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The variational and diffusion quantum Monte Carlo methods are used to calculate the correlation
energy of the paramagnetic three-dimensional homogeneous electron gas at intermediate to high
density. Ground state energies in finite cells are determined using Slater-Jastrow-backflow trial
wave functions, and finite-size errors are removed using twist-averaged boundary conditions and
extrapolation of the energy per particle to the thermodynamic limit of infinite system size. Our
correlation energies in the thermodynamic limit are more accurate than previous results. The present
diffusion quantum Monte Carlo energies, together with our recently reported [Phys. Rev. B 105,
245135 (2022)] results at low density, are used to parameterize the correlation energy of the electron
gas using a functional form that satisfies the exact asymptotic behavior at high density.

Introduction. The pairwise Coulomb repulsion be-
tween electrons results in many-body correlations in elec-
tronic systems such as the homogeneous electron gas
(HEG) [1, 2]. The so-called correlation energy is a neg-
ative correction to the mean-field Hartree-Fock energy.
Although the correlation energy is usually only a small
percentage of the total energy of an electronic system, it
is crucial for an accurate description of chemical and elec-
tronic properties [3–5]. Unfortunately, it is also the most
complicated part of the energy to calculate accurately.

The three-dimensional (3D) HEG plays a crucial role
in our understanding of the nature of electronic correla-
tion in real materials [6–8]. Moreover, the HEG is one of
the most important models for our understanding of bulk
systems under extreme conditions, such as warm dense
matter, which is an exotic, highly compressed state of
matter that exists between solid and plasma phases at
high temperatures [9–11]. The correlation energy of the
3D HEG as a function of density [12–14] is a fundamen-
tal element in the description of the electronic proper-
ties of real systems by density functional theory (DFT)
[15, 16]. However, calculating the correlation energy ac-
curately requires many-body wave function-based meth-
ods [17] such as quantum Monte Carlo (QMC) techniques
[18–25]. The variational (VMC) and diffusion quantum
Monte Carlo (DMC) methods [18, 26] are stochastic ap-
proaches for obtaining expectation values of quantum op-
erators. These techniques are especially efficient for cal-
culating the ground state energies of interacting fermions.
The main object is an approximate trial wave function,
whose accuracy governs the final energy and intrinsic sta-
tistical fluctuations in the simulations.

The DMC simulations of Ceperley and Alder [18] pre-
sented important data connecting the high- and low-
density regimes of the correlation energy of the 3D HEG.
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Their data have been used in parameterizations of the
correlation energy over a wide density range and are fre-
quently used in DFT calculations. Well-known param-
eterizations that make use of Ceperley and Alder’s re-
sults were provided by Perdew and Zunger (PZ81) [27],
Vosko, Wilk, and Nusair (VWN80) [28], and Perdew and
Wang (PW92) [29], among others. The PW92 functional
includes five parameters, two determined from analytic
high-density constraints and three by fitting to the QMC
data. A density parameter interpolation (DPI) [12],
which was constructed by imposing four high-density
and three low-density constraints on a seven-parameter
functional form, provided a check based purely on the
satisfaction of the exact constraints. Spink et al. [23]
performed QMC calculations for spin-unpolarized and
spin-polarized 3D HEGs over the high- and intermediate-
density ranges, which can be regarded as the most accu-
rate QMC data reported so far. In the present work,
we provide new QMC data for the correlation energy
of the paramagnetic (i.e., spin unpolarized) 3D HEG,
which are lower than previously reported results. We use
long-range backflow correlations to make fixed-node er-
rors more consistent between different cell sizes. Instead
of using the analytic finite-size corrections, we extrap-
olate our results to infinite system size which provides
more accurate results at the thermodynamic limit [1].
QMC energies in finite simulation cells obey the varia-
tional principle and it is reasonable to assume that the
QMC energy per particle extrapolated to infinite system
size is also an upper bound on the true energy per parti-
cle. Hence the fact that our energies are lower than pre-
vious works strongly suggests that our results are more
accurate.

We have used the VMC and DMC methods to obtain
3D HEG correlation energies at different densities. In
the VMC method, parameters in a trial wave function
are optimized according to the variational principle, with
energy expectation values calculated by Monte Carlo in-
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tegration in the 3N -dimensional space of electron posi-
tion vectors. In the DMC method, the imaginary-time
Schrödinger equation is used to evolve a statistical ensem-
ble of electronic configurations towards the ground state.
Fermionic antisymmetry is maintained by the fixed-phase
approximation, in which the complex phase of the wave
function is constrained to equal that of an approximate
trial wave function optimized within VMC.

The simplest fermionic wave function is a Slater de-
terminant, which describes exchange effects but not cor-
relation. Multideterminant wave functions and pairing
(geminal) wave functions [30] can also be used. The most
efficient method of going beyond the Slater wave function
is to multiply it by a Jastrow factor exp(J), resulting in
a Slater-Jastrow wave function [20, 21]. The Jastrow fac-
tor usually depends explicitly on the distances between
particles, introducing correlation into the wave function.
The Jastrow factor is positive everywhere and symmetric
with respect to the exchange of indistinguishable parti-
cles, so it does not change the nodal surface defined by
the rest of the wave function. By evaluating the orbitals
in the Slater determinant at quasiparticle coordinates X,
which are functions of all the electron positions, we intro-
duce a backflow transformation [31, 32], and the resulting
wave function is referred to as a Slater-Jastrow-backflow
(SJB) wave function.

Trial wave function. We used a SJB trial spatial
wave function Ψ(R) = eJ(R)S(X(R)) for all the sys-
tems we have studied, where R = (r1, . . . , rN ) is the
3N -dimensional vector of electron coordinates. The an-
tisymmetric Slater part S is a product of determinants
of single-particle orbitals for spin-up and spin-down elec-
trons. The single-particle orbitals in S are of the free-
electron form ψk(r) = exp(ik · r), where wavevector k is
a reciprocal lattice vector of the simulation cell offset by
twist vector ks, where ks lies in the supercell Brillouin
zone. The Jastrow exponent, which is symmetric under
electron exchange, takes the form

J = U + P +H

=
∑
i<j

u(rij) +
∑
i<j

p(rij) +
∑

i<j<k

h(rjk, rik, rij),

(1)

where

u(r) =

Nu∑
l=0

αlr
l(r − Lu)

C
Θ(Lu − r), (2)

where r is the minimum-image distance between two elec-
trons, the cutoff length Lu is less than or equal to the
radius of the largest sphere that can be inscribed in the
Wigner-Seitz cell of the simulation cell, C = 3 specifies
how smooth the function is at the cutoff length, Θ is the
Heaviside step function, and {αl} are optimizable pa-
rameters, which differ for parallel- and antiparallel-spin
electrons. To satisfy the Kato cusp conditions [33, 34],

we fix α1 = Γ/(−Lu)
C
+ α0C/Lu, where Γ = 1/2 for

opposite-spin electrons and Γ = 1/4 for same-spin elec-
trons. We chose Nu = 8. The p term has the symmetry
of the simulation-cell Bravais lattice and allows a descrip-
tion of correlation in the “corners” of the simulation cell.
Its form is

p(r) =
∑
A

aA
∑

G∈A+

cos(G · r), (3)

where A represents a star of symmetry-equivalent,
nonzero, simulation-cell reciprocal-lattice vectors G, and
A+ is a subset of A that consists of one out of each ±G
pair. The {aA} are optimizable parameters. We used
46 stars of G vectors in p. The Jastrow also includes
symmetric three-electron terms [35, 36]

h(r, r′, r′′) =

Nh∑
l=0

Nh∑
m=0

Nh∑
n=0

clmnr
l(r′)

m
(r′′)

n

× (r − Lh)
C
(r′ − Lh)

C
(r′′ − Lh)

C

×Θ(Lh − r)Θ(Lh − r′)Θ(Lh − r′′)

(4)

where Lh is a cutoff length and clmn are linear parame-
ters. Constraints were placed on the linear parameters to
ensure that h is cuspless. We chose Nh = 4. Different h
terms, meaning different {clmn}, may be used for electron
triplets involving different combinations of spins. How-
ever, in this work, the parameters in the three-electron
Jastrow factors were constrained to be independent of
spin.

Including a backflow transformation in the trial wave
function, the Slater part of the wave function S is evalu-
ated at transformed “quasiparticle” coordinates X(R) =
R+ ξ(R), where

ξi(R) =
∑
j ̸=i

η(rij)rij +
∑
j ̸=i

π(rij) (5)

is the backflow displacement of electron i. η is a cusp-
less, smoothly truncated, isotropic polynomial function
of minimum-image electron-electron distance rij . The
polynomial coefficients are optimizable parameters, and
are different for parallel- and antiparallel-spin electrons
[32]. The form of η(r) is mathematically equivalent to
that of the Jastrow u(r) term [Eq. (2), with Γ = 0
for same-spin electrons and optimizable for opposite-spin
electrons]. Typically we used Nη = 8 in the polynomial
expansions. The π term has the form of the gradient of
a Jastrow p term [Eq. (3)]:

π(r) = −
∑
A

cA
∑

G∈A+

sin(G · r)G, (6)

where the cA are optimizable parameters. As the gradi-
ent of a scalar field, the π term is irrotational. We used
44 stars ofG vectors in π. The backflow parameters were
allowed to depend on the spins of the electron pairs.

The wave functions were optimized by variance min-
imization [37, 38] followed by energy minimization [39].
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The casino package was used for all our QMC calcula-
tions [40].

Finite-size effects. Monte Carlo-sampled canonical en-
semble twist-averaged (TA) boundary conditions were
used to reduce quasirandom single-particle finite-size er-
rors in total energies due to momentum quantization ef-
fects [41–45]. The Hartree-Fock kinetic and exchange
energies were used as control variates to improve the pre-
cision of the twist-averaged energy. Systematic finite-size
errors due to the use of the Ewald interaction rather than
1/r to evaluate the interaction between each electron and
its exchange-correlation hole and the incomplete descrip-
tion of long-range two-body correlations were removed
by fitting E(N) = E(∞) + b/N to the TA DMC en-
ergy per particle at different system sizes [46]. Unlike
the previous work of Spink et al. [23], we do not rely on
analytic finite-size correction formulas [43, 46], but in-
stead use the analytic results to provide the exponents
used in finite-size extrapolation formulas. All our calcu-
lations were performed using face-centered cubic simula-
tion cells, maximizing the distance between each particle
and its closest periodic image.

At very high density rs ≪ 1, systematic finite-size ef-
fects are more challenging. In this regime, the QMC
energy is close to the Hartree-Fock energy, and hence the
QMC energy per particle initially shows the Hartree-Fock
O(N−2/3) scaling with system size [43], before eventually
crossing over to the asymptotic O(N−1) scaling when the
finite-size error becomes small compared with the corre-
lation energy.

Correlation energies. We studied the paramagnetic 3D
HEG at density parameters rs = 0.5, 0.75, 1, 2, 3, 4, 5, 7,
10, and 20. For each density, QMC calculations were per-
formed for simulation cells with N = 130, 226, and 338
electrons. Our DMC energies were extrapolated linearly
to zero time step τ , with the target walker population
being varied in inverse proportion to the time step [47].
The difference between the twist-averaged DMC energy
at small rs (i.e., rs ≤ 1.0) obtained with a time step
τ = 0.02r2s and the energy at zero time step is not sta-
tistically significant. The same behavior was observed
at large rs with τ = 0.01r2s . The energies and vari-
ances calculated using SJB wave functions for different
system sizes are reported in the Supplemental Material
[47]. The correlation energy is defined as the difference
between the Hartree-Fock energy per electron [which is

EHF = 3(9π/4)
2/3
/(10r2s ) − 3(9π/4)

1/3
/(4πrs) for the

paramagnetic HEG] and the exact ground-state energy
per electron, where the latter is approximated by our
SJB-DMC results extrapolated to the limit of infinite sys-
tem size.

Table I summarizes the contribution of each term of
the trial wave function to the correlation energy per par-
ticle in a simulation cell containing N = 54 electrons.
We considered two systems with rs = 0.5 and rs = 20.
Figure 1 shows the improvements in the VMC and DMC
correlation energies resulting from the inclusion of differ-
ent terms in the Jastrow and backflow functions.

Full configuration interaction quantum Monte Carlo
(FCIQMC) calculations for N = 54 electrons in sim-
ple cubic cells subject to periodic boundary conditions
(PBC) find the ground state energies of the 3D HEG at
density parameters rs = 0.5 and 1 to be 3.2202(2) and
0.5300(3) Ha/elec., respectively [24]. Using the same sim-
ple cubic cell with the same system size (N = 54) and
PBC, our SJB-DMC total energies for rs = 0.5 and 1
are 3.220897(3) and 0.529791(2) Ha/elec., respectively.
These DMC energies were obtained using time steps of
0.005 and 0.01 a.u, respectively. Our results indicate that
the SJB-DMC and FCIQMC energies are within errors of
each other. Our Jastrow-Backflow functions are available
to be downloaded from Ref. [47]. According to Spink et
al. [23], the TA VMC energy of the spin-unpolarized 3D
HEG at rs = 0.5 at a system size ofN = 118 is 3.41378(2)
Ha/elec. Our TA VMC simulation for the same system
size yields the energy as 3.412460(4) Ha/elec., which is
∼ 36 meV/elec. lower, because of the inclusion of the π
term in our work.

TABLE I. TA VMC and DMC correlation energies for N =
54 system size obtained using different terms in the Jastrow
exponent and using both SJB and SJ wave functions. Where
Jastrow terms are not specified, U , P , and H terms were
used; where the backflow terms are not specified, η and π
terms were used.

Wave fn
Correlation energy (eV/elec.)

rs = 0.5 rs = 20

VMC DMC VMC DMC

SJ(U) −2.5112(3) −2.5684(4) −0.311717(2) −0.317465(4)

SJ(U + H) −2.5161(3) −2.5680(5) −0.313798(3) −0.317469(5)

SJ −2.5381(3) −2.5685(4) −0.314464(3) −0.317492(5)

SJB(η) −2.6056(5) −2.6166(5) −0.319082(3) −0.320579(5)

SJB −2.6331(3) −2.6366(4) −0.319346(2) −0.320756(4)

Our VMC and DMC energies extrapolated to the limit
of infinite system size are listed in Table II. To obtain the
best linear fit and reduce the noise in the energies as a
function of the number of particles N , a larger number of
twists was used for higher densities and smaller system
sizes. The smallest and largest number of twists were 120
and 104, respectively. Our results show an unexpected
trend of decreasing VMC-DMC difference with increas-
ing system size. This trend can be made plausible by an
extreme example. If an uncorrelated Slater determinant
trial wave function were used then VMC would reduce to
Hartree-Fock theory with an O(N−2/3) finite-size error
in the energy per particle (see Table I of the Supplemen-
tal Material [47]), whereas the fixed-node DMC energy
would include long-range two-body correlations and the
finite-size error would go as O(N−1). Hence VMC and
DMC energies may behave very differently as functions
of system size. Comparing our infinite-system VMC and
DMC results with the DMC energies of Spink et al. [23]
demonstrates not only the improvement of the trial wave
function due to the inclusion of long-range π backflow
terms, but also the importance of removing finite-size



4

1 2 3 4 5 6
Variance (a.u)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Co
rr.

 e
ne

rg
y 

di
ff.

 (e
V/

el
)

rs = 0.5

VMC-SJ(U)
VMC-SJ(U+H)
VMC-SJ
VMC-SJB( )
VMC-SJB

DMC-SJ(U)
DMC-SJ(U+H)
DMC-SJ
DMC-SJB( )
DMC-SJB

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Variance/104(a.u)

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

Co
rr.

 e
ne

rg
y 

di
ff.

 (e
V/

el
)

rs = 20.0

VMC-SJ(U)
VMC-SJ(U+H)
VMC-SJ
VMC-SJB( )
VMC-SJB

DMC-SJ(U)
DMC-SJ(U+H)
DMC-SJ
DMC-SJB( )
DMC-SJB

FIG. 1. Twist averaged VMC and DMC correlation energies at system size N = 54 as a function of variance, relative to the
correlation energy with a Slater-Jastrow (SJ) wave function in which the Jastrow factor only contains the isotropic two-body
term U . Results are shown at density parameters rs = 0.5 (left panel) and 20 (right panel).

effects by extrapolation rather than relying on analytic
correction formulas.

TABLE II. TA VMC and DMC energies of the 3D HEG ex-
trapolated to the thermodynamic limit from different system
sizes (N = 130, 226, and 338), compared with the DMC re-
sults of Spink et al. [23], and Ceperley and Alder [18]. Our
DMC energies have been extrapolated to zero time step.

rs

Total energy (Ha/elec.)

VMC DMC

Pres. wk. Pres. wk. Spink et al. Ceperley & Alder

0.5 3.4255(1) 3.42541(8) 3.43011(4) . . .

0.75 1.28625(5) 1.28620(5) . . . . . .

1.0 0.58643(4) 0.58640(2) 0.58780(1) 0.5870(5)

2.0 0.00195(2) 0.001917(9) 0.002380(5) 0.002050(2)

3.0 −0.06728(1) −0.067309(9) −0.067075(4) . . .

4.0 −0.07767(1) −0.07771(1) . . . . . .

5.0 −0.07594(1) −0.07597(1) −0.075881(1) −0.07560(5)

7.0 −0.066304(5) −0.066348(2) . . . . . .

10.0 −0.053503(2) −0.053527(5) −0.0535116(5) −0.0533750(2)

20.0 −0.031720(6) −0.031755(3) −0.0317686(5) −0.0316450(1)

Table III compares our VMC and DMC results for
the correlation energy with the PZ81 [27], VWN80 [28],
PW92 [29], and DPI [12] parameterizations, as well as
the DMC data of Spink et al. [23]. Our correlation en-
ergies are the lowest. Even at the high density rs = 0.5
our DMC correlation energy is lower than the DPI pa-
rameterization by −16 meV/elec.
Following Ceperley [21], we fit

Ec(rs) =
γ

1 + β1
√
rs + β2rs

(7)

to our SJB-DMC correlation energies (Fig. 2). The fit-
ting parameters γ, β1, and β2 are −0.151(5) Ha 1.18(7),
and 0.338(5), respectively. The χ2 value of the fit is
307.48 per degree of freedom. Equation (7) is accurate
for large rs, as we have shown in our recent work on the
low-density phase diagram of the HEG, where our DMC

correlation energies for 30 ≤ rs ≤ 100 were fitted to Eq.
(7) giving a χ2 per degree of freedom of 0.521 [1]. We
found that the χ2 per degree of freedom becomes 0.698
by fitting DMC correlation energies for 20 ≤ rs ≤ 100 to
Eq. (7) and we found the fitting parameters γ, β1, and
β2 to be −0.1278(55) Ha/elec., 0.897(53), and 0.299(12),
respectively.
According to the all-orders perturbation theory of Gell-

Mann and Brueckner [17] the correlation energy at high
density is given by Ec(rs) = A ln(rs) + C + O(rs ln(rs)),
where A = 1

π2 [1 − ln(2)] ≈ 0.0311 Ha and C ≈ −0.0465
Ha. The appearance of powers of ln(rs) in this formula
shows that the correlation energy is a nonanalytic func-
tion of rs for rs → 0 and describes the failure of the
naive perturbation approach. The constant term C is
the sum of the second-order Onsager’s exchange integral
and a numerical constant caused by the sum over di-
vergent contributions [48]. In practice, this asymptotic
formula is accurate only for very small rs ≪ 1. We fit-
ted our VMC and DMC correlation energies for rs = 0.5,
0.75, and 1 to the Gell-Mann-Brueckner expression (Fig.
2). The fitting parameters are AVMC = 0.0250(5) Ha,
CVMC = −0.06030(2) Ha, ADMC = 0.0250(5) Ha, and
CDMC = −0.06040(1) Ha. The difference between the
VMC and DMC fitting parameters is small because the
random errors due to twist averaging at high density
dominate. Figure 2 shows that at rs ≤ 0.1 the corre-
lation energy predicted by the Gell-Mann-Brueckner for-
mula becomes smaller than VMC and DMC. One can
include an additional term in the Gell-Mann-Brueckner
expansion and write the high-density expansion of the
correlation energy per electron as

Ec(rs) = A ln(rs) + C +Brs ln(rs) +O(rs), (8)

where the exact value of the coefficient of rs ln(rs) is
B = 0.00922921 [13]. We fitted our DMC correlation
energies for rs = 0.5, 0.75, 1.0, and 2.0 to the extended
expansion, and we found that the fitting parameters A,
C, and B are 0.0275(4), −0.06001(7), and −0.0031(2)
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TABLE III. Correlation energies for the spin-unpolarized 3D HEG from the PZ81 [27], VWN80 [28], PW92 [29], and DPI [12]
parameters, DMC (Spink et al. [23]), and this work (VMC and DMC).

rs
Correlation energy (eV/elec.)

PZ81 VWN80 PW92 DPI DMC (Spink et al.) VMC DMC

0.5 −2.069 −2.097 −2.085 −2.108 −1.996 −2.121(3) −2.124(2)

0.75 . . . . . . . . . . . . . . . −1.829(1) −1.831(1)

1.0 −1.623 −1.633 −1.627 −1.637 −1.605 −1.642(1) −1.6432(5)

2.0 −1.227 −1.219 −1.218 −1.215 −1.218 −1.2301(5) −1.2310(2)

3.0 −1.013 −1.004 −1.005 −0.996 −1.010 −1.0159(3) −1.0166(2)

4.0 . . . . . . . . . . . . . . . −0.8758(3) −0.8769(3)

5.0 −0.771 −0.766 −0.768 −0.755 −0.774 −0.7756(3) −0.7764(3)

7.0 . . . . . . . . . . . . . . . −0.6368(1) −0.6380(1)

10.0 −0.505 −0.485 −0.505 −0.495 −0.510 −0.5098(1) −0.5105(2)

20.0 −0.313 −0.302 −0.314 −0.308 −0.316 −0.3149(1) −0.3159(1)

Ha/elec., respectively, with a χ2 value of 3.52579.

TABLE IV. Fitting parameters of Eq. (9) in Hartree.

Fitting parameter Value Asymptotic std. err.

A (Ha/elec.) 0.000435098 0.0001665

C (Ha/elec.) −0.00221852 0.0008169

B (Ha/elec.) −3.02312× 10−7 1.493× 10−7

D (Ha/elec.) −0.0134875 0.0006189

γ (Ha/elec.) −0.077337 0.004517

β1 0.470881 0.05071

β2 0.262613 0.004956

We fitted all our DMC correlation energies for 0.5 ≤
rs ≤ 100, which are reported in this work and in our
recently published paper [1], to Eq. (7) plus Eq. (8) and
we found the χ2 per degree of freedom to be 54.3. We
searched for the best fit with the smallest χ2 value and

discovered that by adding a r
−3/4
s term to the sum of

Eqs. (7) and (8) the χ2 value is reduced to 1.26. Hence,

the DMC results indicate that the correlation energy

Ec(rs) = A ln(rs) + C +Brs ln(rs) +
D

r
3/4
s

+
γ

1 + β1
√
rs + β2rs

, (9)

can describe the correlation energy of the 3D paramag-
netic HEG within the density range 0.5 ≤ rs ≤ 100,
which covers the high-, middle-, and low-density regimes.
The fitting parameters are listed in Table IV.
In conclusion, we have performed VMC and DMC sim-

ulations using SJB trial wave functions to calculate the
correlation energy of the paramagnetic 3D HEG at high
and intermediate densities. We corrected finite-size er-
rors by twist averaging and extrapolation to the thermo-
dynamic limit. Our DMC energies obtained in this work,
together with our previous low-density results reported
in Ref. [1], have been used to parameterize the corre-
lation energy of the spin unpolarized 3D HEG at high,
intermediate, and low densities.
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