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Abstract

Newsvendor problems (NVPs) form an important and much-studied family of in-

ventory control problems. Although the use of the term varies somewhat, in most

situations the term NVP refers to a single-period stochastic inventory control prob-

lem involving a single product. Assuming that the demand comes from a known

probability distribution, this classic problem can be solved easily with calculus (Ar-

row et al., 1951), and the solution appears in nearly all inventory management

textbooks.

In this thesis, we expand the literature in four directions. In Chapter 2, we consider

an integrated approach, in which the NVP order quantities are determined directly

from the data. Though the topic of integrated approaches has already been studied

in the literature, the idea of constructing a robust approach that deals with nonlinear

NVPs is novel. In this chapter, we introduce such an approach, and we perform

extensive simulation experiments to examine the performance of the approach in

different settings, including situations when the true model is known and when the

underlying model is mis-specified.

In Chapter 3, we consider the effect that small changes in NVP parameters would

have on the optimal solution, which is commonly referred to as sensitivity analysis.

We show that one can perform sensitivity analysis for NVP using techniques from

stochastic programming and discrete approximation. Our method is very general

and can handle changes in prices and costs, changes in demand distributions, and
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cross-price elasticities of demand. Moreover, computational results show that our

method yields accurate estimates with very reasonable computing effort.

In Chapter 4, we examine the effect of judgemental adjustments in an NVP context.

Several attempts have been made to quantify the outcomes of such adjustments.

However, much of this literature assumes that accurate demand forecasts are avail-

able. We consider the (more realistic) case in which the forecasts may be inaccurate,

due for example to insufficient data or model mis-specification. Computational res-

ults indicate that, in some cases, judgemental adjustment can lead to an increase in

profit rather than a decrease. We discuss conditions under which the adjustments

are beneficial and the situations when they are not. We also propose a heuristic

algorithm for “tuning” the adjustment parameters in practice.

In Chapter 5, we propose an alternative non-parametric approach to the variant of

the NVP in which the goal is to minimise the conditional value at risk (CVaR).

Given the difficulties with treating observations with extreme values, the existing

parametric methods often underestimate the downside risk and lead to a significant

loss in extreme cases. The existing non-parametric methods, on the other hand, are

extremely computationally expensive with large instances and depend heavily on

the form of the profit function. Using both simulation and real-life case studies, we

show that our proposed method can be very useful in practice, allowing decision-

makers to suffer far less downside loss in extreme cases while requiring reasonable

computing effort.
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Chapter 1

Introduction

1.1 Motivation

Newsvendor problems (NVPs), formerly called Newsboy problems, are a classic topic

in inventory control (Arrow et al., 1951; Silver et al., 1998). In short, they are an

example of a mathematical model that can be used to determine optimal invent-

ory levels under demand uncertainty. They are relatively simple inventory control

models since they are focused on a single planning period. Nevertheless, they have

received considerable attention from Operational Researchers, due to their many

applications. For example, they are used for making inventory decisions for per-

ishable products in retail. They are also used in other areas, such as wholesaling,

manufacturing, transportation and insurance.

The earliest known work to deal with an NVP is Edgeworth (1888). Edgeworth used

the central limit theorem to determine the optimal cash reserves to satisfy random

withdrawals from depositors. The term “newsboy” was first mentioned in Morse and

Kimball (1951), while the modern formulation follows Arrow et al. (1951). Since

then, a large number of works have appeared on the topic (see, e.g., Choi, 2012;

1



Porteus, 2002; Silver et al., 1998; Zipkin, 2000 for surveys).

Although NVPs have received a great deal of attention, many interesting questions

remain unanswered, including some of the practical importance. We address several

of these questions in this thesis. We consider not only the Newsvendor problems

themselves but also the forecasting and marketing decisions associated with them.

We explain our motivation from the following four directions.

In early work on NVPs, it is assumed that the demand for each product in any given

time period comes from a known probability distribution, and the only decision to

make is on the inventory levels. In practice, however, the real demand distribution

is never known. In fact, estimating demand distributions is undoubtedly one of

the main challenges in inventory management. The typical solution for this issue

is to use a disjoint method; that is, estimating the demand distribution first, and

determining the inventory levels second. However, this approach has one major

drawback: in certain situations, it can lead to severe bias, resulting in severe profit

loss (see e.g., Bertsimas and Thiele, 2005; Beutel and Minner, 2012; Karmarkar,

1994; Korpela and Tuominen, 1996). To get around these difficulties, we propose

an integrated approach.

Furthermore, in reality, the planning decisions are more complicated than in the clas-

sical NVPs, involving not only the ordering policy but also decisions about pricing

and promotional activities. In turn, these decisions influence demand for products

and may lead to changes in quantities ordered, creating a feedback loop. This is

especially important for companies that have to make such decisions for thousands

of units in real-time and for which changes in prices or promotional activities of

some products might influence sales of other, related products. To address these

issues, we provide a tool to help decision-makers understand the potential effects of

their decisions. We show that Sensitivity Analysis (SA) and Parametric Analysis

(PA) can be considered useful tools in this situation.
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The third aspect of NVPs that we consider is the effect of judgemental adjustments.

In the textbook formulation, it is assumed that a decision maker has a correct model

of the demand distribution, with correct parameters. In real life, however, correct-

ness is rarely assured. Moreover, even if the model is correct, the parameters may

evolve over time (for example, due to market shocks or product innovations by com-

petitors). For these and other reasons, decision-makers often make so-called “judge-

mental adjustments” to the theoretically “optimal” order quantities. To evaluate

the effect of judgemental adjustments, we perform a numerical study. In particu-

lar, we focus on two specific kinds of adjustments which are normally considered

to be particularly näıve: demand chasing and pull-to-centre. We discuss how these

adjustments work in practice and what they imply in a variety of settings.

Finally, we consider the case in which the decision maker prefers to minimise the

conditional value-at-risk (CVaR) rather than maximise the expected profit. The

CVaR is currently a very popular measure in financial risk management. However,

given that the CVaR concerns the observations with extreme values, which are often

treated as outliers in traditional statistical approaches, the parametric methods

often underestimate the downside risk and lead to a significant loss in extreme

cases. The existing non-parametric methods, on the other hand, are extremely

computationally expensive and depend heavily on the form of the profit function. We

propose an alternative non-parametric approach, which sidesteps the aforementioned

limitations.

To summarise, our study is divided into four parts:

1. Development of an integrated approach that determines the order quantities

directly from past data;

2. Construction of a “feedback loop” which uses information gained in the op-

timisation phase to inform marketing decisions;
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3. Evaluation of the effect of judgemental adjustments on inventory decisions

under a variety of conditions;

4. Development of an alternative non-parametric approach to CVaRminimisation

in the Newsvendor context.

In the following five subsections, we give the background needed to understand the

subsequent chapters. The subsections cover NVPs, linear programming, stochastic

programming, quantile regression and judgemental adjustment.

1.2 Newsvendor Problems

Newsvendor problems involve the determination of the optimal ordering policy, given

a forecast of demand distribution. In the simplest NVP, as defined, for example, by

Arrow et al. in 1951, a company purchases goods at the beginning of a time period

and aims to sell them by its end. The demand is a random variable with a known

probability distribution. At the end of the period, any surplus goods will lead to

a disposal cost. On the other hand, a shortage of goods will lead to a shortage

cost. The goal is to determine an order quantity prior to the period, which would

maximise the expected profit.

Since the introduction of the basic NVP, researchers have considered many ex-

tensions of the problem, including variants with multiple product types (Hadley

and Whitin, 1963; Lau and Lau, 1996; Moon and Silver, 2000), quantity discounts

(Khouja, 1995), different risk measures (Eeckhoudt et al., 1995), alternative object-

ives (Anvari, 1987; Eeckhoudt et al., 1995), product substitution (Bassok et al.,

1999), nonlinear cost functions (Halman et al., 2012), non-stationary demand (Kim

et al., 2015), multiple decision periods (Matsuyama, 2006), and price setting (Karlin

and Carr, 1962; Mills, 1959; Petruzzi and Dada, 1999).
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Nonlinear Newsvendor problems, which we call NNVPs, allow the disposal and

shortage costs to be nonlinear functions of ordered quantity, instead of being linear.

Using the NNVP enables one to model a larger variety of real-life problems. For

example, in real life, a minor shortage may not cause large costs, but a major

shortage could damage the reputation of the company. As another example, a small

amount of excess stock can often be sold at a discount, but this may not be possible

for a large amount of stock. Moreover, as a product stays on the shelf longer, the

opportunity cost of the shelf space may increase over time. All these examples

show that the costs can be non-linear in real-life situations, suggesting that the

NNVP could be applied frequently in practice. Additionally, numerical studies have

shown that the order quantities suggested by NNVP are usually different from the

quantities from its NVP approximating model (Halman et al., 2012; Kyparisis and

Koulamas, 2018).

Multi-item (a.k.a. multi-product) NVPs, which we call MNVPs for short, have n

products instead of one (see Turken et al., 2012 for a survey). The company needs

to determine the order quantity for each product simultaneously. There are also

one or more side constraints, such as constraints on total storage space or the total

budget available for purchasing. Several solution methods for MNVPs are available,

see, e.g., Abdel-Malek and Areeratchakul, 2007; Ben-Daya and Raouf, 1993; Hadley

and Whitin, 1963; Lau and Lau, 1995; Nahmias and Schmidt, 1984.

Another well-studied extension of NVP concerns the minimisation of the condi-

tional value-at-risk (CVaR), a most preferable measure in financial risk management

(Rockafellar and Uryasev, 2002). This is due to the fact that some stakeholders focus

on what they could lose in extreme situations rather than on what they could gain

on average. In the work of Gotoh and Takano (2007), a closed-form solution was

given for the CVaR variant of the NVP. Unlike the solution to the classical version,

the CVaR solution takes the form of a weighted average of two critical quantiles.
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Thus, depending on the cost parameters, the CVaR minimisation solution can be

either greater than or less than the expectation maximisation solution.

1.3 Linear Programming

One of the tools that we will find useful in our study of NVPs is linear program-

ming. A Linear Programme (LP) is a special kind of optimisation problem, in which

one wishes to maximise or minimise a linear objective function of a set of decision

variables, subject to linear constraints (Dantzig, 1955). Geometrically speaking, the

set of feasible solutions to an LP is a convex polyhedron and the goal is to find a

point in the polyhedron where the objective function has the largest (or smallest)

value if such a point exists.

Following Dantzig (1955), an LP with n variables and m constraints can be written

in the form

max
{
cTx : Ax ≤ b, x ∈ Rn

+

}
, (1.1)

where the components of x are the variables whose values are to be determined,

c ∈ Qn is the objective function vector, b ∈ Qm is the vector of right-hand sides,

and A ∈ Qm×n is the constraint matrix.

A variety of solution approaches (a.k.a. algorithms) have been discovered for LPs.

The most well-known approaches are the Simplex method (Dantzig, 1963) and

Interior-Point Methods or IPMs (Gondzio, 2012; Marsten et al., 1990). Nowadays,

there exist many excellent commercial and academic software packages for solving

LPs (and some more general problems) that implement these methods. Many of

these solvers are capable of solving LPs with thousands of variables and/or con-

straints in a reasonable time. (Examples of such solvers include CPLEX, Gurobi and

Xpress.)
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Given an LP of the form (1.1), called the primal LP, one can form another LP,

called the dual. The dual LP takes the form:

min
{
bTy : ATy ≥ c, y ∈ Rm

+

}
.

The strong duality theorem states that the optimal profit for the primal LP is equal

to the optimal cost for the dual LP (Gale et al., 1951). The above-mentioned solution

methods, Simplex and IPMs, compute optimal primal and dual solutions, both of

which are essential when performing sensitivity analysis.

Sensitivity Analysis considers the effect that small changes in the LP input paramet-

ers would have on the optimal solution and objective value (e.g., Gal, 1995; Gal and

Greenberg, 1997). In the NVP context, for instance, it informs us how the profit is

affected as prices change. The basic idea is as follows. Let x∗ ∈ Qn
+ and y∗ ∈ Qm

+ be

the optimal primal and dual solutions, respectively. Suppose we “perturb” the LP,

by changing c to c+ δ and changing b to b+ γ. (Here, δ ∈ Qn and γ ∈ Qm.) The

increase in the optimal profit will be δTx∗ + γTy∗, provided that the components

of δ and γ are sufficiently small. A precise definition of “sufficiently small” can be

found in Wendell (1985).

Closely related to sensitivity analysis is parametric analysis (e.g., Dantzig, 1963;

Vanderbei, 2020). Suppose we have selected a specific constraint in the system

Ax ≤ b. For any given real r, let ϕ(r) be the optimal profit when the right-

hand side of the given constraint is increased by r. Then ϕ is a piecewise-linear

concave function of r, and it can be computed using a modified version of the

Simplex method (Dantzig, 1963). Note that r is not restricted to taking small

values, as in sensitivity analysis. Although parametric analysis requires greater

effort than sensitivity analysis, it indeed allows us to study the effect of a larger

scale of “perturbation”.
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1.4 Stochastic Programming

Many real-world decisions involve uncertainty. For example, imagine a company that

sells products to households. Since the demand from the customers is uncertain, the

problem of determining the best inventory level cannot be modelled as a simple LP.

This leads naturally to stochastic programming (SP), which is an important general-

isation of linear programming. A stochastic programme is an optimisation problem

in which some or all of the problem parameters are uncertain but follow known

probability distributions. The goal of SP is to find a solution which both optim-

ises some criterion chosen by the decision maker and appropriately accounts for the

uncertainty of the problem parameters (Birge and Louveaux, 2011; Kall and Wal-

lace, 1994). SP has found applications in a broad range of areas, including NVPs.

Other applications of SP include, but are not limited to: portfolio selection, traffic

management, and production management.

One of the most well-known SP models is the 2-stage stochastic linear program with

recourse (SLP for short) (Prékopa, 2013). In this model, the variables are classified

as “first-stage” or “second-stage” variables. The decision maker begins by choosing

values for the first-stage variables. Later on, after more information has become

available, the values of the second-stage variables can be selected. The objective is

to minimise the cost of the first-stage decision plus the expected cost of the second-

stage decision.

A general SLP can be written in the form

min
x∈Rn

{
cTx+ Eξ

[
Q
(
x, ξ
)]

: Ax = b
}
, (1.2)

where

Q
(
x, ξ
)
= min

y∈Rm

{
q(ξ)Ty : T(ξ)x+W(ξ)y = h(ξ)

}
.

Here, x and y are the vectors of first- and second-stage variables, respectively. The
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important thing to note is that the vectors q and h and the matrices T and W are

functions of a random variable ξ. The realisation of ξ becomes known only after the

values of the first-stage variables have already been chosen.

We will see in Chapter 3 that many NVPs of interest, including ones involving

multiple product types, can be easily modelled as SLPs. A nice thing about SLPs

is that they can be solved (to any desired accuracy) with the help of an LP solver.

1.5 Quantile Regression

Attempts have been made in the literature to explore integrated approaches to

NVPs. The most famous one is using Quantile Regression (QR). QR is an extension

of linear regression, used when the conditions of linear regression are not met (Koen-

ker and Hallock, 2001). Whereas the method of least squares estimates the condi-

tional mean of the response variable across values of the predictor variables, quantile

regression estimates the conditional quantiles of the response variable. Moreover,

the quantile regression estimates are more robust against outliers in the response

measurements. Table 1.1 summarises some important differences between linear

regression and quantile regression.

Table 1.1: Differences between linear regression and quantile regression

Linear Regression Quantile regression

Predicts the conditional mean Predicts conditional quantile

Works on small samples sizes Needs sufficient data

Often assumes normality Distribution agnostic

Sensitive to outliers Robust to outliers

Computationally inexpensive Computationally intensive
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If we use qτ to denote the τth quantile of a known distribution Y , we have

Pr(Y ≤ qτ ) = τ. (1.3)

However, if the distribution is unknown, we need to use quantile regression on ob-

servations yt to estimate any given quantile. Defining the loss function as

ρτ (y) = y
(
τ − I(y < 0)

)
, (1.4)

where I(x) is an indicator function, taking value 1 if the condition x is met, taking

value 0 otherwise, the τth sample quantile can be obtained by

q̂τ = arg min
q∈R

n∑
t=1

ρτ (yt − q). (1.5)

The use of quantile regression can be further extended to include exogenous vari-

ables, say xt, as features. Supposing that the τth quantile takes the form qτ = xTβτ ,

we can estimate the conditional quantile by first estimating β̂τ . This can be done

in the following way:

β̂τ = arg min
β∈Rk

n∑
t=1

ρτ (yt − xT
t β). (1.6)

Given that quantile regression is advantageous when conditional quantile functions

are of interest, it can be very useful in the study of newsvendor systems (Ban and

Rudin, 2019; Huber et al., 2019).

1.6 Judgemental Adjustment

Adjustments are often made by decision-makers after a statistical forecasting pro-

cedure has been applied. There exist many papers investigating judgemental adjust-

ments in the context of NVP decision-making (see Lim and O’Connor, 1995; Webby

and O’Connor, 1996). The advantage of judgemental adjustments is that they can

take into account information which is not included in statistical models, such as
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promotions, large sports events, holidays, or recent events that are not yet available

in the data.

Many researchers have suggested, however, that practitioners adjust much more

often than they should, and many times for the wrong reasons (Schweitzer and

Cachon, 2000). Unlike statistical forecasts, which can be generated by the same

mathematical formulae every time, judgemental adjustments depend heavily on hu-

man cognition and are vulnerable to its limitations (see, for example, Webby and

O’Connor, 1996).

On the other hand, there is evidence that the behaviour of decision-makers can

be improved through training. In Benzion et al. (2008), the authors recorded that

in the first round of their experiment, decision-makers tended to be more “judge-

mental” than in the last round. They also found that the judgmental order decisions

converge to the optimal level slowly as the experiment proceeds. This implies that,

by receiving immediate feedback after each round, decision-makers are able to im-

prove their decisions. In the works by Bostian et al. (2008), the effect of training is

further studied. They conclude that experience can overwrite pre-conceived biases

more effectively than knowledge gained from third-party sources (e.g., information

about the demand distribution). Thus, it makes sense to consider the possibility of

applying judgemental adjustments in an automated fashion, e.g., using a heuristic

to estimate the “optimal” adjustment parameters.

1.7 Structure of the Thesis

The next four chapters of this thesis consist of four journal articles that have been

submitted/accepted for publication. Each chapter contains theory, experiments

and/or applications which are motivated by aspects of modelling Newsvendor prob-

lems.
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Chapter 2 has been published as Liu, C., Letchford, A.N. and Svetunkov, I., 2022.

Newsvendor problems: An integrated method for estimation and optimisation. Eur.

J. Oper. Res., 300(2), 590–601.

Chapter 3 has been submitted for publication as Liu, C., Letchford, A.N. and Sve-

tunkov, I., 2022. On sensitivity and parametric analysis for multi-item newsvendor

problems. (EURO Journal on Computational Optimisation.)

Chapter 4 has been submitted for publication as Liu, C., Letchford, A.N. and Sve-

tunkov, I., 2022. Näıve newsvendor adjustments: Are they always detrimental?

(Journal of the Operational Research Society.)

Chapter 5 has been submitted for publication as Liu, C. and Zhu, W., 2022. News-

vendor conditional value-at-risk minimisation on non-parametric approach. (Oper-

ations Research.)

Finally, Chapter 6 gives concluding remarks and discusses some potential areas for

future research.
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Chapter 2

Newsvendor Problems: An

Integrated Method for Estimation

and Optimisation

In this chapter, we consider a data-driven method for the classical NVP, proposed

recently by Ban and Rudin. We first examine it from a statistical viewpoint and

establish a connection with quantile regression. We then extend the approach to the

nonlinear NVP. Finally, we give extensive experimental results, on both simulated

and real data. The results indicate that the approach performs as well as conven-

tional ones when applied to the classical NVP, but performs better when applied to

the nonlinear NVP. There is also evidence that the approach is more robust with

respect to model misspecification.
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2.1 Introduction

Inventory control is an important topic in Operations Research and Operations

Management (see, e.g. Porteus, 2002; Silver et al., 1998; Zipkin, 2000). In this

chapter, we focus on Newsvendor Problems (NVPs), by which we mean single-period

inventory control problems with stochastic demand.

In early work on NVPs (Arrow et al., 1951; Morse and Kimball, 1951), it is assumed

that the demand in each time period comes from a known probability distribution.

Of course, in practice, this is not the case — a fact already noted by Scarf in 1958.

Assuming that historical demand data is available, one can attempt to address this

issue by decomposing the problem into an estimation/forecasting phase and an op-

timisation phase. In the first phase, one makes some assumptions (i.e. specific model

form and distributional assumptions) regarding the underlying data-generating pro-

cess and uses the past data to estimate the parameters of the model. In the second

phase, one determines the order quantity (or quantities) based on the estimated

parameter values. Throughout this chapter, we will call this two-phase approach

the disjoint approach.

An advantage of the disjoint approach is that forecasting and optimisation experts

can operate independently within an organisation. This makes things easier to

manage. On the other hand, as noticed by several authors (Bertsimas and Thiele,

2005; Beutel and Minner, 2012; Karmarkar, 1994; Korpela and Tuominen, 1996),

there are two disadvantages:

• The two phases use different objective functions. Indeed, in the first phase,

the objective is to minimise a function of the forecasting errors, such as the

root mean square error or mean absolute error. In the second phase, however,

the goal is usually to maximise the expected profit.
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• If the forecasting model is misspecified, and/or there is substantial noise in the

data, then this might impact the optimisation phase in an unexpected way,

possibly leading to sub-optimal solutions. In particular, upside and downside

errors may have very different effects on expected profit, due to different costs

associated with over- and under-stocking.

An alternative to the disjoint approach is to use a single, integrated approach, in

which the order quantities are determined directly from the data based on an as-

sumed model or filter. In this case, an adjusted loss function is used, as in quantile

regression (Bruzda, 2016; Huber et al., 2019) and SPO loss (Elmachtoub and Grigas,

2017). The advantages of these approaches are that they do not make assumptions

about the demand distribution while remaining explainable. Unfortunately, they

can only be applied to relatively simple NVPs, for which the objective function is

linear.

Another example of integrated approach involvesmachine learning algorithms (Bert-

simas and Kallus, 2020; Bertsimas and Thiele, 2005; Liyanage and Shanthikumar,

2005). With sufficient data, they can build relationships between the optimal order

quantity and exogenous variables, sidestepping the need to have two phases. This

approach is called Feature-Based NVP in He et al. (2012).

Most Feature-Based NVP approaches are “black box” approaches, which are hard

to interpret or explain. A more transparent Feature-Based NVP approach was pro-

posed recently by Ban and Rudin in 2019. In their approach, statistical parameters

are selected in a way that directly attempts to minimise the expected opportunity

costs.

In this chapter, we consider the approach in Ban and Rudin in more detail. We

begin by examining it from a statistical viewpoint, and establish a connection with

quantile regression. We then extend the approach to nonlinear NVP, leading to
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what we call an Integrated Method for Estimation and Optimisation (IMEO). We

also provide extensive simulation experiments to examine the performance of IMEO

in different settings, including situations when the true model is known and when

the underlying model is mis-specified.

The rest of the chapter is organised as follows. Section 2.2 is a literature review.

Section 2.3 presents the IMEO framework and the theoretical analysis. Section 2.4

reports experimental results on simulated demand data. In Section 2.5, we apply

our approach to some real-life data. Some concluding remarks are made in Section

2.6.

2.2 Literature Review

Since the literature on NVPs is vast, we mention here only works of direct relevance.

In Subsections 2.2.1 and 2.2.2, we review the classical NVP and its extensions,

respectively. Subsection 2.2.3 and 2.2.4 review quantile regression and the Ban and

Rudin method, respectively.

2.2.1 The classical newsvendor problem

In the simplest NVP, as defined, for example, by Choi in 2012, a company purchases

goods at the beginning of a time period at a cost of v per unit, and aims to sell

them by the end of the period at a price p per unit. The demand during the period

is a random variable Y with known probability density function f and cumulative

distribution function F . At the end of the period, any surplus goods will lead to

a disposal cost of ch per unit. On the other hand, a shortage of goods during the

period will lead to a shortage cost of cs per unit. The goal is to determine an order

quantity Q, prior to the period, that maximises the expected profit.
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For a given Q and a given realisation y of Y , the profit over the period is:

π(Q, y) =


py − vQ− ch(Q− y), if Q ≥ y

pQ− vQ− cs(y −Q), if Q < y.

(2.1)

The expected value of π(Q, y) is:

Π(Q) =

∫ Q

0

[
py−vQ−ch(Q−y)

]
f(y)dy+

∫ ∞

Q

[
pQ−vQ−cs(y−Q)

]
f(y)dy. (2.2)

It is common to call cu = p− v+ cs the ‘underage’ cost and co = v+ ch the ‘overage’

cost. Some calculus then shows that the order quantity that maximises Π(Q) is

(Choi, 2012):

Q∗ = F−1

(
cu

co + cu

)
, (2.3)

where F−1 is the inverse function of F . Thus, Q∗ is the τ th quantile of f , with

τ = cu/(co+cu). One can think of the quantity τ as a “target service level”, since

aiming for this target will bring the company maximised expected profit.

2.2.2 More complex newsvendor problems

Since the introduction of the NVP by Arrow et al. in 1951, researchers have con-

sidered several extensions of the problem, including variants with multiple product

types (Hadley and Whitin, 1963; Lau and Lau, 1996; Moon and Silver, 2000),

quantity discounts (Khouja, 1995), different risk measures (Eeckhoudt et al., 1995),

product substitution (Bassok et al., 1999), nonlinear cost functions (Halman et al.,

2012), non-stationary demand (Kim et al., 2015), and price setting (Karlin and Carr,

1962; Mills, 1959; Petruzzi and Dada, 1999).

For the purpose of what follows, we now explain one variant, the ‘Nonlinear News-

vendor Problem’ (NNVP), which can be found in works of Halman et al. (2012),

Khouja (1995), Kyparisis and Koulamas (2018) and Pal et al. (2015) and many
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others. In the general NNVP, the profit function takes the form:

π(Q, y) =


P (Q, y)− V (Q)− Ch(Q, y), for Q ≥ y

P (Q, y)− V (Q)− Cs(Q, y), for Q < y,

(2.4)

where V , P , Ch and Cs are now functions rather than constants.

Using the NNVP enables one to model more real-life problems. Indeed, as noticed

by Pantumsinchai and Knowles in 1991 and Khouja in 1995, non-linear costs arise

frequently in practice. For example, in real life, a minor shortage may not cause

large costs, but a major shortage could damage the reputation of the company. As

another example, a small amount of excess stock can often be sold at a discount,

but this may not be possible for a large amount, not to mention the loss of goodwill.

Moreover, as a product stays on the shelf longer, the opportunity cost of the shelf

space may increase over time. All these examples show that overage and underage

costs can be non-linear in real-life situations.

If π(Q, y) has a particularly simple form (e.g., if it is piecewise-linear as in the

classical NVP), then it may be possible to use calculus to express the optimal order

quantity as a quantile (Choi, 2012). In general, however, a closed-form expression

as a quantile is unlikely to exist (Halman et al., 2012; Porteus, 2002). In such cases,

one must resort to numerical integration and search techniques to solve the NVP

(Solis and Wets, 1981).

We now recall one specific NNVP, taken from Kyparisis and Koulamas in 2018, that

we are going to use in our experiments later in this chapter. As second-round sales

in salvage markets and proportional shortage penalties are very common in real life

(Kashefi, 2016; Liberopoulos et al., 2010), it is particularly necessary to check the

performance of the proposed method on this NNVP. The purchase cost v and selling

price p are constants, but Ch and Cs are functions. Overstock items incur a constant

unit penalty α > 0, but they can be sold in a salvage market with a fixed unit sales

price β, with 0 < β < v. The demand in the salvage market is itself a random
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variable, with a known distribution, which we denote by u. That is, we have:

Ch(Q, y) = α[Q− y]+ − β E
[
min

{
[Q− y]+, u

}]
. (2.5)

Moreover, the shortage penalty is proportional to the shortage quantity. That is:

Cs(Q, y) = ζ
(
[y −Q]+

)2
(2.6)

for some constant ζ > 0. This problem cannot be solved analytically, but there are

known approximation methods that give adequate solutions (Kyparisis and Koula-

mas, 2018).

2.2.3 Quantile regression

Returning to the classical NVP, we now consider the (more realistic) case in which

the demand distribution is unknown, but we have historical demands y1, y2, . . . , ys.

For this case, quantile regression has proven to perform well, and the basic idea is

as follows (Bertsimas and Thiele, 2005):

1. Compute the value of τ that maximises expected profit;

2. Use quantile regression to compute an estimate of the τ th quantile of the

demand in the next time period, which we denote by ŷ
(τ)
s+1;

3. Set the order quantity Q̂s+1 equal to ŷ
(τ)
s+1.

The biggest advantage of quantile regression is that it does not assume a specific

demand distribution (Huber et al., 2019). However, it is efficient only on large

samples (Ban and Rudin, 2019; Huber et al., 2019). Another drawback is that

its performance depends crucially on the underlying target service level. Ban and

Rudin in 2019 demonstrated that the benefit of using quantile regression is limited to

target service levels smaller than 0.8. If the target service level is higher, then much
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more data is needed in order to correctly estimate a specific quantile. Moreover, as

mentioned in the previous subsection, for the more complex NVPs, there is no easy

way to express the optimal order quantity as a quantile.

2.2.4 The Ban and Rudin approach

In the approach of Ban and Rudin, a statistical model is built, in which exogenous

variables are regressed against the order quantity. In more detail, we have historical

data [(x1, y1), . . . , (xs, ys)], where xt = [x1t , . . . , x
p
t ] represents features related to the

demand, such as seasonality, price, promotions and so on. The problem now becomes

that of finding the optimal function q(·) that maps the observed features xs+1 ∈ X

to an order q(xs+1) ∈ R. Ban and Rudin propose to select q(·) from a pre-specified

family of functions, in a way that minimises the empirical opportunity cost:

min
s∑

t=1

(
cu[yt − q(xt)]

+ + co[q(xt)− yt]
+
)
, (2.7)

The simplest version of their method uses linear functions, of the form:

q(xt) = xT
t β =

p∑
j=1

xjtβ
j, (2.8)

With this choice, one can determine the βj easily with linear programming. Ban

and Rudin also mention more complex variants, that use polynomials of the original

features, and/or a quadratic regularisation term.

2.3 Analysing and Extending the Ban and Rudin

Method

In this section, we analyse the approach of Ban and Rudin in more depth, and

extend it to a more general family of problems.
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2.3.1 Analysis

To begin, we attempt to provide an intuition behind the method. Suppose that,

for each historical period t ∈ [1, s], the observed demand yt is a realisation of a

random variable Yt. Then, in principle, there exists an order quantity, say Q∗
t , that

maximises the expected profit given Yt and the function Π. Thus, if we had set Qt

to Q∗
t prior to observing the true demand yt, we would have maximised our expected

profit in period t. Putting it another way, if we could somehow uncover the structure

of the unobservable time series of orders
{
Q∗

1, . . . , Q
∗
s

}
, we would be able to estimate

Q∗
s+1 directly.

Of course, in practice, the distribution of demand Yt is unknown, and the values

Q∗
t are not observable. So the method approximates the Q∗

t values with the q(xt)

values. One, therefore, solves an optimisation problem to find the choice of q(·) that

minimises the expected opportunity cost. Once that is done, the order quantity for

the next time period can be set to Q̂s+1 = q(xs+1).

Ban and Rudin did not give a statistical analysis of the behaviour of the estimates

of the model parameters that arise from their method. A partial answer is that, in

the case of a linear profit function, their method is equivalent to quantile regression

(see Appendix A for proof). Therefore, in the linear case, their method immediately

inherits all of the desirable properties of quantile regression, such as consistency

(Koenker, 2005), efficiency (Koenker and Machado, 1999) and asymptotic normality

(Kocherginsky et al., 2005) of the estimates of parameters.

2.3.2 Extension to the nonlinear case

We now consider how to extend the approach in Ban and Rudin to the NNVP. The

key issue here is that there is no simple formula for the opportunity cost in the
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nonlinear case. Indeed, in the literature on the NNVP, authors work directly with

the function (2.4), rather than attempting to derive explicit functions for co and cu.

To get around this difficulty, we propose to maximise the expected profit instead

of minimising the expected opportunity cost (2.7). More precisely, we propose to

compute the function q(·) that maximises the function

max
s∑

t=1

π(q(xt), yt), (2.9)

where π can be a profit function of any level of complexity.

Maximising (2.9) is a continuous nonlinear optimisation problem. Under reason-

able assumptions on the functions P , V , Ch and Cs in (2.4), and the function q(·)

itself, the profit function (2.9) will be concave. Unfortunately, it is unlikely to

be everywhere differentiable. As a result, general-purpose algorithms for nonlinear

optimisation are not guaranteed to converge to global maxima. Fortunately, the

experiments in the next section indicate that this does not cause serious problems.

In what follows, we call our approach an Integrated Method for Estimation and

Optimisation or IMEO. We remark that, in the case of a linear profit function,

IMEO is equivalent to the method of Ban and Rudin (see Appendix B for proof).

Thus, in that case, it is again equivalent to quantile regression.

2.4 Computational Experiments

In order to assess the performance of IMEO and to understand its strengths and

weakness, we conduct a simulation experiment. We start the discussion with Sub-

section 2.4.2, where the simplest case is studied, in which the profit function is

linear and the underlying data generation process (DGP) is known. The case in

which the profit function is nonlinear is discussed in Subsection 2.4.2. Finally, we

discuss more complicated scenarios, with misspecified models, in Subsections 2.4.3
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and 2.4.3. Given the discussion in Section 2.3, the analysis in Subsections 2.4.2 and

2.4.3 will also tell us how the “Feature-based NVP” approach by Ban and Rudin

compares with the conventional approaches in different situations.

2.4.1 Experimental setup

In our experiments, we consider NVPs with quarterly demand data, and we gen-

erate data from a seasonal ARIMA(1, 0, 0)(1, 0, 0)4 process with θ = 0.3, Θ = 0.5,

and constant level 500. We also assume that the error term of the DGP follows

the normal distribution N (0, 2002). We choose a seasonal ARIMA model since it

has been shown working well in the field of inventory management, and has been

proper studied in the literature (for example, see the review paper on supply chain

forecasting by Syntetos et al., 2016). We have also experimented with other models

and parameters for the DGP. The scripts of extended experiments have been made

available on Github (Liu, 2020). The proposed method showed strong robustness

and the results were very similar to the ones presented below.

For each of the cases, we simulate 20,000 sets of demand data, each consisting of

4800 observations. From each set, we extract sub-sequences of lengths 40, 120, 480

and 1200. These are used to explore how the amount of available data affects the

performance of each method. The first three data lengths can help us to simulate

real-life circumstances, while the data lengths of 1200 and 4800 allow us to explore

the asymptotic behaviour of the approach. For each set of demand data and each

method, we compute Q̂s+1, the 1-step ahead forecast of orders. We then compute

the following three quantities (and aggregate them using a mean over 20,000 sets):

1. Percentage Profit Loss: PPL = π(ys+1,ys+1)−π(Q̂s+1,ys+1)
π(ys+1,ys+1)

, which shows the per-

centage of profit that would be lost due to using each method instead of know-

ing the true demand. In the ideal situation, MPPL (mean PPL) should be
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equal to zero.

2. Service Level: SL =
∑

I(Q̂s+1>ys+1)
20,000

, where I(·) is the indicator function, equal

to 1 if the condition inside it is satisfied. This measure shows the achieved

service level. In the ideal situation, SL should correspond to the target service

level.

3. Fill Rate: FR = min{Q̂s+1,ys+1}
ys+1

, which shows how the demand is serviced. In

the ideal situation, MFR (mean FR) should be equal to one.

In the proposed method (“IMEO”), we use the Limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm (L-BFGS) for the estimation of the parameters of the

model. The L-BFGS algorithm is very popular in the nonlinear programming com-

munity (see Liu and Nocedal, 1989), and is commonly used for ARIMA fitting in

software packages, for example in R (R Core Team, 2020).

Besides the proposed method, three benchmark methods are also considered:

• A disjoint method (“DJ”) that estimates the parameters of the model in the

first phase, and then determines the optimal order quantity in the second

phase.

• An integrated method that uses Quantile Regression (“QR”) in order to de-

termine the order quantity. We choose it as a rival since it is one of the most

widely used statistical approaches, which has proved to work well for the NVP.

• Finally, for the purposes of benchmarking, we use DJ with the exact model

and parameters from the DGP to perform a forecast and determine the order

quantity. This last method is “idealised”, since, in real life, one would not

know the true model or true parameters of demand. But it allows us to see,

how far approaches are from the ideal one. We call this last method “DGP”.
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2.4.2 When the true model is known

In this scenario, we assume that it is known that the true model is ARIMA(1, 0, 0)-

(1, 0, 0)4 with constant, but its parameters need to be estimated. In all the methods,

it is also assumed that the error term follows a normal distribution with unknown

variance.

Linear case

We conduct several experiments with a combination of costs that give service levels

of 0.3, 0.5, 0.63 and 0.9. It is important to recall that the optimal service level is

a critical solution to the optimisation problem. In most cases, the most profitable

service level is not a “high” stocking level. Other levels can also be considered, but

in additional experiments that we have conducted, we have not found any significant

changes in the performance of the approaches.

Initially, we choose the following parameters for our (linear) profit function:

• p = 20, v = 10, ch = −3, cs = −7.

One can check that the corresponding pair
(
cu, co

)
is (3, 7), and the target service

level evaluates to 0.3. Applying the methods to this scenario, we get values of PPL,

SL and FR.

Figure 2.1 shows the mean percentage profit loss obtained when the target service

level was set to 0.3. As one would hope, the losses for all methods converge as

the sample size increases. It is also apparent that IMEO and QR have very similar

performances. This is to be expected, given that IMEO can be considered equivalent

to QR in the linear NVP case. (The small gap between those two methods may be

due to different optimisation algorithms that are applied, as mentioned in Section
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Figure 2.1: Mean percentage profit loss vs. data size at 0.3 target service level
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2.3.) Another thing to note is that the integrated approaches perform very similarly

to the disjoint one, which is also expected, given the knowledge of the true model

and the simplicity of the NVP.

Figure 2.2: Service level vs. sample size at 0.3 target service level
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Figure 2.2 represents the service level, i.e., the proportion of iterations in which

the demand was satisfied in the simulation. We see that all four methods converge

to the desired target of 0.3 as the sample size grows. Interestingly, DJ approaches

the target from below, while IMEO and QR slightly overestimate the level on small

samples. A possible explanation of this phenomenon is that in the first phase of
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DJ, the estimated parameters tend to be closer to zero when the sample size is

small. This causes the estimated order quantities to be further away from the mean

than they should be and leads to lower-than-needed SL. On the other hand, the

integrated methods take the underage and overage costs into account. For the given

cost parameters, over-stocking is less costly than under-stocking, which leads to a

higher SL than needed.

Figure 2.3: Mean fill rate vs. sample size at 0.3 target service level
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Figure 2.3 shows the mean fill rate. As one might expect, the performance of all

methods improves with the growth of the sample size. The thing to note is that the

DJ requires a much larger sample size than the other methods in order to achieve

the same MFR, although the differences between the DJ and other methods are

not very big (only a couple of percentage points). The possible explanation for this

behaviour of DJ is probably similar to the situation with the service levels.

Next, we explore whether the target service level has a significant effect on the

performance of the methods. Specifically, we consider the following three alternative

parameter settings:

• p = 20, v = 8, ch = −3, cs = −7
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• p = 20, v = 8, ch = 3, cs = 7

• p = 20, v = 8, ch = −7, cs = −3.

These correspond to pairs
(
cu, co

)
are (5, 5), (19, 11) and (9, 1), respectively, leading

to the target service levels of 0.5, 0.63 and 0.9, respectively. It is important to

recall that the target service level refers to the most profitable service level for given

parameters.

The relevant data is given in Tables 2.1 and 2.2, for the cases of sample sizes s = 40

and s = 4800, respectively. The best cases (excluding DGP, which is expected to

be the best by construct) are marked in boldface for each of the error measures and

each of the service levels.

Table 2.1: Target service level effect with s = 40

Mean percentage profit loss Service level Mean fill rate

Target service level DGP DJ QR IMEO DGP DJ QR IMEO DGP DJ QR IMEO

0.3 5.2% 5.6% 5.7% 5.6% 0.30 0.26 0.32 0.32 91.1% 88.2% 90.6% 90.8%

0.5 4.9% 5.3% 5.3% 5.2% 0.50 0.44 0.50 0.50 95.2% 93.4% 94.7% 94.8%

0.63 13.8% 15.1% 15.0% 14.8% 0.63 0.58 0.62 0.62 97.1% 95.8% 96.6% 96.6%

0.9 2.1% 2.4% 2.4% 2.3% 0.90 0.91 0.91 0.90 99.6% 99.1% 99.2% 99.4%

We can see from Table 2.1 that IMEO performs consistently better than the other

approaches on the small sample, regardless of the target service level, although

the difference in performance between the methods is not substantial. QR is the

second-best approach in this scenario.

When it comes to large samples (Table 2.2), IMEO and QR perform slightly worse

than DJ, although the difference between the methods is not substantial. This holds

for all target service levels, irrespective of the error measures. A thing to note is

that the MPPL is particularly high for all methods when the target service level

is 0.63. This is probably due to the relatively large overage and underage costs in
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Table 2.2: Target service level effect with s = 4800

Mean percentage profit loss Service level Mean fill rate

Target service level DGP DJ QR IMEO DGP DJ QR IMEO DGP DJ QR IMEO

0.3 5.1% 5.1% 5.2% 5.2% 0.30 0.30 0.30 0.30 91.1% 91.0% 91.0% 91.1%

0.5 4.9% 4.9% 5.0% 5.0% 0.50 0.50 0.50 0.50 95.3% 95.2% 95.2% 95.2%

0.63 13.8% 13.8% 14.0% 14.0% 0.63 0.63 0.63 0.63 97.0% 97.0% 97.0% 96.9%

0.9 2.1% 2.1% 2.2% 2.1% 0.90 0.90 0.90 0.90 99.5% 99.2% 99.1% 99.4%

that case. In addition, note that, asymptotically, all methods approach the target

service level. This makes IMEO and QR more desirable than DJ, because they do

at least as well as DJ both on small and large samples.

Summarising, we can see that IMEO does at least as well as the classical disjoint

method and quantile regression in different scenarios of the linear NVP when the

model is correctly specified.

Nonlinear profit function

In this subsection, we examine the relative performance of the methods when applied

to the NNVP. As before, we assume that the true model for the demand is known.

We use the following nonlinear profit function (Kyparisis and Koulamas, 2018):

π(Q, y) =


20y − 8Q− 4(Q− y) + 5E[min{(Q− y), u}], if Q ≥ y

20Q− 8Q− 0.01(y −Q)2, if Q < y,

(2.10)

where u ∼ N (30, 52). Given that the target service level does not have a closed form

in the NNVP, one can use the technique proposed by Kyparisis and Koulamas, or

other numerical approaches, to verify that it is approximately equal to 0.56.

Since the nonlinearity makes it impossible to apply QR (as discussed in Subsection

2.2.3), we present results only for DJ and IMEO, together with the “idealised”

method based on the DGP. Moreover, we found that the MFR plots were similar in
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all scenarios and did not give any additional important information. Therefore, we

do not present them in what follows.

Figure 2.4 shows the MPPL and SL of each method, for each sample size. It is

apparent that both DJ and IMEO perform well in terms of MPPL, with very similar

values for all sample sizes. IMEO is slightly better on small samples (similar to what

we have seen in Subsection 2.4.2), but the differences in performance between the

methods are not substantial. When it comes to SL, the picture is similar to what

we have observed in Subsection 2.4.2: the SL of IMEO is very close to the target

service level even when the sample size is small, while the disjoint method needs

more data to reach the target service level, and it approaches it from below. The

reason for such performance is similar to the one discussed in Subsection 2.4.2. As

expected, both methods converge to the DGP values in both MPPL and SL with

the increase of the sample size.

Figure 2.4: Performance vs. sample size with nonlinear profit function
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We would like to stress that, unlike the disjoint method, IMEO does not need any

complicated numerical optimisation or simulation methods to estimate the optimal

order quantity – it does that directly. In addition, we have found in our experi-

ments that it typically required less computational time than the disjoint method:

approximately only one-tenth of the time spent on DJ was needed for IMEO when

s = 40.
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Overall, we see that IMEO performs at least as well as DJ when the true model

is known. However, the true model is typically not known in practice, so next, we

investigate situations, when the model is misspecified.

2.4.3 When the true model is not known

We examine the effect of model misspecification on the relative performance of the

various methods. We consider three scenarios:

1. Model omits important variables, which typically leads to biased estimates of

parameters;

2. Model has redundant variables, which usually leads to inefficient estimates of

parameters;

3. The assumed distribution of the error term is wrong.

While in reality there can be other scenarios, the proposed three scenarios cover the

main possible issues with the model misspecification.

We don’t include the QR method in further discussions, because it performs similarly

to IMEO in the linear case, and cannot be used in the nonlinear case.

Linear case

We first consider the situation in which the model omits important variables

(i.e., is under-parameterised): the seasonal order of ARIMA is dropped in the es-

timation and the solution of the NVP. In other words, when estimating the optimal

order quantity, we apply the AR(1) model with a constant.

The MPPL and SL for this case are shown in Figure 2.5. By comparing with Figure
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Figure 2.5: Performance vs. sample size with under-parameterised linear model
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2.1, we see that the use of an under-parameterised model causes both DJ and IMEO

to incur small additional losses in MPPL, irrespective of the sample size. This is

expected, as the seasonal pattern in the data is ignored by the models. These

losses do not significantly improve as the number of data points increases, because

seasonality plays a key role when making one-step-ahead forecasts. When it comes

to the SL, both approaches perform similarly, reaching the target on larger samples.

But when it comes to small samples, they both reach higher than needed levels.

Interestingly, the performance of DJ and IMEO is similar, even though they are

very different approaches.

Next, we consider the situation in which the model contains redundant vari-

ables (i.e., is over-parameterised): an unnecessary lag term is included. Specifically,

we apply an ARIMA(2, 0, 0)(1, 0, 0)4 model to the data.

The MPPL and SL for this case can be seen in Figure 2.6. Both DJ and IMEO incur

a loss in profit, as before. Now, however, the profit loss decreases with the increase

in the sample size. This can be explained by a well-known statistical phenomenon

when estimating models with redundant variables (Farrar and Glauber, 1967): they

tend to lead to less efficient estimates of parameters on small samples but do not

lead to systematic bias (as omitted variables typically do). As for the service level,

it can be seen that both methods asymptotically converge to the target, but tend to
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Figure 2.6: Performance vs. sample size with over-parameterised linear model
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be less precise on small samples, with IMEO reaching higher levels than needed and

DJ leading to lower values. The performance is similar to what we saw in Subsection

2.4.2.

We do not present results for other target service levels in this part, since they were

very similar to what we observed above.

Finally, we explore the effect on the performance of different methods, when the

assumed distribution is incorrect. In particular, we generate data using a

modified version of our seasonal ARIMA(1, 0, 0)(1, 0, 0)4 model, in which the error

term follows the Laplace distribution with mean 0 and scale 141 (which will have

a standard deviation of 200). We remark that the Laplace distribution has “fatter

tails”, or, more formally, a higher kurtosis than the normal distribution. When

estimating the optimal order quantity, however, we use the incorrect assumption

that the error term follows the normal distribution.

The results for this scenario are presented in Figure 2.7. We can see that the

incorrect distributional assumption leads only to a very small loss in profit for both

DJ and IMEO. They both converge to DGP as the sample size increases. However,

the analysis of SL shows that while IMEO rapidly converges to the target service

level from above, the DJ achieves a lower-than-needed service level, producing a

biased value – and this drawback is not remedied by an increase in the sample

33



size. A possible explanation is that the integrated approach works directly with the

data, and does not rely on the assumption of normality, being in this sense “non-

parametric”, while the DJ relies on normality and consistently underestimates the

uncertainty in the data. This example suggests that IMEO may be more robust.

Figure 2.7: Performance vs. sample size with Laplace distributed error term
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Nonlinear case

Finally, we explore the case in which there is a nonlinear profit function and mis-

specification simultaneously. The same three scenarios of misspecification are con-

sidered.

Figure 2.8: Performance vs. sample size with under-parameterised nonlinear model

data length

pe
rc

et
ag

e 
pr

of
it 

lo
ss

40 120 480 1200 4800

12.5%

13%

13.5%

14%

14.5%

15%
DGP
DJ
IMEO

(a) percentage profit loss vs. data size

0.
53

0.
55

0.
57

0.
59

data length

se
rv

ic
e 

le
ve

l

40 120 480 1200 4800

DGP
DJ
IMEO

(b) service level vs. data size

Figure 2.8 represents the scenario in which applied models are under-parameterised.

We can see that the performance of the methods in terms of MPPL and SL are
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similar to the case of linear NVP discussed in Subsection 2.4.3. The percentage

profit loss for both DJ and IMEO stabilises around 14.75% and never converges to

the level of DGP, due to the absence of the important variable in the model. This is

compensated by SL, for which DJ performs similarly to DGP, with IMEO reaching

a slightly higher-than-needed level.

Figure 2.9: Performance vs. sample size with over-parameterised nonlinear model
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Figure 2.9 demonstrates the over-parameterised scenario. We can see that IMEO has

lower MPPL than DJ on small samples. With an increase in sample size, the latter

method converges to the DGP, while IMEO still has a slight bias, producing around

0.1% higher loss than the DGP. The good performance of IMEO on small samples

could be because it does not need to estimate the variance of the error term. As for

the SL, IMEO reaches the target level much faster than DJ, performing especially

well on small samples, where the latter method reaches a much lower service level

than needed. As the sample size increases, both methods converge to the target

level.

Finally, we consider the scenario in which an incorrect distribution of error term is

assumed. The results are presented in Figure 2.10. It becomes apparent that IMEO

outperforms DJ in terms of MPPL on small samples and converges to DGP together

with DJ. IMEO also seems more stable than DJ in terms of SL across all sample

sizes. While IMEO does not converge to the target level on larger samples, it is

consistent and less biased than DJ, which converges to a value much higher than
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needed. One interesting thing we can see from both Figure 2.10 and Figure 2.7 is

that DJ always gives a very low SL when the sample size is small and converges to a

higher than needed target as the sample size grows. This “wrong” target is obtained

in both situations, not surprisingly, because DJ cannot overcome the incorrectness

in the distributional assumption.

Summarising this subsection, we see that IMEO is robust and does not fail as badly

as the classical disjoint method does in severe cases of misspecification. At worst,

IMEO performs similarly to DJ. In addition, it looks like IMEO does consistently

better than the DJ in terms of service level, so if this is more important for a

company than profit loss, then we would recommend using IMEO.

Figure 2.10: Performance vs. sample size with Laplace distributed error term,

nonlinear model
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2.5 Real-life Case

In this section, we examine the performance of IMEO on a real-life nurse staffing

problem in a hospital, which must determine the next-day staffing level Q. The

hospital incurs an underage cost (unexpectedly high death rate, reputation damage,

etc.) if there are not enough nurses, and an overage cost (unnecessary exposure

risk, big salary payment, etc.) if there are too many nurses. Both types of costs
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are considered to be nonlinear in this case (Al Thobaity and Alshammari, 2020;

Fernandez et al., 2020). The objective is to minimise the expected daily cost.

The data we use comes from the NHS open data set (NHS Statistics on COVID-19

hospital activity 2020). It includes the total bed occupancies for a large UK general

hospital from April to October 2020 on a daily basis.

We assume a fixed 1 to 3 nurse-to-bed ratio (similar to how it was done in Ban and

Rudin, 2019), hence the demand y is the total number of beds occupied divided by

3. In addition, we do not require the number of nurses to be an integer, due to the

possibility of them working part-time. Based on the study of Chen et al. in 2020

and Liu et al. in 2020, we can approximate this problem as:

π(Q, y) = α[Q− y]+ − β E
[
min

{
[Q− y]+, u

}]
+ ζ

(
[y −Q]+

)2
. (2.11)

Here, we assume that each over-scheduled nurse incurs a fixed cost α > 0, but can be

reassigned to help other departments and reduce the cost by the amount β; whereas

demand of other under-staffed departments can be seen as a random variable u.

Moreover, we assume that the shortage penalty of nurse staffing is proportional to the

shortage quantity with rate ζ, since that shortage may be covered by reassignment or

overcharging, but a significant shortage could be lethal to patients. The parameter

values are chosen based on the studies of Chen et al. (2020), Coronini-Cronberg

et al. (2020) and Liu et al. (2020):

• α = 10, β = 4, ζ = 1, and u ∼ U(0, 15).

To get some sense of the data, we provide a time-series plot in Figure 2.11. It

can be seen that from mid-April to October, the number of beds occupied exhibits

seasonality and that from late August, the number becomes stable. According to

the public information in the NHS data set, the hospital nearly reaches its maximum

capacity.
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Figure 2.11: Time-series plot of bed occupancy
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To perform a fair comparison, we apply both the disjoint method (“DJ”) and the

proposed method (“IMEO”) to this NNVP, with several ARIMA models with orders

p = 1, 2 and P = 0, 1. We use the ARIMA model here to maintain consistency with

previous sections. It is, of course, possible that other models would fit better than

the chosen ARIMA. However, our intention here is not to find the best-fitting model,

but to compare the performance of IMEO and the disjoint method fairly. After all, it

is more interesting to see how the two approaches compare when the applied model

is wrong.

For the purpose of generality, we include four pairs of orders in ARIMA (p = 1, P =

0; p = 2, P = 0; p = 1, P = 1 and p = 2, P = 1). To compare the performance of

the methods, we obtain their 1-step ahead forecasts with rolling horizon (Tashman,

2000), where origin length is s = 100 and the origin is shifted n = 80 times. For each

forecasted value, we compute the over-scheduled/under-scheduled nurse number, the

service level, and the daily cost.

The boxplots are shown in Figures 2.12a and 2.12b. The black lines in the boxes

represent mean values rather than medians. From the plots, we can see that IMEO
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outperforms DJ with all ARIMA models, in terms of both the mean cost and the

mean scheduling error. Moreover, DJ produces a larger variance of both errors and

costs than IMEO. Thus, IMEO not only has lower mean costs but also works more

efficiently overall. This finding is in line with the MPPL result at data length 120

in Subsection 2.4.2.

Figure 2.12: Boxplot of the out-of-sample performance. The black lines in the boxes

represent mean values
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We also used the auto.arima() function from forecast package (Hyndman et al.,

2020) for R in order to select the most appropriate ARIMA model for the DJ method

and then we used the same model for the IMEO (Figures 2.13a and 2.13b). In this

case, we are favouring DJ approach, producing the model closer to the true one based

on Akaike’s information criterion. At the same time, the appropriate order selection

mechanism for IMEO is not yet developed, so the same model will not be optimal for

it. Still, analysing the plots in Figure 2.13, we can see that the difference between

the two methods is not substantial, with boxplots being very close to each other.

This additional experiment shows that even when the DJ approach is done properly,

using state-of-the-art forecasting techniques, IMEO does not fail substantially and

can be considered a decent alternative to DJ. Together with the results from Figures

2.12, this experiment shows that IMEO works well in a wide variety of cases.
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Figure 2.13: Boxplot of the out-of-sample performance with auto-fitting. The black

lines in the boxes represent mean values
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The service level achieved by each method is summarised in Table 2.3. One can check

by simulation or numerical methods that the “target service level” that minimises

cost for the given parameters is around 0.8. In that case, IMEO achieves a much

closer service level to the target than the disjoint method, no matter what ARIMA

model is used, while the disjoint method provides a higher-than-needed service level

in all four cases.

Table 2.3: Service level of each method for real-life case

Order p = 1, P = 0 p = 2, P = 0 p = 1, P = 1 p = 2, P = 1

DJ 0.950 0.950 0.975 0.975

IMEO 0.750 0.750 0.825 0.850

Note: The service level achieved by an auto-fitting algorithm is 0.950.

This example shows that IMEO is a robust approach that results in lower costs and

a service level closer to the target, even when the model is specified incorrectly. The

disjoint method is much more sensitive to the specification of the model, performing

poorly when the model is misspecified.
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2.6 Concluding Remarks

In this chapter, we extended the method of Ban and Rudin (2019) to a broader

framework, called “Integrated Method for Estimation and Optimisation” or IMEO.

IMEO attempts to maximise the expected profit instead of minimising the expected

opportunity cost, which turns out to be an important distinction in the nonlinear

case. We showed that IMEO reduces to the method of Ban and Rudin (2019) in

the linear case when both methods turn out to be equivalent to quantile regression.

Our experiments indicate that IMEO performs at least as well as the benchmark

methods, in terms of both mean percentage profit loss and service level. It also

appears that IMEO is more robust with regard to model misspecification. It also

does well in terms of service level, which could be attractive in real-life applications.

While the focus of the experiments in this chapter was on ARIMA models, the

proposed approach could be applied to other models as well, such as linear regression

with explanatory variables, nonlinear regression and ETS.

There are several interesting topics for further research. First, it would be interest-

ing to study the performance of IMEO with other demand models, such as ETS.

Second, it would be desirable to develop a variable selection mechanism in IMEO.

The conventional disjoint method allows one to do this in the first phase, for example

by using cross-validation or a stepwise technique based on information criteria, while

Ban and Rudin (2019) uses regularisation for the selection and estimation. While

these are good approaches, they require large samples and are computationally ex-

pensive. Our hope is that a more efficient feature selection method can be developed.

Third, we focused our research on NVP, but IMEO could be potentially extended to

multi-period inventory problems. Finally, it would be interesting to extend IMEO to

multi-item problems, either with or without substitution effects between products.
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Chapter 3

On Sensitivity and Parametric

Analysis for Multi-Item

Newsvendor Problems

The Multi-item Newsvendor Problem (MNP) is the extension of the NVP in which

there are several product types, sharing one or more resources (such as warehouse

space). Although the MNP has received much attention from the Operational Re-

search community, not much work has been done on algorithms for performing

sensitivity and/or parametric analysis for it. Yet, such analyses can be of interest in

practice, for example, to inform decisions about pricing and promotional activities.

In this chapter, we present a simple method for performing such analyses, based

on discrete approximation and linear programming. The method can easily handle

changes in costs, prices and resource availabilities. Under certain conditions, it can

also handle changes in the demand distribution itself. Computational results show

that the method yields accurate results quickly.
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3.1 Introduction

The Multi-item Newsvendor Problem (MNP) is a classic stochastic optimisation

problem that arises in the context of inventory control (Arrow et al., 1951). Although

it is a relatively simple inventory model, it has received much attention from the

Operational Research community (e.g., Choi, 2012; Khouja, 1999; Porteus, 2002;

Silver et al., 1998; Turken et al., 2012; Zipkin, 2000). This is no doubt due to the

wide range of applications of the model, including for example retailing, wholesaling,

fast fashion, train and airline bookings, and the insurance sector.

In early work on the MNP, it is assumed that the demand in each time period

comes from a fixed and known distribution, all other parameters are both fixed and

known, and one needs only select the order quantities. Of course, in reality, the

planning process is more complicated, involving not only the ordering policy but

also decisions about pricing and promotional activities. These decisions in turn may

influence the demand for products and thereby lead to changes in order quantities.

There is therefore often a need to consider the relations between various decisions.

We believe that, in this regard, Sensitivity Analysis (SA) and Parametric Analysis

(PA) are attractive tools. SA and PA are of course standard techniques in the

optimisation literature (see, e.g., Dantzig, 1963; Gal, 1995; Gal and Greenberg,

1997). Surprisingly, however, not much has been written about SA for MNPs, and

even less has appeared on PA for MNPs (see Section 3.2 for details). This chapter

attempts to address this gap in the literature.

We make the following contributions in this chapter. First, we briefly review the

existing literature on the MNP, as well as the existing SA methods for it. After

that, we present a very natural method for performing SA and PA for MNPs, based

on a combination of discrete approximation and linear programming. Despite its

simplicity, the approach is remarkably general, being able to handle easily changes
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in costs, prices, resource availabilities and (under certain conditions) changes in the

demand distribution itself. Extensive computational results, on both artificial and

real examples, show that the method yields accurate results quickly.

The chapter is organised as follows. Subsection 3.1.1 introduces some notation and

terminology. Section 3.2 is a literature review. In Section 3.3, we model a broad

family of MNPs as a stochastic linear program (SLP) and then construct a linear

program (LP) that closely approximates the SLP. In Section 3.4, we show how to use

the LP approximation to perform various kinds of SA and PA. Sections 3.5 and 3.6

give computational results for artificial and real data respectively. Finally, Section

3.7 contains some concluding remarks.

3.1.1 Notation and terminology

Consider the case with n items (i.e., product types) and a single sales period. The

demand for item j over the sales period is a random variable d̃j, with mean µj,

standard deviation σj, and known cumulative density function Fj. We are also

given vectors c, r,v,g ∈ Qn, where

• cj is the cost of purchasing one unit of item j;

• rj is the revenue gained by selling one unit of item j;

• vj is the disposal cost of each unsold unit of item j;

• gj is the shortage cost of each unit of unsatisfied demand for item j.

We assume without loss of generality that rj > cj ≥ 0, cj > − vj and gj ≥ 0 for all

j. We permit vj to be positive or negative. (A negative value could indicate that

excess items can be sold at a discounted price.) We remark that gj may be used to

represent the “loss of customer goodwill” incurred by stockouts.
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In addition to the above, there are also m resources. (These could represent, e.g.,

purchasing budget or warehouse space.) We are given a matrix A = {aij} ∈ Qm×n
+

and a vector b ∈ Qm
+ , where

• aij is the amount of resource i used by one unit of item j;

• bi is the amount of resource i available.

We assume without loss of generality that bi > 0 for all i.

The retailer must decide how many units of each item j to order before the start

of the sales period. We let xj denote the number of units of item j ordered. The

resource constraints can then be written as Ax ≤ b. We assume for simplicity that

the xj are continuous.

For a given item j, a given value of xj, and a given realisation dj of d̃j, the profit

over the period is:

πj
(
xj, dj

)
=


rjdj − cjxj − vj(xj − dj) if xj ≥ dj(
rj − cj

)
xj − gj(dj − xj) if xj < dj.

The goal is to find values for the xj that maximise the total expected profit.

We remark that many authors prefer to work with the opportunity cost rather than

the profit. It takes the form:
coj(xj − dj) if xj ≥ dj

cuj (dj − xj) if xj < dj,

where coj = cj + vj and cuj = rj − cj + gj are the overage and underage costs,

respectively. We prefer however to work with the original data since it makes the

SA and PA output easier to interpret.
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3.2 Literature Review

In this section, we review the relevant literature. For brevity, we focus on the

“standard” MNP, in which the goal is to maximise the total expected profit and no

product substitution occurs in the event of a stock-out.

To our knowledge, Hadley and Whitin (1963) were the first to consider the NVP

with a single side constraint (i.e., the case m = 1). To solve the problem, they

proposed to relax the side constraint in a Lagrangian fashion, and then perform a

search for the optimal value of the Lagrangian multiplier. They also pointed out

that the variant in which the xj must be integers can be converted into a separable

concave integer knapsack problem, which can be solved by dynamic programming.

Hodges and Moore (1970) considered the general MNP. They proposed an iterative

approximate solution method, based on a stochastic programming formulation. We

remark that their method yields approximate dual prices for the side constraints as

a by-product.

Nahmias and Schmidt (1984) pointed out that the Lagrangian method in Hadley and

Whitin (1963) runs into difficulties if any of the assumed demand distributions take

negative values. (This happens, for example, if the demands have been modelled

using the normal distribution.) They then presented four fast and simple heuristics

for this particular case.

Ben-Daya and Raouf (1993) gave a closed-form solution for the case in which m = 2

and all demands are uniformly distributed. They then used this as the basis of a

heuristic for the case of other demand distributions. They also briefly discuss SA

for the uniform case.

Lau and Lau (1995, 1996) considered the general MNP. They pointed out another

disadvantage of Lagrangian methods, beyond the one mentioned in Nahmias and

46



Schmidt (1984): the methods can break down when some products have “strictly

positive” demands (that is, the probability of the demand taking a non-positive

value is zero). To deal with this, they propose an “active-set” method. We remark

that their method, like the one of Hodges and Moore (1970), yields approximate

dual prices.

Lau and Lau (1997) dealt with the issue of how best to model real-life demand dis-

tributions in MNPs. In Section 4 of their paper, they proved some results concerned

with SA. Some of these results are intuitively obvious (e.g., the optimal value of

xj increases as c
u
j increases), but some are much less so (e.g., an increase in σj can

cause the optimal value of xj to increase).

There was then a series of papers focusing on the casem = 1. Moon and Silver (2000)

showed that the dynamic programming algorithm in Hadley and Whitin (1963) can

be modified to deal with the added complication of a fixed ordering charge for each

item type. Erlebacher (2000) gave closed-form solutions for two special cases, and

then used them as the basis for heuristics for the general case. (We remark that

one of the two special cases was already solved in Ben-Daya and Raouf (1993)).

Abdel-Malek et al. (2004) gave a closed-form solution for another special case, in

which all demand distributions are negative exponential. They also gave an iterative

procedure for the case of general distributions.

Staying with the case m = 1, Abdel-Malek and Montanari (2005a) gave a more

detailed analysis of the conditions under which the Lagrangian method in Hadley

and Whitin (1963) breaks down. This analysis includes some PA concerning re-

source availability. An extension to the case m = 2 was given in Abdel-Malek and

Montanari (2005b).

Abdel-Malek and Areeratchakul (2007) proposed an effective heuristic for the general

MNP, based on convex quadratic programming (CQP). They also proposed to use
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known results on SA for CQP to perform approximate SA for the MNP itself. The

accuracy of their approach depends heavily on the demand distributions.

Niederhoff (2007) formulated the general MNP as a nonlinear program with a sep-

arable convex objective and linear constraints. She then approximated each term in

the objective with a piecewise-linear convex function, which enabled her to obtain

an approximate solution via LP. She mentioned that one can use the SA output

from the LP solver to perform approximate SA for the original MNP.

Zhang et al. (2009) showed that MNPs with one side constraint can be solved exactly,

to arbitrary fixed precision, in linear time. We remark that this result is actually a

special case of a result of Hochbaum (1995) on knapsack problems with a separable

concave objective. Zhang (2012) extended the algorithm in Zhang et al. (2009), to

show that MNPs can be solved to arbitrary precision in time that is linear in n (but

exponential in m).

3.3 The Stochastic Program and Its Linear Ap-

proximation

We considered several different approaches to SA and PA for MNPs. In the end, we

chose to model the MNP as a stochastic program, and then convert it into an LP via

a discrete approximation of the marginal demand distributions. Our motivations for

this choice are as follows:

• The approach is (relatively) simple to understand and implement.

• The approach is very general, needing no assumptions on the demand distri-

bution (such as continuity or independence across items).

• A wide range of excellent LP software packages are now available (see Fourer
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(2021)), all of which are capable of (a) generating SA output, and (b) re-

optimising quickly after small changes have been made to the problem.

Moreover, as we will see in Section 3.5 and 3.6, our approach works very well in

practice.

The first step is to model the MNP as a 2-stage stochastic linear programme with

simple recourse (Beale, 1955; Dantzig, 1955), or SLP for short. The first-stage

variables are the xj variables mentioned above. Then, for j = 1, . . . , n, we have

second-stage variables yj and zj, representing the amount of over- and under-stocking

of item j, respectively. The SLP is then

max
∑n

j=1(rj − cj)µj − Ed̃

[
f
(
x, d̃

)]
s.t.

∑n
j=1 aijxj ≤ bi (i = 1, . . . ,m) (3.1)

xj ≥ 0 (j = 1, . . . , n), (3.2)

where f
(
x, d̃

)
is a random quantity, found by solving the following second-stage

problem:

min
∑n

j=1

(
cj + vj

)
yj +

∑n
j=1(rj − cj + gj)zj

s.t. xj − yj + zj = d̃j (j = 1, . . . , n) (3.3)

yj, zj ≥ 0 (j = 1, . . . , n). (3.4)

Note that the term
∑n

j=1(rj − cj)µj in the first-stage profit function is a constant,

and can therefore be ignored for optimisation. Later on, however, we will need to

take it into account, since we may wish to do a parametric analysis on an individual

rj or cj.

To reduce the size of the SLP, we use the fact that each y and z variable appears

in exactly one of the equations (3.3). We can therefore eliminate the y variables (or

z if preferred) from the problem. One can check that the resulting simplified SLP
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takes the form:

max
∑n

j=1(rj + vj)µj −
∑n

j=1(cj + vj)xj − Ed̃

[
f
(
x, d̃

)]
s.t. (3.1), (3.2),

where f
(
x, d̃

)
is redefined as

min
∑n

j=1(rj + vj + gj)zj

s.t. zj + xj ≥ d̃j (j = 1, . . . , n)

zj ≥ 0 (j = 1, . . . , n).

Note that the new term
∑n

j=1(rj + vj)µj in the first-stage profit function is also a

constant.

Following Beale (1955) and Dantzig (1955), we then use scenarios to construct an

LP that approximates the simplified SLP. Let t be a positive integer parameter. For

i = 1, . . . , n and s = 1, . . . , t, let dsj be the realisation of d̃i in scenario s, and let psj

be the probability of the scenario occurring. The LP then consists of maximising

n∑
j=1

(rj + vj)µj −
n∑

j=1

(cj + vj)xj −
n∑

j=1

t∑
s=1

psj
(
rj + vj + gj

)
zsj (3.5)

subject to (3.1), (3.2), and

zsj + xj ≥ dsj (j = 1, . . . , n; s = 1, . . . , t) (3.6)

zsj ≥ 0 (j = 1, . . . , n; s = 1, . . . , t). (3.7)

We remark that the first two terms in the objective function (i.e., the ones involving

the µj and the xj) are modelled exactly. Only the third term (i.e., the one involving

the z variables) involves an approximation.

We also remark that, when generating the scenarios, one needs only a sample from

the marginal demand distributions, one for each item, rather than the joint demand

distribution (see El Agizy, 1967). We consider three scenario-generating methods

(see Miller and Rice, 1983):
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• naive random (a.k.a. Monte Carlo) sampling (RS),

• the method of “equally likely intervals” (EI),

• “Gaussian quadrature” (GQ).

In RS, we just sample completely at random and set all probabilities to 1/t. In EI,

the demand realisations are generated using the formula

dsj = F−1

(
s

t+ 1

)
,

for all j and s. All probabilities are then set to 1/t as before. In GQ, we match

the first (2t− 1) moments of d̃j exactly, by finding weights psj and demands dsj that

satisfy:
t∑

s=1

psj(d
s
j)

N = E
[
d̃j

N
]
, for N = 1, 2, . . . , (2t− 1). (3.8)

The weights can be determined by solving a system of simultaneous linear equations

(3.8). We omit details, for brevity.

We end this section with some more notations. We let
(
x∗, z∗

)
denote the optimal

primal solution of the LP, and we let κ∗ and λ∗ denote the optimal dual vectors

for the constraints (3.1) and (3.6), respectively. Finally, we let P and P̃ denote the

expected profit of the optimal SLP and LP solutions, respectively. When performing

SA and PA concerning a given parameter, we will view P and P̃ as being functions

of that parameter.

Due to the use of a finite number of scenarios, P̃ is only an approximation of P . As

t approaches infinity, however, P̃ will approach P (see, e.g., Birge and Louveaux,

2011; Kall and Wallace, 1994 for results on the accuracy of LP approximations of

SLPs).
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3.4 Sensitivity and Parametric Analysis

In this section, we show how to use the LP in the previous section to perform SA and

PA. The section is structured as follows. Subsection 3.4.1 presents some elementary

SA and PA results. Subsection 3.4.2 considers changes in the demand distributions,

and Subsection 3.4.3 deals with cross-price elasticities of demand.

3.4.1 Some elementary results

The following three lemmas follow from standard textbook results on LP (e.g.,

Dantzig, 1963; Vanderbei, 2020):

Lemma 3.4.1. P̃ is continuous and piecewise-linear in the cj, rj, vj, gj and bi

parameters. It is convex in the cj, rj, vj and gj, but concave in the bi. It is non-

increasing in the cj, vj and gj, but non-decreasing in the rj and bi.

Lemma 3.4.2. At
(
x∗, z∗

)
, we have:

∂P̃ /∂cj = −x∗j (j = 1, . . . , n)

∂P̃ /∂bi = κ∗i (i = 1, . . . ,m).

Lemma 3.4.3. At
(
x∗, z∗

)
, we also have the following for j = 1, . . . , n:

∂P̃ /∂rj = µj −
t∑

s=1

psj(z
s
j )

∗

∂P̃ /∂vj = µj − x∗j −
t∑

s=1

psj(z
s
j )

∗

∂P̃ /∂gj = −
t∑

s=1

psj(z
s
j )

∗.

We now make two remarks:

• P̃ is also continuous and non-increasing in the aij parameters, but it is in

general neither convex nor concave in those parameters.
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• In reality, changing one of the selling prices rj is likely to affect the demand

for item j, and it may even affect the demand for other items. Thus, the

results that involve the rj may be inaccurate. We deal with this complication

in Subsection 3.4.3.

3.4.2 Changes in the demand distributions

In practice, it may be possible for a marketing team to take actions that affect the

demand distributions themselves. Examples of such actions can be found in Darwish

et al. (2019), Gerchak and Parlar (1987), Güler (2019), Khouja and Robbins (2003)

and Wang (2011). We, therefore, consider SA and PA concerning changes in specific

parameters of the marginal demand distributions.

Suppose that the demand of item j can be modelled as:

d̃j = µj + ϵ̃jσj, (3.9)

where µj and σj are the mean and standard deviation, and ϵ̃j is itself a random

variable with zero mean, unit variance, and known distribution. (This is the case,

for example, if d̃j follows a normal distribution.) If we increase µj by δ, then the

objective function (3.5) increases by (rj + vj)δ, and the right-hand sides of the

corresponding constraints (3.6) all increase by δ. This implies:

Lemma 3.4.4. If (3.9) holds for item j, then, at
(
x∗, z∗

)
, we have:

∂P̃ /∂µj = rj + vj −
t∑

s=1

(λsj)
∗.

Applying a similar argument to changes in σj, we obtain:

Lemma 3.4.5. If (3.9) holds for item j, then, at
(
x∗, z∗

)
, we have:

∂P̃ /∂σj = −
t∑

s=1

ϵsj(λ
s
j)

∗.
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We can also present an analogue of Lemma 3.4.1:

Lemma 3.4.6. If (3.9) holds for j, then P̃ is continuous, concave and piecewise-

linear in both µj and σj.

There may of course exist situations when (3.9) doesn’t hold. (This happens, for

example, if d̃j follows a Poisson or negative binomial distribution.) In that case,

there does not appear to be a simple closed formula for the partial derivatives, and

it is not obvious whether P̃ will be concave in any particular parameter.

3.4.3 Cross-price elasticities

Finally, we consider the case in which there are cross-price elasticities in demand

(see, e.g., Frank and Cartwright, 2008). That is, a change in the price of one product

can affect the mean demand for other products.

We first consider the case in which an additive price-demand model has been used

(Mills, 1959). In particular, suppose that the demand for product j can be written

in the form

d̃j = αj +
n∑

k=1

βjkrk + ϵ̃j,

where the rk are the product prices, αj and the βjk are known scalars, and ϵ̃j is a

noise term from an assumed distribution.

Now suppose we increase the price of product k by some small δ > 0. This will cause

the demand for product j to increase by δβjk. The effect on the LP is as follows:

• The constant term in the objective function (3.5) increases by

δ

(
µk +

n∑
j=1

(rj + vj)βjk

)
.

• For all s, the coefficient of zsk in the same function decreases by δ psk.
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• For all j and s, the right-hand side of (3.6) increases by δ βjk.

From this we obtain

∂P̃ /∂rk = µk +
n∑

j=1

(rj + vj)βjk −
t∑

s=1

psk(z
s
k)

∗ −
n∑

j=1

βjk

t∑
s=1

(λsj)
∗.

Now we consider the case of a multiplicative price-demand model (Karlin and Carr,

1962). Suppose that the demand for product j takes the form

d̃j = αj ϵ̃j Π
n
k=1r

βjk

k , (3.10)

where we now assume that the noise term ϵ̃j comes from a positive distribution (e.g.,

lognormal).

As before, suppose we increase the price of product k by some small δ. This will

cause the demand for product j to increase by approximately δβjkµj, where µj is

the initial mean demand for item j. The effect on the LP is that:

• The constant term in (3.5) increases by

δ

(
µk +

n∑
j=1

(rj + vj)βjkµj

)
.

• For all s, the objective coefficient of zsk decreases by δ psk (as before).

• For all j and s, the right-hand side of (3.6) increases by approximately δ βjk djs.

From this we obtain:

∂P̃ /∂rk = µk +
n∑

j=1

(rj + vj)βjkµj −
t∑

s=1

psk(z
s
k)

∗ −
n∑

j=1

βjk

t∑
s=1

djs(λ
s
j)

∗.

We remark that, when cross-price elasticities are present, neither P nor P̃ are guar-

anteed to be non-increasing, non-decreasing, convex, concave or piecewise-linear in

the rj. Indeed, the only thing that we typically know in advance, before actually

performing the PA, is that P and P̃ are continuous in the rj.

55



3.5 Results with Artificial Data

In this section, we use some artificial MNP instances to explore the way our chosen

method behaves, in terms of accuracy and running time, as the number of scenarios

and/or problem size grows. All the experiments were performed on an Apple M1

Pro (2021). All the LPs were solved using the simplex-based lpSolve package in R.

3.5.1 Instance generation

To begin, we explain how we generate our instances. For simplicity, we assume that

the marginal demand distributions are normal. The mean demands µj are random

integers sampled uniformly between 150 and 250, and the standard deviations σj

are random integers between 15 and 35. The other parameters are also selected

uniformly at random, with cj ∈ [3, 5], rj ∈ [8, 10], vj ∈ [2, 4], gj ∈ [1, 3], aij ∈ [4, 8]

and bi ∈ [4n, 8n].

Our instances have n ranging from 2 to 200 and m ranging from 1 to 40. A small

instance, with n = 2 and m = 3, is given in Appendix C. Throughout this section,

all reported values are averages over 20 random instances of the given size.

3.5.2 Increasing the number of scenarios

We first consider how the accuracy of the method depends on the number of scen-

arios. Figure 3.1 shows how the estimate of ∂P̃ /∂µa varies as the number of scen-

arios increases, for the small example in Appendix C, for the three different scenario

generation schemes mentioned in Section 3.3. The red lines indicate the true value.

As one would expect, the estimate tends to get more accurate with more scenarios,

but there is some random variation. Also, the ‘systematic’ scenario generation

56



Figure 3.1: Estimated partial derivative vs. number of scenarios

(a) Using RS

(b) Using EI

(c) Using GC
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Table 3.1: Number of scenarios required to achieve accuracy within ±5%

Solution output Marginal gain

Method P x∗a x∗b µa µb σa σb

Normal distribution RS 78 69 72 61 55 79 80

EI 23 22 23 21 18 29 30

GQ 18 16 16 13 13 22 21

Laplace distribution RS 75 62 62 60 59 77 78

EI 16 13 15 13 11 22 21

GQ 11 10 10 11 10 13 13

Uniform distribution RS 82 77 79 60 65 76 84

EI 27 23 25 20 17 31 33

GQ 23 26 21 14 15 25 27

methods, EI and GC, lead to faster convergence than RS. This behaviour is typical

in stochastic programming (Birge and Louveaux, 2011).

Table 3.1 shows, for the same instance, the number of scenarios required to compute

various quantities to an accuracy of ±5%. The quantities considered are: the expec-

ted profit of the optimal solution (P ), the optimal order quantities (x∗a and x∗b), and

the marginal gains with respect to changes in the first and second moments of the

marginal demand distributions (µa, µb, σa and σb). As before, we include results for

RS, IE and GC. Moreover, for completeness, we include results for three different

demand distributions: normal, Laplace and uniform.

Table 3.1 shows that EI and GQ need far fewer scenarios than RS, with GQ being

the overall winner. Interestingly, estimating P accurately tends to need more scen-

arios than estimating x∗a and x∗b , and estimating the effect of changes in standard

deviations needs even more scenarios. On the other hand, estimating the effect of

changes in means needs fewer scenarios. We observed the same behaviour with the

other instances that we tested. This suggests that, for decision-makers who are only
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interested in the effect of increasing mean demands, a small scenario size is sufficient.

We remark that GQ is harder to implement than EI, since the computation of the

weights psj and dsj in (3.8) involves the solution of a system of simultaneous linear

equations. Moreover, in practice, it may be hard to compute reliable estimates of

the higher moments of the marginal demand distributions. For these reasons, EI

may be preferable to GQ in practice.

Now we turn our attention to running times. Figure 3.2 shows how the time taken

to solve the LP changes as the number of scenarios increases (for the same instance,

using EI). A regression analysis shows that the empirical growth function is closer

to quadratic than exponential. (This is what one would expect from known results

on the expected running time of the simplex method; see Shamir, 1987) A best-fit

quadratic function is shown in the figure as a red dashed line. The running times

when using RS or GQ were similar.

Figure 3.2: Running time vs. Number of scenarios (using EI)
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We remark that, in all cases, the time taken to perform the SA was negligible

compared to the time taken to solve the LP itself. The time taken to compute the

weights in GQ was also negligible. Performing PA, however, took a little longer (up

to a few seconds in some cases, depending on the chosen parameter).
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Table 3.2: Number of scenarios required to achieve accuracy within ±5% as n in-

creases (*with 25 scenarios under lp() function in R)

Solution output Marginal gain

n Running time* P x∗ µ σ

10 0.029s 30 31 27 31

20 0.156s 24 25 24 28

50 0.889s 19 19 17 22

100 2.472s 12 13 11 16

200 5.293s 9 8 6 11

3.5.3 Increasing the problem size

Next, we examine how the approach behaves as the number of items n increases.

For brevity, we give results only for the case in which (a) the marginal demand

distributions are normal, and (b) EI is used to generate scenarios. (The results

obtained for other distributions and/or scenario-generation methods were similar.)

Table 3.2 shows the following information for various values of n: the time taken to

solve the LP (in seconds) when 25 scenarios are used per item, and the number of

scenarios required to estimate various quantities within an accuracy of ±5%. The

quantities considered are: the optimal expected profit (P ), the optimal first-stage

solution vector (x∗), and the expected marginal gains with respect to changes in the

first and second moments of the marginal demand distributions (µ and σ).

As before, estimating the effect of changes in means requires fewer scenarios than

estimating the other quantities. More interestingly, the number of scenarios needed

to obtain an accurate solution tends to decrease as n increases. A possible explan-

ation of this phenomenon is that the amount of ‘information’ in the LP increases

with the number of items, even when the number of scenarios is fixed.
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Figure 3.3: Estimate of optimal expected profit vs. number of scenarios for large

instance with 200 items (using EI)
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Concerning the running time, the figures in the table suggest that the growth is

quadratic in n. Fortunately, the running time is very reasonable even for the instance

with 200 items. We also remark that, as in the previous subsection, the time taken

to perform PA was typically two or three times longer than the time taken to solve

the LP.

To gain more insight into the accuracy of the method, we show in Figure 3.3 how

the estimated expected profit (P̃ ) approaches the true value (P ) as the number

of scenarios increases, for the instance with 200 items. Interestingly, the estimate

approaches the true value from above. This is because EI slightly underestimates the

variance of demand, which leads to an over-optimistic profit estimate. Fortunately,

the accuracy improves rapidly as we increase the number of scenarios.

Finally, we consider the effect of the number of resources m on the running time.

Figure 3.4 shows the average running time in seconds, for n = 10 and 25 scenarios, as

m ranges from 1 to 40. Each point represents the average over 20 random instances.

A regression analysis shows that the empirical growth function is closer to linear

than polynomial or exponential.
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Figure 3.4: Running time vs. number of resources for a 10-item example (using EI)
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3.6 Results with Real Data

We now apply the approach to a real-life case, in which cross-price elasticities of

demand play a significant role. Our demand data comes from a medium-sized gro-

cery store which sells a wide range of products, many of which are perishable. The

retailer wonders whether better coordination of price-setting across products could

increase the total expected profit. Here, we select a small group of products to

analyse as an example.

Together with the retailer, we identified the nine most popular products, each from

a perishable product category. For reasons of confidentiality, we use category names

to refer to them. The retailer was able to estimate the mean and standard deviation

of daily demand for each product, along with the revenue and cost parameters.

These values are shown in Table 3.3.

The retailer had deliveries every morning, and most of the leftover products at

the end of each day were donated to a charity. Thus, the problem can be well

approximated by a single-period inventory model and is very close to the MNP

described in the previous section.
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Table 3.3: Data for a subset of the products

demands price and costs

product µ σ r c v g

bread 87.1 49.8 0.93 0.63 0.21 0.05

egg 57.6 22.8 4.29 3.24 1.03 0.21

fish 44.2 14.1 2.79 1.75 1.20 0.49

fruit 124.1 42.9 4.69 3.35 0.81 0.42

juice 45.3 13.7 3.99 2.56 0.33 0.45

vegetables 1197.5 355.09 2.86 1.96 0.78 0.56

meat 126.8 10.2 20.99 16.67 3.89 2.10

milk 60.2 11.2 1.94 1.28 0.60 0.35

dairy 15.8 9.7 2.28 1.63 0.55 0.13

There also existed five resource constraints. For instance, there was an upper limit

on the total amount of liquid products that the retailer could store, and there were

lower limits on the sizes of orders from particular brands. The resource constraints

are summarised in Appendix D. (They have been slightly modified to fit with the

example with nine products.)

Based on our discussions with the retailer, we believe that the multiplicative price-

demand model (3.10) is suitable for these products, since we assume the elasticities

are constant over a range. We also assume for simplicity that the error terms ϵ̃j are

i.i.d. lognormal.

The retailer did not have information about elasticities, and it is not easy to acquire

accurate elasticity data. Here we use data gathered from the literature to approxim-

ate the situation (Henneberry et al., 1999; Liu and Chern, 2003; Zhang and Wang,

2003). The estimated elasticities for our selected products are given in Appendix E.
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We remark that bread has a positive elasticity, which suggests that in this situation

bread can be considered a ‘Giffen good’ (see, e.g., Masuda and Newman, 1981).

To convert the SLP into an LP, we used EI with 25 scenarios per product. The

resulting LP had 9 x variables, 225 z variables, 5 first-stage constraints and 225

second-stage constraints. We were able to solve it in a few seconds using the lpSolve

package.

The optimal first-stage solution (x∗) and the total expected profit (P̃ ) are presented

in Table 3.4. We remark that, for all items, the optimal stock level is below the

mean demand (compare Tables 3.3 and 3.4). This is because, in this application,

the over-stocking costs are higher than the under-stocking costs.

Table 3.4: Optimal first-stage solution and expected profit

x∗1 x∗2 x∗3 x∗4 x∗5

62.07 40.88 38.65 102.54 41.26

x∗6 x∗7 x∗8 x∗9 P̃

1056.95 119.35 55.76 9.79 1265.19

We are now ready to perform the SA. We explore the sensitivity of P̃ concerning

percentage changes in (a) the prices of individual products and (b) the standard

deviations of the demands for individual products. The resulting margins, and their

ranges of validity (rounded to the nearest percentage point), are shown in Table 3.5.

When interpreting the results in Table 3.5, it should be borne in mind that P̃ is not

piecewise-linear in the individual item prices (see the last paragraph in Subsection

3.4.3). This means that the ranges of validity need to be interpreted carefully. In the

table, we show the ranges in which the margins remain valid to within an accuracy

of ±5%. For instance, when the change of bread price is within [−3%, 4%], the

margin of profit is 0.12× (1± 5%).

64



Table 3.5: Estimated margins and their ranges of validity

Margins of profit Ranges of validity

% of pj increase % of σj decrease % of pj decrease % of pj increase % of σj decrease

bread 0.12 0.19 3 4 100

egg 1.48 0.34 9 9 55

fish 1.09 0.21 2 2 100

fruit 4.29 0.80 3 4 100

juice 0.95 0.23 4 2 100

vegetable 22.23 5.02 3 4 25

meat 22.34 0.77 4 4 100

milk 4.21 0.11 2 2 100

dairy -1.68 0.08 2 3 100

To explore the behaviour outside the range, one must use PA. In this context, it

should be noted that P̃ is not necessarily convex or concave in the individual item

prices. This is shown in Figure 3.5, where P̃ varies with respect to changes in the

prices of juice and bread. (These curves were computed by solving a large number

of similar LPs.) The curves can be either concave or convex, depending on the

price elasticity of the product in question. Note also that we assume in this case

study that price elasticities are fixed, while in reality, this might not always be true.

For example, if the price of bread increased indefinitely, the demand for it would

eventually go down, because consumers would switch to other, cheaper products.

Using the output of our procedure, we were able to provide some insights and sug-

gestions for the retailer:

• Increasing the price of vegetables and/or meat is likely to yield a significant

increase in profit. (We would however recommend making only small price

increases, at least initially, since sudden large price increases could lead to a

loss of customer goodwill.)
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Figure 3.5: Optimal profit vs. percentage change on price

(a) Change on the price of juice (b) Change on the price of bread

• Increasing the price of some other products may also increase the expected

profit, but only slightly.

• For a specific product (dairy), it may be beneficial to decrease the price.

• Decreasing the demand variance could also improve the expected profit. If

the marketing budget is limited, the retailer should first consider marketing

techniques that could decrease the variance of demand for vegetables. For

instance, switching to online retailing may make demand more consistent, thus

decreasing the variance (see Darwish et al., 2019; Gerchak and Parlar, 1987;

Güler, 2019; Khouja and Robbins, 2003; Wang, 2011 for other examples).

3.7 Concluding Remarks

Although multi-item newsvendor problems have been studied intensively, there are

very few works that consider the ordering policy and marketing activities as a whole.

This chapter aimed to present a simple sensitivity analysis method that allows one

to estimate the value of these activities accurately and quickly, using any decent

linear programming solver. The proposed method is robust and doesn’t require any

additional assumptions on the distribution. Our work provides a useful tool to help
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coordinate marketing and inventory decisions in a retail environment. Our extensive

computational results, on both artificial and real examples, show that the method

yields accurate results quickly.

An interesting (and challenging) topic for future research is the development of

methods for performing sensitivity analysis when, in the event of a stock-out, cus-

tomers may be willing to buy substitute products (Shin et al., 2015). The first steps

in this direction have been done by Zhang et al. (2021).
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Chapter 4

Näıve Newsvendor Adjustments:

Are They Always Detrimental?

Another strand of the literature on newsvendor problems is concerned with the fact

that practitioners often make judgemental adjustments to the theoretically “op-

timal” order quantities. Although the judgemental adjustment is sometimes bene-

ficial, two specific kinds of adjustment are normally considered to be particularly

näıve: demand chasing and pull-to-centre. We discuss how these adjustments work

in practice and what they imply in a variety of settings. We argue that even such

näıve adjustments can be useful under certain conditions. This is confirmed by ex-

periments on simulated data. Finally, we propose a heuristic algorithm for “tuning”

the adjustment parameters in practice.

4.1 Introduction

Single-period stochastic inventory control problems, known as Newsvendor problems

(NVPs), have received much attention from the Operational Research community

(see, e.g., the books Choi, 2012; Hadley and Whitin, 1963; Silver et al., 1998; Zipkin,
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2000). In this chapter, we focus on the simplest NVP, in which there is only one

product. The demand for the product over the selling period is a random variable d̃,

with known distribution. The product is purchased before the period at a fixed unit

price v, and sold during the period at a unit price p. If any excess stock remains at

the end of the period, disposal cost ch is incurred per unit. If there is any unsatisfied

demand, a shortage cost cs is incurred per unit.

For a given x and a given realisation d of d̃, the realised profit π over the period is:

π(x, d) =


pd− vx− ch(x− d), if x ≥ d

px− vx− cs(d− x), if x < d.

(4.1)

The optimal order quantity that maximises the expected profit is then (Arrow et al.,

1951; Choi, 2012):

x∗ = F−1(τ), (4.2)

where F is the cumulative distribution function for d̃, co = v + ch is the overage

cost, cu = p − v + cs is the underage cost, and the quantile τ = cu/(co+cu). We will

call a product with τ > 0.5 a “high-margin” product, and a product with τ < 0.5 a

“low-margin” product.

In the textbook formulation, it is assumed that one has a correct model of the

demand distribution F , with correct parameters. In real life, however, correctness

is rarely assured and a model typically misses important information. Moreover,

even if the model is correct, the parameters may evolve over time (for example,

due to market shocks or product innovations by competitors). For these reasons,

decision-makers often make so-called “judgemental adjustments” to the theoretically

“optimal” order quantities. The literature on this topic is extensive (e.g., Lau and

Bearden, 2013; Lau et al., 2014; Schweitzer and Cachon, 2000).

Although judgemental adjustments can exist in many forms (see Goodwin and

Wright, 2014; Kahn, 2014; Ord et al., 2017 for example), two specific kinds of
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adjustment have received the most attention in the NVP literature (Benzion et al.,

2008; Bolton and Katok, 2008; Bostian et al., 2008; Lau and Bearden, 2013; Lau

et al., 2014). The first, called pull-to-centre, means adjusting the order quantity

towards the mean demand. The second, called demand chasing, means adjusting it

towards the demand in the immediately preceding period. (Some literature suggests

they are not independent.) Although these two kinds of adjustment are regarded as

especially näıve, considerable evidence for their existence has been found by schol-

ars, and several theories have been developed to explain them (Benzion et al., 2008;

Bolton and Katok, 2008; Bostian et al., 2008; Cui et al., 2013; Feng et al., 2011;

Moritz et al., 2013; Wu and Niederhoff, 2014). Yet, to our knowledge, there has not

been any numerical study of the effect that these two näıve adjustment mechanisms

are likely to have on the long-term expected profit in the NVP.

In this chapter, we look at näıve adjustment from a different point of view. We begin

by arguing that such adjustments may be useful under certain conditions, due to

the fact that any given statistical model of the demand is unlikely to be completely

accurate. In particular, we suggest that a modest amount of näıve adjustment may

be beneficial in two specific situations that are highly important in practice; namely,

(i) when a relatively small amount of demand data is available, and (ii) when the

true demand model is unknown. This idea is tested via extensive computational

experiments. We then consider the possibility of applying näıve adjustments in an

automated fashion. For this purpose, we propose a simple heuristic for tuning the

adjustment parameters. Finally, we test the heuristic on a real-life example, with

encouraging results.

The chapter is organised as follows. In Section 4.2, we summarise the existing

literature. In Section 4.3, we argue in favour of näıve adjustment, and propose a

mathematical model which incorporates both types of adjustment. In Section 4.4,

we conduct experiments on simulated data under different conditions and discuss
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the results. In Section 4.5, we present the tuning heuristic and apply it to a real-life

example. Finally, Section 4.6 contains some concluding remarks.

4.2 Literature Review

In this section, we review and discuss the existing literature on näıve adjustment.

Subsections 4.2.1 and 4.2.2 are concerned with demand-chasing and pull-to-centre,

respectively.

4.2.1 Demand chasing effect

The demand chasing effect (DC), in the NVP context, describes a phenomenon

whereby decision-makers tend to adjust their order quantity towards the realised

demand in the previous operating period.

To our knowledge, the first paper to give empirical evidence for DC was Schweitzer

and Cachon (2000). They observed decision makers over fifteen consecutive ordering

periods, for a selection of products, each with known distribution. They showed that

the participants systematically deviated from the optimal order quantity. They also

gave a tentative explanation for the phenomenon, based on the avoidance of regret.

The idea is that, if decision-makers fail to choose the ex-post optimal order quantity

in a given period, they regret their decision, which leads them to adjust the quantity

in the next period.

After the publication of Schweitzer and Cachon (2000), evidence for DC appeared

in many papers. Bolton and Katok (2008) repeated the experiment, but with 100

decision periods. They found that the participants tended to improve over time, but

only very slowly. Benzion et al. (2008) studied the convergence of the participant’s

behaviour, and argued that the order quantities from decision-makers converge to a
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level different from the one which optimises expected profit. Other relevant works

include Bostian et al. (2008), Cui et al. (2013), Feng et al. (2011), Moritz et al.

(2013) and Wu and Niederhoff (2014).

Lau and Bearden (2013) argued that some of the statistical techniques used in the

behavioural experiments were flawed. See the recent paper by Kirshner and Moritz

(2020) for a discussion of this issue.

Several models of DC were proposed in the above-mentioned papers. For brevity, we

present only the simplest model, which appeared in Bostian et al. (2008). It takes

the form:

xt = xt−1 + β(dt−1 − xt−1), (4.3)

where xt is the actual order quantity in time period t, dt−1 is the realised demand in

the previous period and β > 0 is the DC parameter. A higher β indicates a stronger

demand chasing effect. (In rare cases, one might observe β < 0, as a “pull forward

in demand”.)

We remark that the model (4.3) is equivalent to “simple exponential smoothing”

or SES (Brown, 1956), in the so-called “error-correction” form. We observe that

it ignores the NVP solution and asymptotically converges to the mean demand.

Moreover, it assumes a fixed β for all periods, implying that practitioners adjust the

orders every period by the same proportion. Fortunately, the latter assumption does

not cause serious problems in practice. Indeed, even if practitioners adjust the order

with different quantities over time, their behaviour can be modelled on average using

(4.3). Furthermore, there is empirical evidence that, for human decision makers, the

value of their β will eventually converge to a single value over time (Schweitzer and

Cachon, 2000; Zhang and Siemsen, 2019).
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4.2.2 Pull-to-centre effect

The pull-to-centre effect (PtC) describes a phenomenon when a decision maker ad-

justs the order quantity towards the mean demand (Zhang and Siemsen, 2019). This

phenomenon has also been referred as mean anchor (Schweitzer and Cachon, 2000)

and central tendency bias (Bostian et al., 2008) in literature. In the rest of this

chapter, we use the term PtC for consistency.

To our knowledge, the first paper to give empirical evidence for PtC was again

Schweitzer and Cachon (2000). Their interpretation of PtC is that decision-makers

order less than the optimal amount for high-margin products, but more for low-

margin products. They also discussed several possible causes for the phenomenon,

including risk and loss aversion, underestimation of opportunity cost, and waste

aversion. They also discussed a possible explanation in terms of “prospect theory”

(Kahneman and Tversky, 1979).

Alternative explanations of PtC include adaptive learning (Benzion et al., 2008),

decision noise and optimisation error (Su, 2008), overconfidence bias (Ren and Cro-

son, 2013), and psychological costs associated with leftovers and stockouts (Ho et

al., 2010). We remark that Lau et al. (2014) argued that some of the statistical

techniques used to detect PtC were flawed, just as Lau and Bearden (2013) argued

for DC.

There is some evidence that individual differences can affect the behaviour of the

decision-maker in NVPs. De Vericourt et al. (2013) showed that males tend to take

more risks than females, which leads them to order more, on average. Cui et al.

(2013) and Feng et al. (2011) showed that differences in nationality correlate with

different biases while making newsvendor decisions.

Benzion et al. (2008) found that decision-makers tend to be more biased towards the

mean demand in earlier periods than in later periods. This suggests that training
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could be of some benefit to decision-making. Additional discussions of training

effects can be found in Bolton and Katok (2008), Bostian et al. (2008), Ren and

Croson (2013) and Zhang and Siemsen (2019).

Following the works of Benzion et al. (2008) and Bostian et al. (2008), the PtC effect

can be expressed mathematically as:

xt = (1− γ)x∗t + γµ̂t, (4.4)

where µ̂t is the estimated mean demand for the period t (which can be obtained

with a forecasting technique), and 0 < γ < 1 is the PtC parameter. In this case,

the order quantity can be viewed as a weighted average of the “textbook” order

quantity x∗t , and the estimated mean µ̂t. A higher γ indicates a stronger PtC effect.

Note that the model (4.4), like the DC model (4.3), assumes that the adjustment

parameter is constant over time and that adjustments happen on each observation.

We argue that these assumptions are reasonable because they express a behaviour

on average, similar to how the DC behaviour is modelled via (4.3).

4.3 An Alternative Perspective and Model

In this section, we argue that there are some positive aspects to näıve adjustment.

We also present a new adjustment model, which allows one to perform demand-

chasing and pull-to-centre in combination if desired.

4.3.1 In favour of näıve adjustment

As one can see from Section 4.2, the previous literature on judgemental adjustment

has assumed, either implicitly or explicitly, that DC and PtC are harmful. In

this chapter, we take a different point of view: we argue that DC and PtC may
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sometimes be beneficial in practice. To see why, note that the “textbook” NVP

formula (4.2) applies only when one has an accurate statistical model of the demand

distribution. In reality, of course, such a model is rarely available. As a result, the

textbook formula may give the wrong answer in practice, either underestimating

or overestimating the optimal order level. In some circumstances, therefore, DC

and/or PtC might help rather than hinder.

To be more specific, we suggest that a modest amount of “näıve” adjustment may

be beneficial in two practically important situations:

1. When the demand model is correct, but there is insufficient data to estimate

its parameters accurately.

2. When the demand model is mis-specified.

We will test these hypotheses using simulation experiments in the next section,

modelling the two situations.

There is another key difference between our work and the existing literature. As

mentioned above, the latter relies almost exclusively on data collected from beha-

vioural experiments with human subjects. Here, by contrast, we will use simulated

data, since it allows us to conduct extensive experiments very easily.

4.3.2 An integrated adjustment model

To proceed, we make some additional remarks about the DC model (4.3). In our

view, it is unlikely to be a good model of human behaviour. Indeed, we have

already observed that it effectively estimates the mean demand, and does not take

cost information into account.

In an attempt to remedy the above weakness, we now propose a “two-stage” model
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of näıve adjustment, in which DC takes place after PtC:

x′t = (1− γ)x∗t + γµ̂t

xt = x′t + β
(
dt−1 − xt−1

)
.

(4.5)

The idea here is that we first take the “textbook” order quantity x∗t , and apply PtC

with parameter γ. This yields an adjusted order quantity, here denoted by x′t. After

that, we adjust x′t itself, by applying DC with parameter β.

Unlike the classical DC model (4.3), the two-stage model (4.5) yields non-trivial

estimates of the optimal order quantity, rather than merely estimating the mean

demand. We remark that we are not claiming that human practitioners actually

use such a model consciously. But in practice, decision-makers cannot distinguish

the two effects and adjust based on their domain knowledge. We argue that the

resulting adjustments will contain both PtC and DC parts. However, our goal is not

to explore the behaviour of decision-makers in practice, but to investigate whether

the model (4.5) might be useful in the two situations with the model specification

mentioned in the previous subsection.

Inserting the first equation in the second one in (4.5), we obtain a unified formulation

for DC and PtC, which summarises the order adjustment in one formula:

xt = (1− γ)x∗t + γµ̂t + β
(
dt−1 − xt−1

)
. (4.6)

This makes it clearer that the adjusted order quantity is a linear combination of

three terms: system order quantity, mean and actual demand. We will focus our

investigation on the parameters β and γ taking values between 0 and 0.5 (This is a

common assumption in the literature, e.g. Benzion et al., 2008; Bolton and Katok,

2008; Bostian et al., 2008), although the theoretical parameters range might be

wider.

It is important to note that, for a given t, the estimate µ̂t is itself based on

d1, . . . , dt−1, and so are the quantities x∗t and xt−1. Thus, all three quantities are
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subject to estimation errors.

4.4 Experiments on Simulated Data

In this section, we perform extensive computational experiments, to test the two

hypotheses mentioned in the previous section. In Subsection 4.4.1, we describe our

methodology. The hypotheses themselves are tested in Subsections 4.4.2 and 4.4.3,

respectively.

We assume initially that τ = 0.7, a value commonly used in the NVP literature

to approximate real-life problems (e.g., fashion retail, nurse staffing) (Alfares and

Elmorra, 2005; Lariviere and Porteus, 2001). We show later in this section that the

results of our experiment hold with other NVP parameters as well.

4.4.1 Methodology

The first step is to construct 500 time series, each consisting of 200 consecutive

demand realisations, which is sufficiently long as shown in behavioural experiments

(Benzion et al., 2008; Bostian et al., 2008; Schweitzer and Cachon, 2000). To do

this, we use the arima.sim() function from the stats package in R. We assume

that the “true” DGP for the demands is an ARIMA(1,0,1) process, with an initial

mean of 10,000. We also assume that the noise term is normally distributed with a

standard deviation of 100.

We use an ARIMA model because it is popular in the NVP literature, and we choose

a model with two parameters so that we can explore the effects of both over- and

under-parametrisation. For a given time series and a given t = 1, . . . , 200, we let dt

denote the demand realisation in the tth time period.

77



Now suppose that we have selected a forecasting model. This can be the correct

model, i.e., ARIMA(1,0,1), or an incorrectly specified model, such as AR(1). Sup-

pose also that we have selected the adjustment parameters β and γ. We do the

following for each time series:

1. For t = 21, . . . , 200, we use the arima() function in the stats package to

produce maximum-likelihood estimates of the mean and standard deviation of

demand in time period t. We let µ̂t and σ̂t denote these estimates. We note

that for t ≤ 20, the results may be biased due to the shortage of observations.

2. For t = 21, . . . , 200, we use τ , µ̂t and σ̂t to compute the “textbook” optimal

order quantity for time period t using the formula (4.2). We let x∗t denote this

quantity.

3. Finally, we simulate the adjustment process. To avoid systematic bias, we

assume that x20 = d20. For t = 21, . . . , 200, we assume that the amount

ordered at the start of period t follows formula (4.6).

To quantify the effect of adjustment, we proceed as follows. For a given series and

for t = 21, . . . , 200, we compute

PPL
(
xt
)
= 100

[
π(dt, dt)− π(xt, dt)

π(dt, dt)

]
. (4.7)

(Here, “PPL” stands for ‘percentage profit loss”; see Liu et al., 2022.) It shows the

percentage of profit that would be lost due to using each method instead of knowing

the true demand. We also compute the “relative profit improvement” (also known

as “forecast value added” in some contexts; see Gilliland, 2010):

RPI(xt) = 1− PPL(xt)

PPL(x∗t )
. (4.8)

It is a relative measurement comparing the adjusted performance with the unad-

justed. Intuitively, the mean of the RPI(xt), overall 500 time series, represents the
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improvement in profit (if any) gained by using the chosen adjustment in period t.

The higher the value is, the better the performance of the approach is. If the value

is negative then this means that the approach is worse than the benchmark.

4.4.2 When the DGP is known

We first report results for the case in which the DGP is known, but the model

parameters need to be estimated. In particular, we assume that we are using an

ARIMA(1,0,1) model, but with unknown parameters.

In Table 4.1, we show the mean RPI for different values of the adjustment para-

meters. The heading “short dataset” indicates that the mean RPI is computed over

the interval t ∈ [21, 110], and the heading “long dataset” indicates that the mean is

computed over the interval t ∈ [111, 200].

Table 4.1 indicates that a modest amount of adjustment can be beneficial, especially

when the number of historical demand observations is short. This is due to the

statistical model being unable to estimate its parameters accurately on insufficient

data. Therefore, a modest amount of adjustment can provide additional information.

On the other hand, too much adjustment leads to a loss. We also find that the RPI

is more sensitive to the choices of β, meaning that demand chasing has a bigger

influence in this case. We mark that this is also true for other data inputs.

To explore this effect in more detail, we show in Figure 4.1 a plot of average RPI

against the length of the dataset, for three different values of (β, γ), namely, (0, 0.4),

(0.1, 0) and (0.2, 0.1). It can be seen that the average RPI is well above zero initially,

but decreases, and eventually becomes negative.

A tentative explanation is that the maximum-likelihood estimates of µ̂t and σ̂t are

prone to errors when the number of observations is small. It may even be that the
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Table 4.1: Average RPI with varying adjustment parameters and with short/long

datasets (τ = 0.7)

Short dataset γ

β 0 0.1 0.2 0.3 0.4 0.5

0 − 3.5% 3.4% 3.3% 3.2% 2.8%

0.1 3.8% 5.0% 4.8% 4.7% 4.6% 3.8%

0.2 4.2% 5.1% 5.0% 4.6% 3.0% 2.4%

0.3 2.5% 2.8% 2.6% 1.5% 0.9% 0.2%

0.4 −2.4% −1.3% −1.9% −3.1% −3.9% −5.0%

0.5 −5.1% −3.9% −4.4% −5.9% −6.8% −7.7%

Long dataset γ

β 0 0.1 0.2 0.3 0.4 0.5

0 − −0.5% −0.9% −1.3% −1.7% −2.1%

0.1 −0.7% −0.2% −0.5% −0.7% −0.9% −1.3%

0.2 0.1% 0.3% 0.2% 0.1% −0.2% −0.7%

0.3 −2.1% −1.6% −2.6% −3.3% −4.1% −5.1%

0.4 −6.7% −6.4% −7.5% −8.4% −9.2% −10.2%

0.5 −11.1% −10.5% −11.8% −12.8% −13.8% −14.7%

Figure 4.1: Average RPI of judgemental adjustments vs. dataset length (τ = 0.7)
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estimates suffer from some kind of systematic bias, which decreases over time. By

performing a small amount of adjustment, we shift the order quantity toward the

true optimal value. This effect vanishes as more data becomes available.

Figure 4.2: Heat map of RPIs for different combinations of adjustment parameters

(data length = 20)

In Figure 4.2, we use a heat map to compare the performance of adjustment with

different parameter values, for the case in which the number of past observations is

exactly 20 (i.e., t = 21). As we observed in Figure 4.1, the dominance relationship

between parameter pairs (one parameter pair generating higher RPI than the other)

is not influenced by data length. Therefore, the choice of t = 21 can amplify the

results, making it easier for us to observe, without creating additional biases. One

can clearly see from Figure 4.2 that large adjustments are harmful, while modest

amounts of adjustment, on the other hand, can generate positive RPI. From our

data, the most profitable option is to set β to around 0.2 and γ to around 0.05. A

possible explanation for this phenomenon is that the “textbook” order quantity will

be close to the theoretical one, but it would need to be adjusted by the order quantity

and demand on the previous observation. The PtC effect needs to be reduced in
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comparison with the DC effect.

Figure 4.3: Boxplots of the RPI for different values of τ and different combinations

of adjustment parameters
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Next, we examine the effect of τ on the performance of adjustment. Figure 4.3

shows boxplots of the RPI for four different values of τ (0.3, 0.5, 0.7 and 0.9), and

the same three values for (β, γ) as before. Here, t = 21 as before. Each boxplot

shows the range, median and quartiles over the 500 time series.

Interestingly, adjustment yields a benefit in every case, except when τ = 0.5.

Moreover, we can see in Figure 4.3 that the performance of adjustments when τ = 0.3

is very similar to that when τ = 0.7. This suggests that the effect of adjustment

may be symmetric around 0.5. Note also that, even when τ = 0.5, the adjustment

does not cause any noticeable loss of profit.

All things considered, it appears that, when the model is correct but the data

length is short, a modest amount of näıve adjustment can be beneficial instead of

harmful. This goes against the prevailing view in the literature that DC and PtC are

invariably damaging. We believe that the discrepancy is mainly due to the model

correctness assumption made in the literature. When model correctness is assured,
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there is no doubt that any kind of adjustment will be harmful to the profit. Indeed,

the behavioural results are in line with the results that we obtained with the longest

datasets in our experiment, where there was sufficient data to properly estimate all

parameters.

4.4.3 When the model is misspecified

In this subsection, we examine the effect of model misspecification on the relative

performance of the judgemental adjustments. We consider three scenarios of model

misspecification:

1. The model is under-parametrised (i.e., omits one or more important variables),

which typically leads to biased estimates of parameters;

2. The model is over-parametrised (i.e., has one or more redundant variables),

which usually leads to inefficient estimates of parameters;

3. The model has the correct parameters, but the assumed distribution of the

error term is wrong, which can lead to biased quantile estimates.

For scenario #1, we use an MA(1) model to fit the underlying demand data. For

scenario #2, we use an ARIMA(2,0,1) model. For scenario #3, the data is generated

using a modified version of ARIMA model, in which the error term follows the

Laplace instead of the normal distribution. When estimating the optimal order

quantity, however, we use the incorrect assumption that the error term follows the

normal distribution.

Since we wish to focus on the effect of model misspecification, rather than the effect

of a lack of data (as in the previous subsection), we report the mean RPIs when

t = 200, when plenty of demand data is available. As before, however, all means are

taken over 500 time series.
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Figure 4.4 shows the boxplots for scenarios #1 and scenario #2, together with the

boxplots for the correctly specified case, for comparison. Here, τ is equal to 0.7. As

before, results are reported for three different settings of (β, γ).

Figure 4.4: Boxplots of the RPI for three different models and three different com-

binations of adjustment parameters (τ = 0.7, t = 200)
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It is apparent that, when the forecasting model omits important variables, näıve

adjustment can yield a significant increase in profit. The improvement seems to

be present also when the model has redundant variables, but the effect is less pro-

nounced. This is probably due to the nature of the judgemental adjustment. In the

case where important information is omitted from the model, there is a good chance

that adjustment can provide supplementary information. On the other hand, when

the model contains redundant variables, no additional information is needed.

Heatmaps for scenario #1 and scenario #2 are presented in Appendix F. They

confirm again our findings in Figure 4.4. It appears that the optimal PtC parameter

(γ) is larger than the optimal DC parameter (β) in the under-parametrised case.

This is probably because omitting variables in the model leads to an over-estimate

of the variance, leading to order quantities that are further from the mean than
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required. This bias is remedied by using PtC, since the order quantity is brought

closer to the mean of the data. On the other hand, the improvement from adjustment

when the model has redundant variables is limited, because the model overfits the

data, thus having a lower variance than needed.

Finally, we consider scenario #3, in which the underlying assumption on the error

term distribution is wrong. Figure 4.5 shows the RPI boxplots for this case. It can

be seen that adjustment significantly improves the expected profit when τ = 0.9,

but the effect disappears when τ = 0.5. This can be explained by the relative

shapes of the normal and Laplace distributions. Since the largest difference between

the distributions is in the “tails”, more adjustment will be needed when τ is at an

extreme value (i.e., close to either 0 or 1).

Figure 4.5: Boxplots of the RPI when the assumed distribution of error term is

wrong (t = 200)
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Interestingly, PtC seems to be of more benefit than DC in scenario #3. This is

probably because the wrong assumption about the error term distribution leads to

a systematic overestimation of the variance. Just as in the under-parametrised case,

this over-estimation was alleviated by PtC.
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Once again, we find that näıve adjustments can be beneficial instead of harmful.

The results are similar to what we found in Subsection 4.4.2 and can be overall

summarised as:

1. DC is more useful in the short data length case. This is probably because of

the small sample bias, which vanishes on larger samples.

2. PtC is more beneficial than DC in the case of model misspecification. This

is because of the systematic underestimation of variance in case of omitted

variables or wrong model form.

3. In the case when the DGP is known, the benefits from adjustments only depend

on data length and adjustment parameters.

4. The improvement from adjustments appears when the model omits important

variables, or the distributional assumption is wrong.

5. When the model has redundant variables, the improvement from both DC and

PtC is less pronounced.

In general, we can conclude that DC is likely to be beneficial when there is a shortage

of demand data, whereas PtC is likely to bring value when the variance of demand

is overestimated.

4.5 Tuning Algorithm

In the previous section, we showed that näıve adjustments can improve the expected

profit when the data is insufficient and/or the demand model is misspecified. It is

however not clear how one might choose suitable parameter values when faced with

a specific NVP instance. In this section, we propose and test a simple heuristic

algorithm for parameter “tuning”. We believe that this tuning algorithm may be of
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interest to both academics and practitioners. The method is explained in Subsection

4.5.1. In Subsection 4.5.2, we apply our method to a real-life NVP instance, for

which the true model is not known. Finally, in Subsection 4.5.3, we present and

compare the results with and without the application of adjustment with “tuned”

parameters.

4.5.1 Procedure

Let us suppose that we have a forecasting model that, for each period in the training

set, t ∈ [1, s], is able to provide an estimate of the mean demand µ̂t. Moreover, let

us assume that we are also able to estimate the “textbook” optimal order quantity

x∗t . We remind the reader that our adjusted order quantity takes the form:

xt = (1− γ)x∗t + γµ̂t + β(dt−1 − xt−1).

The xt can be calculated for all t ∈ [1, s] based on the available mean and actual

demand, the “textbook” order quantity and some values of β and γ. To determine

the values of parameters, we solve an optimisation problem over the training set.

Following suggestions in Ban and Rudin (2019) and Liu et al. (2022), we use a non-

standard “loss function” for this purpose. The function is chosen to maximise the

profit over the training set, instead of minimising the MSE or MAE in the usual

way. That is, we estimate β and γ by maximising the in-sample empirical profit:

max
β,γ

s∑
t=2

π(x∗t , µ̂t, xt, dt). (4.9)

We remark that the function to be maximised in (4.9) is continuous and concave.

On the other hand, it is not differentiable in general. This means that in order to

maximise the profit we need to use derivative-free optimisation algorithms, such as

Nelder-Mead (Nelder and Mead, 1965; Rios and Sahinidis, 2013).
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4.5.2 Real life example

Here we present an example of the application of our approach to real data. The

data we use comes from a medium-sized grocery store which sells a wide range of

products, many of which are perishable. It includes daily demands for each product,

for a period of around 9 weeks, which ran from mid-October to December. For this

study, we selected four typical products with very different data structures and NVP

parameters. In particular, we made sure that the selected products have a range of

prices, demands and critical quantiles, in order to make the experiment less biased.

For reasons of confidentiality, we refer to these products as simply A, B, C and D.

To give the reader some sense of the data, we provide time-series plots in Figure 4.6

and summarise the cost parameters in Table 4.2.
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(a) Demand for product A
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(b) Demand for product B
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(c) Demand for product C
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(d) Demand for product D

Figure 4.6: Demand time-series for real-life case

Following standard practice in forecasting, we use a rolling-origin method (Tashman,

2000), with constant in-sample size. For each product, on each iteration, we use

three-fifths of the data as the training set and perform a one-step-ahead forecast.
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Table 4.2: Data for a subset of the products

Products Price and Costs Critical Quantile

p v ch cs

A 2.96 1.28 0.49 0.51 0.55

B 11.98 4.13 2.49 1.33 0.58

C 2.86 1.96 0.78 0.56 0.35

D 4.29 3.24 1.03 0.21 0.23

To perform a fair comparison, and reduce the possibility of bias in our choice of

model, we simply applied one of the most popular automatic techniques for fore-

casting: the ets() function from the R forecast package (Hyndman et al., 2020).

This function attempts to select the most appropriate ETS model, using the Akaike

Information Criterion. The pre-tuning decision (x∗t ) is computed using the output

from the traditional forecasting procedure, while the tuned decision (xt) is computed

using the output from the forecasting and tuning procedures in combination.

4.5.3 Results

We now present the results obtained with our tuning algorithm. Figure 4.7 displays

box plots of the RPI, taken over the iterations, for each of the four products. We

remind the reader that a positive RPI indicates that adjustment has been beneficial

(see Subsection 4.4.1). The plots indicate that the RPI is positive for all four

products in all situations. Thus, the tuned order decisions outperform the pre-tuned

ones for all four products.

Table 4.3 summarises performance in terms of service levels. The row labelled

‘target’ shows the critical quantile that maximises the expected profit for the given

cost and price parameters. The next two rows show the achieved service level without

and with tuning, respectively. In all four cases, the achieved service level with tuning
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Figure 4.7: Boxplot of the out-of-sample RPI. The black lines in the boxes represent

mean values
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is much closer to the target one than the one without tuning.

Table 4.3: Achieved Service level of each method

Product A Product B Product C Product D

Target 0.55 0.58 0.35 0.23

Pre-tuning 0.75 0.80 0.13 0.17

Tuned 0.65 0.62 0.25 0.29

To gain additional insight, we repeated the entire experiment using four other pop-

ular forecasting methods. The results are presented in Table 4.4. From the table,

one can see that the tuning algorithm yields a positive out-of-sample RPI in every

single case.

The experiment in this section supports our findings in the simulation study. We

show that because the true model is not known, the proposed tuning algorithm leads

to improvements, bringing the order closer to the correct level.
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Table 4.4: RPI results obtained when using adjustment with other forecasting meth-

ods

Products Methods In-sample Out-of-sample

Product A Mean 4.2% 2.8%

S-Mean 0.4% 2.4%

S-Näıve 3.0% 2.4%

ARIMA 1.0% 0.4%

Product B Mean 3.9% 4.1%

S-Mean 1.1% 2.9%

S-Näıve 2.5% 2.8%

ARIMA 1.9% 1.2%

Product C Mean 4.1% 4.2%

S-Mean 2.8% 2.2%

S-Näıve 2.6% 2.5%

ARIMA 0.2% 1.1%

Product D Mean 4.8% 3.1%

S-Mean 1.2% 3.5%

S-Näıve 3.3% 4.5%

ARIMA 2.6% 1.1%

4.6 Concluding Remarks

Although there is considerable literature on judgemental adjustment for newsvendor

problems, it has been assumed up to now that ‘demand chasing’ and ‘pull-to-centre’

are especially näıve, and likely to lead to losses in profit. In this chapter, we have

shown that, surprisingly, these adjustment procedures can lead to increased profits

in some situations. In particular, they can be useful when (a) there is not enough

data available to estimate parameters accurately, and (b) the demand model is

misspecified. Interestingly, DC appears to be more useful under condition (a), while

PtC seems to be of more benefit under condition (b). In general, this is because in
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the case of (a) the order estimates suffer from some kind of systematic bias due to

short data length; while in situation (b) the estimated variance is often higher than

needed.

We also proposed a simple heuristic for tuning the adjustment parameters. Using a

real-life example, we show that the tuned orders outperform the pre-tuned ones in

terms of the achieved profit, and also led to a service level closer to the target one.

There are several interesting topics for further research. First, one could attempt

to characterise other scenarios under which näıve adjustments tend to be beneficial.

Second, one could examine the effects of other forms of adjustment. Third, it might

be beneficial to conduct behavioural experiments, in the lab and/or field, to confirm

the simulation results. Finally, it would be interesting to extend the research to

multi-item newsvendor problems, either with or without substitution effects between

products.
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Chapter 5

Newsvendor Conditional

Value-at-Risk Minimisation on

Non-parametric Approach

Next, we turn our attention to alternative objective functions. In most of the liter-

ature on NVPs, the objective is to maximise the total expected profit. Some recent

works, however, are concerned with the minimisation of the conditional value-at-

risk (CVaR), a most preferable risk measure in financial risk management. Unfor-

tunately, CVaR estimation involves considering observations with extreme values,

which poses problems for both parametric and non-parametric methods. In this

chapter, we propose an alternative non-parametric approach to CVaR minimisation

with feature-based demand data. We note that our proposed method uses only

a small proportion of data and that the empirical risk generated by our method

converges to the true risk under suitable assumptions. Using both simulation and

real-life case studies, we show that the proposed method can be very useful in prac-

tice, allowing the decision-makers to suffer less downside loss in extreme cases while

requiring reasonable computing effort.
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5.1 Introduction

In this chapter, we focus on Newsvendor Problems (NVPs), by which we mean

single-period inventory control problems with stochastic demand. In early works on

NVPs (Arrow et al., 1951; Morse and Kimball, 1951), it is assumed that the demand

in each time period comes from a known probability distribution, and the objective

is to determine the order quantity that maximises the expected profit.

Recently, several works have considered a variant of the NVP in which the objective

is to minimise the conditional value-at-risk (CVaR). The motivation for this is that

CVaR is currently a very popular risk measure in financial risk management, as

pointed out in Rockafellar and Uryasev (2002). In the work of Gotoh and Takano

(2007), a closed-form solution was given for the CVaR-minimisation NVP. Moreover,

a mean-CVaR criterion was considered. Then, Jammernegg and Kischka (2007)

proposed an extended model where the inventory manager can control internal and

customer-oriented performance measures. Chen et al. (2009), later on, investigated

the optimal pricing and ordering decisions in a single framework. The idea of risk

aversion in the context of pricing competition was further studied in Wu et al. (2014).

Other relevant literature can be found in Abdel-Aal and Selim (2017), Cheng et al.

(2009), Wu et al. (2013) and Xinsheng et al. (2015).

In all of the above-mentioned works, it is assumed that the demand comes from

a known family of probability distributions with known parameters. In real life,

unfortunately, model correctness is rarely assured. Assuming that historical data

is available, one can attempt to address this issue by decomposing the problem

into a forecasting phase and an optimisation phase, commonly called the disjoint

approach (Liu et al., 2022) or SEO approach (Ban and Rudin, 2019). However, if

the forecasting model is misspecified, and/or there is substantial noise in the data,

then this might impact the optimisation phase in an unexpected way, possibly lead-
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ing to sub-optimal solutions, even resulting in nonsensical negative order decisions.

Moreover, given that the CVaR concerns observations with extreme values, which

are often treated as outliers in traditional statistical approaches, the computed or-

der quantities could underestimate the downside risk and lead to significant losses

in extreme cases (Gençay et al., 2003; Yao et al., 2013). The forecasting accuracy

can be slightly improved by considering feature-based demand data (Vapnik, 1998),

or by using an alternative statistical approach, such as bootstrapping (Efron and

Tibshirani, 1994) or extreme value theory (De Haan and Ferreira, 2006). However,

the performance depends heavily on the form of the profit function.

To get around these difficulties, one could use a single, non-parametric approach,

in which the order quantities are determined directly from the data based on an

assumed model or filter. Common non-parametric approaches for classic NVP in-

clude sample average approximation (SAA) (Levi et al., 2015), smart “predict then

optimise” (SPO) loss (Elmachtoub and Grigas, 2017), NV-features (Ban and Rudin,

2019) and IMEO (Liu et al., 2022). However, none of them is directly applicable

to the CVaR minimisation NVP, due to the nonlinearity and non-differentiability of

the loss function. Works have been done in the field of CVaR estimation. In the

work of Chun et al. (2012), the authors proposed a mixed quantile regression method

to estimate the CVaR using a formulation similar to quantile regression. Then, a

superquantile regression method was proposed by Rockafellar et al. (2014), derived

based on the risk quadrangle. The method of superquantile regression (SQR) was

then extended by Harsha et al. (2015) and Miranda (2014), in which the authors

considered novel decomposition methods that enable the formulation to be empir-

ically more tractable. Unfortunately, all those methods were originally designed to

fit the CVaR of an observable variable (demand itself). With slight modifications,

SQR can be applied to the CVaR minimisation NVP, but it is still very sensitive to

the choice of profit function and can be extremely computationally expensive under

large instances. Moreover, we mark that the SQR may be biased under certain
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circumstances.

In this chapter, we propose a non-parametric feature-based approach of CVaR min-

imisation, which we call “NPC” for short. We consider both an empirical model

and an adaptive model. We give rigorous proof that under suitable assumptions,

the true risk is well estimated by the risk functions of our models. We also perform

extensive experiments, on both artificial and real data, to examine the performance

of NPC under different settings.

The highlights of our approach include:

1. The approach works directly with historical data and considers features related

to the demand, while only requiring a small proportion of data points.

2. The NPC is very robust with regards to the data structures and is adaptive

to different forms of profit function, both linear and nonlinear.

3. Experiment results show that the computed order quantities from NPC lead

to equal or less downside loss in extreme cases than competing methods.

4. From a statistical viewpoint, the estimated parameters of NPC are statistic-

ally explainable and can be easily applied to prescriptive analytics to provide

additional operational insights.

The chapter is organised as follows. We review some well-known results on the

classic single-period NVP in Section 5.2 and define the profit function of a nonlinear

NVP as well. In Section 5.3, the CVaR is introduced in a general form following

Rockafellar and Uryasev (2002), and the closed-form solution of the NVP under

CVaR minimisation is developed following Gotoh and Takano, 2007. In Section 5.4,

we present the method of NPC in detail, including both an empirical model and an

adaptive model. We prove that the risk generated by our adaptive model converges

to the true risk under suitable distribution assumptions. Sections 5.5 and 5.6 give
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computational results on artificial data. Section 5.7, on the other hand, applies NPC

to a real-life example. Finally, Section 5.8 contains some concluding remarks.

5.2 Single-Item Newsvendor Problems

In the simplest NVP, as defined, for example, by Choi (2012), a company purchases

goods at the beginning of a time period, and aims to sell them by the end of the

period. The demand during the period is a random variable d̃ with known probab-

ility density function f and cumulative distribution function F . We are also given

parameters c, r, v, g ∈ Q, where

• c is the cost of purchasing one unit of item;

• r is the revenue gained by selling one unit of item;

• v is the disposal cost of each unsold unit of item;

• g is the shortage cost of each unit of unsatisfied demand for item.

We assume without loss of generality that r > c ≥ 0, c > − v and g ≥ 0. We permit

v to be positive or negative. (A negative value could indicate that excess items can

be sold at a discounted price.) We remark that g may be used to represent the “loss

of customer goodwill” incurred by stockouts.

The retailer must decide how many units of the item to order before the start of the

sales period. We let x denote the number of units ordered. We assume for simplicity

that x is continuous. For a given value of x, and a given realisation d of d̃, the profit

over the period is:

π(x, d) := r min{x, d} − c x− v [x− d]+ − g [d− x]+. (5.1)
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In the classical NVP, the goal is to find a value for x that maximises the total

expected profit, which can be given in a closed form (Arrow et al., 1951; Choi,

2012):

x∗ = F−1

(
U

E + U

)
, (5.2)

where F−1 is the inverse of the distribution function F , E := c + v denotes the

overstock cost, and U := r− c+ g denotes the understock cost. Moreover, it is easy

to prove that the expected profit is a concave function of x (Arrow et al., 1951).

In the general nonlinear NVP, the profit function takes the form:

π(x, d) :=


R(x, d)− C(x, d)− V (x, d), for x ≥ d

R(x, d)− C(x, d)−G(x, d), for x < d,

(5.3)

where R, C, V and G are now functions rather than constants.

The nonlinear NVP can be seen as an extension of the classical NVP, as it enables

one to model more real-life problems, e.g. with nonlinear shortage cost due to the

damage of reputation. The detailed motivation can be found in Khouja (1995),

Liu et al. (2022) and Pantumsinchai and Knowles (1991). In general, however, a

closed-form solution in terms of a quantile is unlikely to exist for nonlinear NVPs.

In such cases, one could resort to numerical integration or simulation techniques to

solve the problem.

5.3 NVPs Under CVaR Minimisation

Let L(x, d) := −π(x, d) denote the magnitude of the loss for a given realisation d of

d̃ and a fixed x, and let

Φ(η|x) := P{L(x, d̃) ≤ η} (5.4)

denote the distribution function of L. We can deduce that Φ(η|x) is a positive,

non–decreasing function with lim
η→−∞

Φ(η|x) = 0 and lim
η→∞

Φ(η|x) = 1. For simplicity,
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we assume that both x and d̃ are continuous. For β ∈ [0, 1), we define the β-VaR of

the distribution by

α(x, β) := inf
η∈R

{η|Φ(η|x) ≥ β} = inf
η∈R

{η|P{L(x, d̃) ≤ η} ≥ β}. (5.5)

Note that α is a function dependent on β and x. For any α ∈ R, we can then write

β as

β = P{L(x, d̃) ≤ α} = Φ(α|x). (5.6)

A β-tail distribution function that focuses on the upper tail part of the loss distri-

bution can be formed as (Rockafellar and Uryasev, 2002):

Φβ(η|x) :=
Φ(η|x)− β

1− β
, for η ≥ α(x, β). (5.7)

Therefore, the β-conditional value-at-risk (β-CVaR) of the loss L can be defined as

ψβ(x) := Eβ

[
L(x, d̃)

]
, (5.8)

where Eβ[·] is the expectation operator under the β-tail distribution. We plot an

illustrative distribution function of Φ(η|x) and Φβ(η|x) in Figure 5.1. It is easy to

see that the β-tail distribution is formed by picking the top (1 − β) proportion of

Φ(η|x) values, scaling those values by an affine transformation, and setting the rest

of the Φ(η|x) values to 0. We remark that the construction of the β-tail distribution

is the theoretical foundation for our non-parametric CVaR minimisation method.

To simplify the procedure for locating α, Rockafellar and Uryasev (2002) defined an

auxiliary function:

Fβ(x, α) := α +
1

1− β
E
[
[L(x, d̃)− α]+

]
. (5.9)

It has been shown in their work that:

min
x∈X

ψβ(x) = min
(x,α)∈X×R

Fβ(x, α), (5.10)
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Figure 5.1: The cumulative distribution function of L(x, d̃) and the β-tail distribu-

tion.
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where X ⊆ R is a feasible region. This relation shows that the minimal value

ψβ(x
∗) can be achieved by minimising the function Fβ(x, α) with respect to x ∈ X

and α ∈ R, simultaneously. With an optimal solution (x∗, α∗) to the right-hand side

optimisation problem in Equation (5.10), x∗ is an optimal solution of the left-hand

side one.

From Equation (5.1), (5.9) and (5.10), the solution to the CVaR version of a (linear)

NVP can be given in a closed form (Gotoh and Takano, 2007):
x∗ = E+W

E+U
F−1

(
U(1−β)
E+U

)
+ U−W

E+U
F−1

(
Eβ+U)
E+U

)
,

α∗ = E(U−W )
E+U

F−1
(

Eβ+U)
E+U

)
− U(E+W )

E+U
F−1

(
U(1−β)
E+U

)
,

(5.11)

where we recall that E := c+ v and U := r− c+ g, and we set W := r− c = U − g.

In particular, when g = 0, we have a simpler result:

x∗ = F−1

(
U(1− β)

E + U

)
, α∗ = −Ux∗. (5.12)

We see that the difference between the solutions x∗ given by Equation (5.1), (5.11)

or (5.12) depends only on two parameters g and β. In particular, when g = 0,

the difference is only the coefficient in the argument of the inverse F−1. Moreover,

when β = 0, the solutions in Equation (5.1) and (5.11) under CVaR minimisation

reduce to the classical expected profit maximisation solution in Equation (5.12).
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This consequence is consistent with the definition of the β-CVaR. The difference

can be easily visualised, as seen in Figure 3 in Appendix G with artificial data.

5.4 Non-Parametric CVaR Minimisation

As mentioned in Section 5.1, there exist two main issues with the conventional

methods for NVPs under CVaR minimisation:

• Given the observations, with extreme values often treated as outliers, the

traditional parametric methods could underestimate the downside risk from

the tail, resulting in biased order quantities and leading to a significant loss

(Gençay et al., 2003).

• The existing non-parametric methods depend heavily on the data structures

and the profit function. Moreover, given that they need to consider all histor-

ical observations, they can be very computationally expensive for large data

sets.

To get around these difficulties, we propose an alternative non-parametric approach.

We assume that the historical data are [(z1, d1), . . . , (zs, ds)]. For t = 1, . . . , s,

each zt := [z1t , . . . , z
p
t ] represents p features related to the demand, such as trend,

seasonality, prices, promotions and so on. We consider x = x(z). The problem now

becomes that of finding a function x : Rp → R and a value α that optimise the risk

function Fβ(x, α) with respect to the distribution of (zt, dt). Then, we can evaluate

x at a data point in the proceeding period, i.e. xs+1 = x(zs+1).
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5.4.1 Empirical CVaR minimisation via NPC

We carry out the CVaR minimisation by minimising the auxiliary function (5.9),

min
x,α

Fβ(x, α) = min
x,α

(
α +

1

1− β
E
[
[L(x, d)− α]+

])
. (5.13)

In practice, the underlying distribution L is often unknown a priori. Even if we could

find such a distribution for L, the multidimensional integral for the expectation in

(5.9) cannot be accurately computed for high dimensional data (Nemirovski et al.,

2009). Instead of computing the exact integral, we compute (5.9) in an empirical

fashion. The empirical risk minimisation problem can be written as minx,α F̃β(x, α)

where

F̃β(x, α) := α +
s∑

t=1

[L(x, dt)− α]+

(1− β)s
. (5.14)

We call F̃β(x, α) the empirical risk and Fβ(x, α) the true risk. Section 4.1 in Von

Luxburg and Schölkopf, 2011 proves the following result.

Theorem 5.4.1. For a fixed x, by the law of large numbers, the empirical risk

converges to the true risk as the sample size s goes to infinity, i.e., F̃β(x, α) →

Fβ(x, α) for s → ∞. The Chernoff inequality also gives a bound which states

how likely it is that, the empirical risk is close to the actual risk (Chernoff, 1952):

P
(∣∣F̃β(x, α)− Fβ(x, α)

∣∣ ≥ c
)
≤ 2e−2sc2, where c is any small positive constant.

Remark 5.4.1. Theorem 5.4.1 shows that the probability of large deviations of the

empirical risk from the true risk decays exponentially as s increases. The data set

we used for experiments in Section 5.5–5.6 usually has s ≈ 300. In this case, the

probability that the empirical risk deviates from the true risk by 0.1 is less than 0.4%.

Corollary 5.4.1. For a fixed function x, the empirical risk F̃β(x, α) is an unbiased

and consistent estimate of the true risk Fβ(x, α).
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Proof. Proof of Corollary 5.4.1 To prove that the estimate is unbiased, we use the

following equality.

E(F̃β(x, α)) = E
(
α +

s∑
t=1

[L(x, dt)− α]+

(1− β)s

)
= α +

s

(1− β)s
E [L(x, dt)− α]+

= E(Fβ(x, α)).

Note that the first and last equality is by definition of F̃β and Fβ respectively.

The second equality follows from the linearity of expectation and from the identical,

independent nature of dt. Also, by Theorem 5.4.1, F̃β(x, α) → Fβ(x, α). This proves

that the estimate is consistent.

5.4.2 Adaptive CVaR minimisation via NPC

The benefit of using this empirical formulation is that it does not rely on the dis-

tribution of demand or the linearity of the profit function. This approach is also

less susceptible to modelling bias. However, it still requires the entire data set of

historical observation. Thus, the method will still be computationally expensive on

large data sets.

To deal with this drawback, we propose an adaptive way of selecting the data for

NPC. Instead of minimising empirical risk using the whole data set {(zt, dt)}1≤t≤s,

we carefully select a 2 × (1 − β) portion of the data and use the reduced data set

to minimise an adaptive risk function. (The value of β is normally selected to be

90% or 95% in practice.) In this subsection, we first give a step-by-step explanation

of our selection criterion and the adaptive NPC algorithm. We then prove that,

under suitable assumptions, the empirical risk function with the reduced data set

converges to the true risk function as s→ ∞.
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Selection Criteria

Suppose that from the observation [d1, . . . , ds], one could decompose the time series

into a systematic component, T , and an irregular (noise) component, ϵ. After the

decomposition, the set {dt}1≤t≤m corresponds to a set of noise values {ϵt}1≤t≤m. We

can also re-write the loss function as

L(x, dt) = L(x̃(x, Tt), ϵt) = L(x, Tt, ϵt) for all 1 ≤ t ≤ s. (5.15)

Now, for a fixed x̃, we observe that in the NVP, the loss function takes a large value

if and only if the noise term ϵt takes extreme values. This observation motivates us

to design an adaptive selection criterion.

We define the ‘worst’ scenarios as the ‘smallest’ and the ‘largest’ (1− β) proportion

of the data in regard to their noise ϵ. We denote the selected noises in ascending

order as

E := {ϵi1 , . . . , ϵim , ϵim+1 , . . . , ϵi2m} (5.16)

where m = ⌈(1− β)s⌉. The first m items of E are the m smallest ϵt values, and the

last m items are the m largest. We define the index set of the chosen data as

M := {i1, . . . , i2m}. (5.17)

Now, we minimise the adaptive risk function with respect to the reduced data set,

i.e.:

min
x,α

F̂β(x, α), where F̂β(x, α) := α +
∑
t∈M

[L(x, Tt, ϵt)− α]+

m
. (5.18)

It is worth noting that this adaptive model only requires a 2 × (1 − β) proportion

of the data, significantly reducing the computational effort. The experiments in the

following sections show that this approximate format can outperform benchmark

methods easily.
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Proof of convergence

In this subsection, we prove that under suitable assumptions, the adaptive risk

function with respect to the reduced data set F̂β(x, α) → Fβ(x, α) as s → ∞. In

other words, the adaptive risk function obtained from our carefully selected 2×(1−β)

proportion of data approximates the true risk function.

To complete the proof, we need the following assumptions.

• Noise Distribution Assumption: Assume the noises {ϵt}1≤t≤s are inde-

pendent and identically distributed random variables from a distribution with

zero mean. Let Φϵ(η) = P(ϵ < η) be the cumulative distribution function of

the distribution, such that lim
η→−∞

Φϵ(η) = 0 and lim
η→∞

Φϵ(η) = 1.

• Continuity Assumption: Let (X , T , (−∞,∞)) be the feasible region for the

distribution of (x, Tt, ϵ). The loss function L(·, ϵ) is continuous with respect to

ϵ for all (x, Tt) ∈ (X , T ).

• Tail Assumption: For all
(
x, Tt

)
∈ (X , T ), we assume that at least one tail

of the loss function is unbounded as |ϵ| → ∞. Namely, one of the below cases

is true,

lim
ϵ→−∞

L(x, Tt, ϵ) → ∞, lim
ϵ→∞

L(x, Tt, ϵ) is bounded, (5.19)

or lim
ϵ→∞

L(x, Tt, ϵ) → ∞, lim
ϵ→−∞

L(x, Tt, ϵ) is bounded, (5.20)

or lim
ϵ→±∞

L(x, Tt, ϵ) → ∞. (5.21)

The key idea of the proof is that, on the one hand, when we calculate the true risk

Fβ(x, α) = α+ 1
(1−β)

E
[
[L(x, d̃)− α]+

]
, only the data points (Tt, ϵt) that correspond

to L ≥ α have an impact on the expectation. On the other hand, using our selection

criterion, the 2⌈(1−β)s⌉ indices selected inM are sufficient to cover the data points

that generate non–zero expectation in Fβ(x, α). The first statement is proven in

Lemma 5.4.1 and the second statement is proven in Theorem 5.4.2.
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Lemma 5.4.1. For a fixed x, we consider the data set {Tt, ϵt}1≤t≤m. Let α be the

risk threshold such that exactly ⌈(1−β)s⌉ values of the loss function {L(x, Tt, ϵt)-

}1≤t≤m have a larger value than α. We denote the index set as S, such that

S := {t|L(x, Tt, ϵt) ≥ α}. (5.22)

Then,

F̃β(x, α) = α +
1

|S|
∑
t∈S

(L(x, Tt, ϵt)− α) → Fβ(x, α). (5.23)

where |S| denotes the size of a set S.

Proof. Proof of Lemma 5.4.1 We simplify the expected value in Fβ(x, α),

E
[
[L(x, d̃)− α]+

]
= E

[
[L(x, d̃)− α]+|L(x, d̃) ≥ α

]
(1− Φ(α|x))

+E
[
[L[x, d̃)− α]+|L(x, d̃) ≤ α

]
︸ ︷︷ ︸

=0

Φ(α|x)

= E
[
(L(x, d̃)− α)|L(x, d̃) ≥ α

]
(1− Φ(α|x))

where Φ was defined in (5.4). From (5.6), we deduce that the expected size for S is

(1 − β)s or, in the integer case, m. In view of Theorem 5.4.1, for any fixed x, we

can use an empirical estimation to approximate Fβ(x, α)

1

|S|
∑
t∈S

(L(x, Tt, ϵt)− α) → E
[
(L(x, d̃)− α)|L(x, d̃) ≥ α

]
as s→ ∞.(5.24)

Note that

E
[
(L(x, d̃)− α)|L(x, d̃) ≥ α

]
=

1

(1− Φ(α|x))
E
[
[L(x, d̃)− α]+

]
=

1

(1− β)
E
[
[L(x, d̃)− α]+

]
.

(5.25)

Adding α on (5.24)–(5.25) and substituting |S| = m gives the result.

Theorem 5.4.2. Under the noise distribution, continuity and tail assumptions, for

any fixed x, there exists a β ∈ (0, 1) such that

F̂β(x, α) → Fβ(x, α), as s→ ∞. (5.26)
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Proof. Proof of Theorem 5.4.2 Step 1: The monotonically increasing tail of

loss function. In this proof, we assume without loss of generality that the tail as-

sumption holds in the case of lim
ϵ→∞

L(x, Tt, ϵ) → ∞ only. The cases of lim
ϵ→−∞

L(x, Tt, ϵ)

→ ∞ only and lim
ϵ→±∞

L(x, Tt, ϵ) → ∞ follow similarity.

The loss function is unbounded as ϵ → ∞ and continuous with respect to ϵ ∈ R.

There exists a positive constant C1 ∈ R large enough, such that for any C > C1,

there exists an ϵc > 0, such that L(x, Tt, ϵ) ≥ C for all ϵ ≥ ϵc and L(x, Tt, ϵ) < C for

all ϵ ≤ ϵc. Specifically, L(·, ·, ϵ) is a bijective map for ϵ ∈ (ϵc,∞) and L ∈ (C,∞),

such that

L(x, Tt, ϵ) ≥ C ⇔ ϵ ≥ ϵc. (5.27)

Step 2: The risk threshold. Let α(β) be the risk threshold defined as in Lemma

5.4.1. We write the CDF of ϵ as

1− Φϵ(α) = P(ϵ ≥ α(β)) = 1− β. (5.28)

By the distribution assumption, there is a β ∈ (0, 1), such that we can generate a

risk threshold α > C1.

Step 3: Relationship between S and M . Now consider the set {ϵt}t∈S. For

all t ∈ S, we have L(x, Tt, ϵt) ≥ α > C1. By (5.27), we deduce that ϵt ≥ ϵj where

t ∈ S and j /∈ S. Specifically, S contains the indices of the largest ⌈(1− β)s⌉ values

among {ϵt}1≤t≤s. This corresponds to indices {im+1, . . . , i2m} in M (where M is as

defined in (5.17)). So we deduce that S ⊂M .
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Step 4: Convergence.

F̂β(x, α) = α +
1

m

∑
t∈M

[L(x, dt)− α)]+

= α +
1

m


∑
t∈S

[L(x, dt)− α)]+ +
∑

t∈M/S

[L(x, dt)− α)]+︸ ︷︷ ︸
=0 by definition of S


= α +

1

m

∑
t∈S

(L(x, dt)− α)→Fβ(x, α)

as s→ ∞. The last line was proven in Lemma 5.4.1.

Numerical examples and implementation

We illustrate Theorem 5.4.2 with some numerical examples. We generate the de-

mands dt with the noise values ϵt following a mean zero normal distribution. It is

straightforward to verify that such a distribution satisfies the noise distribution as-

sumption. We consider a linear loss function and a nonlinear loss function in Figure

5.2. Both loss functions satisfy the continuity assumption and the tail assumption.

As a result, we see that for all plots, the set S (shaded area) is contained in the set

M (the region bounded by dashed lines and the vertical edges of the graphs). These

examples confirm our proof in Theorem 5.4.2.

One last remark is that in the adaptive NPC method, we will also have reduced

computational complexity for the function x. In the simplest case, we write x in the

following form,

x(zt) := zTt γ =
m∑
j=1

zjt γ
j, (5.29)

where γ ∈ Rp, together with α, are the parameters to be optimised in the CVaR

minimisation. In this case, the estimated parameters can be viewed as the ‘effect-

ive ratio’ of given features (e.g. the order should be increased by γj unit in order

to achieve minimum CVaR if the feature zj is increased by one unit). Other rep-

resentations of x can be polynomials (e.g. with quadratic regularisation terms) or
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Figure 5.2: Illustrative example for Theorem 5.4.2. The linear loss function as in

Equation (5.35) and a nonlinear loss function as in Equation (5.37).
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lags (e.g. with previous observations). Since L can be a function of any level of

complexity, minimising (5.18) is, in general, a continuous nonlinear optimisation

problem. Under reasonable assumptions on the functions R, C, V and G in (5.3),

and the function x(·) itself, the function (5.18) will be convex, but not necessarily

everywhere differentiable. Unfortunately, general-purpose algorithms for nonlinear

optimisation are not guaranteed to converge to a global minimum, due to the lack of

everywhere-differentiability. Fortunately, the experiments in Section 5.5 and Section

5.6 indicate that this does not cause serious problems.

5.5 Baseline Experiment

In order to assess the performance of the proposed method (adaptive NPC), and

to understand its strengths and weakness, we conduct simulation experiments in R
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4.2.1 with an Apple M1 Pro (2021) machine. In Subsection 5.5.1, we discuss the

setup for our baseline experiment. In Subsection 5.5.2 the simplest case is studied, in

which the profit function is linear. The case in which the profit function is nonlinear

is discussed in Subsection 5.5.2.

5.5.1 Experimental setup

For our baseline experiments, we consider NVPs with artificial demand data, and we

suppose initially that there are 4 features related to the demand, each containing 500

observations (the cases with other numbers of features will be discussed later). We

generate each feature from a seasonal ARIMA process and we generate the demand

as:

dt := b0 + b1z
1
t + b2z

2
t + b3z

3
t + b4z

4
t + rt, (5.30)

where zpt is the realisation of feature p at time t, and rt is a realised error generated

by an additive (weighted) mixture of rnorm(), rlaplace() and rt() functions. The

choice of bp for the features, ϕ and θ for the ARIMA process, and other parameters

for the generation of error terms are all selected randomly. We choose a seasonal

ARIMA model since it is one of the most popular statistical models in the literature

(for example, see Syntetos et al., 2016). The detailed parameter values for the

baseline setup and the demand series can be seen in Table 5 and Figure 4 in Appendix

H. The results of the experiment with other parameter values will be discussed in

Section 5.6. The scripts of all experiments have been made available on Github (Liu,

2022).

All experiments are performed on a rolling-origin basis with 1-step ahead order

forecasts (Tashman, 2000), in which we fix the origin size (holdout sample size) to

be 50, 100, 150, 200, 250 or 300, and the iteration number (number of shifts) to be

50, 100, 150 and 200. For each pair of origin size and iteration number, we use the

following two quantities as measurements:
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• β-Downside Loss (β-DL) = 1
n

∑n
t=1 Lt: This measures the average value of the

largest (1− β) cases of losses, where n = ⌈(1− β) ∗ iteration number⌉, and Lt

is ranked in descending order. It is desirable for this value to be as small as

possible.

• Service Level (SL) = 1
N

∑N
t=1 I(xt ≥ dt): This measures the proportion of cases

in which the demand is successfully fulfilled, whereN = iteration number, and

I(·) is the indicator function. In the ideal situation, SL should be as close to

the target service level as possible.

In the proposed method (“NPC”), we use the optim() function from the stats pack-

age for R and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm

(L-BFGS) for the estimation of the parameters of the model. The L-BFGS al-

gorithm has been shown to perform well in similar nonlinear programming tasks in

an NVP context (Liu et al., 2022; Liu and Nocedal, 1989).

To get around the scale issues, we consider two benchmark methods, with which we

can compute the relative β-DL and relative SL (note that the “instability” issue

and the “negativity” issue of relative measurement do not incur in our experiment):

• The benchmark method - Sample weighted average (“SA”): With historical

demand [d1, . . . , ds], the order quantity xs+1 is set to be a weighted average of

empirical quantiles under Equation (5.11).

• The benchmark method - Under correctly specified model (“UM”): A method

uses lm() function from stats package for R to forecast the next period

demand considering all features and all observations, and determines the order

quantity with Equation (5.11). We make sure the distribution of the error

terms is correctly assumed.

Besides the benchmarks, three competing methods are also considered:

111



• A non-featured method (“NF”) that applies the auto.arima() function from

forecast package for R to the demand series itself in the forecasting phase,

and determines the order quantity with Equation (5.11).

• A superquantile regression method (“SQR”) that uses rq() to determine the

order quantity (Rockafellar et al., 2014).

• A method (“PLM”) that uses lm() to forecast but with only observations from

the ‘worst’ 2× (1 − β) proportion of scenarios (the term ‘worst’ is defined in

Subsection 5.4.2).

In the baseline experiment, we consider a linear profit function

π(x, d) := 20 min{x, d} − 8x+ 3 [x− d]+ + 7 [d− x]+, (5.31)

and a nonlinear profit function

π(x, d) := 20 min{x, d}− 8x− 4 [x− d]+ +5 E[min{[x− d]+, u}]− 0.01
(
[d− x]+

)2
,

(5.32)

where u ∼ N (30, 52). These settings are consistent with the work of Liu et al.

(2022). The optimal service levels to maximise the expected profit for these two

functions are 0.35 and 0.62.

5.5.2 Results of the baseline experiment

Here, we present the results from our experiment, where the parameters described

in Subsection 5.5.1 are used.

To get some sense of the experimental procedure and the calculation of the relative

measurement, we first present an example in Appendix I, where only two methods

are considered, NPC and SA. The relative β-DL and relative SL in this example
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can be calculated as:

relative β-DL =
DLSA −DLNPC

DLSA −DLUM

= 93% (5.33)

relative SL = 1−
∣∣∣∣SLNPC − SLUM

SLSA − SLUM

∣∣∣∣ = 20% (5.34)

These values can be interpreted as: by using NPC, the decision makers will suffer

93% less loss than in the case of SA in the worst 5% of scenarios, and the service level

they achieve will be 20% closer to the target service level. Here we note that the

service level achieved by CVaR minimisation may lie far away from the service level

achieved by expectation maximisation, due to their different natures. In practice,

a decision maker will need to balance the benefit of reducing downside loss and the

harm of decreasing service level (as they are inseparable in most cases).

Linear profit function

In Figure 5.3a, we present the relative β-DL from our baseline experiment, where

multiple choices of origin size are considered under the given linear profit function

when iteration number = 200. We remark that the result from the PLM method

under origin size = 50 is excluded from the plot, as it is far below zero (This

is probably due to the drawback of using Least-squares estimation under a small

sample size). In general, we see that both the proposed NPC method and the SQR

method achieve a high relative β-DL. In fact, their performance is quite close, even

though SQR uses all historical observations and NPC only uses a small proportion of

them. The results from the other two methods are less appealing, as PLM generates

very frustrating performance when origin size = 50, and NF barely improves the

loss compared to the benchmark SA method.

In Figure 5.3b, we focus on the case of origin size = 300, and present the relative

β-DL under multiple choices of iteration number. We can see that the results are

very similar to what we found in Figure 5.3a, where the NPC and SQR methods
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Figure 5.3: Relative 95%-DL under linear profit function
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(a) Iteration number = 200
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(b) Origin size = 200

outperform the other two. In Appendix J, we present the results from all other

choices of origin size, iteration number and β in detail, where we include the relative

SL as well.

We note that, as we are using relative measurements, the results seem to be “stable”

among all choices of parameters. This is to be expected, given that the absolute

performance of all methods is influenced by parameters at the same time. From

the results, we can say that the NFC method shows very strong robustness, as its

performance is very close to the SQR method (and the UM method) under all cases

in regard to the relative β-DL, even though it only uses a proportion of data. Using

the same amount of data, the PLM method, however, performs poorly in most cases.

The results are not unexpected. As there is no significant upward and/or down-

ward trend in the demand series, as seen in Figure 4 in Appendix H, it is totally

understandable why the two non-featured methods, SA and NF, perform similarly.

(Though the performance of NF improves slightly as the origin size and iteration

number increase.) For the method of PLM, the nature of its loss function is to

minimise the MSE, leading it to be under-fitted when the data is limited. With the

same amount of data, the NPC method, on the other hand, adopts a different loss

function and focuses on extreme scenarios, making good use of all the selected data.

The SQR method also performs well in this experiment. However, as we can see
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from Figures 5.3a, 5.3b and Table 6 in Appendix J, it gets slightly outperformed by

NPC when origin size and/or iteration number is large. This is presumably due to

the presence of bias mentioned in Section 5.1. This bias is amplified when the profit

function is nonlinear and/or the error term distribution is changed, as we will see

in Subsection 5.5.2 and 5.6.3.

Nonlinear profit function

Here, we present the results from our baseline experiment with a nonlinear profit

function. As one can see from Equation (5.31) and Equation (5.32), the major

differences between these two forms of profit function concern the penalties incurred

by disposal and shortage. Instead of a fixed disposal cost, we now allow the excess

products to be sold on a salvage market. Instead of a fixed shortage cost, we consider

a quadratic cost function. As CVaR minimisation focuses on extreme cases, these

differences may be amplified in our experiments and lead to results very different

from those of Subsection 5.5.2. Given that a closed-form solution does not exist

for the given nonlinear function, one can use the technique proposed by Kyparisis

and Koulamas, 2018, or other numerical approaches, to verify that the quantiles to

minimise 95%-CVaR and 90%-CVaR are approximately 0.13 and 0.16.

Figure 5.4: Relative 95%-DL when iteration number = 200 under nonlinear profit

function
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In Figure 5.4, we present the relative β-DL with multiple choices of origin size

when iteration number = 200. It can be seen from the figure that the NPC method

outperforms all other methods in regard to relative β-DL under all values of origin

size. Moreover, we find that the relative performance of the SQR method decreases

as origin size increases. This can be further investigated by looking at the absolute

performance in Appendix J. We see that the β-DL from SQR method does not

improve as origin size increases, while the β-DL from SA does, leading to an overall

decrease in relative β-DL. One possible explanation for this phenomenon is that, in

the SQR method, the loss function targets the extreme demand realisation instead

of the extreme profit realisation directly. Therefore, under the nonlinear relationship

between demand and profit, this loss function could be heavily biased. Thus, it is

no surprise that the performance of SQR does not improve when increasing origin

size. On the other hand, the NPC targets extreme profit realisation.

We would like to stress that, unlike the parametric methods, NPC does not need any

complicated numerical optimisation or simulation methods to estimate the optimal

order quantity – it does that directly. In addition, NPC requires only a proportion

of data under the selection criterion, yielding results in a more efficient way. Overall,

we see that NPC performs at least as well as SQR under linear profit functions while

outperforming all other methods under nonlinear profit functions. We examine the

robustness of the NPC method in the next section.

5.6 Experiments With Other Parameters

In this section, we extend our experiment to other parameters. In particular, we

vary the number of features to be considered in Subsection 5.6.1. Then, we present

results with other profit functions in Subsection 5.6.2. Finally, we consider other

forms of the error term in 5.6.3. We remark that we have also experimented with
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other data-generating models, e.g. ETS, TBATS. We do not present the results

here, as they are very similar to the ones presented below.

5.6.1 Varying the number of features

Now, we focus on the number of features. In particular, we consider the number of

features to be adopted by the method, instead of the overall feature numbers (as

this has negligible impact). This is motivated by the fact that, in reality, decision-

makers are rarely able to guarantee the quality of feature choices (Heinze et al.,

2018). Therefore, it makes sense for us to consider the performance of our proposed

method in the case of model misspecification. To do that, we consider the relative

β-DL of the NPC method, the PLM method and one other method:

• A regression method (“LM”) that uses lm() to forecast with the same number

of features as used in NPC.

Besides, we also make sure that the PLM method uses the same number of features

as used in NPC and LM. We remark that the NF method and the SQR method

are excluded from this comparison, for the obvious reason that they do not require

any features in the computation. Without changing other settings, we now consider

the cases where the method uses 3 features or 5 features instead, while using the

same data set as before. These represent the cases of model under-fitting and model

over-fitting, respectively. To avoid redundancy, here we only present the results

with a linear profit function, as the results with a nonlinear profit function were

very similar.

We see from Figure 5.5 that NPC performs better than PLM for all origin sizes, in

both the under-fitting and over-fitting cases. However, its performance is worse than

LM when origin size is small, especially in the under-fitting case. The performance
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Figure 5.5: Relative 95%-DL when iteration number = 200 under linear profit

function with other numbers of features
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(a) With 3 features
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(b) With 5 features

improves as origin size increases. This is not completely unexpected. As the NPC

method uses only a small proportion of the data, it could be more vulnerable than

other methods when origin size is small, especially when some information is missing

due to under-fitting. Fortunately, we can see that using the same amount of data,

the performance of NPC is significantly better than the performance of PLM.

Figure 5.6: Relative 90%-DL when iteration number = 200 under linear profit

function with other numbers of features
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(a) With 3 features
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(b) With 5 features

In Figure 5.6, we present the results where β = 90%. In this setting, more data

is used in NPC and PLM methods. We see that the performance of NPC is still

slightly worse than LM when origin size is small, but the gap is much smaller than

in the case when β = 95%. Besides, we find that the NPC method outperforms LM
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as long as the origin size is larger than 100 in the over-fitting case, and 250 in the

under-fitting case. We remark that the results with other values of iteration number

were very similar to the case when iteration number = 200. Therefore, we do not

present them here.

To sum up, we find that the proposed NPC method is more vulnerable than other

methods when origin size is small, especially when the model is under-fitting. Luck-

ily, this drawback is tolerable, as our motivation in proposing an alternative method

was to reduce the computational effort with large instances. Even in the case when

origin size = 300 (where NPC outperforms LM), the NPC method requires only 30

observations with β = 95%, fewer than that required by LM when the origin size =

50.

5.6.2 With other profit functions

In the previous subsections, we tested the performance of our approach with one

linear profit function and one nonlinear profit function, under different conditions.

In this subsection, we consider four additional profit functions, two linear and two

nonlinear, to examine the sensitivity of our method to the parameters of the profit

function. All other settings are consistent with our baseline experiment. We call the

functions in the baseline experiment “Linear 0” and “Nonlinear 0”, and we define

“Linear 1”, “Linear 2” and “Nonlinear 1” and “Nonlinear 2” as follows:

• Linear 1:

π(x, d) = 20 min{x, d} − 8x− 3 [x− d]+ − 7 [d− x]+. (5.35)

• Linear 2:

π(x, d) = 20 min{x, d} − 8x+ 7 [x− d]+ + 3 [d− x]+. (5.36)
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• Nonlinear 1:

π(x, d) = 20 min{x, d} − 8x− 4 [x− d]+ − 0.01
(
[d− x]+

)2
. (5.37)

• Nonlinear 2:

π(x, d) = 20 min{x, d} − 8x+ 5 E[min{[x− d]+, u}], (5.38)

where u ∼ U(0, 15).

“Linear 1” and “Linear 2” are consistent with the work of Liu et al. (2022), while

“Nonlinear 1” and “Nonlinear 2” are derived from it. The optimal service levels to

maximise the expected profit for these four functions are 0.63, 0.9, 0.56 and 0.71,

respectively. Although the order quantity that minimises the CVaR is usually very

different from the one that achieves maximum expected profit, we find the optimal

service levels of functions influence the performance of NPC.

As before, we present the Relative 95%-DL of all methods when origin size = 50

and iteration number = 50 with a linear profit function, as well as the case when

origin size = 300 and iteration number = 200. We can see from Table 5.1 that the

NPC method perform well under all linear and nonlinear profit functions, and its

performance converges to the UM method when origin size and iteration number

increase. Specifically, the NPC method achieves better results when the optimal

service level of the profit function is away from 0.5. This normally means that

either the overstock cost or the understock cost is much higher than the other.

It appears that, when the profit function is heavily skewed, the NPC method is

more efficient than competing methods to prevent downside loss in extreme cases.

The phenomenon can be explained by the difference between the nature of the NPC

method and competing methods. All competing methods compute results indirectly,

as they work with extreme demand observations first and apply the output to the risk

function second. However, the method of NPC works with extreme risks directly.
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Table 5.1: Relative 95%-DL under other profit functions (negative values are ex-

cluded)

Methods

Origin size = 50/Iteration number = 50 NPC NF SQR PLM

Linear 0 (0.35) 60% / 68% /

Linear 1 (0.63) 50% 3% 60% 13%

Linear 2 (0.9) 66% 28% 57% /

Nonlinear 0 (0.62) 85% / 1% /

Nonlinear 1 (0.56) 56% 4% 5% 16%

Nonlinear 2 (0.71) 77% / 20% /

Methods

Origin size = 300/Iteration number = 200 NPC NF SQR PLM

Linear 0 (0.35) 90% / 72% 47%

Linear 1 (0.63) 84% 13% 67% 30%

Linear 2 (0.9) 94% 1% 74% 27%

Nonlinear 0 (0.62) 93% / 4% /

Nonlinear 1 (0.56) 92% 10% 49% 75%

Nonlinear 2 (0.71) 97% 54% 39% 43%

5.6.3 With other forms of the error term

Finally, we consider the influence of the error term. In our baseline experiment, the

error term was generated by a mixture of rnorm(), rlaplace() and rt() functions

with random parameters. Therefore, we have not yet examined how the proposed

NPC method performs in the presence of heavy tails or light tails. Given the draw-

backs of traditional parametric methods on treating outliers, we could expect the

gap in performance between NPC and PLM to be larger with light-tailed error terms

than with heavy-tailed ones. We don’t focus on the comparison of NPC and SQR

in this case as they are influenced by the distribution of error term in a similar way.

The experiment is conducted with some additional instances. We call the error
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term in the baseline experiment “Error 0”, and we define “Error 1” and “Error 2”

as follows:

• Error 1: We use rnorm() with µ = 0 and σ = 100 as a light-tail case.

• Error 2: We use rt() with µ = 0, σ = 100, ν = 5 as a heavy-tail case.

We remark that it is not possible for the decision-maker to know the exact distri-

bution of the error term a priori in reality. Therefore, in our experiment, we let

our parametric methods assume that the distribution is normal in all cases, and we

make sure that in our setting, the variance is the same in each instance.

Table 5.2: Relative 95%-DL under other forms of the error term (negative values

are excluded)

Methods

Origin size = 50/Iteration number = 50 NPC NF SQR PLM

Error 0 60% / 68% /

Error 1 71% / 87% /

Error 2 55% / 82% /

Methods

Origin size = 300/Iteration number = 200 NPC NF SQR PLM

Error 0 86% / 72% 49%

Error 1 90% 6% 85% 40%

Error 2 84% 9% 84% 60%

The results in Table 5.2 meet our expectation, as the gap of performance between

NPC and PLM is indeed very large in “Error 1”, and it is smaller in “Error 2”. A

possible explanation is that the NPC method works directly with the data, and does

not rely on the assumption of normality, while the PLM, using the same amount of

data, relies on normality. The gap is largest under light tails, since the downside loss

in extreme cases in light tail distribution is more likely to be treated as outliers than
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in heavy tail by traditional methods like PLM. Moreover, considering NPC itself,

its performance improves as data size becomes larger and it performs best against

other methods when the distribution of the error term is light-tailed. Although SQR

performs slightly better than NPC when the data size is small, the NPC outperforms

again once the data size becomes large.

5.6.4 Sum up

From the results of the experiments, we find that:

1. Compared to competing methods, NPC performs better when the data size is

large. Due to the fact that NPC only requires a small proportion of data, it

can significantly reduce computational effort under large data sets.

2. The NPC performs well with nonlinear NVP, since it does not make any as-

sumption on the linearity of the functions and works directly on historical

data.

3. NPC is more vulnerable than other methods when the data size is small,

especially when some information is missing due to under-fitting.

4. The proposed method performs best, compared to the competing methods

when the profit function is heavily skewed and/or when the distribution of the

error term is light tailed. In both cases, the traditional methods are likely to

treat extreme data as outliers and underestimate the downside risk.

5.7 Real-life Example

In this section, we examine the performance of NPC with a real-life example within a

food bank. A food bank is an emergency feeding organisation providing hunger relief
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to families living in poverty. Each food bank covers a given region, and the decision

maker has to prepare food on a weekly basis for its distribution day (normally a

Sunday). The food preparation problem within the food bank can be approximately

fitted by the nonlinear NVP model. The goal of the problem is to determine the

amount of food to prepare that fulfils the demand. In the simplest case, we assume

the consumption of each individual is the same, and we can just use the ’number of

visits’ as our demand. Moreover, we assume both x and d̃ (under the same scale)

to be continuous. Yet, we should note in particular that:

1. The demand in food banks normally has a smaller variance than the demand

considered in other classic inventory management problems. Thus, instead of

the expected profit, the CVaR is more of our interest.

2. The opportunity cost of overage is linear, as the food bank can easily get rid

of the leftovers. However, the cost of underage is believed to be quadratic.

Derived from Davis et al. (2014) and Riches (2018), this problem can be approxim-

ated as:

π(x, d) = η[x− d]+ + ζ
(
[d− x]+

)2
. (5.39)

where η denotes the overage opportunity cost, including but not limited to trans-

portation fee, management cost and disposal fee; ζ denotes the underage opportunity

cost, including but not limited to loss of goodwill and additional management cost.

The objective is to minimise π, which we call the ‘unit of risk’ for generality. The

parameter values in our application were estimated to be:

• η = 15, ζ = 1.

The data we use comes from a local food bank in Durham. It includes the total

number of visits on each distribution day for 104 weeks from July 2020 to June 2022.
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We also consider 10 relevant features within the same time scope, as seen in Table

8 in Appendix K.

To get some sense of the data, we provide a time-series plot for the number of visits

in Figure 5.7. It can be seen that the number of visits to the food bank shows

multiple levels of seasonality, monthly and seasonally, and that, rather surprisingly,

the number of visits in winter (weeks 10-30 and 60-80) is lower than in the rest of

the year. We think that this could be due to substitution effects from other forms

of winter-exclusive aid, such as winter appeals or Christmas grants.

Figure 5.7: Time-series plot for the number of visits
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Again, we use SA and UM as benchmarks. This time, we consider 10 methods that

include a different number of features:

• Non-feature: NF

• Seasonal feature (9-10): PLM-0, LM-0, NPC-0

• Local feature (5-10): PLM-1, LM-1, NPC-1

• National feature (1-10): PLM-2, LM-2, NPC-2.

To compare the performance of the methods, we obtain their 1-step ahead forecasts

with rolling horizon, where origin size is 60 and the origin is shifted 44 times.

For each forecasted value, we compute the overage/underage amount and the cost.
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Table 5.3: Relative performance when β = 0.95/0.90 with 10 methods

β = 0.95 Measurements

Methods rMAE rMPS rRMSE Relative 95%-DL Relative SL

NF 91% / 91% 7% 0%

PLM-0 / / / / /

PLM-1 / / 91% / /

PLM-2 / / 77% / 10%

LM-0 74% / 78% 2% 10%

LM-1 39% 92% 65% 45% 15%

LM-2 29% 85% 50% 92% 20%

NPC-0 83% 88% 72% 68% 15%

NPC-1 49% 63% 54% 85% 30%

NPC-2 29% 33% 50% 96% 30%

β = 0.90 Measurements

Methods rMAE rMPS rRMSE Relative 90%-DL Relative SL

NF 89% 99% 97% 13% 1%

PLM-0 / / / 1% /

PLM-1 / / 90% 1% /

PLM-2 92% / 78% 5% 10%

LM-0 70% / 78% 4% 10%

LM-1 38% 91% 66% 46% 15%

LM-2 38% 85% 55% 93% 25%

NPC-0 83% 89% 72% 68% 15%

NPC-1 48% 63% 54% 88% 30%

NPC-2 27% 33% 50% 98% 30%

We summarise the results in Table 5.3, where rMAE denotes the Relative Mean

Absolute Error for the visit estimation, rMPS denotes the Relative Mean Pinball

Score and rRMSE denotes the Relative Root Mean Square Error (Davydenko and

Fildes, 2013). We recall that low rMAE, rMPS and rRMSE are favourable, while
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high Relative DL and Relative SL are favourable.

From Table 5.3, we can see that the NPC method with the national feature per-

forms best, having the lowest error and highest relative DL. Moreover, under the

same number of features and the same choice of β, the NPC outperforms other

competing methods. This is expected. Since the true distributions of the time series

and the error term are both unknown, and the cost function is nonlinear, the tail

of the downside loss is hard to capture. All competing methods suffer from the

underestimation of the downside loss from the tail. Moreover, NPC requires only a

proportion of input data, significantly improving the computing speed. For instance,

when β = 0.90 and national features are considered, the NPC method computes 5

times faster than the LM-2 method. Thus, NPC can not only help the decision

maker to achieve lower downside risk but also works more efficiently overall.

Last but not least, let us now suppose the food bank indeed implements our NPC-2

approach with β = 0.90 for its food preparation decisions. We wish to gain some

insights into the predictions made by the approach. Figure 5.8 provides the results

acquired by NPC-2.

Figure 5.8: Results of NPC-2 for week 61-104
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We derive the following insights from Figure 5.7 and 5.8, which could be useful for

both the visitor and the food bank:
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1. Due to the policy of minimising CVaR, the food bank may understock their

food in winter.

2. For food bank visitors, if possible, we would suggest visiting the food bank in

summer, while try acquiring support from other sources in winter.

3. The risk of using NPC-2 is close to ‘evenly’ distributed according to Figure

5.8b. The food bank will not face a significant loss, but it also cannot achieve

minimum overall risk.

4. We suggest the food bank systematically obtain and record data that may

be associated with the demand since the proposed method performs better as

more features are included.

5. Keep track of the performance of the model over time, as the parameters of

the model may evolve.

5.8 Concluding Remarks

In this chapter, we proposed an alternative non-parametric method (NPC) for CVaR

minimisation. Unlike the existing methods, the NPC method requires only a small

proportion of the data, significantly reducing the computational effort. Besides,

it works directly with the data, not relying on any assumption on the demand

distribution. Our experiments with both artificial and real-life data indicate that

our proposed method is very robust with regard to different data structures, and it

can handle easily both linear and nonlinear profits. On the other hand, one should

be careful using NPC when the sample size is small, especially when the model is

under-fitting, as it can be more vulnerable than other competing methods in this

case. Luckily, this drawback is tolerable, as our motivation in proposing NPC was

to reduce the computational effort with large instances.
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There are several interesting topics for further research. First, as observed in our

experiments, the performance of NPC suffers from model under-fitting. Therefore,

it would be interesting to extend the current NPC model to deal with this drawback.

For instance, one can try introducing an additional parameter that controls the data

usage manually (to a value other than 2 × (1 − β)). Second, it would be desirable

to develop a variable selection mechanism in NPC, so as to prevent the model from

over-fitting automatically, e.g. by cross-validation or a step-wise technique based

on an information criterion. Finally, although we focused our research on the NVP,

the proposed method could be valuable in fields other than inventory control, such

as Finance, Logistics or Manufacturing.
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Chapter 6

Conclusion

In this last chapter, we summarise the contributions of the thesis and make some

suggestions for future work.

6.1 Summary

Newsvendor problems (NVPs), also known as single-period stochastic inventory con-

trol problems, form an important topic in Operational Research and Management

Science (OR/MS). Since the introduction of the classical NVP in the 1950s, re-

searchers have considered several extensions of the problem, including variants with

multiple product types, resource constraints, price settings, alternative objective

functions, and so on. Moreover, several fields of study besides OR/MS have been

proven to be relevant to the problem, such as Operations Management, Economics,

Risk Analysis and Psychology. In this thesis, we extended the literature in four

directions:

1. We have developed an integrated algorithm that determines the order quant-

ities directly from past data and work for both NVP and NNVP;
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2. We have formed a way to use sensitivity analysis to process information gained

in the optimisation phase to inform marketing decisions;

3. We have investigated the outcomes of judgemental adjustment under different

conditions and situations, and provided a heuristic algorithm for “tuning” the

adjustment parameters in practice;

4. We have developed an alternative non-parametric approach to determine the

order quantities that minimise the CVaR in the Newsvendor context.

In Chapter 2, we introduced an “Integrated Method for Estimation and Optim-

isation” or IMEO, which is extended from the method of Ban and Rudin (2019).

Instead of minimising the expected opportunity cost, IMEO attempts to maxim-

ise the expected profit, and this turns out to be an important distinction in the

nonlinear case. We showed that IMEO reduces to the method of Ban and Rudin

(2019) in the linear case, when both methods turned out to be equivalent to quantile

regression.

In our experiments on artificial data, we showed that IMEO performs at least as

well as benchmark methods, in terms of both mean percentage profit loss and service

level. We also found that IMEO is more robust to model misspecification than the

existing approaches.

In Chapter 3, we presented a method for performing Sensitivity Analysis (SA) and

Parametric Analysis (PA) for multi-item NVPs, using a combination of discrete ap-

proximation and linear programming. The approach is very general, being able to

handle changes in costs, prices and resource availabilities. Under certain conditions,

it can also handle changes in the demand distribution itself. In our view, this offers

a useful tool to help coordinate marketing and inventory decisions in a retail envir-

onment, providing insights that are not immediately obvious otherwise. Extensive

computational results, on both artificial and real examples, showed that the method
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yields on average accurate results in reasonable computational times.

In Chapter 4, we turned our attention to some judgemental adjustment procedures

that have traditionally been regarded as rather näıve. We showed that, surprisingly,

the “näıve” adjustment procedures can lead to increased profits in some situations.

In particular, they can be useful when (a) there is not enough data available to

estimate parameters accurately, and (b) the demand model is misspecified. Inter-

estingly, “demand chasing” appears to be more useful under condition (a), while

“pull-to-centre” seems to be of more benefit under condition (b). In general, this

is because in case (a) the order estimates suffer from some systematic bias due to

short data length; whereas in case (b) the estimated variance is often higher than

needed.

We then considered the possibility of applying näıve adjustments in an automated

fashion. For this purpose, we proposed a simple heuristic for tuning the adjustment

parameters. Using a real-life example, we showed that the tuned orders outper-

formed the pre-tuned ones in terms of the achieved profit, and also led to a service

level closer to the target one.

Finally, in Chapter 5, we proposed an alternative non-parametric method (NPC) for

CVaR minimisation. We considered both empirical and adaptive approaches. We

gave rigorous proof that under suitable assumptions, the true risk is well estimated

by the risk functions of NPC. Unlike the existing methods, the NPC requires only

a small portion of data, significantly reducing the computational effort. Besides,

it works directly with the data, not relying on any assumptions about demand

distribution. Our experiments with both artificial and real-life data indicate that

the proposed method is robust with regard to different data structures, and it can

handle easily both linear and nonlinear profits.

This thesis combined the four directions of extensions into an integrated inventory
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control framework. Chapter 2 and Chapter 5 considered the decision-making on

the ordering phase. For decision-makers interested in expected profit maximisation

solutions, Chapter 2 provided a novel data-driven algorithm. If decision-makers

focused on the CVaR minimisation instead, the solution method in Chapter 5 be-

comes a handful. Chapter 4, on the other hand, investigated the usefulness of näıve

adjustment, and proposed an alternative way to improve statistical decision using

automated parameter selection. Finally, Chapter 3 used the information gained

in the NVP optimisation model to inform marketing decisions. It allows decision-

makers to balance marketing activities and inventory decisions to achieve maximum

profit. Overall, this thesis built a framework for inventory control decision-making

than the classic NVP, and created a handful of tools for real-life decision-makers.

6.2 Further Research

We believe that the work presented in this thesis has the potential to be extended

in a number of ways. Here, we outline some suggestions for further work that stem

from this thesis.

Considering the article presented in Chapter 2, first, it would be interesting to

study the performance of IMEO with other demand models, such as ETS (Hyndman

et al., 2020) and ARIMA (Box et al., 2015). Second, it would be desirable to

develop a variable selection mechanism in IMEO. The conventional disjoint method

allows one to do this in the first phase, for example by using cross-validation or

a stepwise technique based on information criteria (Konishi and Kitagawa, 2008),

while Ban and Rudin (2019) use regularisation for the selection and estimation.

While these are good approaches, they require large samples and are computationally

expensive. Developing a more efficient feature selection method can be considered

one of the fruitful future research directions. Third, we focused our research on
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NVPs, but IMEO could be potentially extended to multi-period and multi-item

inventory problems. An especially challenging case for IMEO would be to deal with

stock-outs, when customers may switch to different products (Shin et al., 2015).

Considering the article presented in Chapter 3, one potential weakness is that the

cross-price elasticity data used in Subsection 3.6 was acquired from the literature

instead of a real-life case. It could perhaps be beneficial to examine the proposed

method again, with real-life elasticity data, also measuring the effect of the uncer-

tainty coming from the estimation of the parameters on the profit. In terms of the

methodology itself, it would be useful (though challenging) to develop methods for

performing sensitivity analysis in the presence of product substitution.

Considering the article presented in Chapter 4, first, it might be beneficial to conduct

behavioural experiments, in the lab and/or in the field, to confirm the simulation

results. Second, one could attempt to characterise other scenarios under which näıve

adjustments tend to be beneficial. Given that the demand models frequently miss

important information in real life, we would expect the number of those scenarios

to be large. Third, one could examine the effects of other forms of adjustment, such

as scenario forecasting.

Finally, we consider the article presented in Chapter 5. First, as observed in our

experiments, the performance of NPC sometimes suffers from model under-fitting.

Therefore, it would be interesting to extend the current NPC model to deal with

this. For instance, one could try introducing an additional parameter that controls

the data usage manually (to a value other than 2 × (1 − β)). Second, it would be

desirable to develop a variable selection mechanism in NPC, to prevent the model

from over-fitting automatically, e.g. by cross-validation or a step-wise technique

based on information criteria. Finally, though we focused our research on the NVP,

the proposed method could be valuable in fields other than inventory control, e.g.

Finance, Logistics.
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On a broader picture, we think it would be also interesting to test other variants of

NVP model with the ideas mentioned in the thesis. For instance, one could extend

the data-driven methods mentioned in Chapter 2 and Chapter 5 to fit in a MNVP

model with substitution. Moreover, one could attempt to develop an integrated

price/order decision strategy that takes pricing and inventory decisions into account

at the same time, by adding additional decision variables, for example. Last but not

least, it would be beneficial to look into NVPs with multi-objective strategy and

Pareto analysis.
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Appendices

A Proof of Equivalence to Quantile Regression

Proof. In quantile regression, the objective function is defined as (Koenker and

Hallock, 2001):

min
s∑

t=1

ρτ (yt − q(xt)),

where ρτ (u) = u(τ − I(u<0)), and I is an indicator function. Thus, simply by setting

τ = cu/(co+cu), we have:

min
s∑

t=1

(
cu[yt − q(xt)]

+ + co[q(xt)− yt]
+
)

= min(co + cu)
s∑

t=1

( cu
co + cu

[yt − q(xt)]
+ +

co
co + cu

[q(xt)− yt]
+
)

= min
s∑

t=1

(
τ [yt − q(xt)]

+ + (1− τ)[q(xt)− yt]
+
)

= min
s∑

t=1

ρτ (yt − q(xt)).
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B Proof of Maximising-Minimising Transforma-

tion

Proof. We have:

min[a, b] = a− [a− b]+,

and

a− b = [a− b]+ − [b− a]+.

We can transform:

π(q(xt), yt)

= pmin[q(xt), yt]− vq(xt)− ch[q(xt)− yt]
+ − cs[yt − q(xt)]

+

= p{q(xt)− [q(xt)− yt]
+} − vq(xt)− ch[q(xt)− yt]

+ − cs[yt − q(xt)]
+

= (p− v)q(xt)− (ch + p)[q(xt)− yt]
+ − cs[yt − q(xt)]

+.

Therefore, we have (since yt is fixed):

max
s∑

t=1

π(q(xt), yt)

= max
s∑

t=1

{(p− v)q(xt)− (ch + p)[q(xt)− yt]
+ − cs[yt − q(xt)]

+}

= max
s∑

t=1

{(p− v)[q(xt)− yt]− (ch + p)[q(xt)− yt]
+ − cs[yt − q(xt)]

+}

= max
s∑

t=1

{(p− v)[q(xt)− yt]
+ − (p− v)[yt − q(xt)]

+

− (ch + p)[q(xt)− yt]
+ − cs[yt − q(xt)]

+}

= min
s∑

t=1

{(v + ch)[q(xt)− yt]
+ + (p− v + cs)[yt − q(xt)]

+}

= min
s∑

t=1

{co[q(xt)− yt]
+ + cu[yt − q(xt)]

+}.
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C Small Artificial Instance

Suppose that n = 2 and m = 3. The products are called a and b, and the resources

are called A, B and C. The selling prices and the order, holding and shortage costs

are (8, 3, 2, 1) and (6, 3, 4, 3) for products a and b, respectively. The mean demands

and standard deviations are (210, 5) and (210, 6), respectively. One unit of product a

requires 4, 7 and 8 units of resource A, B and C, respectively. One unit of product

b requires 6, 5 and 8 units of resources A, B and C. The resource availabilities

are 2200, 2500 and 3500, respectively. We suppose that we have generated twelve

scenarios for each product, by RS, as shown in Table 1.

Table 1: Twelve possible demand realisations for two products

Products Demand Realisations

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

product a 200 220 180 190 190 210 240 250 200 190 210 240

product b 250 230 200 180 210 210 170 150 180 220 260 260

The LP for this example has 26 variables and 27 constraints. It can be solved in less

than one second. Table 2 shows some of the resulting estimates of various partial

derivatives. It can be shown that these estimates are all accurate to within ±5%.

Table 2: Influence of changes in costs, prices, resources and demand

Products Margins

P̃ /∂rj P̃ /∂cj P̃ /∂vj P̃ /∂gj P̃ /∂µj P̃ /∂σj

product a 199.40 -207.14 -7.74 -10.60 4.50 -4.03

product b 195.83 -210.00 -14.17 -14.17 2.64 -5.26
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D Constraints for Real-Life Example

Table 3: Constraints for real-life case

bread egg fish fruit juice vegetable meat milk dairy direction RHS

0 0 0 1 0 1 0 0 0 <= 1200

1 0 1 1 0 0.1 1 1 0 <= 550

0 0 0 0 0 0 0 1 1 >= 30

0 0 0 0 1 0 0 1 0 <= 300

0 1 0 0 0 0 0 0 1 <= 60

E Elasticities for Real-Life Example

Table 4: Cross-price elasticities for 9 key products

bread egg fish fruit juice vegetable meat milk dairy

bread 0.06 -0.03 -0.05 -0.01 0.00 -0.05 0.00 0.00 -0.01

egg -0.23 -0.22 -0.04 -0.06 0.07 -0.03 0.04 -0.09 -0.08

fish -0.15 -0.05 -0.53 0.00 -0.06 0.01 0.02 -0.16 -0.04

fruit -0.09 -0.04 0.00 -0.60 -0.04 -0.03 0.00 0.30 -0.08

juice -0.06 0.00 -0.09 -0.06 -0.85 0.00 0.00 0.14 -0.05

vegetable 0.00 0.00 0.00 0.10 0.00 -0.54 0.01 0.20 -0.03

meat 0.00 0.02 0.08 -0.04 0.00 -0.02 -0.48 0.17 -0.23

milk 0.00 -0.12 -0.01 0.07 0.08 0.08 0.02 -0.96 0.00

dairy -0.04 -0.01 -0.01 -0.01 0.00 -0.01 -0.07 0.00 -0.55
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F Heatmaps for model misspecification

Figure 1: RPI heat map for the under-parametrised case (τ = 0.7, t = 200)

Figure 2: RPI heatmap for the over-parametrised case (τ = 0.7, t = 200)
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G Expectation maximisation vs. CVaR minim-

isation

Figure 3: Difference between the expectation maximisation solution and the CVaR

minimisation solution
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In Figure 3, we mark three order quantities. They fulfil the objectives of ex-

pectation maximisation, CVaR minimisation and risk averse profit maximisation

(0.7×Mean− 0.3× CVaR), respectively. We can see the order quantity that min-

imise CVaR is lower than the order quantity that maximise expectation. However,

this is parameter-dependant, as the CVaR minimisation order quantity is a weight

average of critical quantitles. When the overage cost is significantly larger than the

underage cost, the CVaR minimisation quantity will be, with no doubt, larger than

the expectation maximisation quantity.
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H Baseline experiment parameters

Table 5: Baseline experiment parameters

b0 b1 b2 b3 b4 θ11,1 θ112,1 θ21,1 ϕ2
1,1 θ212,1

500 0.642 0.354 0.407 0.521 0.3 0.5 0.2 0.5 0.1

θ31,1 ϕ3
1,1 ϕ3

12,1 ϕ4
1,1 ϕ4

1,2 θ412,1 θ412,2 rnorm rlaplace rt

0.3 0.2 0.1 0.1 0.2 0.1 0.1 µ = 0 µ = 0 µ = 0

σ = 100 b = 71 σ = 100

ν = 5

We mark that the t-distribution is believed to have heavy-tail, and the normal dis-

tribution is believed to have light-tail. We use a mix of t-distribution, normal distri-

bution and Laplace distribution with random weights to simulate real circumstance

where we have no information about the shape of error distribution in prior.

Figure 4: Baseline experiment features and demand series
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I Histogram example

Figure 5: Profit histogram on the non-parametric method and benchmark method
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In this example, the origin size = 200, iteration number = 100, and β = 0.95.

Therefore, in the histogram, 100 profit realisations are considered for each methods,

and the average profit/loss for the worst 5 cases are marked by dashed lines. We also

marked the corresponding performance of the UM method, where all features and

all observations are considered, by a red line dashed line. Here, we have DLSA =

−319.76, DLNPC = −2355.24, DLUM = −2508.41, SLSA = 86%, SLNPC = 90.5%

and SLUM = 88.5%.
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J Baseline experiment full results

Table 6: Relative β-DL/Relative SL for all choices of parameters under linear profit

function when β = 0.95 (or 0.9)

Relative β-DL/SL Origin size

Iteration Method 50 100 150 200 250 300

50 NPC 60%/60% 60%/50% 76%/80% 99%/33% 74%/20% 68%/-

(55%/0%) (78%/100%) (95%/25%) (89%/33%) (58%/33%) (83%/0%)

NF -39%/0% -1%/0% 11%/40% -13%/67% 8%/-100% -14%/-

(-55%/0%) (-5%/25%) (0%/0%) (3%/-67%) (-48%/-100%) (-3%/-33%)

SQR 68%/20% 88%/25% 98%/60% 99%/99% 89%/0% 74%/-

(84%/0%) (68%/75%) (99%/75%) (99%/67%) (90%/67%) (95%/67%)

PLM -8%/40$ 7%/25% 7%/60% 99%/33% 57%/-300% 32%/-

(-88%/-60%) (72%/75%) (89%/25%) (77%/100%) (37%/67%) (81%/100%)

100 NPC 26%/17% 54%/0% 87%/6% 99%/15% 76%/5% 86%/67%

(60%/75%) (97%/63%) (93%/14%) (81%/20%) (75%/0%) (91%/33%)

NF -73%/0% 0%/200% 5%/67% -6%/0% -5%/0% 20%/6%

(-19%/50%) (-2%/13%) (-1%/-29%) (-10%/-100%) (-21%/-67%) (5%/0%)

SQR 79%/-17% 96%/-50% 99%/89% 98%/100% 69%/-200% 85%/67%

(79%/50%) (77%/75%) (94%/71%) (99%/60%) (91%/100%) (99%/50%)

PLM -71%/-33% 49%/-60% 80%/56% 97%/-100% 44%/-20% 59%/89%

(4%/-75%) (81%/75%) (79%/29%) (67%/60%) (66%/50%) (88%/67%)

150 NPC 65%/43% 68%/50% 90%/14% 99%/25% 80%/56% 90%/56%

(77%/20%) (93%/30%) (90%/8%) (83%/14%) (83%/0%) (93%/44%)

NF -25%/29% -11%/0% 6%/86% -1%/0% 19%/22% 12%/67%

(-30%/30%) (-2%/-20%) (-7%/-25%) (-9%/-85%) (-12%/-10%) (19%/0%)

SQR 87%/-71% 92%/-50% 98%/71% 81%/50% 88%/44% 82%/44%

(74%/60%) (83%/70%) (92%/83%) (97%/71%) (97%/80%) (99%/78%)

PLM -45%/-44% 57%/-50% 79%/43% 86%/-100% 68%/56% 64%/67%

(-21%/-20%) (74%/100%) (75%/75%) (69%/14%) (75%/60%) (83%/100%)

200 NPC 76%/72% 68%/0% 77%/0% 73%/44% 71%/73% 90%/20%

(71%/40%) (91%/73%) (90%/13%) (87%/36%) (84%/15%) (87%/5%)

NF -24%/29% -8%/-80% 0%/80% -8%/11% -5%/27% -14%/100%

(-21%/20%) (-2%/-13%) (-8%/-7%) (-7%/-18%) (4%/-8%) (14%/16%)

SQR 70%/-43% 77%/-50% 75%/40% 78%/78% 76%/55% 72%/0%

(71%/73%) (82%/67%) (92%/93%) (99%/64%) (97%/92%) (99%/95%)

PLM 42%/-43% 38%/-40% 44%/40% 39%/44% 51%/73% 47%/80%

(-14%/-7%) (60%/93%) (76%/87%) (71%/45%) (68%/77%) (88%/95%)
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Table 7: Relative β-DL/Relative SL for all choices of parameters under nonlinear

profit function when β = 0.95 (or 0.9)

Relative β-DL/SL Origin size

Iteration Method 50 100 150 200 250 300

50 NPC 85%/20% 99%/50% 56%/- 66%/88% 99%/25% 99%/100%

(87%/100%) (78%/50%) (63%/0%) (75%/50%) (95%/-) (85%/90%)

NF -17%/-100% -84%/0% 8%/- 6%/13% 13%/0% -14%/11%

(-39%/-100%) (-10%/-50%) (11%/50%) (4%/13%) (4%/-) (-9%/20%)

SQR 1%/-40% 5%/0% 6%/- 23%/0% 43%/-50% 37%/-11

(-8%/-40%) (-16%/-50%) (-3%/-15%) (12%/13%) (18%/-) (18%/-20%)

PLM -10%/-100$ -2%/-50% 39%/- 36%/88% 63%/100% 57%/88

(-32%/100%) (-19%/0%) (52%/100%) (20%/88%) (52%/-) (72%/100%)

100 NPC 99%/60% 99%/100% 87%/40% 80%/58% 84%/27% 99%/57%

(99%/67%) (97%/100%) (83%/80%) (92%/25%) (88%/60%) (91%/14%)

NF -43%/-100% -19%/0% 23%/0% 9%/8% -3%/0% -12%/-14%

(-51%/33%) (-31%/0%) (6%/0%) (-7%/-25%) (0%/-10%) (-3%/42%)

SQR -32%/-50% -15%/-25% 0%/14% 43%/-8% 46%/-36% 19%/-85%

(-15%/-13%) (-19%/-20%) (-3%/-14%) (22%/-37%) (33%/-50%) (32%/-14%)

PLM -21%/-19% -23%/-45% 39%/80% 53%/91% 74%/72% 62%/14%

(4%/33%) (81%/67%) (79%/100%) (67%/63%) (66%/70%) (88%/85%)

150 NPC 85%/30% 99%/14% 86%/22% 99%/17% 99%/100% 88%/13%

(74%/90%) (93%/50%) (88%/100%) (91%/23%) (93%/83%) (67%/50%)

NF -16%/-100% -13%/40% 14%/11% -6%/11% -3%/12% -11%/-33%

(-37%/100%) (-21%/100%) (2%/-100%) (-5%/-5%) (0%/-33%) (-6%/50%)

SQR -13%/-90% -10%/-18% 27%/-88% 33%/-23% 24%/12% 10%/18%

(22%/-11%) (6%/-46%) (2%/-30%) (6%/-29%) (3%/-21%) (5%/-16%)

PLM -13%/-29% -10%/-16% 45%/77% 60%/88% 59%/25% 67%/-67%

(3%/-11%) (52%/66%) (59%/75%) (49%/76%) (43%/50%) (51%/88%)

200 NPC 76%/10% 56%/18% 78%/69% 96%/67% 75%/21% 93%/85%

(60%/87%) (95%/75%) (77%/80%) (88%/83%) (97%/83%) (97%/85%)

NF -24%/50% -6%/-33% 1%/7% -9%/-16% -4%/14% -12%/-15%

(-34%/25%) (-20%/-50%) (-2%/-8%) (-6%/15%) (-4%/-16%) (-6%/33%)

SQR -8%/-55% 12%/-23% 25%/-76% 16%/-91% 17%/-21% 4%/-11%

(-16%/-35%) (-38%/11%) (9%/-93%) (18%/-92%) (30%/-30%) (-19%/-88%)

PLM -12%/-16% -5%/-100% 46%/61% 42%/91% 52%/-42% -2%/-15%

(-9%/-20%) (55%/-10%) (57%/75%) (30%/76%) (37%/50%) (9%/66%)

145



K Features for food preparation problem

Table 8: Relevant features to food preparation problem within food bank

No. Feature

1 UK inflation data (monthly)

2 UK unemployment rate (monthly)

3 UK economics index (weekly)

4 FTSE 100 close price (weekly)

5 Durham birth registered (weekly)

6 Durham death registered (weekly)

7 Durham Covid-19 cases (weekly)

8 Durham crime index (weekly)

9 UK Bank holidays dummies

10 Seasonality dummies
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