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Measures of spatial association are important to reveal the spatial structures and 21 
patterns in geographical phenomena. They have utility for spatial interpolation, 22 
stochastic simulation and causal inference, amongst others. Such measures are 23 
abundantly available for continuous spatial variables, while for categorical spatial 24 
variables they are less well developed. In this research, we developed a measure of 25 
spatial association for categorical spatial variables coined the “entropogram”, 26 
quantifying its spatial association using mutual information. Mutual information 27 
concerns information shared by pairs of random variables at different locations as 28 
revealed by their observed joint frequency distribution and marginal frequency 29 
distributions. The developed new measure is modeled as a function of lag in 30 
analogy to the variogram. While existing measures focus mainly on inter-state 31 
relationships, the entropogram models the spatial correlation in categorical spatial 32 
variables holistically. In this way, the entropogram brings multiple advantages, for 33 
example, simplifying the representation of spatial structure for categorical 34 
variables and facilitating communication. Besides, the entropogram also reflects 35 
variation in the spatial correlation between different states. We first explored the 36 
properties of the entropogram in a simulation study. Then, we applied the 37 
entropogram to analyze the spatial association of land cover types in Qinxian, 38 
Shanxi, China. We conclude that the entropogram provides a suitable addition to 39 
existing measures of spatial association for applications in a wide range of 40 
disciplines where the categorical spatial variable is of interest. 41 
 42 
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1. Introduction 45 

Spatial association is an essential property of Earth science data (Fotheringham 2009; 46 

Goodchild 2011). It describes the variation in a property or between elements as a 47 

function of the distance and direction vector between observations at different locations 48 

(Cliff and Ord 1981). Spatial association is determined by the underlying spatial and 49 

dynamic processes operating on geographic landscapes, whether they arise from natural 50 

or human activities. For example, land-cover change processes may affect the spatial 51 



pattern of the landscape, which itself may affect the space-time pattern of the local micro-52 

climate (Pielke Sr 2005). Often, spatial association can be used to infer the parameters of 53 

models of the corresponding underlying dynamic processes that led to the observed 54 

patterns, and support subsequent decision-making (Wang, Zhang, and Fu 2016; Benedetti 55 

2020). It is, therefore, important to measure and characterize the spatial association in 56 

geographical properties and elements over the Earth surface. 57 

At the broadest level of classification, Earth science data as a realization of 58 

random functions (RFs) can be either continuous or categorical (Ge et al 2019). A RF is 59 

a stochastic process that can generate the same realisations as a dynamic process (i.e., a 60 

RF is a surrogate for our incomplete knowledge of the dynamic process). The main 61 

difference between continuous and categorical data is that categorical data consist of 62 

states (e.g., land cover types) while continuous data take values on an interval or ratio 63 

scale (e.g., temperature). This distinction has led to the emergence of different methods 64 

to characterize various types of spatial association for RFs, including spatial 65 

autocorrelation and spatial heterogeneity (Anselin 1995; Wang et al. 2010). Since the 66 

1950s, various statistical measures and functions have been proposed to describe the 67 

spatial association in continuous data. Widely used statistical measures for a spatial 68 

continuous field are Moran’s I (Moran 1950), Geary’s c (Geary 1954), the covariance 69 

function and the variogram (Matheron 1963). Moran’s I and Geary’s c were developed to 70 

test for spatial correlation in a continuous variable measured at discrete units. The 71 

covariance function is rooted in time-series modelling, and was adapted to model spatial 72 

dependence, while the variogram, as its generalization, was introduced specifically for 73 

handling spatial data (Matheron, 1963; Goovaerts 1997; Garrigues et al. 2006). Both the 74 

covariance function and the variogram describe how spatial variation in a continuous 75 

variable varies as a function of separation distance and direction. These functions were 76 



developed for continuous variables. They cannot be applied directly to categorical data 77 

as the states in categorical data are qualitatively different, not numerically different. 78 

The indicator variogram was proposed as an extension of the variogram to model 79 

categorical data with states (Journel 1986). The multiple states are reduced to a set of 80 

binary spatial variables by comparing each state against all others each time, and the 81 

resulting binary data are de facto discrete RFs taking only two possible values (0, 1), for 82 

example, referring to the presence (1) or absence (0) of the target state. Following this 83 

transformation from states to binary values, a more general solution is to capture the 84 

corresponding frequency information of the variable states with a probability mass 85 

distribution of states. For example, the join count statistic is a widely used frequency-86 

derived index to characterize the global spatial autocorrelation of categorical variables 87 

(Cliff and Ord 1970). In place of the variance of binary data, it represents the degree of 88 

dispersion by relating the number of connections (corresponding to the occurrence of 89 

value pairs at neighbouring locations) to the theoretical number of connections if the 90 

points were distributed randomly. More recently, it was popularized, and the number of 91 

connections was extended to the transition probability of the states at neighbouring 92 

locations (Bai et al. 2016). To address spatial heterogeneity, the conditional version of a 93 

local join count statistic was proposed (Anselin and Li 2019), while the transiogram (Li 94 

2006) was developed to model the transition probability between different variable states 95 

as a function of spatial lag. These spatial association measures focused mainly on state-96 

level spatial association, especially inter-state relationships, and did not result in a 97 

comprehensive representation of the full variable state space. 98 

Entropy characterizes the spatial association of a categorical spatial variable 99 

where the transformation from states to values is no longer needed. Measures of spatial 100 

association based on entropy include symbolic entropy (Ruiz, López, and Páez 2010), 101 



spatial entropy (Leibovici et al. 2011), spatial mutual information (Altieri, Cocchi, and 102 

Roli 2018) and the entropy-based local indicator of spatial association (Naimi et al. 2019). 103 

These global and local entropy-based indices of spatial association for categorical data 104 

fail to capture any heterogeneity in the underlying stochastic process from which the 105 

realization (spatial data) is supposed to have been drawn (Atkinson and Tate 2000). Most 106 

existing entropy-derived measures assume implicitly that all spatial random variables 107 

(RVs) share the same probability mass distribution at each location. Spatial data are then 108 

considered as mutually independent samples from that distribution. This assumption of 109 

independently and identically distributed (i.i.d.) samples taken from a spatially distributed 110 

phenomenon, however, is geographically unrealistic. In this circumstance, spatial 111 

association as a function of the distance (and direction) between locations cannot be 112 

generalized for categorical data. 113 

In this research, we introduce the concept of mutual information into the 114 

variogram. We develop and apply a new function to characterize the spatial association 115 

of a categorical spatial variable based on the mutual information between pairs of points, 116 

under the assumption of second-order stationarity. The developed new function is termed 117 

the entropogram, which can model the spatial association in multi-category (i.e., multi-118 

state) spatial data directly. Specifically, it is conceived as a function of lag, in analogy to 119 

the variogram, where the variance at each lag is replaced by the corresponding mutual 120 

information about the RV at two locations. Mutual information quantifies the total 121 

amount of information shared by the RV at two locations. It reveals the spatial 122 

dependence between any two spatial locations in terms of the full variable state space 123 

instead of the individual variable states only. In this way, the entropogram can help to 124 

better understand the geographical processes underlying categorical properties from an 125 

information perspective. 126 



In the remainder of this paper, we first define the entropogram and propose its 127 

estimation from sample data. Then corresponding confidence intervals are provided 128 

through an uncertainty analysis. Next, we present both numerical and real-world 129 

experiments that examine the performance of the proposed entropogram together with a 130 

discussion of the most salient issues. Finally, we provide some concluding remarks. 131 

2. Capturing spatial association with mutual information 132 

2.1 Conceptual framework 133 

In this section, we give a brief introduction to the development of the variogram and 134 

entropy-based measures of spatial association for a single qualitative spatial variable, to 135 

demonstrate clearly our contribution. 136 

2.1.1 Variogram 137 

Geostatistics is based on regionalized variable (ReV) theory (Matheron 1963). ReV 138 

theory defines, first, a Random Function (RF) model, being the spatial equivalent of a 139 

Random Variable (RV) where each location has its own RV. The RF is parameterized by 140 

the variogram, which represents ‘semivariance’ as a function of lag (the distance and 141 

direction of separation). The semivariance is the spatial equivalent of (specifically half 142 

of) the variance of a RV for a pair of points. Application of the variogram is, therefore, 143 

accompanied by the decision to adopt a RF that is intrinsically stationary. This requires 144 

that the RF covering the study domain has a constant mean, and that the semivariance of 145 

the paired differences between RVs depends only on the lag between their two locations. 146 

In this way, the variogram characterizes spatial dependence and, more specifically, it 147 

specifies how the semivariance varies as a function of the lag between pairs of locations. 148 

Mathematically, given a RF 𝑍𝑍  the variogram 𝛾𝛾  is defined for spatial lag 𝐡𝐡  (i.e., the 149 



distance and direction between any two locations in the study domain) as: 150 

 𝛾𝛾(𝐡𝐡) = 𝛾𝛾(𝑍𝑍(𝐬𝐬),𝑍𝑍(𝐬𝐬 − 𝐡𝐡)) = 1
2

E ��𝑍𝑍(𝐬𝐬) − 𝑍𝑍(𝐬𝐬 − 𝐡𝐡)�
2
�, (1) 151 

where 𝐬𝐬 is a location vector.  152 

2.1.2 Entropy-derived measures 153 

Most entropy-based measures of spatial association are derived directly from the classic 154 

Shannon entropy (Shannon and Weaver 1949). Entropy characterizes the different states 155 

of categorical variables simultaneously. Consider a categorical RV 𝑋𝑋 with 𝑚𝑚 finite states 156 

𝑥𝑥1, 𝑥𝑥2,…, 𝑥𝑥𝑚𝑚, each with an occurrence probability 𝑝𝑝(𝑥𝑥1), 𝑝𝑝(𝑥𝑥2),…, 𝑝𝑝(𝑥𝑥𝑚𝑚), respectively. 157 

The Shannon entropy 𝐻𝐻(𝑋𝑋) of a categorical RV 𝑋𝑋 represents the amount of information 158 

associated with each observation to identify its true state (Shannon and Weaver 1949). It 159 

equals: 160 

 𝐻𝐻(𝑋𝑋) = −∑ 𝑝𝑝(𝑥𝑥𝑖𝑖) ln�𝑝𝑝(𝑥𝑥𝑖𝑖)�𝑚𝑚
𝑖𝑖=1 . (2) 161 

where 𝑥𝑥𝑖𝑖  is the 𝑖𝑖th  state of 𝑋𝑋 . 𝐻𝐻(𝑋𝑋)  represents the expectation of the amount of 162 

information that can be obtained from each observation. For state 𝑥𝑥𝑖𝑖 , this equals 163 

−ln�𝑝𝑝(𝑥𝑥𝑖𝑖)�, indicating that states with lower occurrence probability can provide more 164 

information once observed. The Shannon entropy requires X to behave equivalently 165 

across space (i.e., the spatial data are considered as mutually independent samples drawn 166 

from single RVs; see Figure 1). In consequence, spatial associations between locations 167 

cannot be captured by the model due to the independence assumption. Spatial entropy 168 

was proposed to characterise the co-occurrence of states at position pairs separated by a 169 

distance smaller than a fixed threshold ℎ, instead of the incidence of available states over 170 

space (Leibovici et al. 2014). Spatial entropy is also appliable to multivariate joint 171 



distributions. As we focus on a single geographical variable across space, co-occurrences 172 

are defined here as the simultaneous realization of two RVs at pairs of locations for 173 

illustration. Specifically, all state pairs observed at two locations less than distance ℎ 174 

apart are assumed to be drawn from a bivariate distribution < 𝑋𝑋1,𝑋𝑋2 >, and the entropy 175 

of < 𝑋𝑋1,𝑋𝑋2 > is defined as: 176 

 𝐻𝐻(𝑋𝑋1,𝑋𝑋2) = −∑ ∑ 𝑝𝑝ℎ�𝑥𝑥1,𝑖𝑖,𝑥𝑥2,𝑗𝑗� ln �𝑝𝑝ℎ�𝑥𝑥1,𝑖𝑖, 𝑥𝑥2,𝑗𝑗��𝑗𝑗𝑖𝑖 , (3) 177 

where 𝑥𝑥1,𝑖𝑖  and 𝑥𝑥2,𝑗𝑗  are the 𝑖𝑖th  and 𝑗𝑗th  states for 𝑋𝑋1  and 𝑋𝑋2 , respectively, and 178 

𝑝𝑝ℎ�𝑥𝑥1,𝑖𝑖, 𝑥𝑥2,𝑗𝑗� is their joint probability mass for co-occurrence closer than distance ℎ. Then, 179 

the spatial entropy is built as a function of threshold ℎ; that is, the set of state similarities 180 

at neighboring location pairs, where neighbors are defined by being closer than the 181 

threshold distance ℎ. Note that 𝑋𝑋1 and 𝑋𝑋2 share the same set of states regardless of ℎ, 182 

while samples of the bivariate < 𝑋𝑋1,𝑋𝑋2 >  are nested, expanding with the threshold 183 

distance ℎ. This means that the bivariate < 𝑋𝑋1,𝑋𝑋2 > are theoretically distinct at each 184 

threshold ℎ, as a result of spatial heterogeneity. In summary, almost all spatial association 185 

measures are univariate or bivariate in their approach to describing spatial association, 186 

while locations per se are not accounted for. This is similar to ReV theory, where the 187 

variogram is a two-point statistic (Mariethoz and Caers 2014). 188 

2.2 Mutual information described spatial association 189 

We consider categorical spatial data as a realization of a categorical random field 𝑋𝑋. 190 

Mutual information can be naturally employed to describe the spatial association between 191 

its two constituent RVs 𝑋𝑋(𝐬𝐬1) and 𝑋𝑋(𝐬𝐬2) at a pair of locations 𝐬𝐬1 and 𝐬𝐬2 from which the 192 

realized state at that pair of locations is supposed to have been drawn. The mutual 193 

information described spatial association (MSA) 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋(𝐬𝐬1),𝑋𝑋(𝐬𝐬2))  between 𝑋𝑋(𝐬𝐬1) 194 



and 𝑋𝑋(𝐬𝐬2)  is defined by the information difference between the joint probability 195 

distribution of 𝑋𝑋(𝐬𝐬1) and 𝑋𝑋(𝐬𝐬2) and the sum of their marginal distributions. That is, 196 

 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋(𝐬𝐬1),𝑋𝑋(𝐬𝐬2)) = 𝐻𝐻(𝑋𝑋(𝐬𝐬1)) + 𝐻𝐻(𝑋𝑋(𝐬𝐬2)) − 𝐻𝐻(𝑋𝑋(𝐬𝐬1),𝑋𝑋(𝐬𝐬2)), (4) 197 

where 𝐻𝐻(𝑋𝑋(𝐬𝐬1)) and 𝐻𝐻(𝑋𝑋(𝐬𝐬2)) are the Shannon entropy of categorical RVs 𝑋𝑋(𝐬𝐬1) and 198 

𝑋𝑋(𝐬𝐬2) (see equation (2)), and 𝐻𝐻(𝑋𝑋(𝐬𝐬1),𝑋𝑋(𝐬𝐬2)) is the Shannon entropy of categorical RV 199 

〈𝑋𝑋(𝐬𝐬1),𝑋𝑋(𝐬𝐬2)〉 (see equation (3)), respectively. Given a categorical spatial dataset, the 200 

observed states of interest at distinct locations are assumed to be drawn from a RF 𝑋𝑋. The 201 

second-order property of such a RF (i.e., the covariance matrix) can then be described by 202 

our proposed MSA across all location pairs.  203 

3. Entropogram 204 

3.1 Assumption of second-order stationarity 205 

For a pair of locations (𝐬𝐬1, 𝐬𝐬2), reliable estimation of the joint probability function of the 206 

corresponding RVs 𝑋𝑋(𝐬𝐬1) and 𝑋𝑋(𝐬𝐬2), as well as their marginal distributions, requires a 207 

number of sample observations. However, there are generally insufficient data (generally 208 

only one sample for each location) to estimate the probability distribution at each location. 209 

Therefore, analogous to the assumption of intrinsic stationarity in geostatistics, we 210 

propose to define the MSA by assuming that point pairs separated by the same spatial lag 211 

also share equal spatial association. Under this assumption, the MSA is defined as the 212 

entropogram 𝜏𝜏, a function of lag 𝐡𝐡: 213 

 
𝜏𝜏(𝐡𝐡) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋(𝐬𝐬),𝑋𝑋(𝐬𝐬 − 𝐡𝐡))                                                         

= ∑ ∑ 𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� ln�
𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬−𝐡𝐡)�

𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)�𝑝𝑝�𝑥𝑥𝑗𝑗(𝐬𝐬−𝐡𝐡)�
�𝑗𝑗𝑖𝑖

, (5) 214 



where 𝑥𝑥𝑖𝑖(𝐬𝐬) and 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡) are the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ states for 𝑋𝑋(𝐬𝐬) and 𝑋𝑋(𝐬𝐬 − 𝐡𝐡), respectively, 215 

and 𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� is their joint probability mass. The derivation can be found in 216 

Appendix A. Equivalent to the assumption of the shared constant mean, we assume that 217 

𝑋𝑋(𝐬𝐬) and 𝑋𝑋(𝐬𝐬 − 𝐡𝐡) share the same probability mass function 𝑝𝑝(𝑥𝑥𝑖𝑖), for the RVs at each 218 

location, where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ state of the study categorical variable. In this way, 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)� 219 

can be estimated by 220 

 𝑝̂𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)� = 𝑁𝑁𝑖𝑖/𝑁𝑁, (6) 221 

where 𝑁𝑁𝑖𝑖  is the number of observations belonging to the 𝑖𝑖𝑡𝑡ℎ  state and 𝑁𝑁  is the total 222 

number of observations. 𝑥𝑥𝑖𝑖(𝐬𝐬) is conceived as the 𝑖𝑖𝑡𝑡ℎ state at a randomly chosen location 223 

s. Then, the joint probability 𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� is generated by 224 

 𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� = 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)�𝑝𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)|𝑥𝑥𝑖𝑖(𝐬𝐬)�, (7) 225 

where 𝑝𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)|𝑥𝑥𝑖𝑖(𝐬𝐬)� is the conditional probability that the virtual neighbouring 226 

position 𝐬𝐬 − 𝐡𝐡 belongs to the 𝑗𝑗𝑡𝑡ℎ state given that location 𝐬𝐬 belongs to the 𝑖𝑖𝑡𝑡ℎ state. By 227 

collecting the observations of point pairs at spatial lag 𝐡𝐡 apart, 𝑝𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)|𝑥𝑥𝑖𝑖(𝐬𝐬)� is 228 

estimated by 229 

 𝑝̂𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)|𝑥𝑥𝑖𝑖(𝐬𝐬)� = 𝑛𝑛𝑖𝑖𝑖𝑖/𝑛𝑛𝑖𝑖, (8) 230 

where 𝑛𝑛𝑖𝑖 is the number of point pairs at a spatial lag 𝐡𝐡 apart taking the 𝑖𝑖th state for at least 231 

one point (𝑋𝑋(𝐬𝐬) = 𝑥𝑥𝑖𝑖  or 𝑋𝑋(𝐬𝐬 − 𝐡𝐡) = 𝑥𝑥𝑖𝑖 ), and 𝑛𝑛𝑖𝑖𝑖𝑖  is the number of those point pairs 232 

having both the 𝑖𝑖th and 𝑗𝑗thstate (𝑋𝑋(𝐬𝐬) = 𝑥𝑥𝑖𝑖 and 𝑋𝑋(𝐬𝐬 − 𝐡𝐡) = 𝑥𝑥𝑗𝑗, or 𝑋𝑋(𝐬𝐬) = 𝑥𝑥𝑗𝑗 and 𝑋𝑋(𝐬𝐬 −233 

𝐡𝐡) = 𝑥𝑥𝑖𝑖). Thus, we have 234 



 ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑛𝑛𝑖𝑖, (9) 235 

and, therefore, 236 

 ∑ ∑ 𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)�𝑗𝑗𝑖𝑖 = ∑ ∑ (𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖⁄ )(𝑁𝑁𝑖𝑖/𝑁𝑁)𝑗𝑗𝑖𝑖 = 1, (10) 237 

which means that the estimated probability mass function 𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� is valid. 238 

In summary, the entropogram 𝜏𝜏(𝐡𝐡) has several important properties, including:  239 

1. 𝜏𝜏(𝐡𝐡) is non-negative (i.e., 𝜏𝜏(𝐡𝐡) ≥ 0) and the necessary and sufficient condition 240 

for 𝜏𝜏(𝐡𝐡) = 0 is that 𝑋𝑋(𝐬𝐬) is independent from 𝑋𝑋(𝐬𝐬 − 𝐡𝐡). Theoretically, two RVs 241 

𝑋𝑋(𝐬𝐬)  and 𝑋𝑋(𝐬𝐬 − 𝐡𝐡)  are independent of each other, meaning that there is no 242 

association between them, when 𝜏𝜏(𝐡𝐡) = 0.  243 

2. Based on the definition of the entropogram, the spatial association 𝜏𝜏(𝐡𝐡) between 244 

𝑋𝑋(𝐬𝐬)  and 𝑋𝑋(𝐬𝐬 − 𝐡𝐡)  is symmetric, i.e., 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋(𝐬𝐬),𝑋𝑋(𝐬𝐬 − 𝐡𝐡)) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋(𝐬𝐬 −245 

𝐡𝐡),𝑋𝑋(𝐬𝐬)).  246 

3. The spatial association between a variable and itself is the Shannon entropy of 247 

that variable (i.e., 𝜏𝜏(0) = 𝐻𝐻�𝑋𝑋(𝐬𝐬)� ). Indeed, 𝐻𝐻�𝑋𝑋(𝐬𝐬)�  is the expectation of 248 

ln(1/𝑝𝑝(𝑥𝑥(𝐬𝐬))), where 1/𝑝𝑝(𝑥𝑥(𝐬𝐬)) can be understood as the level of surprise at a 249 

specific state of 𝑋𝑋(𝐬𝐬) being observed. In this way, the spatial association between 250 

a variable and itself takes the maximum value (i.e., 𝜏𝜏(0) = 𝐻𝐻�𝑋𝑋(𝐬𝐬)� ≥251 

𝐻𝐻�𝑋𝑋(𝐬𝐬)� − 𝐻𝐻�𝑋𝑋(𝐬𝐬)�𝑋𝑋(𝐬𝐬 − 𝐡𝐡)� = 𝜏𝜏(𝒉𝒉)). This is intuitive as observations of one 252 

variable provide the greatest information about that variable relative to other 253 

variables. 254 

3.2 Uncertainty analysis 255 

Based upon a given sampling framework, the unknown true probabilities in equation (5) 256 



are estimated by the frequencies of occurrence of different variable states in the sample. 257 

At different spatial lags, the sample size may be different which will lead to variation in 258 

the estimation accuracy across spatial lags. In this section, the relationship between 259 

sample estimates and the unknown true probabilities is explored. 260 

Let the unknown true probabilities 𝑝𝑝𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑚𝑚, come from the sequence of 261 

mutually independent RVs, each of which takes on the state 𝑖𝑖 with probability 𝑝𝑝𝑖𝑖. An 262 

estimate of the amount of Shannon entropy 𝐻𝐻� is obtained by the corresponding sample 263 

estimates of the state incidence 𝑝̂𝑝𝑖𝑖 according to equation (2). Then, the estimated entropy 264 

can be expanded in a Taylor series at the point (𝑝𝑝1, … ,𝑝𝑝𝑚𝑚), 265 

 𝐻𝐻� = 𝐻𝐻 − ∑ (1 + ln𝑝𝑝𝑖𝑖)(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)𝑚𝑚
𝑖𝑖=1 − 1

2
∑ (𝑝𝑝�𝑖𝑖−𝑝𝑝𝑖𝑖)2

𝑝𝑝𝑖𝑖
𝑚𝑚
𝑖𝑖=1 + 1

6
∑ (𝑝𝑝�𝑖𝑖−𝑝𝑝𝑖𝑖)3

(𝑝𝑝𝑖𝑖+𝜃𝜃(𝑝𝑝�𝑖𝑖−𝑝𝑝𝑖𝑖))2
𝑚𝑚
𝑖𝑖=1 ,(11) 266 

where 0 < 𝜃𝜃 < 1. A detailed derivation can be found in Appendix B. As the sample size 267 

increases, the estimate 𝑝̂𝑝𝑖𝑖 will tend to the true probabilities 𝑝𝑝𝑖𝑖, thus, 268 

 E �𝑝̂𝑝𝑖𝑖 = 𝑁𝑁𝑖𝑖
𝑁𝑁
�
𝑁𝑁→∞
�⎯⎯� 𝑝𝑝𝑖𝑖. (12) 269 

where 𝑁𝑁𝑖𝑖 is the occurrence number of a specific variable state 𝑖𝑖 and 𝑁𝑁 is the sample size.  270 

Given the sample size 𝑁𝑁, the number of occurrences of a specific variable state 𝑖𝑖 271 

can be considered as a realization from the Binomial distribution 𝑁𝑁𝑖𝑖~𝐵𝐵(𝑁𝑁,𝑝𝑝𝑖𝑖) . The 272 

variance of the corresponding sample estimates of the state incidence 𝑝̂𝑝𝑖𝑖 is then obtained 273 

as  274 

 E(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)2 = Var �𝑁𝑁𝑖𝑖
𝑁𝑁
� = 𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)

𝑁𝑁
. (13) 275 

We then have that 276 

 E�𝐻𝐻�� = 𝐻𝐻 − 𝑚𝑚−1
2𝑁𝑁

. (14) 277 



where 𝑚𝑚 is the number of geographical variable states. And the variance of the sample 278 

estimates 𝐻𝐻� can be obtained and approximated by 279 

 
Var�𝐻𝐻�� = E �𝐻𝐻� − 𝐻𝐻 − 𝑚𝑚−1

2𝑁𝑁
�
2

                                    ≅ E(∑ (1 + ln 𝑝𝑝𝑖𝑖)(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)𝑚𝑚
𝑖𝑖=1 )2

                         = 1
𝑁𝑁

(∑ 𝑝𝑝𝑖𝑖 ln2 𝑝𝑝𝑖𝑖 − 𝐻𝐻2𝑚𝑚
𝑖𝑖=1 )

, (15) 280 

where terms of order of magnitude less than or equal to 𝑁𝑁−2 are neglected, and the RV 281 

𝐻𝐻� is an asymptotically normal estimate of the corresponding Shannon entropy (Basharin 282 

1959). According to equations (4) and (5), the entropogram at a specific lag is the sum of 283 

the Shannon entropy. Therefore, confidence intervals for the entropogram can be obtained 284 

by Monte Carlo methods. Specifically, it is possible to draw samples repeatedly from the 285 

asymptotically normal random variables 𝐻𝐻�(𝑋𝑋(𝐬𝐬)) , 𝐻𝐻�(𝑋𝑋(𝐬𝐬 − 𝐡𝐡)) , and 𝐻𝐻�(𝑋𝑋(𝐬𝐬),𝑋𝑋(𝐬𝐬 −286 

𝐡𝐡)) simultaneously and calculate the corresponding entropogram values. The mean and 287 

variance of the three normal RVs are obtained using equation (14) and (15), respectively. 288 

Note that there is no restriction on the distribution of the geographical variables per se. 289 

4. Results and Discussion 290 

To evaluate the performance of the proposed entropogram against existing common 291 

measures of spatial association, we conducted a series of simulation experiments and a 292 

real-world case study. The simulation study explores the basic properties of the proposed 293 

entropogram compared to existing methods. Next, we applied the entropogram to land 294 

cover data to demonstrate its use in characterizing the second-order properties of real 295 

geographical data. 296 

4.1 Numerical simulations 297 

For the simplest case, three landscape maps with two variable states were simulated with 298 



different spatial patterns of black and white combinations (Figure 2a-c). The simulated 299 

spatial pattern is simple, and the study area consists of only 10 by 10 cells, providing 300 

great control over the experiments and results. The proposed entropogram is compared 301 

with the indicator variogram in Figure 2(d-f). As there are only two variable states, the 302 

indicator variogram can be used to characterize the variance information of the 303 

corresponding RF.  304 

The proposed entropogram refers to the spatial dependence between simultaneous 305 

realizations of RVs at two locations, by indicating the variance information as the 306 

dispersion of the state co-occurrence between those locations. This contrasts with the 307 

covariance which reflects the joint variability, or say dissimilarity, of the two RVs at those 308 

locations. Specifically, the main differences between the entropogram and the variogram 309 

are illustrated in Figure 2(g-i). Given the state at one position, the entropogram depicts to 310 

what extent the state at another location is determined by the known state (i.e., it shows 311 

their dependence from the perspective of complexity). This is actually driven by the 312 

physical meaning of our used mutual information between the two RVs. For example, the 313 

entropogram value at spatial lag distance ‖𝐡𝐡‖ = 3 increases towards a greater value at 314 

distance ‖𝐡𝐡‖ = 5 (see Figure 2(d)). This increase is accompanied by the conditional 315 

probability transferred from a chaotic situation to the more deterministic circumstance as 316 

shown in Figure 2(g). Given the state of one location being black (white), therefore, a 317 

location at a lag distance ‖𝐡𝐡‖ = 5 apart is more likely to be correctly predicted as being 318 

white (black). Hence, for this location, the conditional probabilities of states are 319 

distributed more unevenly, as compared to lag distance ‖𝐡𝐡‖ = 3. However, such state 320 

entanglement cannot be revealed by the indicator variogram. Despite the dissimilarity 321 

between the states of pairs of RVs at different locations increasing with spatial lag 322 

distance ‖𝐡𝐡‖ = 2 to ‖𝐡𝐡‖ = 5, the correlation intensity between states is relatively stable 323 



(see Figure 3). This means that the complexity of the state co-occurrence is consistent at 324 

these two lags, just only the dominant correlation transferred from intra-state to inter-325 

state. Figure 2(e) shows that the entropogram successfully characterized this kind of 326 

correlation intensity between states; whilst the indicator variogram can only describe the 327 

intensity of the difference between the states of pairs of RVs at different locations. 328 

In addition, as the sample size for the calculation of the entropogram naturally 329 

varies with spatial lag distance, the 95% confidence intervals of the entropogram are 330 

provided in Figure 2 also. While the samples are abundant for small lags, Table further 331 

gives specific values of the 95% confidence intervals of the entropogram at spatial 332 

distance lags ‖𝐡𝐡‖ =1, 4, 8, and 12, respectively, as well as the corresponding sample sizes 333 

as examples. 334 

We calculated Moran’s I, the join count statistic, symbolic entropy, and the 335 

conditional probability-based join count statistic (Bai et al. 2016), to measure the global 336 

spatial association of the landscape maps in Figure 2(a-c), see Appendix C. Their values 337 

are listed in Table 2. The symbolic entropy measures whether the 5-pixel surrounding 338 

pattern is significantly different from that of a random distribution or not. We applied the 339 

rook contiguity in cases where a weight matrix was needed. According to Moran’s I, the 340 

spatial patterns for Figure 2(a-c) are negatively auto-correlated, positively auto-correlated 341 

and randomly distributed, respectively. However, these statistics fail to characterize the 342 

detailed spatial structure or variation of the spatial association. 343 

Compared to the statistics of spatial association, the variogram can de facto reflect 344 

information about the co-variability of a geographical process under the spatial 345 

stationarity decision. The proposed entropogram has the potential to reflect this 346 

information directly for categorical data. Typical categorical variables such as soil types 347 

and land cover classes generally have multiple states and exhibit complex interclass 348 



relationships, as measured through the cross-correlation, neighbouring situation and 349 

directional asymmetry of class patterns. The proposed entropogram further transfers 350 

information from the conditional probability into a general measure of spatial association 351 

across spatial lags. The degree of spatial dependence at each spatial lag is positively 352 

related to the magnitude of the corresponding entropogram measurement, and 353 

consequently reflects the spatial variation of the underlying RFs. Besides, spatial 354 

association measures can be normalized by their deviation from that of the spatial data 355 

reproduced by reassigning randomly the variable states to each location, to compare the 356 

spatial patterns between different spatial datasets with different numbers of variable states 357 

or spatial extents. 358 

We compared the entropogram with the multi-indicator variogram for categorical 359 

data with multiple states, by generating a multi-state landscape map with a known 360 

geographical process. To do so, we produced a continuous landscape map from a 361 

Gaussian RF with a covariance function 𝐶𝐶(ℎ) = exp (−0.5ℎ/1.52), see Figure 4(a). 362 

Then, we divided the range of the simulated continuous values into five equal-length 363 

intervals and transferred the continuous landscape map into a 5-state landscape map 364 

(Figure 4(b)). The corresponding entropogram is shown in Figure 4(c) as well as the 365 

multi-indicator variograms for each state. The sample multi-indicator variograms were 366 

fitted with exponential variogram models. 367 

Compared to the multi-indicator variograms, the entropogram provides a 368 

comprehensive spatial association measure for the whole landscape instead of the inter-369 

state spatial associations, while the variogram focuses on spatial co-occurrence data 370 

regarding each state. The resulting degree of spatial association between those data, 371 

however, has been identified as a poor proxy for ecological interactions (Blanchet, 372 

Cazelles and Gravel 2020). Besides, if the number of variable states increases, the number 373 



of indicator variograms will also increase, complicating the analysis (Atkinson, Cutler 374 

and Lewis 1997). In fact, it is not appropriate to apply the variogram simultaneously to 375 

multi-category data, as it aims to describe the dispersion of values as a function of the 376 

distance between the observation locations. In this way, the second-order property (i.e., 377 

equivalent to the covariance function) of the categorical RF generating Figure 4(b) can 378 

be revealed directly by the entropogram, in the same way that the variogram describes 379 

the variance information of a continuous RF. It is of interest that continuous data can be 380 

discretized and then analysed through various methods regarding frequency. Similarly, 381 

measures for categorical data can also be applied to continuous data. 382 

To explore further the information captured by the entropogram, we show the 383 

detailed conditional probability distribution patterns, or transition probability matrix of 384 

states, in Figure 4(d). These transition probabilities are de facto the content of the 385 

transiogram which can be used to effectively generate realistic realizations of the real 386 

spatial distribution of multinomial classes and decreasing spatial uncertainty associated 387 

with the simulated results (Li, 2006). For locations at distance ‖𝐡𝐡‖ = 1 apart, once the 388 

variable state at location 𝐬𝐬 has been observed, the variable state at location 𝐬𝐬 − 𝐡𝐡 has a 389 

relatively high likelihood of being predicted correctly. This is because some of the 390 

variable states have only a small probability to exist at location 𝐬𝐬 − 𝐡𝐡, given a state at 391 

location 𝐬𝐬 . In contrast, with respect to spatial lag ‖𝐡𝐡‖ = 5 , the likelihood has little 392 

difference among the possible states at location 𝐬𝐬 − 𝐡𝐡 given the variable state at location 393 

𝐬𝐬. In this circumstance, the observation of geographical variable at one location is of little 394 

use in predicting the variable state at another location, see Figure 4(d). That is, for this 395 

environment setting, variable states at locations at distance ‖𝐡𝐡‖ = 1 apart can provide 396 

more information on the potential variable state for each other compared to those at 397 

distance ‖𝐡𝐡‖ = 5 apart. This is reflected in the entropogram by the larger value at ‖𝐡𝐡‖ =398 



1  than ‖𝐡𝐡‖ = 5 , see Figure 4(c). Then, at spatial lags ‖𝐡𝐡‖ = 10  and ‖𝐡𝐡‖ = 15 , the 399 

corresponding likelihood gradually becomes stable across the variable states such that the 400 

values of the entropogram are almost unchanged. 401 

A key property of the entropogram is that it can deal with different numbers of 402 

states from the perspective of complexity. To examine the impact of probability mass 403 

distribution patterns and numbers of states on the entropogram, we regrouped the 404 

continuous values in Figure 4(a) into three, five and seven categories with three different 405 

probability mass distribution patterns (i.e., Uniform, Pareto and Gaussian), respectively. 406 

The histograms of the nine generated landscape maps are shown in Figure 5(a). With the 407 

expansion of the virtual variable state space, the spatial association increases at small 408 

spatial lags (see Figure 5(b)) under a fixed probability mass distribution pattern. The 409 

change in the numbers of categories here is similar to the change of support as in the 410 

variogram; but the variation described by the variogram decreases with the expansion of 411 

the support, while the dependence described by entropogram increases with the expansion 412 

of the variable state space. At large spatial lags, the values of the entropogram are stable 413 

because there is weak spatial dependence, and this is independent of the richness of the 414 

variable state space. In addition to the number of states, the proposed entropogram tends 415 

to increase with the degree of randomness of the probability mass distribution patterns 416 

with a fixed variable state space. A likely explanation is that the entropogram measures 417 

the difference between the complexity of the point pattern and the conditional probability 418 

pattern. Variation in the probability mass distribution pattern changes both the 419 

realizations of two RVs, but keeps their conditional probability pattern relatively stable. 420 

Therefore, the complexity of the point pattern tends to increase with the randomness of 421 

the probability mass distribution patterns, and results in an increase in the values of the 422 

entropogram. 423 



4.2 Real-world application 424 

We now turn towards a real-world application, recognizing that categorical variables are 425 

important in a range of crucial domains such as climate change (Pielke Sr 2005) and 426 

carbon emission studies (Lai et al. 2016). They are used, for example, to express a rapidly 427 

growing demand for measurement and monitoring of the corresponding landscape-level 428 

patterns and processes. In this section, we applied the entropogram to analyze the spatial 429 

association of land cover types in Qinxian, Shanxi, China. The land cover data were 430 

collected from the Global Land Cover 2000 Project (Bartholome and Belward 2005) over 431 

a rectangular area between (111°47’53.87”E, 37°6’26.28”N) and (112°48’26.31”E, 432 

36°12’22.66”N). Figure 6 shows the landscape map of the study area with six land cover 433 

types, including 1) broadleaved, deciduous and closed tree cover; 2) needle-leaved and 434 

evergreen tree cover; 3) burnt tree cover; 4) closed-open herbaceous cover; 5) cultivated 435 

and managed areas; and 6) water bodies. 436 

Figure 7(a) shows the results of the entropogram for the smallest spatial lags. We 437 

found that the spatial association decreased with an increase in spatial lag for neighboring 438 

positions (small lags). Given the majority of existing spatial association measures focus 439 

on interclass relationships (e.g., the cross-correlation between any two variable states), 440 

the proposed entropogram integrates such interclass relationships into a comprehensive 441 

measure of the spatial association between two locations. In fact, the conditional 442 

probability between different land cover types (i.e., the probability transition matrix of 443 

states) exhibits different distribution patterns across spatial lags, which determine the 444 

magnitude of the entropogram at each spatial lag. When the spatial lag is 1 (i.e., for the 445 

adjacent land cover), given the land cover information about one location, the land cover 446 

type at another location is concentrated on one or two states only, making it easier to 447 

predict the corresponding land cover information. If we use this transition matrix to 448 



simulate a Markov process, the mixing time of all the states is longer than that at the other 449 

lags. Figure 7(b) shows the spectral gap of the probability transition matrix of states, 450 

where thin spectral gaps indicate slower mixing as there tends to be a singular transition 451 

between states, while large gaps indicate faster mixing representing a regular transition 452 

between states. Therefore, as the spatial lag distance increases, the spectral gaps also 453 

increase (Figure 7(b)) making it relatively difficult to acquire information on one location 454 

given information on another location separated by that spatial lag. In summary, the 455 

proposed entropogram can provide a general quantitative understanding of the state 456 

correlation across spatial lags. 457 

The proposed entropogram can be applied for the spatial prediction and simulation 458 

of multi-categorical RFs, akin to the utility of the variogram for continuous RFs (Yao et 459 

al. 2021; Shakiba, and Doulati Ardejani 2022). Figure 8 provides an example of how the 460 

entropogram can be utilized potentially to predict the variable state on unknown locations 461 

with sample data. For a given location, on which the state was assumed as unknown, its 462 

state was estimated first from the 1-pixel neighbouring states, assumed to have been 463 

observed. For each observed 1-pixel neighbouring state, the corresponding conditional 464 

probability mass distribution of the given location was obtained by equation (8) where 465 

‖𝐡𝐡‖ = 1. The probability mass distribution of all land cover types was calculated by the 466 

mean conditional probability across all the observed 1-pixel neighbouring states. The 467 

state of the encircled pixel was then estimated by maximum likelihood based on its 468 

probability mass distribution. Similarly, we used the 2-pixel neighbouring states, 469 

excluding the 1-pixel neighbouring states, to predict the state of the given location. We 470 

found that the 2-pixel neighbouring states behaved better than the 1-pixel neighbouring 471 

states in the prediction of the states at the selected locations (Figure 8(d-e)). This suggests 472 

the necessity of a variogram-analogy model for categorical RFs, as the spatial association 473 



between RVs across different spatial lags may provide different information about the 474 

underlying categorical RFs. In this way, the entropogram helps to address the key issue 475 

of how to account for variation across lags. For example, the probability mass distribution 476 

based on both the 1- and 2-pixel neighbouring states can be calculated by the weighted 477 

average of the conditional probability against each observed state, where the weights are 478 

proportionally determined by their entropogram values (i.e., the corresponding 479 

entropogram value divided by the sum of all the entropogram values for all the involved 480 

observations). Figure 8(f) demonstrates that information from the 1-pixel spatial lag 481 

coupled with that from the 2-pixel spatial lag can provide efficient information on the 482 

pattern of the data. Nonetheless, as described above, a spatially stationary stochastic 483 

process commonly needs to be assumed due to the limited availability of repeatable 484 

spatial data. In this situation, the spatial data may be over-smoothed through modelling, 485 

and fractal characteristics may be neglected, because the entropogram, just like the 486 

variogram, is essentially a two-point statistic. Different RFs may, thus, possess the same 487 

entropogram, as for the variogram. 488 

In this research, we focused on the empirical entropogram at different lags and, 489 

specifically, the transition probability matrix of geospatial categorical data, where the 490 

interpretation of the entropogram relies on its estimated values rather than the parameters 491 

of any model that might be fitted. Future research should investigate the relationship 492 

between covariance functions of RFs and the proposed entropogram to determine whether 493 

there exists a standard model, or set of models, that might be usefully fitted to the 494 

entropogram, akin to the fitting of a model to the sample variogram. The proposed mutual 495 

information described spatial association between two RVs could also be extended to 496 

more variables in future research (Li, Ren and Han 2022), to describe higher-order 497 



properties or more complex patterns, as in multiple-point geostatistics (Mariethoz and 498 

Caers 2014). 499 

5. Conclusion 500 

Measures of spatial association are important tools with which to analyse Earth science 501 

and other spatial data. Categorical spatial variables represent an important class of Earth 502 

science data, but measures of spatial association are less developed for categorical spatial 503 

data than those for continuous spatial variables. In this research, we introduce the 504 

entropogram as an entropy-based measure of spatial association for categorical variables, 505 

building on concepts underlying the variogram. Specifically, the entropogram quantifies 506 

the amount of shared information as a function of the separation lag vector, allowing 507 

prediction of the outcome of a spatial stochastic process at one location given its known 508 

variable state at another location. Compared to existing measures and models of spatial 509 

association for categorical variables, which focus mainly on inter-state relationships, the 510 

entropogram simultaneously characterizes the whole state space. As such, the 511 

entropogram is complementary to existing two-point statistics applied to categorical data, 512 

and can be extended to include other variables, for example, the spatial association 513 

between different geographical properties. 514 
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List of figure captions 655 

Figure 1. Conceptual framework based on Chiles and Delfiner (1999). Spatial data for a 656 

qualitative geographical variable are samples from a realization of an underlying 657 

geographical process, which can be described by a Random Function. The bottom row 658 

shows the modelling of such spatial data with concepts derived from Shannon entropy. 659 

Our proposed mutual information described spatial association measure is a combination 660 

of mutual information entropy and the variogram (in red) that can better characterise the 661 

properties of a geographical process. 662 

 663 

Figure 2. Simulated landscape maps produced with two states representing three spatial 664 

patterns: (a) negatively auto-correlated, (b) positively auto-correlated and (c) randomly 665 

distributed. (d-f) Comparisons between the entropogram (in blue) and indicator 666 

variogram (in red) for landscape maps (a-c), respectively. (g-i) The conditional 667 

probabilities (𝑝𝑝�𝑋𝑋(𝐬𝐬 − 𝐡𝐡)|𝑋𝑋(𝐬𝐬)�, see equation (8)) of states black (in blue) and white (in 668 

red) at different spatial lags. The left two bars are respective conditional probabilities of 669 

states for locations across different spatial lags, given that the true state of one location is 670 

black. The right two bars are corresponding cases given that the true state of one location 671 

is white. 672 

 673 

Figure 3. Comparison between the information characterized by the entropogram and the 674 

indicator variogram. (a-b) Histograms of the state co-occurrence for Figure 2(b) at lags 675 

of 1 and 5, respectively. BB: black-black; BW: black-white; WB: white-black; WW: 676 

white-white. (c-d) The conditional probabilities of the states black and white. 677 

 678 

Figure 4. (a) A realization of a Gaussian random function. (b) The corresponding 5-state 679 

landscape map produced from (a). (c) The entropogram and multi-indicator variograms 680 

of (b). (d) The transition probability matrix between states on 𝑋𝑋(𝐬𝐬) and 𝑋𝑋(𝐬𝐬 − 𝐡𝐡) with 681 

‖𝐡𝐡‖ =1, 5, 10 and 15. 682 

 683 

Figure 5. (a) Histograms of discretized landscape maps, dividing Figure 3(a) into three, 684 

five and seven categories, and each with three different probability mass distribution 685 

patterns. (b) The corresponding estimated entropograms. 686 



 687 

Figure 6. Landscape map of vegetation types in Qinxian, Shanxi, China. 688 

 689 

Figure 7. (a) The entropogram and (b) the corresponding eigenvalue plot of transition 690 

probability matrix of states for spatial lags from 1 to 8. The unit of spatial lag is the pixel. 691 

An eigenvalue plot shows eigenvalues of the transition matrix of states on the complex 692 

plane. The spectral gap is the area between the radius with length equal to the second 693 

largest eigenvalue magnitude and the radius with a length of 1. 694 

 695 

Figure 8. The land cover type of the randomly selected 5 pixels (marked by asterisk in 696 

yellow) were estimated by their adjacent pixels (marked by the square in yellow) for (a) 697 

1-pixel contiguity, (b) 2-pixel contiguity and (c) both. (d-f) Each column depicts the 698 

estimated probability mass distribution of land cover types for each of the five selected 699 

pixels, where the true land cover type is given at the bottom. The land cover type with the 700 

greatest probability mass is labelled with the corresponding land cover type. CT: Tree 701 

Cover, broadleaved, deciduous, closed; ET: Tree Cover, needle-leaved, evergreen; BT: 702 

Tree Cover, burnt; HC: Herbaceous Cover, closed-open; CM: Cultivated and managed 703 

areas; and WB: Water Bodies. 704 
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Appendix 706 

A. 707 

𝜏𝜏(𝐡𝐡) = 𝐻𝐻(𝑋𝑋(𝐬𝐬)) + 𝐻𝐻(𝑋𝑋(𝐬𝐬 − 𝐡𝐡)) − 𝐻𝐻�𝑋𝑋(𝐬𝐬),𝑋𝑋(𝐬𝐬 − 𝐡𝐡)�                            

= −� 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)� ln �𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)��
𝑖𝑖

                                                  

−� 𝑝𝑝�𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� ln �𝑝𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)��
𝑗𝑗

                           

    +� � 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� ln �𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)��
𝑗𝑗𝑖𝑖

= −� �� 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)�
𝑗𝑗

� ln �𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)��
𝑖𝑖

                

−� �� 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)�
𝑖𝑖

� ln �𝑝𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)��
𝑗𝑗

   

   +� � 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� ln �𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)��
𝑗𝑗𝑖𝑖

= � � 𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬),𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)� ln�
𝑝𝑝 �𝑥𝑥𝑖𝑖(𝐬𝐬), 𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)�

𝑝𝑝�𝑥𝑥𝑖𝑖(𝐬𝐬)�𝑝𝑝 �𝑥𝑥𝑗𝑗(𝐬𝐬 − 𝐡𝐡)�
�

𝑗𝑗𝑖𝑖

 708 

B. 709 

The Shannon entropy estimated from samples, 𝐻𝐻� , is built upon the estimated 710 

probability of the available states (𝑝̂𝑝 = (𝑝̂𝑝1, … , 𝑝̂𝑝𝑚𝑚)) of the variable of interest. That is, 711 

𝐻𝐻�(𝑝̂𝑝) = −∑ 𝑝̂𝑝𝑖𝑖ln (𝑝̂𝑝𝑖𝑖)𝑚𝑚
𝑖𝑖=1 . 712 

Here 𝑝̂𝑝𝑖𝑖 is a variable, the value of which depends on samples. Given the true probabilities 713 

of the variable states 𝑝𝑝 = (𝑝𝑝1, … ,𝑝𝑝𝑚𝑚), the second-order Taylor polynomial of the above 714 

function 𝐻𝐻�(𝑝̂𝑝) at the point 𝑝𝑝 is 715 

𝐻𝐻�(𝑝̂𝑝) = 𝐻𝐻�(𝑝𝑝) + �
𝜕𝜕𝐻𝐻�
𝜕𝜕𝑝̂𝑝𝑖𝑖

(𝑝𝑝)(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
716 

+
1
2!
� �

𝜕𝜕𝐻𝐻�
𝜕𝜕𝑝̂𝑝𝑖𝑖𝜕𝜕𝑝̂𝑝𝑗𝑗

(𝑝𝑝)(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)�𝑝̂𝑝𝑗𝑗 − 𝑝𝑝𝑗𝑗�
𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
717 

+
1
3!
� � �

𝜕𝜕𝐻𝐻�
𝜕𝜕𝑝̂𝑝𝑖𝑖𝜕𝜕𝑝̂𝑝𝑗𝑗𝜕𝜕𝑝̂𝑝𝑘𝑘

(𝜉𝜉𝐿𝐿)(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)�𝑝̂𝑝𝑗𝑗 − 𝑝𝑝𝑗𝑗�(𝑝̂𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘)
𝑚𝑚

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
. 718 



where 𝜉𝜉𝐿𝐿 is some real vector between 𝑝̂𝑝 and 𝑝𝑝. Given 719 

𝜕𝜕𝐻𝐻�
𝜕𝜕𝑝̂𝑝𝑖𝑖

= −(1 + ln(𝑝̂𝑝𝑖𝑖)),
𝜕𝜕𝐻𝐻�

𝜕𝜕𝑝̂𝑝𝑖𝑖𝜕𝜕𝑝̂𝑝𝑗𝑗
= �−

1
𝑝̂𝑝𝑖𝑖

𝑗𝑗 = 𝑖𝑖

0 𝑗𝑗 ≠ 𝑖𝑖
,

𝜕𝜕𝐻𝐻�
𝜕𝜕𝑝̂𝑝𝑖𝑖𝜕𝜕𝑝̂𝑝𝑗𝑗𝜕𝜕𝑝̂𝑝𝑘𝑘

= �
1
𝑝̂𝑝𝑖𝑖2

𝑗𝑗 = 𝑘𝑘 = 𝑖𝑖

0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
. 720 

We have  721 

𝐻𝐻�(𝑝̂𝑝) = 𝐻𝐻 −� (1 + ln𝑝𝑝𝑖𝑖)(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
−

1
2
�

(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)2

𝑝𝑝𝑖𝑖

𝑚𝑚

𝑖𝑖=1
722 

+
1
6
�

(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)3

(𝑝𝑝𝑖𝑖 + 𝜃𝜃(𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖))2
𝑚𝑚

𝑖𝑖=1
 723 

where 𝐻𝐻 is the true Shannon entropy of the variable of interest, 𝑝𝑝 represents the true 724 

probabilities of the variable states, and 0 < 𝜃𝜃 < 1. 725 

C. 726 

The Moran’s I coefficient is defined as 727 

 𝐼𝐼 = 𝑁𝑁
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝑧𝑧𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
.  728 

where the 𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 = 𝑥𝑥𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖/𝑁𝑁𝑁𝑁
𝑖𝑖=1  are the centred observations based on the 729 

original observations 𝑥𝑥𝑖𝑖, and 𝑤𝑤𝑖𝑖𝑖𝑖 is the element of a spatial weight matrix representing 730 

the hidden subjective relations between pairs of points. 𝑁𝑁  is the total number of 731 

observations. 732 

The join count statistic (JCS) is defined as 733 

 𝐽𝐽𝐽𝐽𝐽𝐽(𝑋𝑋) = 1
2
�∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓(𝑖𝑖, 𝑗𝑗)𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 −𝑊𝑊 �1 − 𝑛𝑛𝑟𝑟𝑛𝑛𝑠𝑠

𝑁𝑁(𝑁𝑁−1)��  734 

where 𝑓𝑓(𝑖𝑖, 𝑗𝑗) equals 1 if points 𝑖𝑖 and 𝑗𝑗 are the same category, 𝑊𝑊 is the sum of values in 735 

the weight matrix, 𝑛𝑛𝑟𝑟 and 𝑛𝑛𝑠𝑠 are the number of observations for the presence and absence 736 

of the state of interest, respectively. 737 

The conditional probability-based join count statistic (NCP) is defined as 738 



 𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋) = �

𝐶𝐶𝐶𝐶(𝑋𝑋)
1−𝑃𝑃𝐸𝐸

𝐶𝐶𝐶𝐶(𝑋𝑋) ≥ 0
𝐶𝐶𝐶𝐶(𝑋𝑋)
𝑃𝑃𝐸𝐸

otherwise
,  739 

 𝐶𝐶𝐶𝐶(𝑋𝑋) = 𝑃𝑃{𝑋𝑋(𝐬𝐬) == 𝑋𝑋(𝐬𝐬 + 1)}, 𝑃𝑃𝐸𝐸 = ∑ 𝑝𝑝2(𝑋𝑋(𝐬𝐬) = 𝑖𝑖)𝑚𝑚
𝑖𝑖=1 ,  740 

where 𝑋𝑋  is the dataset with states 𝑖𝑖 = 1, … ,𝑚𝑚 , 𝐶𝐶𝐶𝐶(𝑋𝑋) is the probability that pairs of 741 

locations with 1 pixel lag have the same category, and 𝑃𝑃𝐸𝐸 is the theorical value of 𝐶𝐶𝐶𝐶(𝑋𝑋) 742 

under the assumption of no spatial association. 743 

The symbolic entropy (S) is defined using a symbolization procedure. The 744 

surrounding five spatial neighbours of 𝐒𝐒0 are defined by 𝑁𝑁𝐒𝐒0 = {𝐒𝐒0, 𝐒𝐒1,𝐒𝐒2, 𝐒𝐒3, 𝐒𝐒4}. 745 

𝐒𝐒7 𝐒𝐒4 𝐒𝐒8 

𝐒𝐒3 𝐒𝐒0 𝐒𝐒1 

𝐒𝐒6 𝐒𝐒2 𝐒𝐒5 

Then, the surrounding five spatial neighbours of 𝐒𝐒0  are transformed by the indicator 746 

function 747 

 𝐼𝐼𝐒𝐒1,𝐒𝐒2 = �0 𝑋𝑋(𝐒𝐒1) ≠ 𝑋𝑋(𝐒𝐒2)
1 otherwise

,  748 

into 𝜎𝜎𝐒𝐒0 = {𝐼𝐼𝐒𝐒0,𝐒𝐒1 , 𝐼𝐼𝐒𝐒0,𝐒𝐒2 , 𝐼𝐼𝐒𝐒0,𝐒𝐒3 , 𝐼𝐼𝐒𝐒0,𝐒𝐒4}. Finally, the symbolic entropy is 749 

 𝑆𝑆(5) = −∑ 𝑝𝑝(𝜎𝜎) ln�𝑝𝑝(𝜎𝜎)�𝜎𝜎∈Γ ,  750 

where 𝑝𝑝(𝜎𝜎) is the relative frequency of a symbol 𝜎𝜎 based on all the observations, and Γ 751 

is the set of all possible symbols. 752 
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Table 1. Confidence intervals of the entropogram at spatial lag distances ‖𝐡𝐡‖ =1, 4, 8, 

and 12 for Figure 2. 𝑁𝑁  is the sample size used to estimate the corresponding 

confidence intervals. 

Landscape 

maps 

95% Confidence interval 

𝐡𝐡 = 1 

𝑁𝑁 = 342 

𝐡𝐡 = 4 

𝑁𝑁 = 850 

𝐡𝐡 = 8 

𝑁𝑁 = 444 

𝐡𝐡 = 12 

𝑁𝑁 = 8 

(a) [0.073, 0.075] [0.068, 0.068] [0.059, 0.060] [0.671, 0.716] 

(b) [0.266, 0.270] [0.007, 0.007] [0.279, 0.282] [0.671, 0.694] 

(c)  [0.081, 0.083] [0.069, 0.070] [0.40, 0.40] [0.141, 0.197] 

 

Table 2. Spatial association identified by Moran’s I (I), join count statistic (JCS), 

symbolic entropy (S), and conditional probability-based join count statistic (NCP). 

Landscape 

maps 
I JCS S NCP 

(a) -1 -45 399 -1 

(b) 0.89 40 422 0.89 

(c) -0.14 -7 31 -0.14 

Note: the rook contiguity was applied in calculations where a weight matrix was 

needed. 
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