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Abstract

Soil moisture dynamics provide an indicator of soil health that scientists model via drydown
curves. The typical modelling process requires the soil moisture time series to be manually
separated into drydown segments and then exponential decay models are fitted to them inde-
pendently. Sensor development in recent years means that experiments that were previously
conducted over a few field campaigns can now be scaled to months or years at a higher sam-
pling rate. To better meet the challenge of increasing data size, this paper proposes a novel
changepoint-based approach to automatically identify structural changes in the soil drying pro-
cess and simultaneously estimate the drydown parameters that are of interest to soil scientists.
A simulation study is carried out to demonstrate the performance of the method in detect-
ing changes and retrieving model parameters. Practical aspects of the method such as adding
covariates and penalty learning are discussed. The method is applied to hourly soil moisture
time series from the NEON data portal to investigate the temporal dynamics of soil moisture
drydown. We recover known relationships previously identified manually, alongside delivering
new insights into the temporal variability across soil types and locations.
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1 Introduction

Healthy soil plays a critical, yet underappreciated, role in storing and filtering water, sustaining

biodiversity, maintaining food production, and mitigating climate change through soil organic

carbon sequestration (Lehmann et. al., 2020; Frelih-Larsen et. al., 2022). It is estimated

that nearly 80% of carbon in the terrestrial ecosystems of the planet is found in soil (Ontl

& Schulte, 2012). Soil water is an important component of soil health, crucial to the supply

of water to plants, and is therefore fundamental to agricultural production. It is also a key

component in the hydrological cycle, regulating the recharge of groundwater and the flow of

water to surface water bodies - both are critical for ecosystem function and human health

(McColl et al., 2017). In addition, soil moisture is intricately connected to large-scale climate

models (McColl et al., 2017; Salvia et al., 2018). For example, the soil moisture observations

and the identified drydowns were used to evaluate different processes as well as calibrate the

associated parameters in the ORCHIDEE (https://orchidee.ipsl.fr/) land surface model

(Raoult et al., 2021).
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1.1 Soil moisture drydown analysis

The last few decades have seen a growth in research on soil moisture dynamics (Vereecken

et al., 2014). Soil drydown modelling is one area that has drawn the attention of scientists

as more data from underground sensors and satellites have become available. According to

McColl et al. (2017), the dynamics of soil moisture is governed by the vertically integrated

water budget. Typically, water in the soil comes from precipitation and is lost via drainage,

runoff, and evapotranspiration (i.e., the water loss through plant transpiration and soil and

plant evaporation). These three pathways consist of the water loss function. The water loss

function is encoded in the shape of the soil moisture drydown curve: the soil moisture time

series directly following a precipitation event, during which there is no further infiltration input,

e.g., further rainfall, at the soil surface. The soil moisture drydown curve, which is identified

from a soil moisture time series, is usually modeled as an exponential decay process (McColl et

al., 2017; Shellito et al., 2018; Salvia et al., 2018),

θ(t) = ∆θ exp

(
− t

ω

)
+ θf (1)

where θ(t) represents the soil moisture content at time t of the current drydown period, ∆θ is

the increase of soil moisture content from the end of the last drydown period, θf is the estimated

lower bound of the soil moisture observations (McColl et al., 2017; Shellito et al., 2016), and

ω reflects the exponential drying rate of the soil and is sometimes referred to as the ‘temporal

e-folding decay’ of soil moisture. The temporal (and spatial) variation of the e-folding decay

parameter ω is one of the aspects that soil scientists are interested in. For example, Salvia et al.

(2018) and Ruscica et al. (2020) investigated the seasonal dynamics and the spatial patterns in

the e-folding decay in southeastern South America, leading to a discussion on the importance

of effective sampling frequency. Dong et. al. (2022) used the drying rate (which is related

to the e-folding decay) estimated from the drydown models to investigate the transition of

evapotranspiration regimes. Both Tso et. al. (2023) and Sinha et. al. (2024) aimed to develop

a way of validating various soil moisture products, e.g., satellite data, in-situ data, and data

generated from statistical and hydrological models, using the estimated decay parameters and

their seasonal patterns.

Typically, soil drydown modelling requires the soil moisture time series to be manually

separated into segments representing the drydown process. These segments are referred to

as drydown curves. An exponential decay model is fitted to each of them (McColl et al.,

2017; Salvia et al., 2018). The results are often snapshot views of the drydown property,

characterized by the temporal e-folding decay parameter, or in an inter-seasonal study, a set

of snapshots reflecting the temporal variations of different seasons (Salvia et al., 2018; Sehgal

et al., 2021). Advancements in sensor technology allow scientists to obtain higher frequency

time series of soil moisture over longer periods at lower costs, meaning it is now possible to

monitor the changes in soil properties through time. Ecological observatories, such as NEON

(National Ecological Observatory Network, https://data.neonscience.org/), are collecting

large volumes of such data offering the potential to ask questions about how soil properties,

such as those associated with drydown curves, change dynamically. The large volumes of data

and continuous monitoring present challenges to conventional modelling approaches that rely

on the manual extraction of soil dynamics.

Motivated by the current practice of data segmentation, this paper proposes a novel changepoint-

based approach to automatically identify the drydown patterns in the soil drying process. In
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a nutshell, changes caused by sudden increases in soil moisture over a long time series are

captured automatically, and the parameters characterizing the drying processes following the

sudden increases are estimated simultaneously. Specifically, each segment following a change-

point is modeled using an exponential decay model similar to model (1) with segment-specific

parameters. This allows the model to capture the temporal variations in the drying process and

complements conventional soil drydown modelling. It requires little data pre-processing and

can be applied to a soil moisture time series directly, which is attractive when working with

large data sets. To identify changepoints, we extend the penalised exact linear time (PELT)

method (Killick et. al., 2012) to estimate the soil moisture model parameters simultaneously.

Similar patterns to soil moisture time series (Figure 1) are seen in calcium imaging data in

neuroscience. A key problem in computational neuroscience is the inference of the exact times

the neuron spiked based on the noisy calcium fluorescence trace. Jewell & Witten (2018) treat

this problem as a changepoint problem and improvements to their initial approach are made in

Jewell et. al. (2020). There are major differences between the neuroscience and soil moisture

problems. Whereas neuroscientists are interested in the timing of the spikes, soil scientists

are interested in the characteristics of the exponential drying process. Thus whilst the decay

parameter is a nuisance in calcium imaging and is integrated out in Jewell et. al. (2020),

the decay is a key parameter characterizing the drying of the soil. Furthermore, the decay

parameter in soil may display temporal dynamics as suggested in Salvia et al. (2018); Sehgal

et al. (2021) so there is interest in monitoring it across segments. Alongside this, within the

soil moisture drydown models, we may wish to include covariate information e.g., precipitation,

temperature, or vegetation, that may allow us to improve the segmentation and better model

the individual segments.

1.2 NEON data

The development of the changepoint-based modelling approach is motivated by the soil mois-

ture time series from NEON soil water and salinity data product (NEON, 2021). NEON, or

National Ecological Observatory Network, is a continental-scale observation facility designed

to collect long-term open-access ecological data to better understand how U.S. ecosystems are

changing. The soil moisture data were collected using the Sentek TriSCAN sensors and available

as 1-minute and 30-minute interval time series products (Ayres & Roberti , 2018). Figure 1

shows some examples of the hourly (sub-sampled) soil moisture time series recorded at different

field sites, including the time series from June 2018 to June 2020 at Santa Rita Experimental

Range (SRER) in Arizona, the time series from July 2017 to November 2018 at Smithsonian

Environmental Research Center (SERC) in Maryland and the time series from February 2018 to

January 2019 at Talladega National Forest (TALL) in Alabama. All these time series display

sudden increases in soil moisture followed by drying processes at potentially different decay

speeds over time. Modelling the drydown characteristics at the three sites has the potential to

highlight differences between the soils and their response to different climates and vegetation.

Manually identifying and extracting the drydown curves would be very laborious and difficult

to deploy rapidly to further sites. The changepoint-based approach we propose provides a solu-

tion. The estimated changepoints and parameters provide a dynamic summary of the data, as

opposed to the static view from conventional drydown analyses. We hypothesize that, with a

sufficiently long time series, the method has the potential to identify long-term changes in the

drydown parameters, which could be essential to the study of changing soil health.

The remainder of the paper is divided into five sections. Section 2 introduces the proposed
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Figure 1: Hourly soil volumetric water content time series recorded at field sites SERC, SRER and TALL
from the NEON data portal.

changepoint-based method to model soil moisture time series and the algorithm to implement

the method. Section 3 presents the simulation study to assess the performance of the method.

Section 4 discusses the practical aspects of the method, including the use of covariates and

penalty learning. Section 5 applies the method to the soil moisture time series from the NEON

data portal. Section 6 concludes the paper and discusses some directions for future work.

2 The changepoint method for soil moisture time series

2.1 The proposed model for soil moisture dynamics

Denote the observed soil moisture content at time t by Yt, and denote the set of time points

right before the sudden increases in soil moisture content by τi, i = 1, · · · , k. The dynamics in

soil moisture can be described using

Yt = θt + ϵt , ϵt ∼ N (0, σ2) (2)

θt = ϕt θt−1 +∆t ,
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where θt is the underlying soil moisture at time t, ϕt (0 < ϕt < 1) is the soil moisture decay

parameter, and ∆t is the increase in soil moisture, which takes a positive value at t = τi + 1,

i = 1, · · · , k and 0 otherwise. The second equation in model (2) translates to an exponential

decay model for the segment between two sudden increases. That is, for t ∈ (τi+1, τi+1), where

τi + 1 is the start of the current segment and τi+1 is the end of the current segment,

Yt = α0i + α1iϕ
(t−τi)
i + ϵt . (3)

Here α0i (α0i > 0) is the asymptotic soil moisture content and α0i + α1i (α1i > 0) is the peak

soil moisture content right after the end of the last segment at τi. Unlike the decay of calcium

concentration, soil moisture decreases at different speeds over different periods. This is a result

of the temporal variation in the elements that affect the speed at which the soil loses water,

e.g., temperature and vegetation. It carries interesting information on soil moisture dynamics.

To reflect this feature, a segment specific decay parameter is used in the model, i.e., ϕt = ϕi

for t ∈ (τi + 1, τi+1), i = 1, · · · , k. Depending on the properties of the soil, the asymptotic soil

moisture can be fixed throughout a time series or be segment-specific.

To make the fitting of the exponential decay model (3) easier, a re-parameterisation ϕi =

exp{− exp(γi)} is used, giving

Yt = α0i + α1i exp{− exp(γi) (t− τi)}+ ϵt . (4)

This removes the constraint on ϕi so that exp{− exp(γi)} ∈ (0, 1) for all γi ∈ R. Note that γi is

essentially a reparameterisation of the e-folding decay parameter ω in the soil drydown model

(1). In other words, 1/ exp(γ) is equivalent to ω if t in model (1) and (4) have the same unit.

The parameters of the exponential decay model (4) can be estimated by minimising the non-

linear least square (NLS) fit. Iterative algorithms, such as Gauss-Newton, Newton-Raphson,

and Levenberg-Marquardt can be used to solve the optimisation problem (Bates &Watts, 1988).

These algorithms can be implemented using various R (R Core Team, 2023) functions, e.g., the

nls function which implements the Guass-Newton algorithm and the port algorithm (Dennis

et. al., 1988), or nlfb function from package nlmrt (Nash, 2016) which uses the Nash variant

of the Levenberg-Marquardt algorithm (Nash, 2014).

The negative log-likelihood of the estimated model (4) is used as the cost function of the

changepoint detection problem. Note that the cost function is a function of multiple parame-

ters, α0i, α1i and γi. As a result, functional pruning, which was developed for uni-parameter

cost functions, is not an appropriate choice (Rigaill , 2015; Maidstone et. al., 2017). The

additional effort required to identify the multi-dimensional region where the multivariate cost

function attains its minimum at each step undermines the computational efficiency of functional

pruning. Therefore, this paper chooses to develop a changepoint detection procedure based on

the penalised exact linear time (PELT) method (Killick et. al., 2012). The PELT method

is flexible and computationally efficient, making it suitable for the soil moisture time series,

which typically consists of 10,000 to 20,000 time points. Details of the PELT method and its

applicability to the problem in this paper are described in section 2.2.

In addition, lower and upper limits may be applied to the asymptotic soil moisture parameter

α0i and the increase parameter α1i, to ensure valid soil moisture values and a positive increase.

The positive constraint on the increase of soil moisture requires α0i + α1i > α0i+1. These

constraints on parameters are treated as lower and upper bounds in NLS optimisation.
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2.2 Model estimation using PELT

The optimisation goal is to identify the set of changepoints, 0 = τ0 < τ1 < · · · < τk < τk+1 = n,

that minimises the overall penalised cost function

k∑
i=0

C(Y(τi+1):τi+1
) + λf(k) , (5)

where the cost function C(Y(τi+1):τi+1
) is

(τi+1 − τi)

{
log(2π) + 1 +

τi+1∑
t=τi+1

{Yt − α̂0i − α̂1i exp(− exp(γ̂i) (t− τi))}2
}

,

which is twice the negative log-likelihood of the exponential decay model (4) fitted to the

segment Y(τi+1), · · · , Yτi+1 , and the penalty function is f(k) = k, the number of changepoints.

Other types of penalties are available, e.g., the modified Bayesian information criterion (BIC)

(Zhang & Siegmund, 2007).

The PELT method by Killick et. al. (2012) starts with the recursive computation of the

overall cost function of the data up to time point s, s = 1, · · · , n. Denoted this cost function

as F (s), the recursion is

F (s) = min
τ∈Ts

{
m∑
i=0

C(Y(τi+1):τi+1
) + λk

}
= min

0≤τ<s

{
F (τ) + C(Y(τ+1):s) + λ

}
,

where τ = (τ1, · · · , τm), Ts is the set of {τ : 0 = τ0 < τ1 < · · · < τm < τm+1 = s}, and τ is the

last changepoint before s. Instead of searching through all candidate time points 0 ≤ τ < s for

the optimal solution to τ , the algorithm prunes the candidate time points that can never be the

last optimal changepoint for data Y1:s, and searches only within a reduced set of candidate time

points. Specifically, the pruning criterion (Killick et. al., 2012) is, for all t < t′ < s satisfying

C(Y(t+1):t′) + C(Y(t′+1):s) +K ≤ C(Y(t+1):s) (6)

for some constant K, the time point t can never be the last optimal changepoint prior to time

point s if

F (t) + C(Y(t+1):t′) +K ≥ F (t′) . (7)

Consequently, all time points t that satisfy condition (7) can be removed from the search and

the computational cost is reduced.

Under the i.i.d. normal distribution assumption of ϵt in the exponential decay model (4), two

times the negative log-likelihood of the model satisfies the inequality (6) with K = 0 (Killick et.

al., 2012). Intuitively, consider adding a changepoint at t′ between t and s while keeping the

parameters in the exponential decay model unchanged. This gives the equivalence condition

of (6) with K = 0. Any updated parameters that reduce either C(Y(t+1):t′) or C(Y(t′+1):s)

will reduce the overall cost. Hence, a changepoint detection procedure based on PELT can be

established, which is depicted in Algorithm 1.

Note that the set St in Algorithm 1 contains the changepoints that cannot be pruned due to

the minimum segment length. Sometimes, the non-linear least square estimation of the model

(4) does not produce a converged result. In these situations, the cost function of the segment is

set to a very large value to represent an infinite cost, and the PELT iteration is modified slightly.
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Algorithm 1: PELT for detecting changepoints in soil moisture time series

Input : data Y1, · · · , Yn;
cost function C(Yt:s);
minimum segment length l (l ≥ 3);
penalty parameter λ;
constant K that satisfies the inequality (6);

Initialise ;
set F (0) = −λ ;
for t = 1, · · · , 2l − 1 do

1. fit the exponential decay model to Y1:t and compute the cost function
F (t) = C(Y1:t) + λ ;

2. initialise the set of changepoint cpt(t) = {0} ;
3. initialise the set of candidate changepoints Rt = {0} ;

set R2l = {0, l} ;
Iterate ;
for t← 2l to n do

1. fit the exponential decay model to Y(τ+1):t, τ ∈ Rt, and compute

F (t) = minτ∈Rt

{
F (τ) + C(Y(τ+1):t) + λ

}
;

2. find τ∗ = argminτ∈Rt

{
F (τ) + C(Y(τ+1):t) + λ

}
;

3. update cpt(t) = cpt(τ∗) ∪ {τ∗} ;
4. update Rt+1 = {t− l + 1} ∪ {τ ∈ Rt : F (τ) + C(Y(τ+1):t) +K ≤ F (t)} ∪ St, where

St =
{
τ ∈ Rs, s = t, · · · , t− l + 2 : F (τ) + C(Y(τ+1):s) +K > F (s)

}
;

Output: a set of changepoints cpt(n) = {0, τ1, · · · , τk, n};
estimated exponential decay model parameters α̂0i, α̂1i, γ̂i, i = 1, · · · , k + 1.

During the iteration, both F (τ) and C(Y(τ+1):t) could be infinite for a candidate changepoint τ .

When the “historical” cost F (τ) is infinite, then τ can never be the last optimal changepoint

prior to t and hence it should be pruned. On the contrary, when F (τ) is finite, but C(Y(τ+1):t)

is infinite, there is a possibility that the model fitted to the segment starting from τ + 1 will

converge when more observations are added to the segment. That is, C(Y(τ+1):(t+δ)) may be

finite for some δ ≥ 1. Therefore, no pruning is applied to those τ values and they are all kept

for the next iteration. The modified iteration is given in the supplemental document.

3 Simulation study

To investigate the performance of the method developed above, a simulation study is carried

out. Two problems of particular interest in this case are, (1) whether the algorithm can identify

the locations of the sudden increases in the time series in different scenarios, and (2) whether

the method can produce a reasonable estimation of the model parameters, in particular γ.

3.1 Simulation design

The observed soil moisture time series sometimes display temporal patterns in the frequency of

the sudden increases, e.g., more frequent increases during the rainy summer season than the dry

winter period. The sudden increases in soil moisture may also appear at very different scales.
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For example, there can be a series of smaller increases during a long large-scale drying process

as shown in the figure in the supplemental document. Based on these features, three scenarios

are considered in terms of the frequency of the sudden increases, (S1) randomly distributed over

time, (S2) following a temporal pattern where one part of the time series has more frequent

increases than the rest, (S3) large scale sudden increases randomly distributed over time, along

with small scale increases over a long drying period. Each of the scenarios will be paired with

two noise levels, giving six scenarios in total. For convenience, we use “S1a” to refer to scenario

S1 with small noise level, “S2b” to refer to scenario S2 with large noise level, so on ane so forth.

There may be temporal variation in the drying rate in a long time series, which can be

attributed to e.g., seasons, vegetation, and human activities. This is reflected in the simulated

time series by alternating slow-drying and fast-drying periods. Despite the interest in the

decay parameter, this type of variation does not affect the changepoint detection procedure.

Therefore, the temporal variation of the decay parameter is fixed across all scenarios.

Time series of length 5000 are generated using the following steps. First, the changepoints

are simulated from different Poisson distributions. In particular, changepoints in scenarios

S1a and S1b are generated from a single Poisson distribution. Changepoints in scenarios S2a

and S2b are simulated from two Poisson distributions with different intensity parameters to

reflect the temporal patterns. Changepoints in scenarios S3a and S3b are simulated by two

nested Poisson processes, one over the entire time span n = 5000 with lower intensity, and the

other over a long decaying period with higher intensity. Then the drying rates, the spikes and

the asymptotic parameters are simulated from various uniform distributions. Finally, Gaussian

random noises are added to the time series. A summary of the specifications of the six scenarios

is given in Table 1. Details of the simulation procedure and an example of the simulated time

series from each of the six scenarios are given in the supplemental document.

Table 1: The specifications of the simulation scenarios.

Spikes Drying rate Noises Replicates
S1a 1 Poisson 2 uniform σ = 0.0005 200
S2a 2 Poisson 2 uniform σ = 0.0005 200
S3a 2 Poisson at 2 scales 2 uniform at 2 scales σ = 0.0005 100× 2 penalties

S1b 1 Poisson process 2 uniform distributions σ = 0.001 200
S2b 2 Poisson processes 2 uniform distributions σ = 0.001 200
S3b 2 Poisson at 2 scales 2 uniform at 2 scales σ = 0.001 100× 2 penalties

The simulation was implemented in R using the code developed by the authors. The penalty

values were selected in advance based on trial runs and were fixed for all replicates. In particular,

two different penalties were used in scenarios S3a and S3b to retrieve the large scale and small

scale changepoints respectively, and each of the penalties were applied to half of the replicates.

The following statistics were computed to investigate the performance of the method, (a) the

true positive (TP) rate and false positive (FP) rate of the changepoint detection, (b) the distance

between the set of estimated changepoints and the set of true changepoints, (c) the difference

between the fitted time series and the true simulated time series quantified as the root mean

squared errors (RMSE), (d) the difference between the estimated drying rates and the true

simulated drying rates quantified as the RMSE.
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3.2 Summary of simulation results

Table 2 shows the averaged true positive rates and false positive rates over all simulation

replicates for six scenarios. Here “small λ” and “large λ” in brackets refer to the use of a

small penalty or a large penalty, respectively. The true positive rates reached over 90% for

scenarios S1a, S1b, S3a (large λ) and S3b (large λ). The true positive rates are relatively lower

(82.39% and 85.96% respectively) in scenarios S3a (small λ) and S3b (small λ). This is due to

the challenges in estimating smaller-scale changes as the signals are much weaker. The results

improved when a relaxed version of true positive is considered, i.e., an estimated changepoint τ̂j

has a match with a true changepoint τi if τ̂j ∈ (τi−10, τi+10). Increasing noise standard errors

did not appear to affect the changepoint detection, which may be explained by the fact that the

gaps between small and large noise levels are not distinctive enough to cause major differences.

The false positive rates are low across all scenarios with the majority of replicates smaller than

0.1%, regardless of counting the exact match or a match within the (τi − 10, τi + 10) intervals.

Over 1/3 of the replicates in scenarios S1a, S2a, S1b, and S2b have false positive rates of 0.

This is slightly lower in scenarios S3a (small λ) and S3b (small λ) as the signals are weaker and

may be confused with noises.

Table 2: Average true positive rates and false positive rates (in %) calculated under the exact matching
condition and the relaxed condition (i.e., within ±10 time points of the true changepoint)

TP FP TP (±10) FP (±10)
S1a 91.96% 0.02% 94.40% 0.01%
S2a 89.71% 0.02% 92.36% 0.01%
S3a (small λ) 82.39% 0.05% 86.12% 0.03%
S3a (large λ) 95.76% 0.04% 96.45% 0.04%

S1b 92.05% 0.02% 94.77% 0.01%
S2b 89.71% 0.02% 92.51% 0.01%
S3b (small λ) 85.96% 0.04% 87.89% 0.02%
S3b (large λ) 95.91% 0.02% 96.35% 0.02%

For a more comprehensive comparison of the estimated and true changepoints, a distance

developed by Shi et. al. (2022) was computed to investigate the dissimilarity between the two

configurations, e.g. the true changepoints τ = {τ1, · · · , τm} and the estimated changepoints

η = {η1, · · · , ηk}. It is defined as

d(τ ,η) = |m− k|+min{A(τ ,η)} ,

where m and k are the number of changepoints in each set, and

A(τ ,η) =
m∑
i=1

k∑
j=1

|τi − ηj |
n

Iij ,

is the overall cost of assigning ηj to τi, j = 1, · · · , k, i = 1, · · · ,m. To be specific, Iij = 1 if

ηj is paired with τi and Iij = 0 otherwise, following a linear assignment problem. Note that

when m ̸= k, not all τi and ηj are paired; when there is a perfect match between the two sets

of changepoints, d(τ ,η) = 0. Such a distance accounts for the dissimilarity in both the number

and the locations of the true and estimated changepoints, thus providing a more comprehensive

quantification of the differences. The distances are presented in Table 3. It appears that most
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of the scenarios have relatively small distances, apart from scenario S3b (small λ) where some

smaller-scale changepoints are missed when the noise level is higher.

The RMSE of the fitted time series is computed as a measure of the overall fit of the estimated

model. Alongside this, the RMSE of the estimated decay parameter γ is also computed to

investigate how the method retrieved the key parameter in the exponential decay model. The

results are shown in Table 3. The overall fit of the model was reasonable for all scenarios. The

RMSE of scenarios S3a (large λ) and S3b (large λ) are among the highest, which is expected as

the large penalty was designed to capture only the large-scale increases. It also seems difficult

to retrieve the decay parameters γ from the small-scale increases in scenarios S3a (small λ) and

S3b (small λ), which again is as expected. The RMSEs of γ are an order of magnitude smaller

in the rest of the scenarios than the two most challenging ones.

Table 3: Summary statistics of the distance metric between two sets of changepoints, the root mean squared
errors (RMSE) of the fitted time series and the RMSE of the estimated decay parameter γ.

Distance RMSE RMSE γ
10% median 90% 10% median 90% 10% median 90%

S1a 0 0.0015 1.2325 0.0005 0.0023 0.0068 0.0001 0.0016 0.0936
S2a 0 0.0227 2.1863 0.0005 0.0022 0.0053 0.0002 0.0124 0.0926
S3a (small λ) 0.0053 1.1093 5.0979 0.0006 0.0009 0.0047 0.0147 0.0844 0.1341
S3a (large λ) 0 1.0019 4.0000 0.0019 0.0033 0.0055 0.0006 0.0063 0.0401

S1b 0 0.0053 1.2023 0.0009 0.0024 0.0073 0.0002 0.0023 0.0980
S2b 0 0.0343 2.1302 0.0009 0.0024 0.0054 0.0003 0.0147 0.0934
S3b (small λ) 0.0128 3.0703 23.0000 0.0010 0.0013 0.0049 0.0110 0.0713 0.1379
S3b (large λ) 0 1.0000 2.0912 0.0024 0.0036 0.0062 0.0006 0.0032 0.0174

Finally, a few examples of the replicates from different scenarios are presented to give in-

tuition to the averages presented in the tables. Examples of replicates with high true positive

rates and small mean squared errors from scenarios S1a, S2a and S3a are given in Figure 2.

They represent the performance of the proposed method in the majority of the replicates. There

are a few situations where the method failed to achieve a satisfactory fit, either in terms of the

true positive rate or the estimated decay parameter. An example of the replicate with low

true positive rates is shown in the left panel of Figure 3. Here the lack of fit was the result of

the minimum segment length used (24) being larger than the distance between two adjacent

increases. Hence, the method missed the changepoints and created a knock-on effect on some

later time points. This can be improved by simply reducing the minimum segment length, see

for example the right panel of Figure 3, where the minimum segment length is 12. The lack of

fit due to the difficulty in capturing the smaller scale patterns in scenarios S3a (small λ) and

S3b (small λ) may be improved by changing the penalty λ in the optimisation problem. In the

simulation study, both the penalty and the minimum segment length were fixed; whereas in

real application, these values will be tuned according to the problem.

4 Practical considerations

The simulation study in section 3 demonstrates the ability of the proposed method to detect

structural changes and exponential decay parameters in different types of time series of repeated

sudden increases and decays. In real applications, however, there could be complications that
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Figure 2: Examples of simulation replicates with high true positive rate from scenarios S1a, S2a and S3a.
The black curve and the black triangles represent the simulated time series and the true changepoints. The
red curve and the red triangles represent the fitted time series and the estimated changepoints.
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Figure 3: (Left) An example of a simulation replicate with low true positive rate from scenario S3a.
(Right) The improved result using a smaller minimum segment length. The black curve and the black
triangles represent the simulated time series and the true changepoints. The red curve and the red triangles
represent the fitted time series and the estimated changepoints.

require careful consideration. Changepoint detection may be improved by taking into account

additional information. In this section, several aspects of the proposed method are discussed,

including the possibility of adding covariates to the model and the selection of penalty param-

eters.

Precipitation is considered to be one of the most important drivers of soil moisture increase.

Although it is not equivalent to the amount of water infiltrating into the soil due to other

pathways of water loss, such as surface run-off (Hillel, 2003; McColl et al., 2017), it is expected

to correlate with the locations and frequencies of the peaks. When relevant precipitation data

are available, one could consider including precipitation as a covariate of the exponential decay

model. For example, the precipitation time series Xt may be used directly to help model the
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peaks of soil moisture as

Yt = α0i + (α1i + βiXt) exp{− exp(γi) (t− τi)}+ ϵt .

Alternatively, it may be converted into an indicator variable for the presence or absence of

rainfall and included in the model as

Yt = α0i + (α1i +Z⊤
tiβi) exp{− exp(γi) (t− τi)}+ ϵt ,

where Z⊤
ti = (Z1

ti, · · · , Zm
ti ), with Zj

ti = 1(t ≥ zj) for j = 1, · · · ,m and z1, · · · , zm being the

timings of rainfall instances within segment i. This changes the content of the changepoints

from the times when soil moisture peaks to the times when the decay rate or the asymptotic

level changes, or the time when the moisture level peaks without rainfall. However, they are

still suitable for the investigation of the temporal dynamics of soil moisture drydown. For this

approach to work, the precipitation time series needs to reflect the rainfall-infiltration pattern

relatively accurately, which is challenging for field data. In addition, sometimes the precipitation

becomes surface run-off, which does not contribute to the change of soil water content.

The proposed method relies on tuning parameters, such as the penalty function, the pa-

rameter and the minimum segment length. The penalty function used in sections 2 and 3 is

the number of changepoints. Other choices are available and equally theoretically valid. In

the simulation study, the penalty parameter was fixed within each scenario. In practice, the

model does not reflect the full reality of the process and thus the penalty parameter is not

optimal and may need to be selected based on the feature of the time series. For a systematic

approach, Haynes et. al. (2017) introduces the CROPS algorithm, which efficiently computes

the changepoint problem for a range of penalties. Different types of adaptive penalties have

also been developed in the literature, such as Hocking et. al. (2013) and Truong et. al. (2017)

where the penalty parameter is estimated to match the annotations of changepoints by experts.

Such annotations are usually not available for the soil moisture time series. However, one may

use climate data to create pseudo annotations and carry out penalty learning. One potential

choice is precipitation.

To implement this we could assume that the locations and frequencies of the peaks correlate

with the timings and frequencies of some rainfall events. Then the precipitation time series,

after applying a certain threshold or transformation, may be used as the experts’ annotations.

Comparing the detected numbers and/or locations of changepoints under different penalty

parameters to the annotated changepoints can provide some indication of the choice of an

appropriate penalty parameter. For example, the penalty learning method in Hocking et. al.

(2013) compares the possible number of changepoints annotated by experts in different regions

of the time series to the number of changepoints detected by the algorithm given penalty λ in

corresponding regions. The loss function to minimise is

E(λ) =
∑

(r,a)∈{R,A}

1

(∣∣∣τ (λ)
⋂

r
∣∣∣ /∈ a

)
,

where τ (λ) is the optimal set of changepoints given λ, R is a set of regions on the time axis and

A is a set of annotations on the possible number of changepoints within each region in set R.

The regions do not necessarily cover the entire span of the time series, which means the missing

gaps in the precipitation time series are not problematic. Alternatively, the method in Truong
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et. al. (2017) selects the appropriate penalty λ through minimising the excess penalised risk,

E(λ) = R
(
λ;Y1:n, τ

xpt
)
−R

(
λ;Y1:n, τ

(λ)
)

,

where R(λ;Y1:n, τ ) is the risk function (i.e., overall cost) of segmenting the data according to

τ , and τxpt is the collection of the changepoints labelled by the experts. The challenge of

implementing such a penalty learning method is the creation of the annotations, i.e., converting

the precipitation time series into experts’ annotations. The conversion may be case-specific

and may require additional information about the field site. However, it does not rely on

distinctive rainfall-infiltration patterns. It only requires the rainfall instances to correlate with

the occurrences of peaks to some extent. Therefore, precipitation data that are not suitable

as covariate data may still be fit for annotations. An example of creating annotations and

implementing the two penalty learning methods using NEON soil moisture and precipitation

data is given in the supplemental document.

The minimum segment length is used in the proposed method to put a realistic lower bound

on the soil drying time and to allow enough data in the NLS estimation of the exponential

decay model. In the soil drydown literature, the minimum length of the drydown period is

often specified by considering a combination of sampling frequency, soil hydrological properties

and how the drydown curves are identified (McColl et al., 2017; Shellito et al., 2016; Raoult et

al., 2021; Tso et. al., 2023). The motivation is to identify the smooth drydown curves that will

give a good estimation of the decay parameter, not necessarily all the drydown curves from the

time series. For example, in Raoult et al. (2021), a minimum of 5 days was required for any

drydown period, due to the sampling frequency (i.e., daily time series) and the way in which

the drydown curves were identified via precipitation. McColl et al. (2017) described the reason

on their choice of a 9-day threshold with a discussion on sampling frequency and soil types.

The NEON soil moisture time series have a higher temporal resolution than most of the

satellite or in-situ data products. Hence there are more data available to make it easier to

estimate the decay parameter, and using a similar threshold of e.g., 5-day, as in the literature,

is unnecessary. In addition, there may be several wetting and drying events within such a

period, and setting the minimum segment length too large would affect the estimation of the

changepoints, as demonstrated in the simulation. Whether it is possible to further reduce the

minimum segment length would depend on how the exponential decay model is estimated and

how noisy the data are. Multiple sudden increases within a very short window may be associated

with sensor noise so it is not always appropriate to try to recover these. In summary, the choice

of minimum segment length is a balance between having enough data to fit the exponential

decay model and not being too large so that it hinders changepoint detection.

5 Analysing NEON soil moisture time series

In this section, the changepoint model was applied to the soil moisture time series from the

NEON data portal. Soil water and salinity data have been collected in 46 field sites across the

U.S.. Here three terrestrial field sites with contrasting features: the Smithsonian Environmental

Research Center (SERC) in Maryland, the Santa Rita Experimental Range (SRER) in Arizona,

and the Talladega National Forest (TALL) in Alabama, are investigated.

A full description of the three field sites can be found at https://www.neonscience.org/

field-sites, but their characteristics are summarised here for the readers’ convenience. The

Smithsonian Environmental Research Center is located in, Maryland on the Rhode River, a sub-
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estuary of the Chesapeake Bay. The climate is temperate and humid, with an average annual

temperature of 13.6◦C (56.5◦F) and a mean annual precipitation of 1075mm. Soils are formed

into fluvial marine deposits with some areas of overlying alluvium and loess and the vegetation

is dominated by coastal hardwood forests and cropland. The Santa Rita Experimental Range,

located in the Sonoran Desert, Arizona, is characterized by a semi-arid, hot climate. The mean

annual temperature is 19.3◦C (67◦F). The Sonoran Desert is wetter than most deserts with

a mean annual precipitation of 346.2mm each year which is distributed in two wet periods.

Diurnal temperature swings of up to 32◦C (89.6◦F) are common. The soils found at SRER are

those typical of desert regions - they are mostly composed of alluvial deposits from the Santa

Rita Mountains. Vegetation at the site is dominated by drought-resistant, thorny species. The

Talladega National Forest is located in west-central Alabama. It has a subtropical climate with

hot summers, mild winters, and year-round precipitation. This warm, moist air contributes to

the formation of convection storms and thunderstorms in the region, causing major precipitation

pulses and flooding. The area is subject to tornadoes and hurricanes. The average annual

temperature is 17.2◦C (62.9◦F) and the average annual precipitation is about 1380mm. The

soils in TALL are primarily sand, clay, and mudstone formed from undifferentiated marine

segments. The vegetation at TALL is dominated by conifers, with some areas of intermixed

conifers, hardwoods, bottomland hardwoods, and wetlands.

Soil moisture measurements are made in vertical profiles consisting of up to eight depths

in five instrumented soil plots at each site. The data are presented as 1-minute and 30-minute

averages. Here the 30-minute data product is used and the data are further sub-sampled to

1-hour time series for the changepoint analysis1.

The location with the fewest missing observations was selected from each field site, and the

period with no large missing gap was selected. These are, 1 July 2017 to 30 November 2018 at

location 1 for field site SERC, 1 June 2018 to 31 May 2020 at location 4 for field site SRER,

and 1 February 2018 to 31 January 2019 at location 5 for field site TALL (see Figure 1). Linear

interpolation was applied to fill the small amounts of missing data within each time series.

To begin with, the constraints on model parameters are set and the values of the tuning

parameters are selected. (a) An upper cap of 0.4 was applied to the soil moisture time series from

the NEON data portal. As a result, the same upper bound was introduced to the parameters

α0i and α1i in model (4) during the optimisation of the non-linear least squares. (b) The

minimum segment length was chosen to be 24 hours. (c) It was required that the size of the

sudden increases be greater than 0.001. This value was used to filter out the sensor noise,

which is on the scale of 10−4 (Ayres & Roberti , 2018). (d) Considering jointly the overall cost

of the fitted models and the experimental result from penalty learning using the precipitation

time series, it appeared that a penalty around 250 would be appropriate for the soil moisture

time series from site SERC, a penalty around 200 for site SRER, and a penalty around 200 for

site TALL. Although three different penalties are used for the three field sites, the procedures

of selecting the penalty values remained roughly the same. The algorithm was first run on a

series of penalty values. Then the penalised overall cost of the final configuration, the mean

squared errors, and the loss function of the penalty learning problem were evaluated. Finally,

an appropriate penalty was selected based on the minimiser of one or more of these quantities.

Therefore, it is possible to create a set of rules and automate the penalty selection procedure

when the method is applied to a larger number of time series from different field sites.

1In soil drydown modelling based on satellite data or in-situ data, the temporal resolutions of the data are usually
lower. For example, satellite data typically have one observation per day or one observation every 2, 3 days.
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The identified changepoints (the black triangles) and the fitted time series (the red curves)

are presented in the top panels of Figure 4 to 6 corresponding to field site SERC, SRER and

TALL respectively. The estimated asymptotic soil moisture parameter α1 and the exponential

decay parameter γ (the black lines) for each segment along with the uncertainty bands (the

light grey bands) are presented in the 2nd and the 3rd panels. To be precise, α1 and γ are

plotted as piecewise constant functions over the span of the corresponding segments. This helps

to visualise the temporal dynamics in the estimated parameters. Due to the lower and upper

limits used in the NLS optimisation, the standard errors of parameters at the boundaries tend

to be very large. Therefore, the range of the y-axis was decreased, and the very large standard

errors are shown as light grey bands stretching from the bottom to the top of the canvas. The

e-folding decay parameter ω (in days) in the soil drydown model (1) is also computed from

the estimated exponential decay parameter γ and the results are given in the figures in the

supplemental document.
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Figure 4: (Top) The soil moisture time series and the estimated changepoints (black triangles) at location
1, field site SERC. (Middle) The estimated asymptotic parameter α0 over time with a light grey uncertainty
band. (Bottom) The estimated decay parameter γ over time with coloured uncertainty band.

All three models achieved a reasonable visual fit, where the red curves in the top panel of
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Figure 5: (Top) The soil moisture time series and the estimated changepoints (black triangles) at location 4
in field site SRER. (Middle) The estimated asymptotic parameter α0 over time with a light grey uncertainty
band. (Bottom) The estimated decay parameter γ over time with coloured uncertainty band.

Figure 4 to 6 captured the main temporal patterns in the data. Some of the sudden increases

are missed due to their short distance to adjacent increases. The lack of fit in some parts of

the time series, e.g., around July 2018 in site SERC, was associated with the relatively slow

increase in the soil moisture which contradicts the assumption of a sudden increase. However,

these are not common features. There is no distinctive temporal pattern in the occurrence of

the changepoints in this case.

There is a clear difference in the estimated asymptotic soil moisture α0 between the field

sites. The asymptotic soil moisture in site SERC is generally higher than that in SRER and

TALL (see also the histograms in the supplemental document). This is understandable as site

SRER experiences a desert-like climate and site TALL, though humid, has high temperatures

year-round. There appear to be some temporal variations in α0 as well. For example, for

site SERC, the α0 during the winter 2018 period behaved slightly differently from the summer

period. This suggests that the approach taken in conventional soil drydown modelling where

the asymptotic soil moisture is fixed throughout time may not be appropriate. Allowing α0
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Figure 6: (Top) The soil moisture time series and the estimated changepoints (black triangles) at location
5, field site TALL. (Middle) The estimated asymptotic parameter α0 over time with a light grey uncertainty
band). (Bottom) The estimated decay parameter γ over time with coloured uncertainty band.

to change over time has the potential to improve the estimation of other parameters in the

drydown model.

The differences in the scale of the estimated exponential decay parameter γ are less distinc-

tive. The estimated γ for site SRER suggests a slightly slower drying rate than the other two

sites. This can also be seen from the figures displaying the e-folding decay parameter ω in the

supplemental document. This could be explained by the sparse desert vegetation at site SRER

extracting water more slowly or the low unsaturated hydraulic conductivity of the dry soil at

SRER, which results in little drainage to lower soil layers. Although there are temporal varia-

tions in the estimated decay parameter, there is no clear trend or seasonal pattern in the result

here. A longer time series would potentially reveal more interesting features in the dynamics

of soil moisture.

Fundamentally, conventional soil drydown modelling relies on additional hydrological or

physical information; in contrast, the proposed method is data-driven. In particular, all param-

eters of the drydown model are allowed to vary over time. As a result, there will be differences

17



between the parameters estimated using the changepoint method and those from soil drydown

literature. Investigating these differences may lead to a better understanding of soil moisture

drydown. To summarise, the proposed method provides a different insight into the soil moisture

dynamics which is not available using the conventional modelling approach.

6 Discussion

This paper proposed a changepoint-based method to investigate the temporal dynamics in the

soil moisture time series. The method aims to identify the structural changes in the form of

sudden increases in soil moisture and estimate the parameters characterising the drying process

that follows the sudden increase. The method is related to the soil drydown modelling but

takes a different approach. It does not rely on the manual identification of soil drydown curves

from a soil moisture time series. Instead, it applies a changepoint detection algorithm directly

on the soil moisture time series, which automatically identifies the segments representing the

exponential decay of soil moisture. The estimation of the soil moisture decay parameters is

carried out simultaneously. In addition, the method can be applied to soil moisture time series

with little data pre-processing. Thus, when compared to conventional soil drydown modelling,

the proposed method has the advantage of easy implementation to a large data set with minimal

data preparation. The method also has the flexibility to make use of relevant information, e.g.,

the precipitation time series data, to improve the segmentation. The simulations and data

examples demonstrated the ability of the proposed approach to recover important features of

soil moisture drydown.

Unlike the simulated time series, the real soil moisture time series can display patterns

beyond the simple exponential decay. For example, when the soil is saturated during wet

seasons or when it is frozen during the winter, the soil moisture time series can show very

different patterns from a drydown curve. In practice, it may be sensible to focus on the periods

when drydown processes are dominating. Introducing additional information, e.g., temperature

or seasonal regimes, may also help to capture different drying patterns. Alternatively, it may

be helpful to develop methods that do not rely on the exponential decay assumption and use

more flexible models to describe different drying patterns.

Evaluating the uncertainty of the estimated changepoints, though important in some appli-

cations, is difficult in a multiple changepoints detection problem. Chen et. al. (2021) proposed

a method to compute the confidence intervals for the changepoints in the calcium time series

by finding the maximum disturbance that generates the same changepoint. However, the ef-

ficient computation of the confidence intervals is tailored to the functional pruning algorithm

and therefore is not suitable for use with PELT. Other approaches to quantifying uncertainty in

the literature, such as bootstrapped confidence intervals (Huskova & Kirch, 2008; Hollaway et.

al., 2021) and posterior distributions of the changepoint numbers/locations (Fearnhead, 2006;

Nam et al., 2015), do not generalise to the changepoint problem in this paper easily. Therefore,

the uncertainty of the identified changepoints is not considered here.

Extending the current method to cover these situations will be a piece of important future

work. For example, a useful extension would be to relax the model assumptions and use more

flexible models to describe soil moisture dynamics in various scenarios, such as dry and saturated

conditions. Potential solutions include re-formatting the problem as a state space model where

different states represent different scenarios. Such a model, when estimated within a Bayesian

framework, may also provide uncertainty measures to the estimated changepoints.
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Finally, the changepoint method described in section 2 shares some similarities with the

so-called shot noise model, which involves a compound Poisson process describing the intensity

of the shots and an impulse-response function describing the decay pattern (Xiao & Lund, 2006;

Eliazar & Klafter, 2005). In the classical shot noise model, the decay pattern is often modelled

as an exponential decay, and it has been used in Tsakiris et. al. (1988) to estimate the rainfall

infiltration, which contributes to the soil moisture dynamics. The shot noise model does not

rely on the arrival times of the shots, and hence there is no need to identify the changepoints.

However, parameters in the compound Poisson process and the impulse-response function are

required. It can be difficult to estimate decay patterns that are changing over time, which is a

key feature that the changepoint-based method seeks to expose.
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The changepoint detection algorithm and the analysis of the soil moisture time series are

implemented in R (version 4.3.1). The code can be accessed from the GitHub repository https:

//github.com/GMY2018/Changepoint4soil.

The data used are publicly available from the United States National Ecological Observation

Network (NEON, https://data.neonscience.org/). The soil moisture time series data can

be accessed from https://data.neonscience.org/data-products/DP1.00094.001. The pre-

cipitation data can be accessed from https://data.neonscience.org/data-products/DP1.

00006.001.
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List of figure legends

Figure 1: Hourly soil volumetric water content time series recorded at field sites SERC,

SRER and TALL from the NEON data portal.

Figure 2: Examples of simulation replicates with high true positive rates from scenarios S1a,

S2a and S3a. The black curve and the black triangles represent the simulated time series and

the true changepoints. The red curve and the red triangles represent the fitted time series and

the estimated changepoints.

Figure 3: (Left) An example of a simulation replicate with low true positive rate from sce-

nario S3a. (Right) The improved result using a smaller minimum segment length. The black

curve and the black triangles represent the simulated time series and the true changepoints.

The red curve and the red triangles represent the fitted time series and the estimated change-

points.

Figure 4: (Top) The soil moisture time series and the estimated changepoints (black trian-

gles) at location 1, field site SERC. (Middle) The estimated asymptotic parameter α0 over time

with a light grey uncertainty band. (Bottom) The estimated decay parameter γ over time with

coloured uncertainty band.

Figure 5: (Top) The soil moisture time series and the estimated changepoints (black trian-

gles) at location 4 in field site SRER. (Middle) The estimated asymptotic parameter α0 over

time with a light grey uncertainty band. (Bottom) The estimated decay parameter γ over time

with coloured uncertainty band.

Figure 6: (Top) The soil moisture time series and the estimated changepoints (black trian-

gles) at location 5, field site TALL. (Middle) The estimated asymptotic parameter α0 over time

with a light grey uncertainty band). (Bottom) The estimated decay parameter γ over time with

coloured uncertainty band.
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