
Abstract:  

Floating solar photovoltaic (FPV) deployments are increasing globally as the switch to renewable 
energy intensifies, representing a considerable water surface transformation. FPV installations can 
potentially impact aquatic ecosystem function, either positively or negatively. However, these 
impacts are poorly resolved given the challenges of collecting empirical data for field or modelling 
experiments. In particular, there is limited evidence on the response of phytoplankton to changes in 
water body thermal dynamics and light climate with FPV. Given the importance of understanding 
phytoplankton biomass and species composition for managing ecosystem services, we use an 
uncertainty estimation approach to simulate the effect of FPV coverage and array siting location on a 
UK reservoir. FPV coverage was modified in 10 % increments from a baseline with 0 % coverage to 
100 % coverage for three different FPV array siting locations based on reservoir circulation patterns. 
Results showed that FPV coverage significantly impacted thermal properties, resulting in highly 
variable impacts on phytoplankton biomass and species composition. The impacts on phytoplankton 
were often dependent on array siting location as well as surface coverage. Changes to 
phytoplankton species composition were offset by the decrease in phytoplankton biomass 
associated with increasing FPV coverage. We identified that similar phytoplankton biomass 
reductions could be achieved with less FPV coverage by deploying the FPV array on the water body's 
faster-flowing area than the central or slower flowing areas. The difference in response dependent 
on siting location could be used to tailor phytoplankton management in water bodies. Simulation of 
water body-FPV interactions efficiently using an uncertainty approach is an essential tool to rapidly 
develop understanding and ultimately inform FPV developers and water body managers looking to 
minimise negative impacts and maximise co-benefits. 

1 Introduction 
Falling costs and the drive to decarbonise global energy supplies have led to widespread uptake of 
renewable energy sources, including solar photovoltaic (PV) technology. Solar PV has traditionally 
been dominated by ground- and rooftop- mounted installations. However, since 2007, water-
deployed floating solar photovoltaics (FPV) have emerged as an alternative, especially in land-scarce 
areas (Cagle et al., 2020). FPV deployment has been rapid, with over 2.6 gigawatts of installed 
capacity globally (Haugwitz, 2020) and an anticipated annual growth rate of 28.9 % between 2020 
and 2027. Estimates show that there is technical potential for FPV to produce almost 10 % of current 
national generation in the United States (Spencer et al., 2019), based on a water surface coverage of 
27 % on suitable water bodies. At a continental scale, FPV covering less than 1 % of the surface of 
African hydropower dams could equal the generation from existing hydropower dams, the largest 
source of renewable energy across the continent (Sanchez et al., 2021). 

FPV is comprised of PV modules attached to a series of floats moored on the surface of a water body 
(Sahu et al., 2016). Host water bodies tend to be artificial (e.g. raw water reservoirs) and may be 
used for drinking water provision, irrigation or hydroelectric power generation (Momayez et al., 
2009; Lee et al., 2020; Exley et al., 2021b). Deploying PV panels on water delivers enhanced 
performance and electricity generation over ground-based PV due to the cooling effect of the 
hosting water body (Choi et al., 2013; Sacramento et al., 2015; Yadav et al., 2016; Oliveira-Pinto and 
Stokkermans, 2020) and reduces land use and land-cover change for renewable energy (Cagle et al., 
2020). FPV is deployed at a range of coverages, that is, the percentage of the water surface 
transformed to host FPV relative to the water body area. Coverage depends on the size of the host 
water body, the FPV design and the rated capacity of the installation (Exley et al., 2021a). 



FPV represents an unprecedented change in the use of artificial water bodies. Understanding 
impacts is critical as water bodies provide numerous essential ecosystem goods and services, 
including water for consumption, water quality regulation, and supporting biodiversity (Maltby et al., 
2011; Reynaud and Lanzanova, 2017; Grizzetti et al., 2019). Impacts on the host water body could be 
significant, as light intensity and wind shear will be modified by the shading and sheltering effect of 
an FPV installation (Armstrong et al., 2020; Haas et al., 2020). Consequently, there is a pressing need 
to understand and predict the effects of FPV on water body processes and functions (Lee et al., 
2020; Stiubiener et al., 2020; Zhang et al., 2020; Gorjian et al., 2021; Ziar et al., 2021). In particular, 
understanding changes to phytoplankton is critical, given their role as primary producers in aquatic 
ecosystems (Reynolds, 2006), the increased likelihood of harmful algal blooms under climate change 
(Ho et al., 2019), and the subsequent implications for recreation and potable water supply (Chapra 
et al., 2017). Moreover, surface cover proxies for FPV (e.g. ice) suggest that deployments could alter 
physicochemical habitat conditions in a way that would affect phytoplankton biomass and species 
composition (Wright, 1964; Danilov and Ekelund, 2001; Lenard and Wojciechowska, 2013; 
Yamamichi et al., 2018; Exley et al., 2021b). 

Given the limited understanding of water body response to FPV deployment, investigations that 
rapidly develop knowledge should be prioritised. In-situ monitoring studies have quantified the 
impact of FPV installations on water temperatures (de Lima et al., 2021) and aquatic plants (Ziar et 
al., 2021). However, comprehensive empirical studies are resource-intensive and largely impractical 
when considering multiple deployment scenarios (Meyer et al., 2009; Janssen et al., 2015). Several 
studies have hypothesised potential effects of FPV, but these are often conflicting given the 
complexity of water body functioning. For example, it is claimed that water column shading beneath 
FPV installations will reduce phytoplankton growth (Armstrong et al., 2020; Lee et al., 2020). Yet, an 
evidence review of natural and human-made water surface covers found that surface cover may 
cause a shift to low-light adapted nuisance species, rather than a reduction in total biomass 
(Yamamichi et al., 2018; Exley et al., 2021b). Numerical modelling ‘experiments’ provide a less time- 
and resource-demanding alternative for rapidly testing multiple hypotheses on potential FPV 
interactions without being limited to a single FPV design, sited on a specific part of a single water 
body for a limited time. However, given the limited empirical observations so far and limited data to 
parameterise models, conventional modelling approaches may be unsuitable (Page et al., 2018). 
Therefore, approaches that can account for the uncertainty associated with sparse input parameters 
or forcing data are necessary. 

Our overarching aim was to determine if FPV coverage and siting location, based on areas of 
differing circulation, influence phytoplankton biomass and species composition in a reservoir. We 
used an extended version of the MyLake model with enhanced phytoplankton representation to 
simulate FPV water quality impacts across discrete zones of a water body. Moreover, we employed 
an uncertainty estimation approach, a practical solution to overcome the problems associated with 
limited input data, model parameterisation and validation of simulated output. We also discuss the 
implications of our findings for water body management and the application of the expanded model 
for future FPV deployments. 

2 Methodology 
2.1 MyLake FPV model 
To determine if FPV array siting location affects water body thermal properties, phytoplankton 
biomass and functional-type dynamics, we extended an existing open-source lake model, MyLake v2 



(Markelov et al., 2019). Full details on the original MyLake can be found in Saloranta and Andersen 
(2007) and the accompanying user manual (Saloranta and Andersen, 2004). 

2.1.1 MyLake – existing model description 
MyLake v2 (Markelov et al., 2019) is a one-dimensional process-based model capable of simulating 
the daily vertical distributions of water body temperature, phytoplankton, and dissolved and 
particulate substances, as well as interactions at the sediment-water interface (Saloranta and 
Andersen, 2007). MyLake has been successfully applied to various projects as a standalone 
simulation tool. For example, assessing ice regime (Livingstone and Adrian, 2009), lake 
thermodynamics (Woolway et al., 2017), greenhouse gas emissions (Kiuru et al., 2018), light 
dynamics (Pilla and Couture, 2021) and predicting cyanobacterial blooms (Moe et al., 2016). 

Like many one-dimensional lake models (e.g. General Lake Model; Hipsey et al. (2019), General 
Ocean Turbulence Model; Umlauf et al. (2005), PROTECH; Reynolds et al. (2001)), MyLake computes 
horizontal layer volumes from interpolated water body bathymetric data. In the original version of 
MyLake, the model could simulate a maximum of two species or functional groups of phytoplankton, 
with population dynamics controlled by phosphorus (P) limitation, light requirements, and loss 
processes (see Table 1 for a complete list of modifiable phytoplankton parameters). Nitrogen (N) and 
silica (Si) species, as state variables, were added in v2 (Markelov et al., 2019). N-limited 
phytoplankton growth was incorporated in a recent application (Salk et al., 2022). The material cycle 
used by MyLake is presented in Appendix 1. 

Table 1 – MyLake Parameters describing phytoplankton functional traits. PAR is photosynthetically active radiation. 

Parameter Description 
PAR saturation level for growth 
(mol-quanta m-2 s-1) Controls the light-limitation of growth 

Optical cross section of chlorophyll-a 
(m-2 mg-1) Specifies self-shading contribution 

Loss rate at 20 °C (day-1)  Overall loss rate (includes death, grazing etc. but not 
settling losses) 

Settling velocity (m day-1) Phytoplankton-specific settling rates 

Specific growth rate at 20 °C (day-1)  Phytoplankton-specific maximum growth rates – 
modified by temperature, light and nutrient availability 

Half saturation growth P concentration 
(mg m-3) 

Controls shape of growth curve based upon P 
concentration 

Half saturation growth N concentration 
(mg m-3) 

Controls shape of growth curve based upon N 
concentration 

Half saturation growth Si concentration 
(mg m-3) 

Controls shape of growth curve based upon Si 
concentration 

If phytoplankton are N-Limited  Allows specification for N-fixing phytoplankton 

If phytoplankton are Si-Limited  Allows specification of Si requirement (e.g. diatoms 
and chrysophytes) 

Scaling factor for inflow concentration of 
chlorophyll-a (-) 

Distributes inflow chlorophyll-a across functional 
groups simulated 

 

2.1.2 MyLake – updated model description 
The assumption of lateral homogeneity in MyLake, inherent to most one-dimensional models, limits 
the model’s adaptability for simulating different water column ‘zones’. Consequently, in order to 
model the impacts of FPV we adapted and extended MyLake to enable simulation of the effects of 



varying FPV coverage on water bodies. Moreover, given the importance of phytoplankton on water 
supply reservoirs where FPV are often located, we enhanced the phytoplankton functionality. 

 Multiple tanks and exchanges between tanks 
To enable the explicit simulation of FPV installations on different types of water bodies and 
differently functioning ‘zones’ of water bodies, the MyLake model was extended to represent water 
bodies in a quasi-two-dimensional way, an approach successfully applied with other freshwater 
models (e.g. de la Fuente and Niño, 2008; Zhang and Rao, 2012; Dimitriou et al., 2017). Specifically, 
the original one-dimensional (one ‘tank’) model structure was replicated into ‘n tanks’ (see 
supplementary information, section 1). 

The quasi-two-dimensional functionality permits each tank to be independent, allowing for variation 
in water body characteristics, such as depth and flow, and spatial characteristics, such as littoral and 
pelagic zones. Alternatively, the functionality permits the simulation of covered and uncovered 
zones of a water body with FPV. Flows and exchanges are specified using an eddy diffusion matrix, 
which governs the amount of lateral mixing between contiguous tanks and an advection matrix that 
specifies flows between tanks (e.g. to represent internal water body circulation patterns). While the 
updated MyLake model can simulate an unrestricted number of tanks, the computational burden 
and availability of data for parameterising appropriate advection and diffusion matrices could be 
limiting. Consequently, the number of tanks should be as parsimonious as possible given the 
simulation requirements (see supplementary information, section 2). 

 Phytoplankton growth module 
To investigate phytoplankton species composition in response to FPV and the risk to water quality, 
we updated the MyLake phytoplankton growth module to simulate an unrestricted number of 
phytoplankton species (or groups) with different functional behavioural traits. Here, we simulated 
phytoplankton in functional groups, as widely used in modelling applications, to overcome the 
difficulty of specifying individual species parameters (Shimoda and Arhonditsis, 2016). Specifically, 
we modelled diatoms, cyanobacteria and green algae, enabled by generic representations of their 
non-taxonomical traits known to dictate behaviour (Salmaso et al., 2015), such as growth, loss and 
nutrient uptake (Reynolds et al., 2002). 

As nutrient limitation is a primary determinant of the abundance and species composition of 
phytoplankton in water bodies (O'Neil et al., 2012) we increased the model growth equations from 
two to three (Equation 2-1, Equation 2-2, Equation 2-3). Specifically, Si species were linked to the 
phytoplankton dynamics equations to allow the simulations of diatoms (Harrison et al., 2012), in 
addition to the original phosphorus uptake module and the recently incorporated N-limited growth 
module (Salk et al., 2022) (see Table 1 for a complete list of phytoplankton parameters).  
Consequently, there are now three phytoplankton growth equations: 

Equation 2-1 

P limited   μ = μmax . � S1

�S1+KS1�
� . 𝑇𝑇𝑓𝑓. 𝐿𝐿𝑓𝑓 

Equation 2-2 

P and N limited   μ = μmax . � S1

�S1+KS1�
. S2

�S2+KS2�
� . 𝑇𝑇𝑓𝑓. 𝐿𝐿𝑓𝑓  



Equation 2-3 

P, N and Si limited  μ = μmax . � S1

�S1+KS1�
. S2

�S2+KS2�
. S3

�S3+KS3�
� . 𝑇𝑇𝑓𝑓. 𝐿𝐿𝑓𝑓 

where μ = phytoplankton species growth rate on a given day (day-1), μmax is the maximum 
phytoplankton growth rate at 20 oC; . 𝑇𝑇𝑓𝑓 (-) is a water temperature modifier; . 𝐿𝐿𝑓𝑓 (-) is a light 
modifier; S1 is phosphorus concentration (mg m-3), S2 is nitrogen concentration (mg m-3), S3 is silica 
concentration (mg m-3), and KS𝑥𝑥 (mg m-3) is the half molar saturation level for each nutrient (see 
Table 1 for full definitions). 

 Initial model testing (functionality) 
Testing examined the functionality of multiple tank configurations and additional phytoplankton 
functional group representation using data from Lake 227 (Ontario, Canada), Lake Vansjø (Norway) 
and subsequently Thames Water’s Queen Elizabeth II reservoir (outlined below; Section 2.2.1). We 
tested for internal consistencies (e.g. mass-balance conservation), appropriate phytoplankton 
functional group behaviour and dynamics (e.g. response to nutrient concentrations (Klausmeier and 
Litchman, 2001) and functional group succession) and the sensitivity of model output to the number 
and configuration of tanks (see supplementary information, section 2, for details). 

2.2 Modelling methodology 
We used the expanded model to simulate the effect of FPV on physical and biogeochemical 
indicators of water quality in the Queen Elizabeth II (QEII) reservoir. FPV are typically deployed on 
raw (untreated) water reservoirs, irrigation ponds and other artificial water bodies (Exley et al., 
2021b), which typically have less extensive data than natural water bodies instrumented for 
research. Consequently, we took an uncertainty approach, specifically the Generalised Likelihood 
Uncertainty Estimation (GLUE) procedure (Beven and Binley, 1992) to account for the limited data. 

2.2.1 Study location 
The QEII reservoir is in south-west London (51° 23′ 27″ N, 0° 23′ 32″ W, surface area: 128 hectares). 
The raw water reservoir has a maximum depth of 17.8 m and a maximum capacity of 19.6 million 
cubic meters. The reservoir is supplied with nutrient-rich water from the River Thames (Reynolds et 
al., 2005), pumped via three inlets on the reservoir bed, one to the west and one in each of the two 
southern corners. The reservoir outlet is situated in the north-eastern corner (Figure 1). During the 
study year, 2018, the QEII reservoir had a mean hydraulic residence time of 44 days (Ta, 2019). 
Reservoir volume ranged from > 95 % full between January to early May, before being drawn down 
over the summer and autumn to 73 % volume in early November. Reservoir volume then returned to 
> 95 % at the end of 2018. In 2016, a 6.3 MW capacity FPV installation was deployed on the QEII 
reservoir, covering ~4.5 % of the reservoir’s surface when full. 

2.2.2 Data inputs 
 Forcing inputs 

The QEII reservoir was modelled on a daily time step for one-year to demonstrate model application, 
using data from 2018. As monitoring of the QEII reservoir is conducted at the reservoir outlet, inflow 
nutrient concentrations were obtained from two monitoring stations on the River Thames situated 
upstream (Wey tributary; ~5.5 km) and downstream (Teddington Weir; ~11.5 km) of the QEII 
reservoir inlet (Environment Agency, 2018). Samples were taken approximately monthly and were 
linearly interpolated to obtain mean daily values throughout 2018. Inflow water temperatures were 
approximated from observed in-reservoir water temperatures. Daily outflow data provided by the 
reservoir operator were used as a proxy for inflow volume. In the absence of on-site meteorological 



measurements, global radiation, cloud cover, wind speed, air temperature, relative humidity, air 
pressure and rainfall observations from Heathrow Airport (10.5 km to the north) for 2018 were used 
(Met Office, 2019). Bathymetry of the QEII reservoir was digitised to 1 m intervals from a survey 
provided by the reservoir operator. 

 Data for evaluation of model performance 
Observed water temperature and total chlorophyll-a data provided by the reservoir operator was 
used for model calibration and uncertainty estimation. Typically, these samples were collected 
weekly at the reservoir outlet at depths of 1, 3, 5, 7, 9, 11, 13 and 15 m. Weekly phytoplankton 
speciation, analysed by the reservoir operator, was derived from an integrated sample of the upper 
1 m of the reservoir and recorded based on the cell count by ascribing a rating on an ACFOR 
(Abundant, Common, Frequent, Occasional, Rare) scale (see supplementary information, section 3, 
for further details). Six functional groups were simulated to broadly reflect the phytoplankton 
species composition observed in the QEII reservoir during 2018, separated by grazed and ungrazed 
groupings. The groups represent the broad functional trait differences, including grazing pressures 
(represented by loss rate), size, growth rate, their light requirement for growth and settling velocity. 
The six functional groups were reported only as diatoms, cyanobacteria and green algae in the 
following analyses (Table 2), as the grazed and ungrazed groupings were combined for each group. 

Table 2 – Nominal phytoplankton functional groups used and descriptive functional traits. See supplementary information, 
section 3, for the ranges of each sampled parameter. 

Phytoplankton 
functional 
group 

Nutrient limited 
Size Growth 

Rate 

Light 
requirement 
for growth 

Settling 
velocity Loss rate 

P N Si 
Diatoms 
 – ungrazed      Large Slow Low High − 

Diatoms 
 – grazed       Large Slow Low High + 

Cyanobacteria 
 – ungrazed     Small/ 

medium Medium Medium Very 
low − 

Cyanobacteria 
 – grazed     Small/ 

medium Medium Medium Very 
low + 

Green/other 
algae 
 – ungrazed 

     Small Fast Medium Low − 

Green/other 
algae 
 – grazed 

     Small Fast Medium Low + 

         

         

+: Increased to reflect grazing losses; −: Reduced to reflect no grazing losses 

2.2.3 Model geometry and simulations 
 Tank configuration 

In this study, the new multi-tank functionality of the model was used to represent discrete zones of 
internal circulation. Tank configuration was based on a detailed study of internal circulation in the 



QEII reservoir for 2018 (Ta, 2019) and testing of tank configurations (see supplementary information, 
section 2). The baseline model was assigned two tanks, one relatively short residence time, faster-
flowing tank (70% of QEII volume) and one comparatively longer residence time, slower-flowing tank 
(30% of QEII volume). The tanks mimic the hydrologic behaviour of the QEII reservoir, namely the 
short-circuiting of flow between the reservoir inlets and outlet. The existing FPV array is positioned 
on the slower-flowing tank (Section 2.2.1; Figure 1). The inflow and outflow of the reservoir were 
located in the faster-flowing tank. The distribution matrices described exchanges between the 
faster‑flowing tank and the slower‑flowing tank; lateral eddy diffusion (set at 2.5 % of tank volume) 
and advection (set at 2.5 % of tank volume) (see supplementary information, section 2, for further 
details). 

 

Figure 1 - Conceptual Baseline ‘tank’ structure for QEII during 2018. Satellite image from Google Earth. 

 Identification of baseline model simulations 
Acceptable baseline simulation results and parameter sets were identified by comparing model 
output from multiple model runs with observed data (total chlorophyll-a, surface temperature, 
stratification pattern and phytoplankton functional group proportions). Parameter ranges, 
comprised of all physically reasonable values for each parameter (see supplementary information, 
section 3), were sampled 8,000 times using a Monte Carlo strategy to limit bias within the parameter 
sets. Each Monte Carlo sample provided a unique set of parameters to run 8,000 simulations. Each 
of the simulations underwent the GLUE procedure (Beven and Binley, 1992), where formalised Limits 
of Acceptability (LoA) were developed and used as acceptance criteria to account for the significant 



uncertainties associated with modelling environmental systems (see supplementary information, 
section 4, for further details). 

LoA were applied in the strictest sense for chlorophyll-a and mixed depth: any simulations that fell 
outside the specified limits were rejected and not used in the analyses. The remaining variables were 
used solely to provide additional confidence weightings. Confidence weightings (L) for accepted 
simulations were calculated using fuzzy weighting functions and were combined to give an overall 
weighting for each simulation. Chlorophyll-a (LChl), mixed depth (Lmxd) and water temperature (Lwt) 
were equally weighted in the combined overall goodness of fit weighting (Wt). Phytoplankton 
functional groups, where LD, LG and LC are the weighting for diatoms, cyanobacteria and green algae, 
respectively, had a weighting of one-third to prevent over-constraint on functional groups (Equation 
2-4). 

Equation 2-4 

𝑊𝑊𝑊𝑊 = [(𝐿𝐿𝐶𝐶ℎ𝑙𝑙 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑤𝑤𝑤𝑤 + (𝐿𝐿𝐷𝐷. 0.33)  +  (𝐿𝐿𝐶𝐶. 0.33) +  (𝐿𝐿𝐺𝐺. 0.33) )]  

As all acceptable simulations are deemed to represent the system behaviour (given the available 
data), they are all used to represent the baseline. However, as each acceptable simulation is 
associated with a goodness of fit weighting, which is propagated to the final results, each acceptable 
simulation contributes differently. Using all the acceptable simulations in this way explicitly 
propagates all known modelling uncertainties to final modelling results. The implementation of FPV 
deployment in the model took the form of a modification to each of the acceptable parameter sets 
to represent the solar array associated with the scenario of interest. 

 FPV deployment scenarios 
Three ‘deployment scenarios’ were run to investigate the impact of array siting location on water 
body response (Table 3). Each scenario was run multiple times to simulate varying degrees of FPV 
coverage – the ‘coverage increments’. The coverage increment represents the percentage of the 
reservoir’s total surface area covered by FPV, accounting for the existing 4.5 % coverage of the 
presently deployed array (see Section 2.2.1). In the following scenarios, we use coverage increments 
of 10 % from a baseline of 0 % coverage to complete reservoir coverage (100 %). 

Table 3 – Scenarios and a summary of the deployment configuration. 

Scenario Description 

Baseline 
The reservoir simulated with no additional FPV coverage (includes the 
existing 4.5 % coverage of the presently deployed array) – shown as 0 % 
coverage. 

  

Scenario-Fast 

FPV installation initially deployed on the faster-flowing tank, an area of 
the reservoir with a shorter-residence time. Once the FPV installation 
exceeds the area of the faster-flowing tank the FPV array is deployed 
upon the slower-flowing tank (Figure 1). 

Scenario-Slow 

FPV installation initially deployed on the slower-flowing tank, an area of 
the reservoir with a longer-residence time. Once the FPV installation 
exceeds the area of the slower-flowing tank the FPV array is deployed 
upon the faster-flowing tank (Figure 1). 

Scenario-Central Central siting of FPV installation. Initially the array is deployed on the 
faster-flowing tank, as the larger of the two tanks (Figure 1). Once the 



remaining uncovered area of the faster-flowing tank is equal in area to 
the slower-flowing tank, the deployment of the array is split equally 
between each tank. 

- Each deployment scenario was simulated with a range of FPV ‘coverage increments’ from 
0 % coverage (baseline) to 100 % in 10 % increments. 

 Modelling assumptions and sources of uncertainty 
Each model run, in terms of the deployment scenario and coverage increment, was based on a set of 
assumptions to represent the water body and approximate the effects of FPV coverage. At present, 
there are no published values for the effect of FPV on air temperature, wind speed and incoming 
solar radiation at the air-water interface. The effect on each driver is likely modified depending on 
system design, such as transparency of the PV module, airflow beneath the floating array and 
orientation of the array (Armstrong et al., 2020; Exley et al., 2021a; Ziar et al., 2021). For this study, 
the effects of an array were estimated from unpublished observations made at an FPV installation 
(see supplementary information, section 5, for methods) and published observations made at a 
ground-based installation (Armstrong et al., 2016). Based on the results of these preliminary 
observations, we assumed that between the water’s surface and the underside of the PV module; air 
temperature is warmed by 8 %, incoming solar radiation is reduced by 94 %, and wind speed is 
reduced by 95 %. All scenarios are also based on the likely assumptions that the functional 
phytoplankton groups adequately represent the phytoplankton community observed in the QEII 
reservoir and that the initial phytoplankton community composition (i.e., relative proportions of 
taxa) were set to be equal on the first day of each simulation to permit an equal chance of 
proliferation. 

2.2.4 Model output analysis 
To summarise the impact of varying FPV coverage and siting location on phytoplankton biomass and 
species composition, we compared model outputs from each scenario against the baseline (Table 3). 
We analysed the output from the faster-flowing tank, as this is the tank that feeds the water 
treatment works. Given the plethora of data outputted, we focussed on variables influencing 
phytoplankton biomass and species composition, including surface water temperature at 1 m and 
stratification metrics. To represent phytoplankton biomass and species composition, we used total 
chlorophyll-a concentration and the proportions of each phytoplankton functional group as a 
proportion of total chlorophyll-a, both at 1 m depth. The proportions of phytoplankton functional 
groups are presented as relative, not absolute values for visual clarity. 

Given the use of the GLUE methodology, each scenario has the outputs from several model 
simulations. To capture the variability in outcomes, thus representing the uncertainty, we use the 
median, 2.5th and 97.5th percentiles, thus providing the average outcome and the 95 % confidence 
interval. To explore the impacts on the annual minimum (Tmin) and maximum (Tmax) water 
temperature and maximum total chlorophyll-a concentration, we use the mean of each based on a 
ten-day window defined by the baseline model runs. Stratification was determined using a threshold 
density gradient of 0.1 kg m-3 m-1 between adjacent layers (Gray et al., 2020). Two metrics were used 
to summarise stratification duration. These were continuous stratification, the longest period of 
stratification in each simulation, and cumulative stratification duration, the total number of stratified 
days during the one-year simulation period. Stratification onset and overturn were defined as the 
first and last day of the longest period of continuous stratification, respectively. 

  



3 Results 
3.1 Simulations within the limits of acceptability 
Seventy-five parameter sets were within the LoA for all simulations; the remaining 7925 parameter 
sets were rejected and not used in the subsequent analyses. Given the limited input data and strict 
inclusion criteria applied, most excluded parameter sets were rejected based on their representation 
of total chlorophyll-a (Figure 2), functional groups and mixed depth. The model simulated water 
temperature within the LoA for most parameter sets (< 95 %). The goodness of fit weighting for the 
accepted parameter sets ranged from 80.62 to 84.01, of a maximum possible weighting of 204 
(determined by the number of observations available for the QEII reservoir). 

 

Figure 2 – Simulated chlorophyll-a (coloured lines) samples within the limits of acceptability (grey shaded area).  

3.2 Response of thermal properties 
FPV coverage cooled median surface water temperatures throughout the year (Figures S 6-1, 6-2, 6-
3). However, on a small number of days between mid-spring and early summer, the 10 % coverage 
increment resulted in slightly warmer (< 0.6 °C) surface water temperatures than the baseline (i.e. 
no additional FPV coverage) in Scenario-Fast and Scenario-Central for nine days. Similarly, at 
10 to 30 % coverage in Scenario-Slow, there were ten days when FPV coverage warmed median 
surface water temperatures (< 0.5 °C) compared to the baseline. 

For all scenarios, median Tmax and Tmin were reduced with increasing FPV coverage, based on the 
mean of a window (± five days), defined by the baseline model runs. FPV deployment on the fast-
flowing tank (Scenario-Fast) saw a comparatively quick decline in Tmax and Tmin with increasing FPV 
coverage. Median Tmax decreased on average 0.55 ± 0.09 °C (mean difference ± SD; hereafter unless 
stated) per 10 % coverage increment for FPV coverages up to 70 % (i.e. when the FPV encroached on 
the slower flowing tank). Median Tmin decreased by 0.20 ± 0.11 °C per 10 % coverage increment up 
to 70 % coverage. The rate was reduced once the array encroached on the slower-flowing tank (FPV 
coverages greater than 70 %). Tmax decreased by 0.16 ± 0.03 °C per 10 % coverage increment and Tmin 
decreased by 0.02 ± 0.004 °C per 10 % coverage increment (Figure 3a and b). 
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Deployment on the slower-flowing tank (Scenario-Slow) initially caused a slower decline in median 
Tmax and Tmin, 0.15 ± 0.04 °C and 0.02 ± 0.01 °C, respectively, per 10 % coverage increment up to 
30 %, than in Scenario-Fast. After the FPV encroached on the faster-flowing area (above 30 % 
coverage), Tmax decreased by 0.56 ± 0.15 °C, and Tmin decreased by 0.20 ± 0.11 °C, per 10 % coverage 
increment. In contrast, median Tmax declined linearly by 0.44 ± 0.08 °C for each 10 % coverage 
increment when the array was located centrally on the reservoir (Scenario-Central; Figure 3a). Tmin 
for Scenario-Central reduced by 0.14 ± 0.06 °C for each 10 % increase in FPV coverage. There was 
increasing divergence between the lower (2.5th) and upper (97.5th) percentile at higher FPV 
coverages (Figure 3b). For example, at 10 % coverage the range between the lower and upper 
percentile was 0.65 °C, this increased to 0.70 °C at 50 % and 0.94 °C at 90 % FPV coverage. 

In response to increasing array coverage, continuous and cumulative stratification duration 
decreased rapidly when the array was deployed on the faster-flowing tank or centrally (Scenario-
Fast and Scenario-Central; Figure 3c and d). Maximum stratification duration was up to 22 days 
longer in Scenario-Slow than under Scenario-Fast at 30 % FPV coverage (Figure 3c). Cumulative 
stratification duration was up to 75 days longer in Scenario-Slow than under Scenario-Fast at 30 % 
FPV coverage (Figure 3d). Significant stratification events did not occur in Scenario-Fast and -Central 
when array coverage exceeded 50 % and in Scenario-Slow when coverage exceeded 70 % (Figure 3c 
and d). See supplementary information, section 9, for the number of stratified simulations at each 
FPV coverage. 

The relationships between FPV coverage and stratification onset and overturn were weaker than for 
stratification duration (Figure 3e and f). Stratification onset generally shifted to later in the year with 
FPV coverages of up to 40 % for Scenario-Fast and -Central (Figure 3e). However, some simulations 
had an earlier onset of stratification at the 10 % FPV coverage increment. In Scenario-Slow, 
stratification onset showed a weak shift to later in the year with FPV coverages of up to 70 % (Figure 
3e). However, a few Scenario-Slow simulations showed an earlier onset at 10 to 40 % FPV coverage 
than the baseline (Figure 3e).  

The overturn of stratification did not have a clear trend with increasing FPV coverage. However, 
overall, there was a tendency for overturn to be slightly later for all three scenarios than the baseline 
(Figure 3f). However, a small number of simulations showed earlier overturn than the baseline 
(Figure 3f). For example, at 10 and 20 % FPV coverage, the lower extent of the estimated range was 
earlier than the lower extent of the baseline range for Scenario-Fast and Scenario-Central (Figure 3f). 
Overturn of stratification in Scenario-Slow did not have a clear trend with increasing coverage, 
although typically it occurred slightly earlier than in Scenario-Fast and Scenario-Central at FPV 
coverages 20 % or greater (Figure 3f). Overturn occurred earlier than the baseline in a small number 
of simulations, for example, at 10 to 40 % FPV coverage, when only the slower-flowing tank was 
covered. 



 

Figure 3 – a) Annual maximum and b) minimum water temperature, c) stratification duration, d) cumulative stratification 
duration, and stratification e) onset and f) overturn day, versus floating solar (FPV) array coverage for each deployment 
scenario. An asterisk indicates no prolonged stratification event occurred for the simulation. Whiskers represent the 
minimum and maximum of the simulation results presented. The box represents the 2.5th & 97.5th percentiles, which gives 
a 95% confidence interval that simulation estimates fall within this range. 0 % FPV coverage represents QEII reservoir 
simulated as a baseline with no additional FPV coverage. 

3.3 Response of phytoplankton 
3.3.1 Total chlorophyll-a 
In Scenario-Fast and Scenario-Central maximum total chlorophyll-a concentration, based on the 
mean of a window (± five days), defined by the baseline model runs, declined exponentially with 
increasing FPV coverage (Figure 4). For example, in Scenario-Fast, median total chlorophyll-a was 
reduced by 10.21 µg L-1 at 10 % FPV coverage, 20.40 µg L-1 at 50 % and 22.09 µg L-1 at 90 % compared 
to the baseline scenario. Each additional 10 % coverage increment, up to 60 %, reduced median total 
chlorophyll-a by 3.59 ± 1.84 µg L-1 on average (Figure 4). Coverages exceeding 60 % in Scenario-Fast 
had negligible total chlorophyll-a (< 1 µg L-1).  

Comparatively, Scenario-Central showed a slightly smaller reduction in median total chlorophyll-a 
concentration than Scenario-Fast. For example, median total chlorophyll-a was reduced by 



4.01 µg L-1 at 10 % FPV coverage, 19.69 µg L-1 at 50 % and 22.01 µg L-1 at 90 % compared to the 
baseline scenario. In Scenario-Central, each additional 10 % FPV coverage increment, up to 70 %, 
reduced median total chlorophyll-a by 3.05 ± 2.11 µg L-1 (Figure 4). Coverages exceeding 70 % in 
Scenario-Central had negligible total chlorophyll-a (< 1 µg L-1). 

In Scenario-Slow, total chlorophyll-a concentration generally reduced with increasing FPV coverage. 
However, at lower FPV coverages (10 to 30 % coverage) where only the slower-flowing tank was 
covered, total chlorophyll-a simulations showed both increases and decreases from the baseline 
(Figure 4). At 10 % FPV coverage, total chlorophyll-a was either reduced by up to 5 % (0.89 µg L-1; 
2.5th percentile) or increased by up to 28 % (7.95 µg L-1; 97.5th percentile). At 20 % FPV coverage, 
total chlorophyll-a either reduced by up to 15 % (2.52 µg L-1; 2.5th percentile) or increased by up to 
15 % (4.28 µg L-1; 97.5th percentile). At 30 % FPV coverage, total chlorophyll-a either reduced by up 
to 19 % (3.23 µg L-1; 2.5th percentile) or increased by up to 4 % (1.02 µg L-1; 97.5th percentile). Above 
30 % FPV coverage, when the faster-flowing tank started to be covered, median total chlorophyll-a 
declined on average by 2.87 ± 2.35 µg L-1 per 10 % additional cover. 

 

Figure 4 - Total chlorophyll-a (based on the mean of a window, ± five days, around the day of maximum total chlorophyll-a) 
versus floating solar array coverage. Whiskers represent the minimum and maximum of the simulation results presented. 
The box represents the 2.5th & 97.5th percentiles, which gives a 95% confidence interval that simulation estimates fall 
within this range. 0 % floating solar coverage represents QEII reservoir simulated as a baseline. 

3.3.2 Annual total chlorophyll-a 
Median total chlorophyll-a generally reduced with increasing FPV coverage throughout the year for 
all scenarios (Figure 5 and supplementary information, section 7, for 95 % confidence interval). 
However, on a small number of days between late May and the end of July, median total 
chlorophyll-a was greater than the baseline in Scenario-Slow at 10 to 30 % FPV coverage. FPV 
coverage had the greatest relative impact on median total chlorophyll-a at the start of August 
(Figure S 7-1). For example, at 10 % FPV coverage median total chlorophyll-a had a relative reduction 
of 48 % (24.38 µg L-1) in Scenario-Fast and Scenario-Central. Whilst in Scenario-Slow, the greatest 
relative difference for 10 % FPV coverage occurred in early June; a 17 % (2.09 µg L-1) reduction 
compared to the baseline scenario. The absolute differences as coverage exceeded 70 % in Scenario-
Fast and Scenario-Central were relatively small compared to lower coverages when the array was 
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deployed exclusively on the faster-flowing tank (Figure 5). The opposite occurred for Scenario-Slow, 
with coverages up to 30 %, the area of the slower-flowing tank, having a small absolute difference 
with the baseline. The absolute difference increased once the array started to cover the faster-
flowing tank (Figure 5). 

 

Figure 5 – Annual median total chlorophyll-a absolute difference by scenario. 0 % floating solar coverage represents QEII 
reservoir simulated as a baseline with no additional floating solar coverage. The relative difference in chlorophyll-a is shown 
in Figure S 7-1. 

3.3.3 Phytoplankton functional group dynamics 
While simulated chlorophyll-a concentrations declined exponentially with increasing coverage, the 
relative proportion of phytoplankton functional groups varied. In Scenario-Fast, at FPV coverages of 
up to 60 %, diatoms dominated for most of the year, with their dominance increasing as FPV 
coverage increased up to 40 % (Figure 6 and Figure S 8-1). As the coverage increased above 60 %, 
proportions of green algae increased, approaching a similar proportion as diatoms. In some cases, 
green algae were very similar to, or slightly exceeded, the proportions of diatoms towards the end of 
summer, as for the baseline scenario (Figure 6). 

Similarly, diatoms increasingly dominated with FPV coverages of up to 70 % in Scenario-Central. 
Diatom dominance slowly reduced from 70 % to 100 % coverage, associated with a higher 
proportion of green algae (Figure S 8-2). In Scenario-Slow, FPV coverages of up to 90 % were 
associated with diatoms dominating for most of the year (Figure S 8-3). Diatom dominance 
strengthened as FPV coverage increased over 40 % but declined again over 70 %. In some cases, 
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typically at FPV coverages up to 30 %, green algae were very similar to, or slightly exceeded, the 
proportions of diatoms towards the end of summer, as they did in the baseline scenario (Figure S 
8-3). Cyanobacteria did not have a high relative or absolute abundance regardless of FPV coverage. 

 

Figure 6 – Scenario-Fast: Proportion of phytoplankton functional groups as a percentage of total chlorophyll-a for the 
simulated period. The initial phytoplankton functional group proportions were set evenly, therefore, the first 30 days of 
simulations are model run-in time and should be ignored. 0% floating solar coverage represents QEII reservoir simulated as 
a baseline. 

4 Discussion 
We found reduced phytoplankton biomass and changes in species composition can be directly 
attributed to the direct shading effects from reduced solar radiation and indirect mixing effects from 
wind sheltering of FPV. We also found that the different thermal dynamics associated with each 
siting location meant phytoplankton in the faster flowing tank appear more sensitive to low FPV 
coverage than the phytoplankton in the slower flowing tank, as they have to contend with both 
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shading and rapid flushing, resulting in a large cumulative effect. Inflow volume, water temperature 
and nutrient inputs remained unchanged. In general, increased FPV coverage reduced total 
chlorophyll-a, although the absolute and relative reduction varied between each FPV deployment 
siting location scenario. There were a small number of simulations where phytoplankton biomass 
increased when the array was deployed on the slower flowing area of the reservoir. However, these 
increases were time-limited and only at array coverages of up to 30 % in a small number of 
simulations. 

4.1 Drivers behind the reduced phytoplankton biomass 
We found that minimum, maximum and median surface water temperatures cooled due to the 
shading effects of FPV, slowing phytoplankton growth by reducing metabolic rates (Kraemer et al., 
2017) as FPV coverage increased. As growth rates are species-specific, varying with cell size, each 
functional group responded uniquely to cooler water temperatures owing to increasing FPV cover 
(Reynolds, 2006). While deployment location had several complex and interacting effects, the effects 
of higher flow speed combined with FPV coverage led to an enhanced cooling effect. Given this 
flushing effect, the faster circulation tank exhibited a greater reduction in total chlorophyll-a and a 
more pronounced change in phytoplankton community structure than for similar coverages of FPV 
deployed on the slower circulation tank. 

The cooler water temperatures associated with increasing FPV coverage reduced continuous and 
cumulative stratification duration. This indirect effect of FPV on reservoir mixing contributed to 
lower total chlorophyll-a in the reservoir (Exley et al., 2021a). In the absence of stratification or a 
shorter stratified period, the mixed layer, a fundamental driver of phytoplankton growth (Ross and 
Sharples, 2008; Longhi and Beisner, 2009), is deeper or fully mixed. The deepening of the mixed 
layer worsens the effective light climate for phytoplankton, moving them further from the higher 
light intensity surface waters (Reynolds, 1997). However, non-stratified conditions may allow 
phytoplankton to access pools of nutrients in the lower water column, favouring those species 
tolerant of the lower light availability at depth. On the small number of days when total 
chlorophyll-a increased with FPV coverage, the sheltering effect at the air-water interface likely 
reduced mixing, improving the conditions for phytoplankton growth (Exley et al., 2021a). 

4.2 The consequences for phytoplankton functional-type dynamics 
Modifications to reservoir thermal properties and shading from FPV coverage resulted in changes to 
phytoplankton functional-type dynamics, with the different siting locations modifying the response. 
Generally, the relative dominance of diatoms increased in the autumn with moderate FPV coverages 
as green algae populations reduced. However, these changes were offset by the overall rapid decline 
in phytoplankton biomass associated with increasing FPV coverage. In the faster circulation scenario, 
as FPV coverage increased and the reservoir became more mixed, dominance switched from green 
algae to diatoms, consistent with their affinity to well-mixed water bodies (Jäger et al., 2008). In the 
slower circulation scenario, which experienced less of a reduction in stratification duration than the 
faster circulation scenario, species composition remained similar to the baseline conditions. 

Importantly, given the implications for water treatment and reservoir recreational use, 
cyanobacteria dominance did not increase with increasing FPV coverage for any of the deployment 
scenarios. This is attributable to the shaded conditions and additionally, the more mixed water 
column reduced the ability of cyanobacteria to regulate their buoyancy and vertical position to 
obtain favourable light and nutrient conditions (Reynolds et al., 1987; Burkholder, 2009). However, 
whilst our simulations show a reduction in total cyanobacteria biomass with increasing FPV coverage 
relative to the baseline, our use of functional-type aggregates may overlook the specific traits, 



tolerances and sensitivities among cyanobacteria taxa which could allow individual shade-tolerant or 
lower-optimum temperature species to dominate (Carey et al., 2012; Mantzouki et al., 2016; 
Armstrong et al., 2020). Studies considering the effects of surface covers have shown a switch to 
cyanobacteria dominance in some instances (Yamamichi et al., 2018; Exley et al., 2021b). However, 
the expanded model can simulate an unrestricted number of phytoplankton species, so assuming 
sufficient input data and observations to constrain the model, this uncertainty could be reduced in 
future applications. 

4.3 FPV as a tool for water body management 
Our results suggest that water body managers could tailor FPV system design and siting location to 
achieve the management goals of the host water body. The impact of percentage cover is clear, with 
opportunities for tailoring reductions to water temperature, mixing dynamics and phytoplankton 
biomass and species composition. Further, the interaction between the different residence times 
associated with each scenario and increasing FPV coverage shows that siting location is an important 
consideration when planning the deployment of an FPV array. Modifying FPV siting location between 
areas of different circulation can contribute greater water quality co-benefits while using identical 
FPV coverage. For example, deploying an FPV array covering 40 % of the reservoir on the faster-
flowing tank reduced total chlorophyll-a by up to 2.9 times more than deploying the same size array 
on the slower-flowing tank. Whilst the primary objective of an FPV installation is to generate 
renewable electricity, the potential for non-energy water quality co-benefits could offer an 
additional incentive to water body managers (de Lima et al., 2021; Exley et al., 2021a). However, this 
should be tested empirically given the simplification of the water body into faster and slower flowing 
tanks. 

Regardless of deployment location, the large, sustained reductions in phytoplankton with FPV 
deployment may provide an alternative to hydrological manipulation in reservoirs. Typically, 
reservoirs used for drinking water are managed to limit thermal stability, impeding the development 
of stratification and subsequent phytoplankton growth, which can be detrimental to water quality 
and disrupt the water treatment process (Paerl, 2014; Visser et al., 2015; Huisman et al., 2018). 
Currently, management techniques that attract capital and operational expenditure, including 
flushing and artificial mixers, are used to change the system’s hydrology or light regime for 
phytoplankton (Visser et al., 2015). Alternatively, FPV provides an opportunity to overcome the 
growing challenge of managing phytoplankton blooms (Burkholder, 2009; Paerl et al., 2019; Plaas 
and Paerl, 2021), negating the need for such reservoir management and also generating zero-carbon 
electricity. 

However, there may be undesirable consequences of FPV deployment, especially for reservoirs used 
for recreation (e.g. the obstruction of the water’s surface) or those supporting aquatic life. 
Phytoplankton are the primary source of energy in lake food webs (Kalff, 2002) and an important 
component of global biogeochemical cycles (Falkowski, 1994). Consequently, FPV induced changes 
could have profound ecological impacts. For example, lake production is a significant driver of 
zooplankton species richness (Hessen et al., 2006) and the disruption to trophic cascades may cause 
a significant reduction in planktivorous fish (Jeppesen et al., 2002; Gerdeaux et al., 2006). Therefore, 
practitioners should undertake careful planning to ensure deployments and their corresponding 
impact on phytoplankton aligns with the management goals of the host water body, with 
consideration for all trophic levels and accounting for the full range of plausible outcomes across the 
95 % confidence interval as determined by the GLUE methodology.   



4.4 Expanded model adequacy, application and critical research needs 
This study has provided novel model insights into FPV impacts unobtainable through field 
manipulation. The expanded model allows the explicit simulation of FPV installations on different 
types of water bodies and differently functioning tanks of water bodies. The expanded model 
remains computationally efficient, thus allowing multiple runs to capture uncertainty, given the 
nature of the data commonly available for the water bodies FPV tend to be deployed on. The 
functionality to simulate discrete zones of water bodies will allow further research questions 
pertinent to the deployment of FPV to be answered. For example, determining the influence of 
water body morphometric characteristics (e.g. depth and surface area) and FPV deployment layout 
(i.e. one continuous array or multiple smaller arrays) on FPV water quality impacts. Moreover, it will 
allow the implications of geographical location and future climate to be simulated. As understanding 
of FPV impacts and field data collection advance, future modelling studies will need to focus on the 
performance of critical processes in the model, for example, horizontal wind mixing. Moreover, the 
suitability of different models, which range in their complexity, will need to be assessed in light of 
the water body characteristics, including size, and research aims. 

Enhanced phytoplankton representation to simulate species composition enables the model to 
assess phytoplankton response in more detail. Better resolution of phytoplankton impacts is critical 
given the impacts of climate change and the implications for water supply reservoirs. In particular, 
the linking of Si species to the phytoplankton dynamics equations allows the representation of 
diatoms that can adversely affect water treatment as filamentous species block filters. 

Application of the GLUE methodology provides insightful model outcomes (e.g. a 95 % confidence 
interval for simulations) despite the sparser data inputs than desirable for water body modelling. 
High frequency and spatially explicit monitoring of water quality impacts at existing FPV installations 
are required to constrain the model better and reduce uncertainties in estimated responses. Ideally, 
studies should consider a BACI (Before, After, Control, Impact) design (Stewart-Oaten et al., 1986), to 
monitor water body response before and after FPV deployment, using a control to ensure any 
observed impacts are specific to the intervention. Such observations will provide an empirical 
assessment of model outcomes and more robust modelling representations of change. Further, 
given the importance of phytoplankton communities to water body function and the implications for 
water treatment, detailed quantitative phytoplankton speciation data would be invaluable to 
constrain the model better and improve phytoplankton functional group representations. 

5 Conclusion 
FPV deployment continues rapidly worldwide, outpacing understanding of any concomitant 
environmental impacts. Our findings demonstrate that modelling, using an uncertainty framework, 
can provide useful insight into possible water body response. Specifically, we found that FPV 
generally promotes cooler water temperatures that, coupled with deteriorated light conditions, slow 
phytoplankton growth. A less favourable mixing regime with FPV coverage can also lead to 
substantial phytoplankton biomass reductions, even with only a small percentage of a reservoir 
covered by FPV. FPV deployment also changes phytoplankton community composition, but any 
negative consequences were negated by the considerable reductions in total biomass, allaying 
hypothesised water quality concerns of a switch to undesirable species. 

Moreover, our results show that the location of an FPV on the water surface can significantly affect 
water body thermal dynamics, modifying phytoplankton response beyond the impacts of percentage 
coverage. This outcome demonstrates the need to consider spatial location within the water body in 
addition to the total magnitude of FPV coverage for deployment decisions. Modelling approaches 



present a valuable and resource-efficient tool to explore water body-FPV interactions, enabling the 
assessment of FPV design and location options without the need for extensive in-situ testing. Pre-
deployment modelling thus could help FPV developers and water body managers minimise negative 
impacts and maximise co-benefits of FPV across a range of targeted water bodies worldwide.   
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