 5 presents the t-distributed
stochastic neighbour embedding (t-SNE) visualisation of our
model trained with different losses. Compared to the repre-
sentation learned by LDA, the representation learned by two
losses (LDA and LCPL) forms more separated clusters, which
also suggests representation of lower entropy. In Fig. 5(e), it
can be observed that the feature embeddings within the brown
and red classes are not separable. However, when the prototype
bank is added in Fig. 5(f), individual instances become sepa-
rated. This demonstrates that the proposed methods can learn
discriminative feature representations that generalize well for
deepfake detection across various scenarios.



Fig. 5. t-SNE feature visualizations of the model with different losses. First three sub-figures refer to (a) LDA (b) LDA+LCPL (c) LDA+LCPL + LPB of the
top 10 classes. The last three sub-figures refer to (d) LDA (e) LDA+LCPL (f) LDA+LCPL + LPB of the next 10 classes.

Fig. 6. Example prototype learning results on Celeb DF [6]. ✓ and ✗
refer to correct and wrong predictions of ISTVT [15], while green and red
marks refer to correct and wrong predictions of our model, respectively.

Secondly, we present some qualitative result in Fig. 6 to
show the effectiveness of our model. The detection results of
our model and ISTVT [15] are denoted by green/red and black,
respectively.

As qualitative analysis, Fig. 6 presents the deepfake detec-
tion results by using ISTVT and our model. We observe the
following: (1) Both ISTVT and our model successfully detect
most generated celebrity videos; (2) Our model outperforms
ISTVT in detecting certain generated videos because proto-
types capture the most salient and generalizable characteristics
of each class, enabling the model to distinguish between
real and deepfake videos effectively; (3) Our model fails to
detect the third generated video of the third celebrity. This
failure may be attributed to overexposure, which prevents the
prototypes from fully capturing the diversity within the classes.

V. CONCLUSION

We propose a self-supervised contrastive learning frame-
work for cross-domain deepfake detection. Different from
conventional deepfake detection techniques, our approach in-
troduces contrast between features and prototypes of original
data to mitigate domain-specific distractions. Evaluations on

deepfake video datasets demonstrate the robust performance of
the proposed method on cross-domain data, including unseen
deepfake datasets and generative techniques. Furthermore, as
the most representative samples within classes, prototypes
enhance the explainability and interpretability of the network’s
predictions.
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