
  

  

Abstract—This paper proposes a distributed on-orbit 

spacecraft assembly algorithm, where future spacecraft can 

assemble modules with different functions on orbit to form a 

spacecraft structure with specific functions. This form of 

spacecraft organization has the advantages of reconfigurability, 

fast mission response and easy maintenance. Reasonable and 

efficient on-orbit self-reconfiguration algorithms play a crucial 

role in realizing the benefits of distributed spacecraft. This 

paper adopts the framework of imitation learning combined 

with reinforcement learning for strategy learning of module 

handling order. A robot arm motion algorithm is then designed 

to execute the handling sequence. We achieve the 

self-reconfiguration handling task by creating a map on the 

surface of the module, completing the path point planning of the 

robotic arm using A*. The joint planning of the robotic arm is 

then accomplished through forward and reverse kinematics. 

Finally, the results are presented in Unity3D. 

 

I. INTRODUCTION 

The number of satellite launches is increasing rapidly due 

to advancements in science and technology. According to 

relevant statistics, there were 7,218 satellites orbiting the 

Earth by the end of 2022. As the number of space satellites 

surges, so does the number of failed satellites. Researchers in 

various countries are actively exploring ways to provide 

in-orbit services to reuse satellites in order to address the 

growing number of failed spacecrafts. Furthermore, as space 

technology advances and spacecraft require greater 

adaptability to environmental conditions and increased 

resistance to risk, fixed-structure spacecraft are struggling to 

meet current demands. 

Existing spacecrafts still have several shortcomings. For 

instance, the development cycle for an artificial satellite 

typically ranges from three to five years, and can even take up 

to a decade for a large spacecraft [1]. Additionally, they 

require significant time and financial investments, and 

responding promptly to parts and fuel shortages is not feasible. 

Spacecraft are frequently decommissioned due to parts failure 

and fuel depletion [2]. Nevertheless, many of the components 

from these retired spacecrafts can still be utilized, resulting in  
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Fig. 1. Distributed spacecraft conceptual diagram, with configurations 

consisting of modules with different functions including communication, 

photography, propulsion modules, etc. 

 

a waste of resources and the generation of space debris. 

Thirdly, traditional spacecraft typically operate in dedicated 

star mode and lack the ability to self-reconfigure or 

self-organize. They cannot adjust their configuration to suit 

different tasks or adapt to various scenarios. 

Therefore, there is an urgent need for a new type of space 

platform system with fast response, flexible functions, strong 

survivability, and high degree of intelligence. The distributed 

spacecraft our proposed consists of homogeneous and 

heterogeneous modules with different functions, as shown in 

Fig.1. And all modules are built according to a standardized 

structure with independent functions and individual and 

group intelligence. The modules will be launched into orbit 

by the launch system in advance and stored in the module 

docking station to use. And according to the mission 

requirements, autonomous assembly and autonomous 

deformation in space are achieved by self-reconfiguration 

technology by adding or subtracting module units and 

changing the connection state. 

In this paper, we propose a self-reconfiguration strategy for 

a spatially distributed spacecraft to enable it to transition from 

an initial state to a target state, and perform comparative 

experiments with existing strategies to verify the efficiency of 

the proposed algorithm.  

Our contributions can be summarized as follows: 

• We perform system modelling for distributed spacecraft 

in space to provide a mathematical description of module 

configurations and handling actions. The reverse 

generation of expert data, using a combination of imitation 
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learning and reinforcement learning, implements the 

strategy used to generate modular processing sequences. 

•  We use the graph structure to complete the modelling of 

the spacecraft surface map and combine it with the A-Star 

algorithm to complete the path and joint planning of the 

space handling robotic arm to realize the module handling 

process by the robotic arm. 

•  We validate the effectiveness of the algorithm on a 

spacecraft with 16 different functional modules and 

demonstrate the results in Unity3D. 

II. RELATED WORK 

Hardware configuration design: Modular design 

techniques divide complex spacecraft systems into 

structurally separated and functionally independent modules, 

shortening testing time, reducing cost and mission risk, and 

improving system scalability, reliability and sustainability[3]. 

Many related projects have been proposed for distributed 

spacecraft development in countries around the world. Japan 

began funding a 5-year Panel Extension Satellite (PETSAT) 

project in 2003 [4]. The satellite is connected by satellite 

panels and a reliable hinge and latch mechanism for 

automated deployment in orbit [5]. The Modular Spacecraft 

Assembly and Reconfiguration (MOSAR) project was funded 

by the European Commission in 2016 [6]. MOSAR consists 

of a set of reusable heterogeneous spacecraft modules, a 

repositionable symmetric travelling robotic manipulator and a 

standard rotary interface, HOTDOCK [7]. The symmetric 

travelling manipulator can capture, manipulate and position 

spacecraft modules and move between them. The use of 

rotating cube modular satellite assemblies for large space 

structures has been realized in the Hive project [8] in the 

U.S.A.  

Self-reconfiguration planning algorithms: It is 

investigated how to transform a spacecraft from its current 

configuration to a target configuration in a task-oriented 

manner. Depending on the spacecraft structure, 

reconfiguration algorithms can be classified into crystal 

structure-based spacecraft planning and chain structure-based 

spacecraft planning. In cubic structure spacecraft, Song et al. 

[10] designed a deep reinforcement learning algorithm based 

on graph theory to achieve satellite module reconfiguration, 

which is part of centralized planning. Chen [11] designed a 

centralized planning algorithm for self-reconfigurable 

satellites, which downscaled 3D motion to 2D, reduced the 

difficulty of path planning, and proposed another distributed 

planning algorithm for collision avoidance based on the 

sensing of the local information of modules. For chain 

structure spacecrafts, An et al. [12] proposed a Rubik's Cube 

satellite variable configuration joint trajectory planning 

algorithm, wherein the optimization objective was the 

stability of the self-reconfiguration process.  

Although the current spacecraft self-reconfiguration 

algorithms have achieved good experimental results, they do 

not produce good results for our proposed heterogeneous 

distributed spacecraft structure. 

III. PROBLEM DESCRIPTION 

In this section, we use the forms of states and actions to 

describe the self-reconfiguration process of the distributed 

spacecraft and explain how the assembly module works 

during the handling process. 

 A. State description 

For a spacecraft composed of different modules, we first 

define the spatial position representation of each module. As 

shown in Fig.3(a), we define Module 1 as the spatial starting 

point and then use the spatial positions of the other modules 

relative to Module 1 to define the coordinate values.  
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1: 0 0 0

2: 0 0 -1

3: 0 -1 -1

4: 0  1 -1

5: 0  0 -2

6: 0 -1 -2

7: 1  0 -2

 
 
 
 
 
 
 
 
 
 
 

  

 

 
(a) Configuration location information 
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(b) Single module attitude representation 

Fig. 3.   (a) represents the spatial relative position of each module, (b) is used 

for the description of the pose, where a 6-dimensional vector represents the 

spatial orientation of each face with a number. 

 

As a further step from our previous work[13], we include a 

specific description of the module poses in this work, as 

shown in Fig.3(b), where we define that face 1 is relative to 

face 3, face 2 is relative to face 4, and face 5 is relative to face 

6 in the module, defined in terms of 6-dimensional vectors, 

where each position represents a spatial coordinate system 

oriented along the Euclidean axis. 

B. Action design 

We use , ,i j k  to describe each module's moving positions, 

where i  represents the module to be moved, j  represents the  

module to be moved to, and k  represents which face of the 

module to be moved to. And , ,x y z+ + +  to describe each 

module's moving orientation. In Fig.4, we show all the 

actions that can be executed in the current configuration. 

 

1 2 3 4 5 6 7 8

[1, 2, 1], [1, 2, 3], [1, 2, 5], [1, 2, 6], [1, 3, 1], [1, 3, 3], 

[1, 3, 5], [1, 3, 6], [1, 4, 1], [1, 4, 3], [1, 4, 5], [1, 4, 6], 

1 [1, 5, 1], [1, 5, 3], [1, 5, 5], [1, 5, 6], [1, 6, 1], [1, 6, 3],

[

：

1, 6, 5], [1, 6, 6], [1, 7, 1], [1, 7, 3], [1, 7, 5], [1, 7, 6],

[1, 8, 1], [1, 8, 2], [1, 8, 3], [1, 8, 5], [1, 8, 6] 

[8, 1, 1], [8, 1, 3], [8, 1, 4], [8, 1, 5], [8, 1, 6], [8, 2, 

8

 
 
 
 
 
 
 
  

：

1],

[8, 2, 3], [8, 2, 5], [8, 2, 6], [8, 3, 1], [8, 3, 3], [8, 3, 5],

[8, 3, 6], [8, 4, 1], [8, 4, 3], [8, 4, 5], [8, 4, 6], [8, 5, 1], 

[8, 5, 3], [8, 5, 5], [8, 5, 6], [8, 6, 1], [8, 6, 3], [8, 6, 5], 

[8, 6, 6], [8, 7, 1], [8, 7, 3], [8, 7, 5], [8, 7, 6]

 
 
 
 
 
 
 
  

 

Available 
 

[1 ,6 ,2 ],[1 ,2 ,5 ],[1 ,5 ,4 ],[1 ,4 ,6 ]

[3 ,5 ,2 ],[3 ,2 ,6 ],[3 ,6 ,4 ],[3 ,4 ,5 ]

[2 ,5 ,1 ],[2 ,1 ,6 ],[2 ,6 ,3 ],[2 ,3 ,5 ]

[4 ,6 ,1 ],[4 ,1 ,5 ],[4 ,5 ,3 ],[4 ,3 ,6 ]

[5 ,1 ,2 ],[5 ,2 ,3 ],[5 ,3 ,4 ],[5 ,4 ,1 ]

[6 ,3 ,2 ],[6 ,2 ,1 ],[6 ,1 ,4 ],[6 ,4 ,3 ]

 
 


 













, ,i j k , ,x y z+ + +

 
Fig. 4. Conceptual diagram of the available action space for a given 

configuration of the 8 modules 
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Fig. 2. An overview of the framework. The expert data is generated using a strategy of randomness, then the sequence is reversed so that the initial 

configuration is the target configuration, and then it is fed into the imitation learning framework to obtain the initialization of the policy network, and the 

imitation learning trained framework is used to initialize the global network parameters during the reinforcement learning period and in training. Finally, the 

planning results are combined with the motion planning of the assembly unit to realize the self-reconfiguration process. 

 

C. Assembly module design  

Due to the requirements of reachable position and attitude, 

and considering the computational costs, we chose a 

five-degree-of-freedom robotic arm as the handling module. 

The lengths of the four joints are 1, 1.5, 1.5 and 1 for the 

module length, respectively, as shown in Fig. 5. 
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Fig. 5. A five-degree-of-freedom assembly unit, and its coordinate system, 

are described here. 

IV. APPROACH 

we plan the handling sequences of each module based on 

the difference between the initial and target configurations of 

the spacecraft. The handling is then performed by the 

assembly module, handling usually requires multiple 

executions. This consists of two steps. One is the planning of 

the path points and the other is the planning of the joints. 

A. Sequence of modules movement planning 

Imitation learning can be used to initialize reinforcement 

learning. We select an initial configuration, then use a 

randomly generated step size f  to generate a series of 

actions, and finally record the sequence of actions and states, 

which are then inverted into a usable set of expert data 

sequences. These data are then used as expert data to train the 

strategy. Combined with the A3C algorithm [21], multiple 

parallel environments are created, allowing multiple agents 

with substructures to update the parameters in the primary 

structure on these parallel environments simultaneously to 

improve convergence. The details of the algorithm are shown 

in Alg.1. 

Algorithm 1 IL+A3C 

Input: Expert trajectories E E  ,initial policy and 

discriminator parameters 0 0,   

For f =0.,1, 2, …do 

Sample trajectories 
ii    

    Update the discriminator parameters from i  to 

1i + with formula 1 

End for  

 //assume global shared counter T=0 

Initialize global shared parameter vectors   and v  with 

IL trained networks 

Initialize thread step counter 1t   

Initialize target network parameters  −   

Repeat  

    Clear gradients 0d   

Synchronize thread-specific parameters   =  

Get state 0s  

Repeat  

  Take action ta according to  

  Receive reward tr and new state 1ts +  

   Until terminal ts or maxstartt t t− ==  

   For { 1,..., }starti t t −  do 

        iR r R= +  

Accumulate gradients:  

( ( , ; ))i iR Q s a
d d


 



 −
 +


 

End for  

Perform asynchronous update of  using d  

    If T mod arg 0t etI == then  

         −   

End if  

Until maxT T  



  

The loss function of the selected discriminator is shown in 

(1), where   is a parameter of the discriminator D. With the 

discriminator, the goal of the imitator strategy is that its 

interactions produce trajectories that can be mistaken for 

expert trajectories by the discriminator. If the mimic strategy 

samples state s  in the environment and takes action a , then 

the state-action pair ( , )s a  is input into the discriminator D, 

which outputs the value of ( , )s aD , and then the reward is set to 

( , )s ar . Finally, after the confrontation process continues, the 

data distribution generated by the imitator's strategy will be 

close to the real expert's data distribution. 

( ) [log ( , )] [log(1 ( , ))]
E

L E D s a E D s a
    = − + −          (1) 

B. Assembly unit motion planning 

1）Route points planning 

In order to realize the planning of the moving path points of 

the handling module, we need to model the spacecraft surface 

map beforehand. As shown in the following Fig. 6, Module 

surfaces are modelled using a form of adjacency chain table. 

Start by numbering each face of each cell as shown in (2). We 

can use Alg.2 to build surface maps for different 

configuration states. 

 *6numI C I= +  () 

where C  is the module number of corresponding to that 

interface, 6 indicates that there may be 6 possible interfaces 

on each cell, and I  indicates the number of that interface in 

the cell. After each completion of grabbing and releasing, the 

neighbor chain table is updated by removing the handled i  

cells from the list, starting from the fixed end. 

Algorithm 2 Map generation 

Input module set C 

For each unit in the set ic  

     Get the set of reachable interfaces arrivedV  

      arrivedv V V   

      if ( , )E v v E   

             Add  ( , )E v v  to the set E of edges, assigning the 

weights of the edges to 1. 

End for 
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Fig. 6. Description of map creation. Using the numbering of the faces that 

can be connected by looking at the group cells as specified in (2). 

After completing the map construction, the A* algorithm 

[15] is used to complete the planning of path points. The A* 

algorithm is guided by a heuristic function, which provides a 

good path finding capability. The heuristic function is defined 

as follows: 

 ( ) ( ) ( )f n g n h n= +  (3) 

where ( )f n  is the combined priority of node n, ( )g n  is 

the cost of node n from the start point, and ( )h n  is the 

predicted cost of node n from the end point with the 

Manhattan distance between the start point and the end point . 

2）Joint Movement Planning 

The joints’ planning of the assembly unit is a typical 

robotic arm planning problem, we first perform the forward 

kinematics solution, we can obtain the coordinate 

transformation matrix from the base to the end by the product 

of the transformation matrix as shown in (4). where 

( , 1,2,3)ijr i j =  and , ,x y zp are functions of the sum joint angle 

1 2 3 4, , ,     and the side length L of the standard cell unit. 

 

11 12 13

21 22 23

31 32 33

          

         

         

0     0     0     1

x

y

z

r r r p

r r r p
T

r r r p

 
 
 =
 
 
  

 (4) 

The inverse solution is the bridge for the transformation of 

the robotic arm from Cartesian space to joint space. We can 

solve the value of the angle of articulation by using 

, ,x y zp p p  as a known quantity. 
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We use an interpolation algorithm with fifth degree 

polynomials. By substituting six constraints on the angle, 

velocity and acceleration of the two endpoints, we can find 

the values of the coefficients 0 1 2 3 4 5, , , , ,      . 

 
2 3 4 5

0 1 2 3 4 5( )t t t t t t      = + + + + +  (6) 

The paths computed in joint space are not straight lines, 

and the complexity of the paths depends on the motion 

characteristics of the robot arm. Therefore, we need to use a 

linear programming algorithm to generate paths in Cartesian 



  

space. By using the five degree polynomial interpolation 

algorithm, the final interpolation results obtained are similar 

to the interpolation results of angles. 

V. SIMULATION 

In this section, we use the proposed algorithm to train a 

policy network that detects 16 modules. The trained policy 

network is then applied to a different spacecraft architecture 

that also has 16 modules to test the applicability of the 

algorithm. The modules are then sequentially handled 

assembly units. Finally, our handling results are visualized 

using the unity3D simulation software. 

1) A 16-module configuration handling strategy 

The structure of the neural network we have chosen is 

shown below: 

  

Action space 

Conv1dConv1d

FC

FC

maxsoft

initial

target

32，3*3 32，3*3 1792
1440

 
Fig. 7. This figure shows the structure of the make policy network, where we 

use state descriptions of different initial configurations and agreeing target 

configurations, which are output to the action space after convolution, 

fully-connected and softmax layers, followed by the selection of the next 

available action based on the masking strategy. 
 

Some of the structural parameters of the A3C network and 

GAIL are shown in Table 1. 

TABLE I.  PARAMETERS TAKEN FOR GAIL AND A3C 

Range Value 

Threads 

Discount factor(  ) 

Batch size 

Footsteps 

Buffer size 

Coefficients for soft updates (  ) 

Actor’s learning rate a  

Critic’s learning rate c  

32 

0.99 

64 

24 
54.8 10  

310−
 

510−
 
52 10−  

 

 
Fig. 8. This figure shows the efficiency of different algorithms in handling 

the distributed spacecraft reconfiguration planning process in the same 

operating environment. 

In order to demonstrate the effectiveness of the proposed 

algorithmic framework, we compare the results obtained from 

the currently used deep reinforcement learning algorithms 

such as PPO[16], SAC[17], A3C[18] and our proposed 

algorithm trained in the following configurations 

respectively. 

The obtained results are shown in Fig. 8, the network 

without initialization obtained by imitation learning is 

difficult to reach convergence during training, the value of the 

reward function is confusing, the combination of all the 

algorithms and the proposed framework yields usable 

strategies, but the combination of the framework and A3C is 

the best implementation among all the algorithms. 

Test1

Test2

 
Fig. 9. Test results of policy networks in different configurations 

 

After obtaining the results of the policy network, we tested 

two similar spacecraft configurations and the variation of the 

would-be reward values obtained during the processing is 

shown in Fig. 9, where we can clearly see that the reward 

values gradually converge to 0 and eventually reach the state 

of the target configuration. The results show that the trained 

policy network is able to plan the target configuration in 

similar configurations, proving the applicability of the 

proposed methodology. 

2) Assembly unit motion simulation  

A certain configuration is selected and experiments on the 

A-star pathfinding algorithm are carried out by setting ( )h n  

as the Manhattan distance of the module’s center of mass, and 

the results obtained are shown in Fig.10. 

sP

tP

 
Fig. 10. A* algorithm pathfinding results, where s P and t P represent the start 

and end positions respectively. 

 

For the specific movement of the assembly module during 
the handling process, we designed the handling process as 
shown in Fig. 11(a). The end connecting rod of the assembly 
unit is moved outward in parallel along the direction of the 
interface for a certain distance to end at the point 𝑃1, and then 
from the point 𝑃1, it is moved from the point 𝑃1 in a 
clockwise direction at the point 𝑃2, and finally, the assembly 



  

unit is allowed to be vertically docked to the target interface 
from the point 𝑃2 along the direction of the target interface. 

 
（a）Handling path schematic 

Fig. 11. Demonstration of the handling process 

 

3) Visualization results 

Eventually, we visualize and implement the obtained 

self-reconfiguration algorithm in Unity3D, and we can get the 

handling 19 process as shown in the following figures, thus 

proving the effectiveness of the proposed approach. 

 

               
 

                             
Fig. 12. Validation of our proposed algorithm in Unity3D. 

VI. CONCLUSION  

In this paper, we develop a special spacecraft structure and 

develop module handling sequence planning algorithms that 

combine imitation learning and reinforcement learning. Then, 

based on the characterization of the spacecraft structure, we 

build an assembly unit pathfinding algorithm and a joint 

planning algorithm for performing module handling. Finally, 

the effectiveness of our proposed algorithms is demonstrated 

through experiments on 16 modules and the results are 

visualized in unity3D. This work will be applied to future 

on-orbit spacecraft with modular organization to take 

advantage of their flexibility and low cost.  

Our future work will include experiments on real objects 

and consider cooperative handling of multiple robotic arms to 

improve handling efficiency in orbit. 
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