
October 5, 2023

WALDATA : Wavelet transform with Adversarial Learning to

Detect Abnormal Trading Activities

Khaled Safa, Ammar Belatreche, Salima Ouadfel, Richard Jiang

Abstract

The detection of abnormal stock market trading activities is a challenging task due to several

factors. One of the primary challenges is the lack of labeled data. Anomalies in stock market data

are rare and difficult to capture, making it challenging to create a labeled dataset for supervised

learning approaches. Moreover, the stock market is characterized by intricate temporal

correlations in non-stationary stock price data, making it challenging to identify patterns or

anomalies using traditional statistical methods. To overcome these challenges, we introduce a

novel approach, WALDATA, which is based on the combination of Generative Adversarial

Networks (GANs) and Wavelet Transform (WT). Our method takes advantage of the power of

WT to handle non-stationary time series and perform efficient feature extraction. In addition,

we leverage the recent success of GANs in computer vision and use them to learn normal stock

price behaviors. WALDATA encodes equity price data as scalogram images using the Continuous

Wavelet Transform, which converts the time series data into a 2D image representation. We then

train a Generator/Discriminator Adversarial Network to learn normal stock price behaviors. The

trained discriminator serves as an anomaly detector, allowing us to detect abnormal trading

activities in the stock market. Our method was tested on 1-level tick data obtained from the

LOBSTER project and achieved an average AUC of 0.99 with low false alarm rates. This

demonstrates the effectiveness of our method in detecting abnormal trading activities in the

stock market.

Keywords: Price manipulation, anomaly detection, continuous wavelet transform (CWT),

generative adversarial network (GAN), market abuse, abnormal trading activities

1. Introduction

Market manipulation involves artificially altering financial instrument prices in a way that

deviates from normal market conditions, damaging investor confidence and reducing market

transparency. This practice is prohibited by financial regulators globally, with a notable example

being the complicity of groups of traders in raising stock prices on the New

October 5, 2023

Email addresses: khaled.safa@univ-constantine2.dz (Khaled Safa), ammar.belatreche@northumbria.ac.uk

(Ammar Belatreche), salima.ouadfel@univ-constantine2.dz (Salima Ouadfel)

York market, which led to the establishment of the Securities of the Financial Markets act and

the United States Securities and Exchange Commission (SEC) in 1934 Allen and Gale, 1992.

Market manipulation can be divided into three categories: information-based, actionbased, and

trade-based Allen and Gale, 1992. Information-based manipulation involves spreading false

rumors or inside information to alter the market’s perception of the stock’s value. Action-based

manipulation involves acquiring shares and announcing a takeover offer to drive up stock prices.

Trade-based manipulation involves submitting manipulative trades to create artificial price

movements. This form of manipulation is particularly challenging to detect and eradicate. The

consequences of market manipulation can be far-reaching and harmful to investors, financial

markets, and the economy as a whole. It is crucial for regulatory bodies to implement measures

to prevent market manipulation and maintain the integrity of financial markets. Several

academic papers have been published that use statistical and machine learning techniques to

detect stock market manipulation. Early works in this area relied on statistical methods, such as

time series analysis and statistical tests, to identify patterns and anomalies in trading data that

may indicate manipulation. These methods are often based on the analysis of abnormal returns

and trading volume and aim to identify instances of manipulation by detecting unusual patterns

in these variables. However, despite their widespread use, these statistical methods have several

limitations. They often rely on simple mathematical models and do not take into account

complex relationships between variables, making them less accurate in detecting various

instances of manipulation. Additionally, these methods are not well suited to handling large

amounts of data, which is becoming increasingly important in the era of big data. This is where

machine learning and deep learning techniques come in. Machine learning algorithms, such as

decision trees, random forests, and support vector machines, are capable of handling large

amounts of data and detecting complex relationships between variables, making them well

suited to detecting stock market manipulation. Deep learning techniques, such as convolutional

neural networks and recurrent neural networks, are even more advanced and are capable of

handling even more complex data structures, making them even more effective at detecting

stock market manipulation Cao et al., 2014; Sridhar et al., 2020; Uslu and Akal, 2022. Recently,

wavelet analysis, as proposed by Mallat, 1989, has gained significant attention in the field of

financial time series studies Gallegati, 2012; Lahmiri, 2014; Langi et al., 2012. This approach

offers a unique method for analyzing time series data by decomposing it into different frequency

bands. Wavelet analysis has proven to be particularly effective in the context of financial data,

which is often non-stationary and exhibits complex patterns over time. One of the primary

advantages of wavelet analysis is its ability to extract important features from financial time

series data. By identifying different frequency components within the data, wavelet analysis

enables researchers to isolate key patterns and trends that might otherwise be difficult to detect.

This can be especially valuable in market manipulation detection, where accurate manipulation

detection rely heavily on the ability to identify important patterns within the data. Moreover,

wavelet analysis is also highly adaptable, making it a flexible tool for financial researchers. Its

October 5, 2023

ability to handle non-stationary signals, for example, means that it can be used to analyze

financial data that exhibits trends or seasonality. This makes it well-suited to a range of financial

applications, from market analysis to risk management. In this paper, we introduce a new

method, WALDATA, for detecting stock market manipulations. This approach combines wavelet

analysis and deep Convolutional Generative Adversarial Network (DCGAN) to identify

manipulation in ask/bid data based on normal market behavior. The process involves analyzing

equity price data using Continuous Wavelet Transform (CWT), encoding it as RGB images, and

training a DCGAN to learn the normal behavior of these images. The discriminator network is

then used as a detector of anomalies. The proposed approach is validated on 1-level tick dataset

of five stocks (Amazon, Apple, Google, Intel and Microsoft) obtained from the LOBSTER project,

which covered five trading days, from the 11th to the 15th of June,2012. The obtained results

show an average of 0.99 in terms of the area under the curve (AUC) and a very low false alarm

rate. the key contributions of our work are as follows:

• we propose a new approach called WALDATA by combining the continuous wavelet

transform with the power of generative adversarial network to solve anomaly detection

problem. Our architecture is designed to detect unknown manipulation schemes so that we can

improve their performance when some labelled dataset (normal and manipulative trade

schemes) is available.

• To capture the temporal correlations of the normal behaviour of stock price data, we

analyse the ask/bid price data on different frequency scales by using the Continuous Wavelet

Transform.

• To take advantage of the deep convolutional neural network’s ability to automatically

learn relevant characteristics from images, the equity price data is transformed into RGB images.

• The discriminator network, consisting of a feature extractor and classifier, can be

finetuned using labeled data to improve its performance in detecting manipulation schemes.

The reminder of this paper is organized as follow. Section 2 provides a background and a

comprehensive overview of the related works in detecting market manipulation using machine

learning techniques. Section 3 explains our proposed approach, WALDATA, in detail, including

the data pre-processing and the steps of encoding equity price data as images and training the

generative adversarial network. Section 4 presents the experimental results and evaluation of

the performance of the proposed approach on the 1-level tick dataset obtained from the

LOBSTER project. Section 5 concludes the paper and provides suggestions for future work in the

field of market manipulation detection.

2. Background

In today’s financial landscape, stock markets predominantly operate as order-driven markets,

wherein participants contribute liquidity by submitting buy or sell orders through electronic

trading systems. These systems utilize rules such as price priority and time precedence to match

and execute these orders. A fundamental mechanism within electronic trading systems is the

Limit Order Book (LOB), which displays all buy and sell orders and facilitates seamless trading.

Market orders and limit orders are the most common order types, with limit orders executing at

October 5, 2023

or below/above the specified limit price and market orders executing immediately at the current

market price Figure1.

Figure 1: Illustrative limit order book example. There are two sides, buyer side (also called bid side) and seller side
(also called ask or offer side). Participants in the bid/ask side are providing liquidity with prices at which they are

willing to buy/sell some quantities of the stock. The spread represents the differences between the best (lowest)
ask price and the best (highest) bid price. A trade occurs when the price of the sell order and the buy order match.

The advent of technology has revolutionized financial instrument trading within the limit

order book market, transitioning from manual human influence to algorithmic trading, including

the rise of High-Frequency Trading (HFT). High-Frequency Trading is characterized by its

remarkable speed, enabling trade orders to be placed and executed in mere nanoseconds,

without long-term position holdings. However, this technological progress has also opened the

door to various illegal trading strategies employed by manipulators. These manipulators employ

deceptive tactics, disseminating false or misleading signals to market participants, distorting

their perception of the true price of the traded instrument, all in pursuit of illicit profits. To

effectively combat and detect such manipulative behaviors, it is essential to understand the

specific strategies employed by manipulators. In the following subsection, we delve into the

various manipulation strategies employed by these actors. By providing comprehensive

definitions and insights into these strategies, we establish the groundwork for developing robust

and accurate detection algorithms capable of identifying and mitigating instances of

manipulation in the market.

2.1. Layering and spoofing strategies

In this illegal strategy, the deceptive trader sends a bona fide order at more profitable price

on one side (ask/bid) and at the same time a single large non-bona fide order on the other side

(bid/ask) without intention to be executed but to give a false impression of high buying/selling

pressure at that price and drive the price up/down than there actually is. This non-bona fide

order is cancelled either the order in question is executed or not. this strategy known as the

terms “spoofing” and “layering” interchangeably in some regulators, while others use “layering”

to describe placing multiple non-bona fide orders at progressively higher price levels, and

October 5, 2023

“spoofing” to describe placing a single large or multiple non-bona fide orders at the same price

levels , generally at or close to best (bid/ask) prices.

Market regulators have reported many real cases of layering such as the case described by

the Financial Industry Regulatory Authority (FINRA), USA, and discussed by Nanex Nanex, 2022.

In fact, at the beginning the national best bid and offer (NBBO) was 101.24−101.35, when a non-

genuine trader wants to sell 1000 shares on NASDAQ OMX BX, at a price higher than the best

buy price $101.24, he sends a bona-fide order to sell 1000 shares at a price of $101.32 , followed

by sending 05 buy non-bona fide orders to NASDAQ totaling 2000 shares at progressively higher

price levels from $101.27 to $101.31. The best buy price was elevated by seven basis points (bps)

as a result. Trader’s non bona fide buy orders created a false appearance of demand at that price,

which led an automatic buying Algorithm, through seven transactions, partially executed against

the bona fide 1000 share sell order. It executed a total of 645 shares at a price of $101.32 (more

than $101.24) against Trader A’s bona fide short sale order. The non-genuine trader sent six

additional buy orders (totaling 600 shares) to Nasdaq at a price of $101.31, Buying Algo partially

executed additional 200 shares at $101.32. The remaining 155 shares of the 1000 share bona

fide sell order were canceled, and the manipulator canceled all eleven non-bona fide buy orders

sent to NASDAQ. The NBBO returned to the pre-layering price levels of $101.24 - $101.35. Figure

2 above shows trader A’s trading activity from 11:08:33.063 to 11:08:33.883 in a total

Figure 2: Layering takes a saw-tooth pattern on September 25, 2012. Disruptive trading activity from 11:08:33.063
to 11:08:33.883 in a total of 820 milliseconds. the hour is no shown on the Time axis of the graph.

of 820 milliseconds. This type of manipulation takes a form of saw tooth pattern that has been

reported in Lin X, 2012.

In Figure 3 a single spoofing order is placed in the bid-ask. This allows small move up/down a

percentage and reverts to its previous level. This manipulation takes the pulse pattern form Lin

X, 2012.

October 5, 2023

Figure 3: Pulse pattern : pump and dump manipulation activity from 14, 2011, Westinghouse Air Brake price: rising
8% and reverting back 3s later.

2.2. Quote stuffing strategy

Quote stuffing is a type of market manipulation that involves a high-frequency trader sending

a large number of orders to a financial market in a short amount of time. The goal is to overload

the market’s ability to process orders and cause temporary market disruptions. These

disruptions can result in delayed order executions, missed trades, and increased volatility, which

the trader can take advantage of to profit from price discrepancies. For example, a quote stuffer

might send thousands of orders for a specific stock within a few milliseconds. This flood of orders

creates a backlog in the market’s systems, causing delays in order processing and execution. The

quote stuffer might then cancel the majority of these orders, leaving only a few that they hope

to execute at an advantageous price. By taking advantage of the market inefficiencies created by

the quote stuffing, the trader can buy low and sell high, making a profit. Figure 4 show a quote

stuffing activity from July 13, 2012 of CAPC stock price. Lin X, 2012

Figure 4: Quote stuffing activity from July 13, 2012 CAPC stock price: lot of quotes been sent for overloading the
quotation systems.

In the following section, we review the existing literature on detection methods specifically

tailored to identify the various manipulation strategies discussed. By examining these detection

approaches, we aim to assess their effectiveness, identify potential limitations, and explore

opportunities for further improvement in this critical area of market surveillance and integrity.

October 5, 2023

3. Literature review

In this section, we review previous related work on trade manipulation detection problem.

We focus on data mining-based approaches which are related to our work.Stock market

manipulation detection techniques can generally be divided into supervised and unsupervised

techniques. Ögüt et al., 2009 applied a supervised learning technique to detect market

manipulation of stocks traded on the Istanbul Stock Exchange by analysing statistical features of

daily volatility, daily trading volume and daily return. They used support vector machines (SVM)

and artificial neural networks (ANNs) which was reported to have outperformed multivariate

statistical techniques such as discriminant analysis and logistic regression. As the manipulator

uses new strategies to manipulate the stock, the proposed approach is only suitable for detecting

known manipulation strategies and fails to discover unseen manipulation schemes. Diaz et al.,

2011 combined three decision tree algorithms, namely QUEST, C5.0, and C&RT, to detect

intraday price manipulation. The proposed model was applied to a dataset constructed from the

SEC (US) manipulation cases in 2009. A set of 10 features was used which includes different

technical indicators that reflect changes in trading liquidity, volatility, returns, and abnormal

returns. these statistical features such as daily volatility, daily trading volume, daily return and

liquidity were selected in the methods proposed above based only on empirical research’ beliefs

that changes in particular market variables imply manipulation. However, there is no evidence

that these changes are necessary a condition for the manipulation. meaning that there are also

others market events may cause a change in a market variable, such as news events. therefore,

the proposed methods are ineffective in detecting real cases of manipulation. Golmohammadi

et al., 2015 applied different classification methods (CART, conditional inference trees, C5.0,

Random Forest, Naïve Bayes, Neural Networks, SVM, and KNN) to detect market manipulation

using the percentage return price of stock as a feature instead of only the price of stock employed

in the work by Diaz et al., 2011, their argument was that the price of securities did not reflect the

size of a company nor the revenue, they used also the same manipulation cases dataset

employed in the work Diaz et al., 2011. It was found that the Naïve Bayes classifier outperformed

other counterpart classifiers achieving an F2 measure of 53%. However, the statistics features

used in the proposed method make it suitable only in detecting single points as anomalies, it fails

to detect collective anomalies like quotes stuffing strategy. Mongkolnavin and Tirapat, 2009

employed association rules to detect instances of "Mark the Close" misconduct in the Thai bond

market. Their study involved analyzing historical trading data, including trading behaviors and

price fluctuations, to monitor transactions in real-time and identify any unusual activity. The

study examined a sample of 54,334 trading transactions reported to the Thai Bond Market

Association (ThaiBMA) in 2005, and found that association rules can be effectively used to detect

misconduct and alert regulators when enforcement action is required. Sridhar et al., 2020

proposed an approach to tackle the problem of market manipulation by utilizing an Ensemble

Neural Network. The proposed system can identify three types of manipulation scenarios,

namely, Price Manipulation, Volume Manipulation, and Trade Reversal. To construct the daily

trading dataset, the affidavit information provided by the Securities and Exchange Board of India

October 5, 2023

(SEBI) was used, and data was collected from the Bombay Stock Exchange (BSE) website. The

trading dataset was analyzed using the Ensemble Neural Network model with and without

trainable sub-model layers. The results indicate that the model with trainable sub-model layers

achieved an accuracy of 91%, while the model without trainable sub-model layers achieved an

accuracy of 96%. Uslu and Akal, 2022 proposed a machine learning approach for detecting trade-

based manipulations in the Borsa Istanbul (BIST) capital market. Their dataset comprised 22

cases of manipulation that occurred between 2010 and 2015, and they used daily data of

manipulated stocks to train supervised machine learning classification models. The proposed

model’s performance was evaluated using the accuracy, sensitivity, and F1 score measurement

methods. the proposed model outperformed LR (Logistic Regression), NB (Naive Bayes), and SVM

(Support Vector Machine) in detecting trade-based manipulation in the stock market,

Specifically, with an F1 score of 91% , sensitivity of 95%, and accuracy of 93%. This high score

indicates that the model was able to accurately identify potential market manipulation with high

precision and recall in the BIST capital market. The challenge with supervised methods in

detecting stock price manipulation lies in obtaining labeled instances of normal and abnormal

trades. This is difficult to achieve due to confidentiality and proprietary nature of trading data in

most markets. As a result, there is a need for unsupervised learning algorithms to address this

issue. Cao et al., 2014 used machine learning algorithms (OCSVM and KNN) to detect different

forms of market manipulation, spoofing trading, and quote stuffing by transforming the equity

price data into pseudo-stationary time series. They used order price, volume, and submission

time as features. The proposed approach was tested on a dataset of four stocks (Apple, Google,

Intel and Microsoft) taken from LOBSTER project, which covered five trading days, from the 11th

to the 15th of June, 2012. The results of the performance evaluation showed better results in

terms of AUC compared to the original market data. However, the one-class classification

methods used do not take into account the temporal dependencies between data points. In

another study, Cao et al., 2015 proposed an adaptive hidden Markov model with anomaly states

(AHMMAS) to detect price manipulation activities. The method used wavelet transformation and

gradient information as features. The reported results showed that the AHMMAS outperformed

other benchmark models such as One-Class SVM, KNN, and Gaussian Mixture Models in terms

of AUC and F-measure. But this method only focuses on detecting quote stuffing and may miss

other forms of manipulation. The authors Abbas et al. have proposed multiple techniques for

detecting price manipulation in stocks. These techniques were evaluated on level 1 tick dataset

of five stocks (Apple, Amazon, Google, Microsoft and Intel Corp) obtained from the LOBSTER

project. In Abbas et al., 2019, they used kernel density estimation and empirical mode

decomposition for unsupervised price manipulation detection and achieved better results

compared to other unsupervised methods such as PCA, k-Means and DPGMM. In Rizvi et al.,

2019, they proposed a semi-supervised method using a modified dendritic cell immune system

and kernel density estimation, and reported improved performance compared to K-Means, PCA,

K-NN and OCSVM. In Rizvi et al., 2020, they used kernel principal component analysis and

multidimensional kernel density estimation for unsupervised learning and showed significant

October 5, 2023

improvement in performance and decrease in false alarm rate over other approaches. However,

all these methods only focus on well-known manipulation schemes and do not consider the time

dependence between data points. Leangarun et al., 2018 used Generative Adversarial Networks

(GANs) that included Long Short-Term Memory (LSTM) networks in the generator and

discriminator networks for detecting pump-and-dump manipulation. The discriminator network

was utilized as an anomaly detector to identify manipulative behavior in the data. The approach

was tested on data from the Thailand stock exchange and achieved a detection accuracy of 68.1%

when evaluated on previously unseen market data. In a subsequent study, Leangarun et al., 2021

proposed an unsupervised learning approach using deep neural networks to detect stock price

manipulation. The models were trained to recognize normal trading behaviors expressed in a

limit order book and detect anomalous trading actions that did not follow the learned patterns

as manipulative. The study assessed two model architectures, autoencoder (AE) and generative

adversarial networks (GANs), on six prosecuted real manipulation cases from the Stock Exchange

of Thailand (SET) during 2004–2016. Both models demonstrated a low false-positive rate and

detected five out of six cases. Additionally, the study introduced "MinManiMax," a strategy to

optimize the decision boundary for practical application of the models. However, this work had

a low recall rate and struggled to detect new patterns. To address these limitations,

Chullamonthon and Tangamchit, 2023 incorporated knowledge of the popular pump-and-dump

pattern into a supervised long short-term memory (LSTM) network and combined it with the

unsupervised LSTM-based autoencoder model in an ensemble approach. The resulting model

achieved a higher detection rate with low false alarm rates on six real manipulation cases from

the SET, demonstrating the potential of combining supervised and unsupervised learning

methods to improve the accuracy of detecting stock price manipulation. Wang et al., 2019 used

recurrent neural network-based ensemble learning for stock price manipulation detection, and

considered company characteristics as features, reporting improved performance. However, this

method is only suitable for supervised data and has limited memory to capture temporal

dependence.

Most previous approaches solutions for identifying trade-based manipulation require a

complex process of feature engineering, which involves the use of expert knowledge to create

an effective representation of equity prices. These solutions also only focus on detecting specific

manipulation types and require manual identification and description of relevant features.

Additionally, these solutions treat trade-based manipulation as a single-point anomaly detection

problem, neglecting the collective and temporal dependencies present in sequential trading

activities. To overcome these limitations, this study proposes a method for detecting both known

and unknown trade-based manipulation schemes by learning the normal behavior of historical

bid/ask time series data using a deep generative model such as a generative adversarial network.

The methodology of this proposed approach will be discussed in the following section.

October 5, 2023

Figure 5: Overview of our Architecture , 1. and 2. Preprocessing and Encoding: after pre-processing, the equity price

data is analyzed across multiple frequency scales using the Continuous Wavelet Transform (CWT). Once analyzed,

the equity price data is then encoded into RGB images. 3. Training: A Deep Convolutional Generative Adversarial
Network (DCGAN) is used to learn the normal behaviors of the encoded images. 4. Testing: The discriminator

network is used as an anomaly detector to identify any abnormal behaviors in the stock market.

4. The proposed approach

The proposed approach aims to tackle the challenge of detecting manipulation schemes in

the stock market by analyzing the changes in bid/ask time series data. Despite the fact that a raw

time series data can provide insights into the behavior of the stock market, it can be difficult to

extract hidden patterns due to its limited representation of the underlying dynamical system. To

address this, the approach involves transforming the univariate bid/ask time series into a

different space while preserving its temporal dependency structure. This process allows for the

extraction of useful patterns that can aid in detecting trade-based manipulation. The overall

approach consists of four main steps, as illustrated in Figure 5: data pre-processing, time series

to image encoding, learning normal behaviors, and manipulation. To pre-process the data, sliding

windows are used to partition the time series into different windows and normalize each window

to the interval [0, 1]. The time series is then transformed into RGB scalogram images through the

use of a continuous wavelet transformation (CWT). The normal behaviors of these scalograms

are learned by training the Deep Convolutional Generative Adversarial Network (DC-GAN).

Finally, the CNN is fine-tuned to distinguish normal scalograms from anomalous ones. The

detailed process of each step will be described in more detail below.

4.1. Step1 : data pre-processing

The data used in this work consisted of the bid/ask price of five stocks: Amazon, Apple,

Google, Intel, and Microsoft based on the official NASDAQ Historical TotalView-ITCH.

October 5, 2023

The ITCH protocol provides real-time updates on the status of orders from submission to

execution or cancellation.

4.1.1. Sliding windows

The original bid/ask times series x(t) = { x1,x2,...,xL } of length L is first divided into segments

of a fixed size S (S > 1) using sliding windows method. The windows are shifted by S/2 and result

in m time windows x(t) = { x(t1),x(t2),...,x(tm) } , where m = (2∗L−S)/S . For instance, if a 10-point

time series uses a time window of size S = 4, it would be divided into 4 segments, as shown in

Figure 6. In this study, a time window size of 1000 milliseconds and a step size (shift) of 500

milliseconds was used. Thus, a 1-hour time series would be divided into 7199 time windows.

Figure 6: sliding windows mechanism: a time series x(t) is windowed into four segments x(t1),x(t2),x(t3) and x(t4)
each of them of size four.

4.1.2. Linear interpolation and normalization

To handle the irregular spacing in each time window, we applied linear interpolation to

convert it into an evenly spaced time series with a resolution of 10 milliseconds. As a result, each

window becomes a row vector of 100 observations as shown in Figure 7. Furthermore, to ensure

consistency across all windows, each window is normalized to the range of [0, 1] using the

following equation.

 X_normalized = (X_window − X_min)/(X_max − X_min) (1)

where X_normalized is the normalized value, X_window is the original value, X_min is the

minimum value in the window, and X_max is the maximum value in the window. This

normalization step is important as it helps to prevent the influence of outliers on the results. The

normalized windows are then ready to be transformed into images using the Continuous

Wavelet Transform (CWT).

October 5, 2023

Figure 7: The Bid order as vector without time index (b) is very different to the original bid order with time index x-

axis (a), the bid order as row vector after linear interpolation (d) is very similar to the original bid order with time
index in x-axis (a).

4.2. Step2 : Continuous Wavelet Transformation (scalograms)

After normalizing the time series, a continuous wavelet transform (CWT) is applied to each

window. The CWT provides a representation of a time series in the time-frequency domain,

allowing the visualization of the evolution of frequency content over time. In this work, we have

used the Morlet wavelet as the mother wavelet because it is a good choice for analyzing non-

stationary signals like stock market data. The resulting representation is called a scalogram,

which is a gray-scale image that shows the frequency content of the signal over time. In this

work, we have transformed the scalogram into an RGB image, which allows for easier processing

by deep learning algorithms. The RGB scalograms are used as input for the next step, learning

the normal behaviors. The mathematical representation of the CWT of a signal x(t) is given by

Equation (2)

 (2)

Where x(t) is a time signal, φ() is the mother wavelet function, s is the scale and τ is the

translation parameter that determines the shifting position. In this study, we utilized a

October 5, 2023

discretized version of the continuous Morlet wavelet transform Mallat, 1989 for its

computational convenience. A demonstration of the translated and scaled Morlet wavelet is

shown in Figure 8.

Figure 8: morlet wavelet at different scales and translation.

By using a smaller scale, we can capture sudden changes in the ask/bid time series, these

suddenly changes are the most important features in detecting pump and dump manipulation

schemes, On the other hand, a larger scale can capture lower frequencies (i.e slowly changes in

ask/bid time series). the cwt coefficients CWTx(s,τ) in equation (2) are obtained by continuously

varying the values of the scale parameter s, and the translation parameter τ.

The CWT uses inner products to measure the similarity between the bid/ask time series and

shifted and compressed/stretched versions of a wavelet function as shown in figure 9.

Figure 9: Intel stock with 1000 timesteps multiplied by a morlet wavelet (scale=16, translation=500).

By continuously varying the values of scale parameters, and the position parameter we obtain

the cwt coefficients represented as scalogram image as shown in figure 10.

October 5, 2023

Figure 10: Scalogram image obtained by multiplying our bid time series with 1000 timesteps and 500 (in a range

from 0 to 499) scales results in 500000 coefficients.

Figure 11 shows RGB images which are obtained through the application of CWT to sample

non-stationary stock market data. These colour images illustrate both the normal and anomalous

scalograms which correspond to normal and anomalous trading behaviours.

Figure 11: Scalogram images for normal and anomaly stock data. The obtained images for these samples show a
clear difference between the normal and anomalous images.

4.3. Step3 : Learning normal behaviors

The scalograms obtained from the Continuous Wavelet Transformation step, are then fed

into a Deep Convolutional Generative Adversarial Network (DC-GAN) to learn the normal

behavior of these scalograms. The architecture and hyper-parameters of the DCGAN model are

based on guidelines described in Radford et al., 2016 . It consists of two convolutional neural

networks: the Generative network and the Discriminative network. The Generative network

generates 100x100x3 fake images that appear real. It takes a random 100-dimensional vector

from a normal distribution of mean 0 and variance 1 as input, and includes three deconvolution

layers with decreasing number of filters. The output layer uses the Tanh activation function. The

Discriminative network takes an image of dimension 100x100x3, passes it through three

convolution layers with increasing number of filters, and ends with a linear activation in the

October 5, 2023

output layer. The Discriminator network learns to distinguish normal behavior from anomalies

as shown in Figure 12.

Figure 12: Learning normal behaviors of stock price.

4.4. Step4 : Manipulation Detection using the discriminator

Once the Generative network has learned the normal behavior, a selection of normal data

samples with lower scores is used to evaluate the performance of the Discriminator network.

The Discriminator network is then used as a feature learning method stacked with a fully

connected layer to detect manipulation cases by using only a few normal data samples with a

few injected anomalies. The process is visualized in figure 13

Figure 13: Manipulation Detection using the discriminator network.

October 5, 2023

5. Generative Adversarial Network (GAN)

The Generative Adversarial architecture (GAN) was described by Goodfellow et al., 2020 . The

GAN can be considered as a min-max game between a Generator G and the Discriminator D. The

Generator is trained to generate fake images and the Discriminator is trained to distinguish the

fake examples (generated by G) from real examples (coming from the training dataset).

Therefore, whenever the Discriminator is tricked into classifying a false image as real, the

Generator realizes that he has accomplished something right. Alternately, each time the

Discriminator effectively rejects an image created by the Generator as being false, the Generator

gets the feedback that it needs to improve. This optimization process can be formulated using

equation 3.

minGmaxD = Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1 − D(G(z)))] (3) where pdata is the

probability that the image comes from the real data, pz is the probability that the image comes

from fake data (generated), and z is the noise variable. The optimization process defined in (3) is

known as Minimax GAN Loss. However, this loss function can suffers from saturation of the

generator’s loss, log(1−D(G(z)) if the generator is unable to learn as quickly as the discriminator.

Thus, model cannot be trained effectively. The alternative solution is to train the Generator to

maximize logD(G(Z)) i.e minimize −log(D(G(Z))

LNSGANG = −Ez∼pz(z) [log(D(G(z)))]

LNSGAND = Ez∼pdata(x) [log(D(x))] − Ez∼pz(z) [log(1 − D(G(z)))]
(4)

The optimization process defined in (4) known as Non-Saturating GAN Loss. The NonSaturating

Loss function minimizes the cross-entropy, but it also faces difficulties in training the generator

when using the sigmoid activation function in the last layer with cross-entropy as the loss

function Mao et al., 2017 . The vanishing gradient of the generator can result in an ineffective

training process, as demonstrated in the figure 14.

Figure 14: loss plot of the generator (green line) , discriminator loss of real and fake image (blue and orange line),
area under cure red line(normal and anomalies image during training), use cross-entropy loss and sigmoid activation

function in the last layer in the discriminator network.

October 5, 2023

Figure 14 shows that after 100 epochs the discriminator does not give enough feedback to

the generator. Thus the generator network cannot be trained effectively we notice that the

green line increases quickly from epoch 100 and takes on high value. We have used in this test

the 1-level tick data of the Intel stock market for 21th June 2012 obtained from the lobster Data

at “LOBSTER project, Atlanta, GA, USA. Limit order book”, n.d. . To resolve this issue, we use in

our approach the Least Squares GAN Loss function for the optimization process proposed by Mao

et al., 2017 defined as:

 (5)

Figure 15. shows the accuracy and the loss plot of the Discriminator and the Generator when

using the linear activation function in last layer and the least square loss function for the Intel

stock.

Figure 15: Top subplot represents accuracy for the discriminator for both real images and generated image, bottom

subplot represents loss of the discriminator. Red line represents area under cure (normal and anomalies image
during training), use least square loss and linear activation function in the last layer in the discriminator network.

October 5, 2023

In Figure 15, it is evident that the generator G struggled to produce realistic images at the
outset of training (from 0 to 380 epochs). The discriminator D was able to confidently
distinguish between fake images generated by the generator and real images, as the former
differed significantly from the latter. The discriminator’s classification accuracy (as shown in the
top subplot) for identifying fake images from real ones remained consistently high throughout
this period. The bottom subplot’s red curve shows the area under the curve for this
architecture’s ability to identify normal scalogram images from manipulated ones (such as
manipulated stock prices). During the first 380 epochs, this AUC was unstable, primarily due to
the generator G’s inability to deceive the discriminator D. However, starting from epoch 380,
the generator G began to learn the normal behavior of real images and was able to generate
more realistic images. As seen in the top subplot, the discriminator’s classification accuracy
decreased, making it increasingly difficult for the discriminator D to distinguish between real
and fake images. In the bottom subplot, the discriminator loss for both real and fake samples
hovered around 0.28, while the generator’s loss was around 0.6. The most significant curve to
note is the red curve, which represents the architecture’s ability to identify real images from
the three types of price manipulation injected into the normal bid/ask time series. The AUC
curve stabilized over time, becoming smooth, with a mean value of around 0.92 between 400
and 500 epochs and a small standard deviation.

 (a) epoch 10 (b) epoch 100 (c) epoch 200 (d) epoch 300

 (e) epoch 400 (f) epoch 500

Figure 16: Generated images at different epoch (first run) for Intel stock

The figure depicted above indicates that the generator initially struggled to generate images

that closely resembled real images. However, by epoch 400 and 500, the generator started

learning the normal image behaviors and generating images that closely resembled the real ones.

During the first run, the generator took a considerable amount of time (380 epochs) to start

learning. This was primarily because of the network’s hyper-parameter selection. In contrast,

Figure 17 and Figure 18 show the results of a second run of the model, where the generator

October 5, 2023

started generating realistic images much earlier, i.e., from epoch 180 instead of 380 epochs in

the first run.

Figure 17: Top subplot represents accuracy for the discriminator for both real images and generated image, bottom

subplot represents loss of the discriminator. Use least square loss and linear activation function in the last layer in
the discriminator network

 (a) epoch 10 (b) epoch 100 (c) epoch 200 (d) epoch 300

Figure 18: Generated images at different epoch (second run) for Intel stock

6. Results and discussion

The dataset utilized in this study comprised of 1-level tick data for June 21st, 2012, of five

stocks, namely Amazon, Apple, Google, Intel, and Microsoft. The data was sourced from the

official NASDAQ Historical TotalView-ITCH and was made available by Lobster Data “LOBSTER

project, Atlanta, GA, USA. Limit order book”, n.d. . To assess the effectiveness of the proposed

WALDATA approach , we introduced three distinct manipulation schemes randomly into the

financial time series data, each designated as Type 1, Type 2, and Type 3. Type 1 involved the

insertion of 6.9-basis-point (bps) saw-tooth patterns within an 819-millisecond window (Figure

2). Type 2 consisted of an 800-bps pulse occurring over a one-second interval (Figure 3), while

Type 3 featured an 18.6-bps square pattern lasting a mere 1 second (Figure 4). For each of the

five stocks, we injected a total of 800 instances of three different manipulation schemes, this led

to a total of 4,000 instances across all five stocks. In the process of injecting anomalies into the

dataset, meticulous attention is paid to maintaining the integrity of normal statistical features

October 5, 2023

such as the mean and variance. This ensures that the anomalies, though introduced intentionally,

do not disrupt the fundamental statistical characteristics of the data. So for amazon stocks we

injected a 6.9bps Saw-tooth pattern figure 19, a 30 bps pulse pattern figure 20 and 8bps square

pattern as shown in figure 21.

Figure 19: Sawtooth-injected manipulation of Amazon stock at random locations.

Figure 20: Pulse-injected manipulation of Amazon stock at random locations.

October 5, 2023

Figure 21: Square-injected manipulation of Amazon stock at random locations.

To prepare the data for training and testing, the normal time series were segmented into

sliding windows of 1000 milliseconds. These windows were subsequently transformed into

scalogram images using the continuous wavelet transform (CWT). Similarly, the anomalous time

series were also encoded into scalogram images using CWT. The resulting scalogram images were

then partitioned into separate sets for training and testing. The normal data set was divided into

a 70% normal training set and a 30% normal testing set. This division ensured a significant portion

of normal data for training the detection model while allowing for a robust evaluation on the

testing set. Additionally, the anomalous data set was divided into a 60% anomalies training set

and a 40% anomalies testing set. Table I provides further details on the dataset division.

Table 1: TRAINING AND TESTING EXAMPLES FOR 05 STOCKS

Stocks
trai

normal

ning

anomalies

tes

normal

ting

anomalies

Amazon 4416 480 1893 320

Apple 9760 480 4183 320

Google 3028 480 1299 320

Intel 1053 480 452 320

Microsoft 1300 480 558 320

The evaluation of performance is based on the Confusion matrix presented in Table II. True

Positive (TP) represents manipulation cases correctly identified as manipulation, False Positive

(FP) indicates normal cases detected as manipulation , True Negative (TN) represents normal

cases correctly identified as normal, and False Negative (FN) indicates manipulation cases

detected as normal.

Table 2: CONFUSION MATRIX

 Manipulation cases Normal cases

 Test outcome manipulation True positive (TP) False negative (FN)

 Test outcome normal False positive (FP) True negative (TN)

The ROC curve and AUC were also employed as performance measures to assess the

performance of the proposed method on real stock datasets Fawcett, 2006 . The use of real stock

datasets adds to the validity and applicability of the proposed method in realworld scenarios.

The stocks of the five companies included in the study are well-known and widely traded in the

financial market, which highlights the relevance of the proposed method in practical settings.

The ROC curve is a graphical representation of the trade-off between the true positive rate

October 5, 2023

(sensitivity) and the false positive rate (1-specificity) of a binary classifier system. The AUC

represents the area under the ROC curve and is a widely used performance measure for

evaluating classification systems. A higher AUC indicates better classification performance. To

evaluate the proposed method, the average AUC for every 10 epochs of the Discriminator

network on the testing dataset was computed using Non-saturating Generative Adversarial

Networks (NS-GAN) and Least Square Generative Adversarial Networks (LS-GAN). The results are

presented in figures 19. These figures demonstrate the effectiveness of the proposed method in

detecting anomalies in financial time series data.

(a) Intel Stock: max average AUC- (b) Apple Stock: max average AUC- (c) Amazon Stock: max average AUC-
 LSGAN: 0.9135 max average AUC- LSGAN: 0.78 max average AUC- LSGAN: 0.8950 max average AUC-
 NSGAN : 0.8967 NSGAN : 0.80 NSGAN : 0.8707

(d) Microsoft Stock: max average (e) Google Stock : max average AUCAUC-LSGAN: 0.9260 max average

LSGAN: 0.8041 max average AUC-
 AUC-NSGAN : 0.9174 NSGAN : 0.8417

Figure 22: Average of the area under curve (AUC) on Intel, Apple, Amazon, Microsoft and Google stocks for every 10

epoch of the discriminator network on the testing dataset, blue curve represent AUC of LS-GAN and orange

represent AUC of NS-GAN.

Figure 19 illustrate the Discriminator network’s initial inability to distinguish normal cases

from manipulation cases during the training process, as the Generator initially produces fake

samples that significantly differ from the real samples. As a result, the Discriminator, which acts

as a binary classifier, identifies manipulation cases as being more similar to the real samples than

the fake ones. However, as the Generator progresses in generating fake samples that more

closely resemble real ones, the Discriminator becomes increasingly capable of detecting

manipulation cases. Notably, the AUC achieves a maximum value of 0.8950 for Amazon, 0.9260

for Microsoft, and 0.9135 for Intel, with the exception of Google, whose AUC value was 0.8041.

This disparity can be attributed to the high variability in data and the potential overlap of normal

patterns. The maximum AUC value of 0.78 achieved for Apple Stock is relatively low due to the

high number of normal samples in this dataset compared to the others, with 13943 cases in the

training dataset and 9760 in the testing dataset (refer to Table I). As a result, the generator

requires more time to learn and optimize parameters efficiently, such as the selection of the

October 5, 2023

latent dimension. Given the difficulty in learning the generator to generate fake samples that

cover the entire normal case distribution, the discriminator may predict these normal cases as

manipulations cases, leading to an increase in the number of false positives and a corresponding

decrease in the AUC value. To further enhance the detection capabilities, particularly in scenarios

where some manipulation schemes is available, we conducted a fine-tuning process. This

iterative step involved training the discriminator network stacked with a fully connected layer in

a supervised manner, By incorporating anomalous samples alongside carefully selected normal

samples that had initially proven challenging for the discriminator to classify as normal during

the previous training phase. During the subsequent testing phase, the discriminator network’s

output was interpreted as a probability value ranging from 0 to 1. Initially, a threshold of 0.5 was

employed to classify samples as either normal or anomalous. If the output probability exceeded

0.5, the sample was classified as normal, while a value below 0.5 resulted in the sample being

classified as anomalous. The effectiveness of training the discriminator network with available

manipulation schemes is demonstrated in Table 3 and Table 4. These tables present the results

obtained from the experiments when using

threshold of 0.5, showing the performance metrics

such as accuracy, precision, recall, and F1-score.

The outcomes highlight the discriminative power

and

efficacy of the fine-tuned discriminator network in

accurately detecting and classifying instances of

manipulation, underscoring the value of

incorporating information about manipulation

schemes into the training process.

Table 3: Confusion matrix at threshold 0.5 using LS-GAN

(d) INTC Stock

(e) GOOG Stock

The results validate the importance of incorporating manipulation schemes into the training

phase, as it significantly enhances the discriminator network’s ability to effectively identify and

differentiate between normal market behavior and various manipulation schemes. However,

given the imbalanced nature of the dataset, where the number of normal samples outweighed

Manipulation Normal

Manipulation 306 14

 Normal 79 1814
(b) AMZN Stock

Manipulation Normal

Manipulation 291 29

 Normal 7 445

Manipulation Normal

Manipulation 286 36

 Normal 149 4034
(a) Apple Stock

Manipulation Normal

Manipulation 312 8

 Normal 31 527
(c) MSFT Stock

Manipulation Normal

Manipulation 309 11

 Normal 38 1261

October 5, 2023

the number of anomalous samples, we encountered challenges in accurately detecting and

classifying the minority class. To address this issue, we explored the impact of adjusting the

threshold value. In our investigation, we found that lowering the threshold from 0.5 to 0.3

yielded improved results in terms of accuracy and performance metrics Table 5 and Table 6. By

reducing the threshold, we increased the precision of the detection system towards detecting

anomalous instances. This adjustment allowed for a more conservative classification approach,

enabling the model to identify a greater number of true positives
Table 4: Summary of model performance using LS-GAN at threshold 0.5

 Accuracy Precision Recall F1-score AUC FAR(%)

APPLE 0.9594 0.6575 0.8938 0.7576 0.9836 3.56

AMZN 0.9580 0.7948 0.9563 0.8681 0.9918 4.17

MSFT 0.9556 0.9096 0.9750 0.9412 0.9914 5.56

INTC 0.9534 0.9765 0.9094 0.9417 0.9953 1.55

GOOG 0.9697 0.8905 0.9656 0.9265 0.9947 2.93

and reducing the risk of false positives.

Table 5: Confusion matrix at threshold 0.3 using LS-GAN

Manipulation Normal

Manipulation 305 15

 Normal 20 1873
(b) AMZN Stock

Manipulation Normal

Manipulation 290 30

 Normal 4 448

October 5, 2023

(d) INTC Stock

(e) GOOG Stock

Table 6: Summary of model performance using LS-GAN at

threshold 0.3

 Accurac

y

Precisio

n

Recall

F1-

score

AUC FAR(%

)

APPLE 0.9853 0.9045 0.8875 0.895

9

0.983

6

0.72

AMZ

N

0.9842 0.9385 0.9531 0.945

7

0.991

8

1.06

MSFT 0.9784 0.9688 0.9719 0.970

4

0.991

4

1.80

INTC 0.9560 0.9864 0.9063 0.944

6

0.995

3

0.88

GOO

G

0.9852 0.9684 0.9563 0.962

3

0.994

7

0.77

The results demonstrate that this approach yields stable and significant outcomes, with a low

false alarm rate and high AUC for all five stocks. The success of this approach can be attributed

to the ability of deep convolutional neural networks to automatically learn relevant features

from images, which is employed in both the generator and discriminator networks. The

generator produces fake images which represent manipulation trading (specifically, three

manipulation schemes), and the discriminator learns to distinguish between these fake images

and normal images which represent normal trading. The AUC for Intel stock achieved a score of

0.9953 after training only the last layer for one epoch, as the discriminator had already learned

to distinguish between normal and fake images through its interaction with the generator. This

approach was also successful in achieving a high AUC for the other stocks, as shown table 6.

Table 7: AUC COMPARISON OF WALDATA APPROACH (AFTER 800 EPOCH, THRESHOLD 0.30) WITH BENCHMARK

TECHNIQUES FOR ANOMALY DETECTION.

 Amazon

Apple Googl

e

INTC MSFT

Manipulation Normal

Manipulation 284 36

 Normal 30 4153
(a) Apple Stock

Manipulation Normal

Manipulation 311 9

 Normal 10 548
(c) MSFT Stock

Manipulation Normal

Manipulation 306 14

 Normal 10 1289

October 5, 2023

WALDAT

A after

fine-

tuned

0.9918 0.9836 0.9947 0.9953 0.9914

WALDATA

before

fine-tuned

0.9014 0.841

5

0.871

7

0.926

3

0.937

0

KPCA-

MKDE

0.9602 0.920

6

0.899

6

0.873

2

0.914

3

kNN 0.7982 0.792

6

0.561

2

0.546

9

0.550

9

PCA 0.9013 0.690

2

0.799

3

0.868

0

0.865

5

k-means 0.5799 0.581

9

0.632

8

0.507

7

0.504

7

OCSVM 0.8933 0.660

3

0.591

1

0.677

0

0.641

9

AHMMAS 0.5152 0.534

4

0.511

9

0.516

9

0.671

1

Table 8: FAR COMPARISON OF WALDATA APPROACH (AFTER 800 EPOCH, THRESHOLD 0.30) WITH BENCHMARK
TECHNIQUES FOR ANOMALY DETECTION.

 Amazon

Apple Google INTC MSFT

WALDATA

after fine-

tuned

1.03 0.72 0.76 0.88 1.80

WALDATA

before

fine-tuned

1.94 1.58 1.43 1.76 2.27

KPCA-

MKDE

1.22 1.07 1.62 0.54 0.71

kNN 0.14 0.45 0.68 0.23 0.08

PCA 3.9 6.64 7.22 57.29 49.89

October 5, 2023

k-means 7.33 1.26 9.95 0.02 0.02

OCSVM 49.54 67.8 75.2 59.08 77.48

AHMMAS 9.22 7.83 0.5 1.15 0.52

Table 7 and table 8 demonstrate the evaluation of the performance of the WALDATA

approach compared to commonly used anomaly detection techniques such as KPCA-KDE based

Rizvi et al., 2020, K-nearest neighbor based Bishop, 2006 , PCA-based Shyu et al., 2003, k-means

based Chawla and Gionis, 2013, OCSVM based Bishop, 2006, and AHMMAS based Cao et al., 2015

in both unsupervised and supervised learning.

The experiments demonstrated that our WALDATA approach achieved a higher rate of

detection of manipulation of three types (Saw tooth, Spike & Square pattern) in stock price

compared to of the existing approaches for stock price manipulation detection such as

KPCAMKDE and AHMMAS, as well as some existing benchmark techniques for anomaly detection

like PCA, K-means, kNN, and OCSVM. Specifically, the approach achieved a detection rate of 99%

for the tested manipulation schemes, indicating that it is highly effective at detecting

manipulation in financial markets. Additionally, the false alarm rate (FAR) of the proposed

approach was comparable to existing approaches, demonstrating that it is capable of detecting

manipulation while minimizing false positives. The robustness of the proposed approach can be

attributed to the use of wavelet analysis in decomposing the stock price time series into multiple

scales. This allowed for the identification of complex patterns and features that may indicate

manipulation, leading to a more comprehensive understanding of the data. By leveraging this

additional information, the WALDATA approach achieved higher detection rates compared to

existing approaches. Additionally, the use of a DCGAN enabled the automatic learning of relevant

features from the wavelet coefficients of the stock price data, without the need for human

experts to handcraft features. This approach allowed for the learning of complex, high-level

features from the data, which is particularly useful in cases where labeled data for stock price

manipulation is not available.

7. Conclusion

The proposed WALDATA approach demonstrated its efficacy in detecting unknown

manipulation schemes in stock markets by combining the Continuous Wavelet Transform and

the Deep Convolutional Generative Adversarial Network. The results showed high accuracy and

low false alarm rates in identifying trade manipulations, even in the absence of labeled datasets.

The combination of deep learning and signal processing techniques opens up new avenues for

anomaly detection in financial time series. Our approach is in line with previous studies that

utilize generative neural networks for anomaly detection, including GANs and Variational

Autoencoders (VAEs). These models have been shown to be effective in detecting financial fraud,

such as insider trading and financial statement fraud. The proposed approach also highlights the

October 5, 2023

potential of using image-based analysis in the financial domain, as demonstrated by the

conversion of time series data into 2D images using the Continuous Wavelet Transform. One of

the strengths of our approach is the use of normal trading behavior when training the

generator/discriminator network. This allows our approach to detect all types of manipulation

schemes, not just those considered in this study. Furthermore, our approach provides significant

and stable results in terms of area under the curve (AUC) and a very low rate of false alarms for

the five stocks tested: Amazon, Apple, Google, Intel, and Microsoft. Another advantage of our

approach is that it is able to adapt to changes in the market conditions and update its

understanding of normal behavior. This is because the generative neural network is trained on a

continuous stream of data, which allows it to adapt to changing market conditions. In addition

to stock market manipulation detection, the proposed approach could have potential

applications in other fields that involve time series data, such as detecting anomalies in medical

signals, and financial statement fraud. Our approach is not limited to the stock market and could

be adapted to different types of time series data with the appropriate modification to the

generator/discriminator network architecture. However, some limitations of the proposed

approach should be considered. One of them is the need for a large amount of computational

power to train the model. In addition, the proposed approach requires extensive parameter

tuning, especially for the generator network, to ensure that the generated fake samples

resemble the normal patterns. Moreover, further work is required to enhance the

generalizability of the model to new datasets. In summary, our WALDATA approach provides a

promising solution to the problem of detecting unknown manipulation schemes in financial time

series. The combination of deep learning and signal processing techniques creates new

opportunities for anomaly detection in financial time series, and it is hoped that this research

will encourage further exploration and development in this field.

October 5, 2023

Acknowledgements

References

Abbas, B., Belatreche, A., & Bouridane, A. (2019). Stock price manipulation detection using empirical mode

decomposition based kernel density estimation clustering method. Intelligent Systems and Applications:

Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2, 851– 866.
Allen, F., & Gale, D. (1992). Stock-price manipulation. The Review of Financial Studies, 5(3), 503–529.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Cao, Y., Li, Y., Coleman, S., Belatreche, A., & McGinnity, T. M. (2014). Detecting price manipulation in the financial

market. 2014 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr),
77–84. https://doi.org/10.1109/CIFEr.2014.6924057

Cao, Y., Li, Y., Coleman, S., Belatreche, A., & McGinnity, T. M. (2015). Adaptive hidden markov model with anomaly
states for price manipulation detection. IEEE Transactions on Neural Networks and Learning Systems, 26,

318–330. https://doi.org/10.1109/TNNLS.2014.2315042
Chawla, S., & Gionis, A. (2013). K-means-: A unified approach to clustering and outlier detection. SDM.
Chullamonthon, P., & Tangamchit, P. (2023). Ensemble of supervised and unsupervised deep neural networks for

stock price manipulation detection. Expert Systems with Applications, 220, 119698. https://doi.

org/https://doi.org/10.1016/j.eswa.2023.119698
Diaz, D., Theodoulidis, B., & Sampaio, P. R. F. (2011). Analysis of stock market manipulations using knowledge

discovery techniques applied to intraday trade prices. Expert Syst. Appl., 38, 12757– 12771.
Fawcett, T. (2006). An introduction to roc analysis. Pattern Recogn. Lett., 27, 861–874. https://doi.org/10.

1016/j.patrec.2005.10.010
Gallegati, M. (2012). A wavelet-based approach to test for financial market contagion [1st issue of the Annals of

Computational and Financial Econometrics Sixth Special Issue on Computational Econometrics].
Computational Statistics Data Analysis, 56, 3491–3497. https://doi.org/https://doi.org/10.1016/

j.csda.2010.11.003
Golmohammadi, K., Zaïane, O., & Diaz, D. (2015). Detecting stock market manipulation using supervised learning

algorithms. DSAA 2014 - Proceedings of the 2014 IEEE International Conference on Data Science and
Advanced Analytics, 435–441. https://doi.org/10.1109/DSAA.2014.7058109

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2020).
Generative adversarial networks. Commun. ACM, 63, 139–144. https://doi.org/ 10.1145/3422622

Lahmiri, S. (2014). Wavelet low- and high-frequency components as features for predicting stock prices with
backpropagation neural networks. Journal of King Saud University - Computer and Information Sciences,

26, 218–227. https://doi.org/https://doi.org/10.1016/j.jksuci.2013.12.001
Langi, A. Z. R., Pitara, S. W., & Kuspriyanto. (2012). Stock prices trends analysis using wavelet transform. 2012

International Conference on Cloud Computing and Social Networking (ICCCSN), 1–4.
Leangarun, T., Tangamchit, P., & Thajchayapong, S. (2018). Stock price manipulation detection using generative

adversarial networks. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 2104–2111.
https://doi.org/10.1109/SSCI.2018.8628777

Leangarun, T., Tangamchit, P., & Thajchayapong, S. (2021). Stock price manipulation detection using deep
unsupervised learning: The case of thailand. IEEE Access, 9, 106824–106838. https://doi.org/10.

1109/ACCESS.2021.3100359
Lin X, V. D. T. J. (2012). High frequency trading measurement, detection and response. Credit Suisse.
Lobster project, atlanta, ga, usa. limit order book. (n.d.). https://lobsterdata.com/info/DataSamples.php
Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693. https://doi.org/10.1109/

34.192463

October 5, 2023

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., & Smolley, S. P. (2017). Least squares generative adversarial networks.
2017 IEEE International Conference on Computer Vision (ICCV), 2813– 2821.

https://doi.org/10.1109/ICCV.2017.304
Mongkolnavin, J., & Tirapat, S. (2009). Marking the close analysis in thai bond market surveillance using association

rules. Expert Systems with Applications, 36, 8523–8527. https://doi.org/https://doi.
org/10.1016/j.eswa.2008.10.073

Nanex. (2022). Whac-a-mole is manipulation. Retrieved%20from%20http://www.nanex.net/aqck2/3598.
Ögüt, H., Doganay, M. M., & Aktas, R. (2009). Detecting stock-price manipulation in an emerging market: The case

of turkey. Expert Syst. Appl., 36, 11944–11949.
Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep convolutional

generative adversarial networks. CoRR, abs/1511.06434.
Rizvi, B., Belatreche, A., & Bouridane, A. (2019). A dendritic cell immune system inspired approach for stock market

manipulation detection. 2019 IEEE Congress on Evolutionary Computation (CEC), 3325–3332.
https://doi.org/10.1109/CEC.2019.8789938

Rizvi, B., Belatreche, A., Bouridane, A., & Watson, I. (2020). Detection of stock price manipulation using kernel based
principal component analysis and multivariate density estimation. IEEE Access, 8, 135989–136003.

https://doi.org/10.1109/ACCESS.2020.3011590
Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly detection scheme based on principal

component classifier.
Sridhar, S., Mootha, S., & Subramanian, S. (2020). Detection of market manipulation using ensemble neural

networks. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 1–8.

https://doi.org/10.1109/ISCV49265.2020.9204330
Uslu, N. C., & Akal, F. (2022). A machine learning approach to detection of trade-based manipulations in borsa

istanbul. Computational Economics, 60, 25–45. https://doi.org/10.1007/s10614-021-10131-8
Wang, Q., Xu, W., Huang, X., & Yang, K. (2019). Enhancing intraday stock price manipulation detection by leveraging

recurrent neural networks with ensemble learning. Neurocomputing, 347, 46–58. https:

//doi.org/https://doi.org/10.1016/j.neucom.2019.03.006

Author biography

Khaled Safa received the Engineer degree in computer Science from Ibn Khaldoun

University, Tiaret, Algeria, in 2005, and the magister degree in Computer Science

from the National Institute of Telecommunications and Information and

Communication Technologies, Oran, Algeria, in 2009. He is currently pursuing the

PhD degree in deep learning and bio-inspired models for automatic detection of

stock markets manipulation at the Computer

Science department of Constantine2 University. His current interests include

deep learning and artificial intelligence in stock market data analysis.

Ammar belatreche (Member, IEEE) received the Ph.D. degree in computer

science from Ulster University, Derry, U.K. He joined Northumbria University, in

May 2016. He was a Research Associate with the Intelligent Systems Research

Centre (ISRC) and a Lecturer in computer science with the School of Computing

and Intelligent Systems, Ulster University.He is currently an Associate Professor

in computer science and a Program Leader with the M.Sc Advanced Computer

October 5, 2023

Science, Department of Computer and Information Sciences. He is also a member of the

Computational Intelligence and Visual Computing (CIVC) Research Group. He has extensive

experience across academic and research and development. He has led a number of research

and consultancy projects. He has successfully supervised/co-supervised eight Ph.D. students to

completion. His research interests include machine learning and AI, bio-inspired intelligent

systems, structured and unstructured data analytics, capital markets engineering, and image

processing and understanding. He is a Fellow of the Higher Education Academy. He was a

program committee member of several international conferences and journals. He serves as an

Associate Editor for Neurocomputing (Elsevier) He served as a reviewer for several international

conferences and journals

Salima Ouadfel received her State Engineer degree, Magister degree in

Computer Science from Mentouri University in Constantine and she received a

PhD in Computer Science from the University of Batna. She is currently

Associate Professor at Abdelhamid Mehri University, Constantine2. Her current

research includes nature inspired metaheuristics, image processing, data

mining, Bioinformatics and deep learning

