
Dynamic Linear Models with Adaptive Discounting

Abstract

Dynamic linear models with discounting are state-space models that are

sufficiently flexible interpretable, and computationally efficient. As such they

are increasingly applied in economics and finance. Successful modeling and

forecasting with such models depends on an appropriate choice of the discount

factor. In this work we develop an adaptive approach to sequentially estimate

this parameter, which relies on the minimisation of the one-step-ahead forecast

error. Simulated data and an in-depth empirical application to the problem

of forecasting quarterly UK house prices shows that our approach can achieve

significant improvement in forecast accuracy at a computational cost that is

orders of magnitude smaller than approaches based on sequential Monte Carlo.

We also conduct an extensive evaluation of diverse forecast combination methods

on the task of predicting UK house prices. Our results indicate that a recent

density combination method can substantially improve forecast accuracy.
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1. Introduction

Dynamic linear models (DLMs) provide a very flexible yet fairly simple state

space formulation to analyse dynamic phenomena and evolving data generating

processes (DGPs) (West and Harrison, 1997; Prado and West, 2010). In response

to accumulating evidence that economic and financial predictors have short-lived

predictive content and econometric relationships are unstable (see Rossi (2013)

for a review), there has been a substantial growth of interest in the application

of DLMs, and especially DLMs with discounting (D-DLMs) (Dangl and Halling,

2012; Koop and Korobilis, 2012; Koop and Tole, 2013; Byrne et al., 2018; Zhao
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et al., 2016). Discounting alleviates the need to specify the covariance matrix of

the state transition (system) equation (West and Harrison, 1997, Section 6.3).

However, the forecast performance of D-DLMs depends critically on the choice

of the discount factor; a scalar parameter that allows a continuous trade-off

between estimation in a static environment, and re-initialising the estimation

process by discarding all past information.

The most common approach in the literature is to treat the discount factor

as a user-specified parameter, set a priori to a constant value. An alternative

is to specify a grid of discount factor values, and through Bayesian updating

sequentially estimate the posterior probability of each (West and Harrison, 1989;

Zhao et al., 2016; Dangl and Halling, 2012). More recently, Irie et al. (2022)

proposed a nonlinear state space model for the evolution of the discount factor.

The resulting state-space model does not admit conjugate Bayesian analysis,

and instead sequential Monte Carlo is used.

In this work, we develop a DLM with adaptive discounting (ADLM). The

central idea underlying our approach is that the optimal value of the discount

factor minimises the expectation of the one-step-ahead squared forecast error.

This formulation allows us to approximate the optimal discount factor sequen-

tially through stochastic gradient descent (SGD) (Bottou et al., 2018). This

approach does not require the user to pre-select appropriate value(s) for this

parameter, or to specify a model for the evolution of the discount factor (and

its hyperparameters). Furthermore, the proposed approach does not increase

the computational complexity of filtering with D-DLMs. On the other hand,

the performance of SGD algorithms relies on the appropriate choice of their

parameters, and most notably the step-size. We propose an ensemble approach

to ameliorate this issue.

We assess the forecast performance of ADLMs in the context of an in-depth

study of forecasting UK house prices at the national and regional level. Despite

the vast interest in the dynamics of international housing markets, sparked by

the latest boom-bust episode in real estate markets and its decisive role in

the Great Recession, the academic literature on house price forecasting remains
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relatively small (especially when compared to other financial assets), and mainly

concentrates on the US market (Rapach and Strauss, 2009; Ghysels et al., 2013;

Bork and Møller, 2015). In the UK, similarly to the US, housing activities

account for a large fraction of GDP and of households’ expenditures. Real estate

property comprises the largest component of private wealth (excluding private

pensions), and mortgage debt constitutes the main liability of households (Office

for National Statistics, 2018). Thus, accurate forecasts of UK real estate prices

are crucial for private investors and policy makers.

As we discuss in the empirical application section, there is clear evidence

of time-varying patterns in the in-sample relationship between real estate val-

uations in the UK and conditioning macro and financial variables. This is not

unexpected as similar findings have been previously reported in the literature

(Aizenman and Jinjarak, 2014; Anundsen, 2015; Paul, 2020). Dynamic econo-

metric models are therefore essential to successfully model and forecast the UK

housing market. The results of the empirical evaluation show that ADLMs

can achieve significant forecast accuracy improvements against competing ap-

proaches, at a fraction of the computational cost.

We complement our study of UK housing markets by evaluating a number of

forecast combination methods. We consider a diverse set of methods including:

density combination methods (Hall and Mitchell, 2007; Geweke and Amisano,

2011; Billio et al., 2013); the partially egalitarian LASSO (Diebold and Shin,

2019); a recent algorithm from the prediction with expert advice literature,

ConfHedge (V’yugin and Trunov, 2019); as well as Bayesian model averaging,

and simple averaging.

The remaining paper is organised as follows. In Section 2 we first present

the D-DLM model, and then, in Section 2.1, we outline existing approaches

to estimate the discount factor. The proposed adaptive approach is developed

in Section 2.2. In Section 3, we employ simulated time-series to assess differ-

ent approaches to tune the discount factor. Section 4 provides a comparative

evaluation of different approaches to estimate the discount factor in D-DLMs

with application to UK housing markets. In Section 5 we evaluate empirically
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a number of forecast combination methods on the task of forecasting UK house

prices. The paper ends with concluding remarks in Section 6.

2. Dynamic linear model with adaptive discounting

We consider DLMs in which the unobserved coefficient vector, θt ∈ Rd,

follows a driftless random walk,

yt = x>t θt + εt, εt ∼ N (0, v) , (1)

θt = θt−1 + wt, wt ∼ N (0,Wt) . (2)

The variance v in Eq. (1) is unknown and we impose an inverse-gamma prior

for this parameter,

v|D0 ∼ IG
(n0

2
,
n0s0

2

)
, (3)

whereDt represents all the information available at time t, and st = E(v−1|Dt)−1

is the point estimate for v at time t. All quantities with a time-stamp zero rep-

resent prior information (belief). In the following it is convenient to express all

covariance matrices as multiples of v. The prior distribution for the coefficient

vector conditional on v is,

θ0|v ∼ N(m0, vC̃0), (4)

while the marginal is a Student-t distribution with n0 degrees of freedom, θ0 ∼

T (m0, s0C̃0, n0). This specification enables a conjugate Bayesian analysis. Given

the posterior (filtering) distributions at time t− 1,

v|Dt−1 ∼ IG(nt−1/2, nt−1st−1/2), (5)

θt−1|Dt−1 ∼ T (mt−1, st−1C̃t−1, nt−1), (6)

the prior (predictive) distribution for θt is,

θt|Dt−1 ∼ T (mt−1, st−1(C̃t−1 + W̃t), nt−1), (7)

where, W̃t = v−1Wt. The structure and magnitude of W̃t are crucially impor-

tant for successful modelling and forecasting. This matrix controls the extent
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of the stochastic variation in the evolution of the state-space model, and hence

determines stability over time. Eq. (7) suggests that st−1W̃t leads to an increase

in uncertainty, or equivalently a loss of information, about θt between consec-

utive time steps. Estimating W̃t is computationally very expensive if there is

no optimal value for this matrix that is suitable for all times (West and Harri-

son, 1997, Sec. 6.3). Discounting is a simple and practically critical method to

overcome this. The central idea underlying discounting is to set,

W̃t =
1− δ
δ

C̃t−1, (8)

where δ ∈ (0, 1] is the discount factor , also called the forgetting factor. We call

this model DLM with discounting (D-DLM). From the above specification of

W̃t it follows that,

θt|Dt−1 ∼ T (mt−1,
st−1
δ
C̃t−1, nt−1). (9)

According to Eq. (9), the prior variance of θt is that of a model with no system

stochastic variation (Wt = 0) times a correction factor of 1/δ that inflates this

variance (Prado and West, 2010). The choice of δ allows a continuous range

between estimation in a static environment (δ = 1), and completely discarding

all past data (δ approaching zero).

The one-step-ahead prior (predictive) distribution for yt is,

yt|Dt−1 ∼ T
(
x>t mt−1, st−1q̃t, nt−1

)
, (10)

q̃t = δ−1(x>t C̃t−1xt + δ). (11)

After observing yt we can obtain the posterior (filtering) distributions as follows.

The posterior distribution v|Dt ∼ IG(nt/2, ntst/2) where,

nt = nt−1 + 1, (12)

st =
nt − 1

nt
st−1 +

ε̂2t
ntq̃t

, (13)

where ε̂t = yt−x>t mt−1, is the forecast error at time t. The posterior distribution
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θt|Dt is,

θt|Dt ∼ T (mt, stC̃t, nt), (14)

mt = mt−1 +Atε̂t, (15)

C̃t = δ−1(I −Atx>t )C̃t−1, (16)

At =
1

δq̃t
C̃t−1xt =

1

x>t C̃t−1xt + δ
C̃t−1xt. (17)

The vector At is known as the Kalman gain, or the adaptive coefficient vector.

The choice of δ critically affects the forecast performance of D-DLMs. In

the next section we discuss existing approaches to estimate the discount factor,

while in Section 2.2 we develop our adaptive approach.

2.1. Specifying the discount factor

Prado and West (2010) recommend using δ ∈ (0.9, 1). Other authors con-

sider δ ∈ {0.95, 0.99} (Raftery et al., 2010; Koop and Korobilis, 2012; Koop and

Tole, 2013). An alternative approach is to specify a grid of δ values, and update

the posterior probability of each value sequentially,

p(δj |Dt) ∝ p(yt|Dt−1, δj) p(δj |Dt−1). (18)

Posterior probabilities updated in the above manner are known to rapidly con-

centrate on a small set of δ values, and eventually allocate all probability mass to

a single value. This can lead to significantly down-weighting δ values that could

perform well in the future, and thus can degrade predictive performance (Zhao

et al., 2016). Model probability power discounting (MPD) is an approach to

overcome this limitation through use a power discount factor , α ∈ (0, 1],

p(δj |Dt) ∝ p(yt|Dt−1, δj) p(δj |Dt−1)α, (19)

which forces p(δj |Dt) to depend more heavily on recent performance (West and

Harrison, 1989). Zhao et al. (2016) propose to consider a grid of values for

both δ and α.

Irie et al. (2022) propose a dynamic discount factor formulation for a Poisson-

Gamma state space model for web traffic data. The nonlinear state space model
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which describes the evolution of δt can be directly incorporated in a DLM. We

therefore outline it here and consider it in the experimental results section. The

discount factor is determined through the variable gt which follows a stationary

AR(1) process,

gt = µ(1− φ) + φgt−1 + ηt. (20)

where φ ∈ (0, 1), and ηt ∼ N(0, σ2
η), and g0 ∼ N(µ, σ2

η/
√

1− φ2). This choice

of prior for g0 implies that the gt process is stationary, and the marginal distri-

bution of gt is identical to that of g0 for all t. The discount factor, δt is obtained

through,

δt =
1

1 + e−gt
, (21)

or equivalently gt = logit(δt), where logit stands for the logistic transformation.

Irie et al. (2022) propose a Bayesian approach to estimate the AR(1) parameters

(µ, φ, σ2
η). Specifically, they recommend to use the parameterisation φ0 = µ(1−

φ), φ1 = φ and w = σ−2η and then assume a Normal-Gamma prior,

(φ0, φ1), w|D0 = NG(m0,
b0
a0
C0, a0). (22)

The authors use particle learning (Carvalho et al., 2010) to perform filtering

and parameter estimation. Compared to a standard DLM with discounting

this approach increases computational cost by a factor equal to the number of

particles used in the particle learning algorithm.

2.2. Adaptive discounting DLM

The central idea underlying our approach is that the optimal value of the

discount factor minimises the expectation of the one-step-ahead squared forecast

error,

δ?t = arg min
δ

1

2
E(Xt,Yt)

[(
yt − x>t mt−1

)2]
. (23)

The above expectation depends on δ because mt−1 = E[θt|Dt−1] is a function

of δ (see Eqs. (15) and (17) above). Since the expectation in Eq. (23) is not
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available in analytical form it is not feasible to directly minimise it. However,

the observed squared forecast error at time t,

ε̂2t =
(
yt − x>t mt−1

)2
, (24)

is an unbiased estimator of E(Xt,Yt)[
(
yt − x>t mt−1

)2
]. Therefore we can use

stochastic gradient descent (SGD) to solve the optimisation problem in (23)

using only information from (24). SGD algorithms have been studied through

stochastic approximation (Benveniste et al., 1990). It has been shown that their

convergence can be established under relatively weak conditions: the expecta-

tion which is minimised must be reasonably well behaved, and the learning rate

must decrease appropriately (Bottou et al., 2018).

To apply SGD, we need an expression for the derivative of the forecast error

with respect to δ. To this end, we apply the chain rule,

1

2

∂

∂δ

{
ε̂2t
}

=
1

2
∇mt−1

{
ε̂2t
}
∇δmt−1,

= −ε̂tx>t ∇δmt−1. (25)

A recursive formula for the derivative of mt with respect to δ is obtained by

differentiating Eq. (15),

∇δmt = ∇δmt−1 +∇δAtε̂t −Atx>t ∇δmt−1 (26)

= (I −Atx>t )∇δmt−1 +∇δAtε̂t. (27)

Differentiating Eq. (17) with respect to δ yields,

∇δAt =
1

δq̃t

[
∂C̃t−1
∂δ

− 1

δq̃t

(
x>t

∂C̃t−1
∂δ

xt + 1

)
C̃t−1

]
xt. (28)

We obtain a recursive formula for ∂C̃t

∂δ by differentiating Eq. (16),

∂C̃t
∂δ

=δ−1
∂C̃t−1
∂δ

− δ−2C̃t−1 +
q̃t + x>t

∂C̃t−1

∂δ xt + 1

δ3q̃2t
C̃t−1xtx

>
t C̃t−1

− 1

δ2q̃t
(
∂C̃t−1
∂δ

xtx
>
t C̃t−1 + C̃t−1xtx

>
t

∂C̃t−1
∂δ

). (29)

8



All the above derivatives can be computed in O(d2), where d is the dimen-

sionality of θ, since computations can be ordered so that the most expensive

operation is matrix-vector multiplication. Therefore, computing ∂
∂δ

{
ε̂2t
}

does

not increase the computational complexity of DLM filtering. Having an expres-

sion for ∂
∂δ

{
ε̂2t
}

allows us to apply any SGD algorithm. In all the experimental

results in this paper we use the influential adaptive moment estimation (ADAM)

algorithm (Kingma and Ba, 2015).

Although our analysis focuses on one-step-ahead forecasts, there is a large

and growing literature that examines the predictability of numerous important

economic and financial variables at different horizons. Furthermore, practition-

ers in policy institutions and in the private sector care about both short term

and longer term predictions. The adaptive discounting formulation outlined in

this section can be applied to perform direct k-step ahead forecasting as in Koop

and Korobilis (2012) and Catania and Nonejad (2018).

3. Simulation Experiments

In this section we use simulated data to assess the ability of different ap-

proaches to sequentially estimate the D-DLM discount factor. We consider

abruptly changing and gradually evolving DGPs. In all cases, the covariates are

sampled from a Gaussian distribution xt ∼ N(0, I), t = 1, . . . , 1000, while the

noise term in the measurement equation, Eq. (1), has a variance of 0.1. Next we

specify the parameter settings for all the considered methods. The parameter

values reported in Section 3.1 are used throughout the paper.

3.1. Competing methods and parameter settings

For all methods and in every experiment the priors for D-DLM are spec-

ified as, θ0|D0 ∼ N(m0, s0C̃0), with m0 = 0, s0 = 1, and C̃0 = 100I, while

v|D0 ∼ IG(n0/2, n0s0/2) with n0 = 1 (Catania and Nonejad, 2018). We com-

pare ADLM with two methods for sequentially estimating the discount factor.

The first employs a user-defined grid of values for δ and for the model probabil-

ity power discount factor α, as in Zhao et al. (2016). Using standard Bayesian
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updating we obtain the posterior probability of each δ value in the grid at every

time step (West and Harrison, 1989, Ch. 12). We refer to this model as Grid-

DLM. For the discount factor δ, we use a grid of values in the range [0.95, 0.999]

with a step-size of 0.005; while for α we use a grid in the range [0.95, 1] again

with stepsize 0.005 (Zhao et al., 2016). We assume a uniform prior for all δ

and α values.

The second method we consider is based on Irie et al. (2022) and assumes

that the discount factor evolves according to Eqs. (20) and (21). Because it

uses particle learning we refer to this method as PL-DLM. For PL-DLM we use

the following values for the prior in Eq. (22): m0 = [(1 − 0.9)logit(0.90), 0.9],

C0 = 0.052I, a0 = 10 and b0 = 5. This reflects the preference for the values

of the AR(1) process in Eq. (20) (µ, φ, σ2
η) = (logit(0.9), 0.9, 0.5). These hy-

perparameters for the prior are recommended by Irie et al. (2022). Finally the

number of particles is set to 1000.

In ADLM we adaptively tune δ through the recently proposed and influential

SGD algorithm called ADAM (Kingma and Ba, 2015). The discount factor is

initialised at δ = 0.99 and is constrained to lie in the interval δt ∈ [0.7, 0.999].

ADAM employs three parameters (ξ, b1, b2), where ξ is the stepsize, while b1, b2

are momentum parameters. The choice of ξ and whether the step-size is constant

or gradually decreasing affects the performance of ADAM. To ameliorate this

problem we propose to use not one but a number of parameter specifications, and

combine the resulting models. Specifically, we consider ξ ∈ {0.005, 0.1, 0.2, 0.3},

b1 ∈ {0, 0.8} and b2 = 0.9. These settings combine parameter values that are

appropriate for different types of change. A small and constant step-size like

ξ = 0.005 allows ADAM to adapt towards the value of the optimal discount

factor gradually but continuously. A larger constant step-size like ξ = 0.1

allows rapid adaptation in the presence of abrupt changes. However when the

optimal discount factor is constant over time using a constant step-size causes

the estimated δ to fluctuate around the optimal value. For this reason we

also consider a decreasing step-size schedule, ξt = ξ/t, with ξ ∈ {0.1, 0.2, 0.3}.

Finally having b1 = 0 ADAM becomes equivalent to RMSprop which is another
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SGD algorithm which has been shown to be effective in numerous applications.

Each ADAM configuration produces a different D-DLM. The forecasts of these

D-DLMs are combined through the associated model probabilities, which are

updated according to the MPD approach in Eq. (19). We assume a uniform

prior for all ADAM configurations and use the same grid of power discount

factor values, α, as in Grid-DLM.

3.2. Gradual drift

In this section we consider time series where the coefficient vector changes

gradually over time. We consider two such cases. In the first the DGP is a

D-DLM, as defined in Eqs. (1) to (17). Our objective in this case is to compare

both the forecast accuracy of ADLM, Grid-DLM and PL-DLM and to assess

their ability to identify the true discount factor. We consider two values of the

discount factor, δ ∈ {0.95, 0.99}, and for each value we simulate 100 time series.

We use Friedman’s nonparametric test (Friedman, 1937, 1939) to compare the

forecast performance of different methods across the 100 experiments. The

null hypothesis of this test is of equal predictive performance. The p-value of

this test is always extremely low which allows us to proceed with the multiple

comparisons with the best (MCB) test (Koning et al., 2005).
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Figure 1: MCB tests on time-series data sampled from the state-space model assumed by

D-DLM for δ ∈ {0.95, 0.99}.
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Figure 2: Evolution of median and interquartile range for δt, for time-series data sampled

from the state-space model assumed by D-DLM with δ ∈ {0.95, 0.99}.

The outcomes of the MCB test are shown in Figure 1, while Figure 2 illus-

trates the median (solid line) and the interquartile range (shaded region) for

the discount factor, δt, for each method. As shown in Figure 1(a) when the

true value of the discount factor is 0.99 ADLM achieves the lowest median rank

but its performance is not statistically significantly better than that of Grid-

DLM. Figure 2(a) shows that in this case the median estimated discount factor

by ADLM and Grid-DLM tends towards the true value of 0.99. The median

value of δt obtained by PL-DLM instead converges towards unity and has higher

variability.

When δ = 0.95 the two best performing methods are ADLM and Grid-DLM,

while PL-DLM performs significantly worse. Figure 2(b) shows that ADLM con-

verges fastest to the true discount factor value but the estimate of δt exhibits

higher variability compared to Grid-DLM. On the other hand the median es-

timate by Grid-DLM converges much more slowly. The median estimate by

PL-DLM is consistently higher than the true value and the variability of is also

the highest among the considered methods.

The previous example allows us to assess the ability of different methods

to estimate the optimal discount factor. However, the purpose of D-DLMs

is to provide a flexible framework to track time-varying DGPs when the true
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dynamics are unknown. We therefore also consider a case of gradual change

in which the coefficient vector follows a random walk (as in Eq. (2)) with an

unknown covariance matrix Wt. We set Wt = σ2
w,tI, and consider three cases:

in the first two σ2
w,t is constant and takes values σ2

w,t ∈ {5 · 10−4, 10−3}. In

the third case we have periods of very slow change σ2
w,t = 2 · 10−4 that last

200 time-steps, being followed by shorter periods (100 time-steps) of more rapid

change σ2
w,t = 10−3. As before we perform first Friedman’s nonparametric test

and after rejecting the null hypothesis we use the MCB test. The results of the

latter are illustrated in Figure 3. As the figure shows ADLM clearly outperforms

the other two methods in the first two cases. In the last case where σ2
w,t changes

abruptly between two regimes ADLM still achieves the lowest median rank but

its performance is statistically better than that of PL-DLM.

3.3. Abrupt change

For our last simulation experiment, we consider an environment in which θt

changes at distinct points in time, and is constant in-between change points.

We simulate from a single time series of θt and create 100 time series of yt by

different realisations of the noise term in the measurement equation, Eq. (1).

The coefficient vector is determined according to θt = γtθt−1, for t = 1, . . . , 1000,

and θ0 = (3, 2, 1,−1,−2)>. We set γt = 0.5, 2 at t = 300, 700, respectively, and

γt = 1 at all other time-steps.

Figure 4(b) shows that during the first 300 time-steps all three methods

gradually increase δt towards unity, with PL-DLM being the fastest. In response

to the first change point at t = 300 all methods reduce the discount factor. The

sequential Monte Carlo (SMC) approach adopted by PL-DLM enables it to

sharply reduce δt immediately after the change point, and subsequently rapidly

increase it towards unity. This is ideal in an abruptly changing environment,

which is the setting for which PL-DLM was originally designed for (Irie et al.,

2022). ADLM also decreases sharply the value of δt after the first change point

but the speed of both the decrease and the subsequent recovery are slower

compared to PL-DLM. Figure 4(b) shows that following the first change point
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Figure 3: MCB tests on time-series data sampled from the state-space model in which the

coefficient vector follows a random walk with an unknown covariance matrix Wt = σ2
w,tI.

there is an increase in the variability of δt by ADLM. This is because after

the change point ADLM assigns a large weight to the ADAM variant with a

large constant step-size. In response to the second change point PL-DLM and

ADLM behave as they did after the first. Figure 4(b) shows that Grid-DLM

behaves differently. In response to the first change point the median discount

factor becomes very close to the smallest value in the grid, 0.95. The subsequent

recovery is very slow, and by the time of the second change point δt is still very

close to 0.95. In response to the second change point the discount factor first

increases and then decreases again towards the minimum value in the grid. The

above described behaviour of the discount factor explains the outcome of the
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Figure 4: Top: MCB test on time-series with abrupt change in the coefficient vector. Bottom:

Evolution of median and interquartile range for δt.

MCB test illustrated in Figure 4(a). PL-DLM is always the best performing

method in this setting, while ADLM always outperforms Grid-DLM.

Overall, our results on simulated time-series suggest that there is not one

method for estimating the discount factor that is always best. PL-DLM is de-

signed to handle static environments which experience sudden large changes,

and performs best in these conditions. The main advantages of Grid-DLM are

its simplicity, and the very low performance variability. However, this method

can perform poorly if the grid of discount factor values does not contain an

appropriate δ for a given time-series, or when there is no fixed value of δ that is

optimal for the entire time-series (as in the case of abrupt change). The reported

results illustrate that ADLM adapts the discount factor towards appropriate

values under different types of variation in the DGP. This allows ADLM to be

outperform Grid-DLM in all cases and PL-DLM in the case of gradual change.

Finally we note that the computational cost of PL-DLM is in a different order

of magnitude compared to that of Grid-DLM and ADLM. Specifically to pro-

cess the 100 time-series of length 1000 for each simulation PL-DLM with 1000

particles required on average 4.7 hours while the average time for Grid-DLM

and ADLM was 34 seconds (a relative speed-up of more than 513 times).
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4. Forecasting UK house price inflation through DLMs

Our empirical application focuses on the prediction of quarterly seasonally

adjusted house price indices. The data on house price indices has been provided

by Nationwide (the largest building society in the world and one of the largest

mortgage providers in the UK) and covers the period from 1982:Q1 to 2017:Q4.

We consider the UK national market, as well as each of the thirteen regional

UK markets as defined by Nationwide’s classification. The regional markets

are: East Anglia (EA), East Midlands (EM), Greater London (GL), North-

ern Ireland (NI), North (NT), North West (NW), Outer Metropolitan (OM),

Outer South East (OSE), Scotland (SC), South West (SW), Wales (WW), West

Midlands (WM), and Yorkshire and Humberside (YH).

4.1. Data

To transform nominal into real prices, we divide by the consumer price index

(all items), obtained from the OECD Database of Main Economic Indicators,

and then compute the annualised log transformation of real property price in-

flation as,

yr,t = 400× ln

(
Pr,t
Pr,t−1

)
, r = 1, . . . , 14, (30)

where Pr,t stands for the level of the real house price index of market r at time t.

Time series plots of the annualised house price inflation index for all markets

are provided in Appendix A.

We consider eight economic variables as potential predictors of future house

price movements: three regional-level and five national-level predictors. The

variables measured at the regional level include the price-to-income ratio (which

proxies for affordability), income growth, and the unemployment rate. National-

level predictors consist of the real mortgage rate, the number of housing starts,

growth in real consumption, a new measure of house price uncertainty (HPU),

which we construct using the news based methodology of Baker et al. (2016), and

a credit conditions index (CCI) (Fernandez-Corugedo and Muellbauer, 2006).

For GL, we also consider an additional financial variable, the spread between
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yields on long-term and short-term government securities. Appendix B provides

a detailed description of the data sources and all the variables.

From the above predictors, the first six have been used by Bork and Møller

(2015) to forecast house price movements in US metropolitan states. CCI and

HPU have not been previously employed in a forecasting context but as we ar-

gue next there are good reasons to be considered. Credit supply conditions in

the UK economy, especially in the mortgage market, have changed dramatically

since the 1970s. As argued by several authors, such changes were at the heart

of the housing boom that preceded the Great Recession. It therefore seems nat-

ural to investigate whether an index of credit conditions may contain valuable

information for forecasting.1 With regard to HPU, there is a growing literature

on the effect of uncertainty on macroeconomic outcomes. In this context, the

impact of house price uncertainty on housing investment and real estate con-

struction decisions has been recognised in a number of studies (Cunningham,

2006; Banks et al., 2015; Oh and Yoon, 2020).

In addition to the relationship of house prices with macroeconomic and fi-

nancial variables, there is also a substantial empirical literature that documents

the existence of strong spatial linkages between UK regional markets in sample

(see, e.g., Drake, 1995; Meen, 1999; Cook and Thomas, 2003; Holly et al., 2010;

Antonakakis et al., 2018, inter alia). To accommodate this, we incorporate in

the set of potential predictors lagged property price growth in contiguous re-

gions. The number of neighbouring regions for each of the thirteen real estate

markets under consideration lies in the range of one to five.

We employ Hausman-type and Chow-type tests proposed by Chen and Hong

(2012) to assess whether there is sufficient evidence of structural instability

1A deficiency of simple proxies for credit conditions, such as interest-rate spreads and

unsecured credit to income ratios, is that they fail to control for the economic environment,

and are thus subject to an endogeneity problem. The methodology of Fernandez-Corugedo

and Muellbauer (2006) mitigates this problem by making use of a large number of economic

and demographic controls.
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between house price inflation and individual predictors. The results of both

tests, reported in Appendix C, provide strong evidence of structural instability,

and thus justify the use of dynamic econometric models.

4.2. Empirical evaluation

In this section we evaluate the performance of ADLM, Grid-DLM, and PL-

DLM on the task of predicting UK house price inflation. For each market

we construct a model set (pool) which consists of a DLM for every possible

combination of the predictors listed previously. The total number of models,

K, is equal to 29 = 512 for each regional market, except GL where due to the

inclusion of the spread variable we have 210 = 1024 models. For the UK national

market the number of models is 28 = 256, since there are no contiguous regions

at the national level.

In addition to ADLM, Grid-DLM, and PL-DLM we also consider a simple

and intuitive approach to selecting a fixed discount factor. Specifically, for each

model specification we estimate a separate D-DLM for each value of the discount

factor, δ ∈ {0.9, 0.91, . . . , 0.99, 0.999}. At the end of the in-sample period we

identify the value of δ that produced the lowest Mean Squared Forecast Error

(MSFE) and use this to predict in the out-of-sample period. We abbreviate this

method as Tr-Best.

The first evaluation criterion we consider is MSFE. To compare the per-

formance of different methods across the different model specifications in each

market we first use Friedman’s nonparametric test (Friedman, 1937, 1939). In

all markets the p-value for the null hypothesis of equal predictive performance

across ADLM, Grid-DLM and PL-DLM, is extremely small (smaller than 10−9).

We are therefore justified to proceed with the MCB test (Koning et al., 2005).

Figures 5 and 6 visualises the outcomes of this test for every market.

ADLM performs statistically significantly better than all other methods in

the UK national market, and in six regional markets (namely EM, GL, OM, SW,

WM, and WW). In NW and OSE ADLM achieves the lowest median rank but

its performance is not statistically significantly better than that of Tr-Best. In
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Figure 5: MCB tests to compare different methods to select the DLM discount factor. Each

subfigure illustrates the outcome of the MCB test across all model specifications for a given

housing market.
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Figure 6: MCB tests to compare different methods to select the DLM discount factor. Each

subfigure illustrates the outcome of the MCB test across all model specifications for a given

housing market.
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NT and SC the performance of ADLM is not statistically worse than that of the

best performing method. Grid-DLM performs statistically significantly better

than all other methods in NI, while Tr-Best outperforms all other methods in

YH. In EA the best performing methods are Grid-DLM and Tr-Best.

In conclusion across the fourteen UK housing markets ADLM achieves a per-

formance that is statistically significantly better than Tr-Best in nine markets,

Grid-DLM in eleven markets, and PL-DLM in all fourteen markets. Note that

Tr-Best is statistically significantly better than ADLM in one market (YH),

while Grid-DLM is statistically significantly better than ADLM in two mar-

kets (EA and NI). This provides strong evidence that the proposed ADLM is

effective at adapting the discount factor to improve forecast performance.

5. Forecast combination

In this section we investigate whether and to what extent forecast combina-

tion can improve the forecastability of UK house prices. Based on the results

of the performance comparison in the previous section, here we only consider

combining forecasts produced by ADLMs. In Sections 5.1 to 5.5 we briefly in-

troduce the forecast combination methods we consider, and in Section 5.6 we

discuss the findings of the empirical evaluation.

5.1. Averaging

Although averaging is the simplest approach to model combination, an ex-

tensive literature attests to the difficulty of outperforming it. The “equal weights

puzzle” (Clemen, 1989; Diebold, 1989) has been extensively studied. In a con-

tribution that is particularly relevant to our case Smith and Wallis (2009) show

that the finite-sample error in the estimation of the combination weights can

cause sophisticated forecast combination methods to perform poorly. Clearly

the possibility and severity of “overfittting” the combination weights increases as

the number of models, K, increases relative to the time series length, T . In our

case this is an important consideration since the time series length is T = 143,

while the number of models is K ∈ {256, 512, 1024}.
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5.2. Bayesian model averaging and power discounting

In Bayesian model averaging (BMA) and model probability power discount-

ing (MPD) the probability assigned to each model Mj is sequentially updated

according to,

p(Mj |Dt) ∝ p(yt|Dt−1,Mj) p(Mj |Dt−1)α,

where α ∈ (0, 1] is the power discount factor (West and Harrison, 1989). Setting

α = 1 yields BMA, while in MPD α < 1 to allow p(Mj |Dt) to weigh more heavily

recent predictive performance. As mentioned in Section 2.1 the motivation for

MPD is to prevent situations in which models that predict well at later time

steps are assigned a weight that is very small (or effectively zero) in early stages.

In the implementation of MPD in this section we use a grid of values, α ∈ [0.95, 1]

with a step size of 0.005 (Zhao et al., 2016). Note that the more recent dynamic

model averaging (Raftery et al., 2010; Koop and Korobilis, 2012) combines a

pool of DLMs with constant discount factors, and power discounting with a

single value for α (typically α ∈ {0.99, 0.95}).

5.3. Prediction with expert advice

The problem of incrementally updating the weights assigned to individual

models so as to minimise a measure of forecast error has been extensively stud-

ied in the field of machine learning known as prediction with expert advice

(PEA) (Cesa-Bianchi and Lugosi, 2006). PEA studies the following online learn-

ing problem: At time-step t each of the K forecasters (experts) provides a fore-

cast, ŷk,t, and the forecast of the aggregation algorithm is a convex combination

of these, ŷt =
∑K
k=1 wk,t ŷk,t. Note that no assumptions are made concerning

how the individual ŷk,t are generated. After observing yt each expert incurs a

loss `(yt, ŷk,t), which depends on the forecast error, and the weight of each ex-

pert, wk,t, is updated based on these losses. The analysis of PEA algorithms in

dynamic environments considers a partition of the time series into an arbitrary

number of M segments, t(0) = 1 < t(1) < t(2) < · · · < t(M−1) < T = t(M).

Given this partition and the forecasts of the experts the minimum cumulative
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loss over the length of the time series is,

L?T
(
t(1), t(2), . . . , t(M−1)

)
=

M∑
m=1

min
k


t(m)∑

t=t(m−1)

`(yt, ŷk,t)

 .

The optimal partition of the time series into M segments minimises the above

loss with respect to the location of the change points,

L?T (M) = min
1<t(1)<···<t(M−1)<T

L?T
(
t(1), t(2), . . . , t(M−1)

)
.

The literature on PEA provides aggregating algorithms whose cumulative loss,

LT =

T∑
t=1

`(yt, ŷt),

is within a known upper bound with respect to L?T (M), for any M and T . It

is important to note that these upper bounds are functions of T , K, and M .

The dependence on the latter is inevitable because as M increases the prob-

lem becomes more difficult (and in the limiting case M = T no meaningful

bound is possible). Starting with Herbster and Warmuth (1998) a number of

PEA algorithms have been proposed that achieve optimal upper bounds for this

problem, but most work assumes that the loss is bounded (typically the range

of the loss function is assumed to be [0, 1]). In most forecasting applications this

assumption is not tenable. The first (and to the best of our knowledge only)

PEA algorithm that can handle unbounded losses and dynamic environments is

ConfHedge (CH) (V’yugin and Trunov, 2019).

BMA, MPD and CH are designed to identify the “true” (or best) model

contained in the model set. If the model set is incomplete, that is if it does not

include the “true” model, then BMA and MDP will assign all the probability

mass to the model with the smallest Kullback-Leibler divergence to the true

DGP. Similarly, CH will assign a weight of one to the model with the smallest

loss. This will be the case even if there exists a convex combination of forecasts

which achieves better forecast accuracy. The remaining three approaches we

consider overcome this limitation in different ways.
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5.4. Partially egalitarian LASSO

The partially egalitarian LASSO (peLASSO) (Diebold and Shin, 2019) fol-

lows a two-step procedure to combine forecasts. First, individual model forecasts

are used as predictors in a LASSO penalised linear regression (Tibshirani, 1996).

The resulting regression however is not used for forecasting, but only to identify

a subset of relevant models. The final forecast is obtained by averaging the

predictions of the models selected by LASSO. Through this two step procedure

peLASSO attempts to combine the benefits of reducing the size of the model

set, and avoid overfitting in the estimation of the combination weights. The per-

formance of peLASSO depends on the choice of the LASSO penalty parameter,

λ.2 We select λ through 5-fold cross validation. To accommodate time-variation

in the optimal model combination peLASSO estimates uses a window of most

recent observations. In all the reported results we use a window length of 40

which is equal to the length of the in-sample period.

5.5. Density combination

Density combination methods aim to optimally combine the information

in the probability density functions of individual models rather than just the

point forecasts. The optimal prediction pool (OPP), proposed by Hall and

Mitchell (2007) and elaborated by Geweke and Amisano (2011), minimises the

Kullback-Leibler divergence between the combined density and the unknown,

true probability density function. This is equivalent to maximising the log

predictive score function, with respect to the combination weights, which results

in a convex optimisation problem.

We also consider a Bayesian combination approach called Density Combi-

nation (DeCo) (Billio et al., 2013). DeCo relies on a state-space formulation to

model the time variation in the true, but unobserved combination weights. In

2Diebold and Shin (2019) suggest an approach that avoids LASSO (and hence the deter-

mination of λ) through an exhaustive search over all possible subsets of a certain size. In our

case this is infeasible since it would involve estimating billions of averages at every time step.
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particular the true combination weights are obtained through a logistic trans-

formation of latent variables which evolve according to a linear and Gaussian

process. The resulting state-space model is therefore nonlinear and hence filter-

ing is performed through sequential Monte Carlo (particle filtering). In DeCo

the predictive density of each individual model is represented as a finite sample

from the corresponding distribution. Therefore the two critical parameters for

this algorithm are the number of particles in the particle filter, and the number

of points with which the predictive distribution of each model is represented at

each time-step. We set both to 1000 which is the default setting in the DeCo R

package (Casarin et al., 2015).

5.6. Performance evaluation

Figures 7 and 8 present histograms of the MSFE of individual models in the

out-of-sample period. In the same figures the MSFE of each forecast combina-

tion method is illustrated with a vertical line and a dot below the horizontal

axis. These figures enable us to compare the performance of each combina-

tion method relative to the distribution of the performance by the individual

ADLMs which comprise the pool of models. For completeness we also indicate

the out-of-sample performance of the ADLM which achieved the lowest MSFE

in the in-sample period, which we abbreviate as Tr-Best. We also illustrate the

out-of-sample MSFE of three standard time-series forecasting methodologies:

AR(1), the established benchmark in house price forecasting (Bork and Møller,

2015), ARIMA and exponential smoothing (ETS). For ARIMA and ETS we

used automatic model selection through the forecast R package (Hyndman

and Khandakar, 2008). Table 2 reports the precise MSFE values across housing

markets for all the considered forecasting methods. In this table the best per-

forming method is indicated with bold, and the second best performing method

with italic.

DeCo achieves the best performance in all markets, and is the only combi-

nation method that consistently outperforms the best individual model in the

out-of-sample period. In eleven out of the fourteen housing markets the simple
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average is the second best performing method. This is not surprising since the

number of models is very large compared to the time-series length. In six mar-

kets (EA, NI, NW, OSE, SW, and WM) the simple average achieves an MSFE

that is lower than that of the best individual ADLM. Out of the three methods

that sequentially update the combination weights CH is the best performing,

while BMA is frequently the worst combination method. The performance of

peLASSO exhibits high variability. In most markets OPP is ranked in the top

four best performing methods. Tr-Best performs very poorly in all housing mar-

kets except in WW. In fact in all markets except WW the MSFE of Tr-Best is

on the right tail of the empirical distribution of MSFE. With a few exceptions

ARIMA, ETS and AR(1) are among the worst performing methods.

The above findings are confirmed by an MCB test that compares the out-of-

sample performance of the different methods across the fourteen housing mar-

kets. Figure 9 presents the outcome of this test. The performance of DeCo

is statistically significantly better than all other methods except the average

and ConfHedge. The average achieves the second lowest median rank, and its

performance is statistically significantly better than peLASSO, BMA, AR(1),

ARIMA, and ETS.

Next we evaluate density forecasting performance and consider the log pre-

dictive density ratio (LPDR) on the out-of-sample period. Based on the previous

analysis the natural benchmark for this measure is DeCo, but DeCo does not

provide a density score. Therefore we use as benchmark the simple average.

Table 2 reports the LPDR computed as,

LPDR =

T−1∑
t=Ttrain

log (pf (yt+1|Dt)/paver(yt+1|Dt)) ,

where pf (yt+1|Dt) is the predictive density of method f , and paver(yt+1|Dt) is

the predictive density of the simple average. A negative LPDR indicates that

method f performs worse than the average in terms of density forecasting over

the out-of-sample period. The opposite is true when LPDR is positive. Table 2

reveals that in terms of LPDR the average is the best performing method in four

markets: EA, NI, SC and the national UK market. In all other markets there
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Figure 7: Histograms of out-of-sample mean squared forecast error (MSFE) of individual

ADLMs in different housing markets. The MSFE of each forecast combination method is

represented with a dot and a vertical line.
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Figure 8: Histograms of out-of-sample mean squared forecast error (MSFE) of individual

ADLMs in different housing markets. The MSFE of each forecast combination method is

represented with a dot and a vertical line.
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Figure 9: Multiple comparison with the best (MCB) test that compares different model com-

bination methods across the fourteen housing markets.

Region DeCo Aver BMA MPD OPP CH peLASSO AR(1) ARIMA ETS

EA 83.24 96.1 118.39 107.01 104.72 101.67 114.4 104.02 103.97 104.97

EM 50.93 60.76 79.63 70.2 66 63.6 72.54 76.1 77.07 76.49

GL 78.69 90.53 114.85 98.15 96.03 91.28 97.38 118.58 113.12 119.84

NI 203.62 224.61 242.31 255.04 239.85 247.37 249.38 287.17 306.62 279.46

NT 126.85 145.22 168.67 150 145.25 140.54 159.14 178.44 164.74 165.82

NW 51.99 60.16 68.27 65.67 66.07 62.76 69.55 66.27 66.82 61.28

OM 44.07 52.33 59.13 53.74 53.1 53.4 52.92 55.26 57.33 61.26

OSE 53.72 62.32 79.15 74.65 65.54 68.32 65.69 72.54 69.23 75.84

SC 73.82 83.4 82.29 82.32 88.85 84.35 88.84 85.53 87.6 83.23

SW 57.15 67.13 78.87 71.63 68.17 68 67.86 72.79 78.28 76.95

WM 43 52.28 60.42 55.66 57.77 53.94 60.62 55.64 55.25 55.26

WW 119.65 136.9 154.24 140.32 139.04 138.45 145.95 153.85 143.21 142.25

YH 81.07 94.76 108.63 95.39 96.96 94.38 92.44 104.7 104.5 105.7

UK 29.98 37.43 40.95 39.21 38.73 39.34 39.37 37.45 40.96 41.21

Table 1: Mean squared forecast error (MSFE) on the out-of-sample period for different forecast

combination methods as well as three benchmark time-series forecasting methods.
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exists at least one forecast combination method which achieves a positive LPDR.

The method whose performance clearly stands out is OPP, which achieves a

positive LPDR in ten markets, and outperforms all other methods (including

the simple average) in eight markets. The other two methods that perform

notably well in terms of LPDR are CH and peLASSO. It is worth noting that

all simple time-series forecasting methodologies achieve a negative LPDR in all

markets. Therefore in UK housing markets averaging ADLM models always

produces better density forecasts compared to AR(1), ETS, and ARIMA.

However the LPDR at the end of the out-of-sample period does not capture

the entire picture. Figures 10 and 11 illustrate the evolution of LPDR for each

housing market. In most markets (namely EA, NI, OM, OSE, SC, SW, WM,

WW, YH, and UK) we observe a sudden decrease in the LPDR of AR(1), ETS,

and ARIMA which assume stationarity. The most notable example of this is

the NI market, where the magnitude of the decrease in LPDR for AR(1), ETS

and ARIMA is much larger than that observed in any other market. In all

markets except YH, the abrupt decline occurs in 2008 suggesting a connection

to the onset of the financial crisis. It can also be observed that in most markets

(EA, NT, OM, OSE, SC, SW, WM, YH, and the UK national market), at

least one of the standard forecasting methods has a positive LPDR early in the

out-of-sample period. In contrast, in most markets OPP improves its relative

performance later in the out-of-sample period.

In conclusion, the empirical evaluation of the seven forecast combination

methods considered suggests that in terms of MSFE DeCo is the only method

that is capable of consistently outperforming the best individual model in the

pool, and the simple average in the out-of-sample period. This comes at a

very high computational cost however. DeCo required 7.84, 9.68 and 34.12

hours to combine 256, 512, and 1024 models, respectively. DeCo does not

provide an analytic predictive distribution and hence we use the average as a

baseline to evaluate LPDR. Our results suggest that OPP is the best performing

method in terms of density forecasting. Out of BMA, MPD and Confhedge

which sequentially update model probabilities in less than a second our results

30



BMA MPD OPP CH peLASSO AR1 ARIMA ETS

EA -6.05 -2.05 -0.77 -0.46 -3.71 -2.84 -0.13 -2.97

EM -10.95 0.59 3.54 2.23 -2.38 -9.72 -9.59 -11.43

GL -9.9 -0.02 1.72 3.01 0.34 -12.5 -9.85 -13.4

NI -9.23 -4.14 -2.52 -2.88 -4.03 -26.77 -36.18 -26.31

NT 0.88 3.89 3.99 3.93 -3.33 -10.08 -4.93 -6.09

NW -5.19 -1.13 0.77 0.05 -3.83 -4.5 -2.5 -1.92

OM -4.6 -0.27 0.83 0.02 0.58 -2.53 -3.72 -7.59

OSE -8.95 -4.32 0.92 -1.62 -0.22 -6.07 -2.71 -8.3

SC -1.05 -0.08 -2.68 -0.53 -2.36 -4.07 -4.09 -2.69

SW -5.65 -0.37 1.83 -0.07 1.86 -3.72 -5.55 -6.7

WM -4.12 -0.2 0.21 -0.99 -2.97 -1.25 -0.54 -2.98

WW -5.45 0.13 0.72 0.54 -3.44 -8.57 -3.69 -4.88

YH -5.82 2.14 3.72 1.33 1.66 -5.16 -4.18 -7.14

UK -3.12 -1.1 -0.34 -1.28 -0.92 -1.04 -4.33 -5.66

Table 2: Log predictive density ratio (LPDR) on the out-of-sample period for different forecast

combination methods as well as three benchmark time-series forecasting methods.
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Figure 10: Evolution of likelihood predictive density ration (LPDR) in the out-of-sample pe-

riod for different model combination methods and benchmark time-series forecasting method-

ologies.
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Figure 11: Evolution of likelihood predictive density ration (LPDR) in the out-of-sample pe-

riod for different model combination methods and benchmark time-series forecasting method-

ologies.
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suggest that CH performs best, while BMA performs worse. Finally, combining

the forecasts of ADLMs consistently outperforms standard time series methods

like ETS and ARIMA, and the AR(1) model which is the established benchmark

in forecasting housing markets (Bork and Møller, 2015; Rapach and Strauss,

2009).

6. Conclusions

In this paper we proposed an adaptive approach to estimate the discount

factor in dynamic linear models. In our approach the optimal discount factor

minimises the expected one-step-ahead squared forecast error. This formulation

enables us to apply stochastic gradient descent to sequentially estimate the

optimal value of this parameter. The proposed approach allows for closed-form

updating and does not increase the computational complexity of filtering. We

conducted the empirical evaluation of the proposed approach on the task of

forecasting UK house prices, at the national and regional level. The results of

this study suggest that the adaptive dynamic linear model can achieve significant

forecast accuracy improvements over competing methods.

We also considered and assessed a range of forecast combination methods

to predict UK house prices. In agreement with a large empirical literature

we find that it is difficult to outperform the simple average in terms of mean

squared forecast error. Our findings however show that a recently proposed

density combination method which allows for time-varying combination weights

consistently outperforms the simple average. In terms of density forecasting the

optimal prediction pool consistently outperforms the simple average.
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Appendix A Time series of annualised real house price inflation
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(c) Greater London
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(d) Northern Ireland
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(e) North

−
20

−
10

0
10

20
30

40

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

1982.Q
2

1983.Q
3

1984.Q
4

1986.Q
1

1987.Q
2

1988.Q
3

1989.Q
4

1991.Q
1

1992.Q
2

1993.Q
3

1994.Q
4

1996.Q
1

1997.Q
2

1998.Q
3

1999.Q
4

2001.Q
1

2002.Q
2

2003.Q
3

2004.Q
4

2006.Q
1

2007.Q
2

2008.Q
3

2009.Q
4

2011.Q
1

2012.Q
2

2013.Q
3

2014.Q
4

2016.Q
1

2017.Q
2

(f) North West
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(g) Outer Metropolitan
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(h) Outer South East

Figure 12: Time series plots of annualised real house price inflation in eight regional UK

housing markets.
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(b) South West
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(c) West Midlands
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(d) Wales
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(e) Yorkshire and Humberside
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(f) UK national market

Figure 13: Time series plots of annualised real house price inflation in five regional, as well as

the national UK housing market.
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Appendix B Variable Definitions and Data Sources

House Prices Real regional house price index (all houses, seasonally adjusted).

Source: Nationwide.

Income Real average total household’s weekly expenditure. Source: Family

Expenditure Survey (FES).

Price-to-Income Ratio Quarterly changes in the log of the ratio of house

prices to income.

Income Growth Annualised quarterly changes in the log of real income.

Unemployment Rate Quarterly changes in the ratio of unemployed people

to the labour force times 100. Source: LFS.

Real Mortgage Rate Quarterly changes in the real mortgage rate of build-

ing societies, adjusted for the cost of mortgage tax relief as in Muellbauer and

Cameron (2006). Sources: OECD Main Economic Indicators and HM Revenue

& Customs.

Spread Difference between the 10-year government bond yield and the rate of

discount on 3-month treasury bills. Sources: Saint Louis FRED Economic Data

and the Bank of England.

Real Consumption Growth Annualised quarterly changes in the log of real

final consumption expenditure of households and non-profit institutions serving

households (seasonally adjusted, millions of UK sterling pounds). Source: ONS.

Housing Starts Log of the number of all permanent dwellings started in the

UK. Source: Department for Communities and Local Government.

Index of Credit Conditions Designed as a linear spline function, this index

is estimated using a two-equation system of secured and unsecured lending. For

details about the methodology and sources of the data used in the estimation

please refer to the supplementary Appendix to Yusupova et al., (2019).

House Price Uncertainty Index Constructed using the methodology out-

lined in Baker et al. (2016) to proxy for economic policy uncertainty. The

HPU is an index of search results from five large newspapers in the UK: The

Guardian, The Independent, The Times, Financial Times and Daily Mail. We
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use LexisNexis digital archives of these newspapers to obtain a quarterly count

of articles that contain the following three terms: ‘uncertainty’ or ‘uncertain’;

‘housing’ or ‘house prices’ or ‘real estate’; and one of the following: ‘policy’,

‘regulation’, ‘Bank of England’, ‘mortgage’, ‘interest rate’, ‘stamp-duty’, ‘tax’,

‘bubble’ or ‘buy-to-let’ (including variants like ‘uncertainties’, ‘housing market’

or ‘regulatory’). To meet the search criteria an article must contain terms in all

three categories. The resulting series of search counts is then scaled by the total

number of articles in the given newspaper and in the given quarter. Finally, to

obtain the HPU index, we average across the five newspapers by quarter and

normalise the index to a mean of 100.
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Appendix C Structural Instability in UK House Prices

For completeness, in this section we examine whether there is evidence of

structural instability in the relationship between real house price inflation and

individual house price predictors in-sample. To do so, we employ two tests

proposed by Chen and Hong (2012). The first is a Hausman-type (H) test that

compares time-varying parameter estimates obtained by local linear regression

to constant estimates obtain by ordinary least squares. The second is a Chow-

type (C) test which compares the sum of squared residuals between the constant

parameter and local linear regression models. The null hypothesis in both tests

is that of time-invariant regression coefficients.

These tests correspond well to the ADLM of Section 2 because they impose

minimal restrictions on the functional form of the time-varying parameters and,

thus, are consistent with both smooth and abrupt structural change. Further-

more, they require no prior information regarding the timing and the number

of breaks; they are asymptotically pivotal, and they do not involve trimming of

the boundary region near the end points of the sample period.

Tables 3 and 4 report wild-bootstrap p-values of the H and C tests for each

of the 11 house price predictors considered and for each of the 13 regions. We

observe that, out of the 286 p-values, none exceeds 10 percent, four exceed five

percent, and the vast majority lie below the one percent threshold. This strong

evidence of structural instability motivates the use of dynamic econometric mod-

els for forecasting house price inflation.
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Table 3: Stability Test Results
EA EM GL NI NT NW OM

H C H C H C H C H C H C H C

RATIO 1.1·10−3 1.5·10−3 1.8·10−3 1.9·10−3 3·10−4 · · · 0.0169 1.3·10−3 0.0808 0.0322 1·10−4 2·10−4

GROWTH 6·10−4 8·10−4 8·10−4 · · · · · 1.7·10−3 1.1·10−3 2·10−4 · · ·

UR · · 3·10−4 · · · 1.8·10−3 2.4·10−3 · · · · · ·

LF · · · · · · 0.0202 6.5·10−3 3.9·10−3 2.0·10−3 1·10−4 · 1·10−4 ·

HS · · 1·10−4 1·10−4 · · 1.4·10−3 0.0127 5.2·10−3 4·10−4 2·10−4 · · ·

CONS 1·10−4 1·10−4 1·10−4 · · · 2·10−4 9·10−4 3.4·10−3 6.1·10−3 1·10−4 3·10−4 · ·

INDUS 3·10−4 · · · · · 1.8·10−3 2.3·10−3 2·10−4 3·10−4 · · · ·

RABMR 4·10−4 · 6·10−4 1·10−4 · · 0.0222 3.3·10−3 1.5·10−3 · · · · ·

SPREAD · · · · · · 0.0752 0.0859 · 1·10−4 · · · ·

CCI · · 2.7·10−3 · · · · 8·10−4 0.0197 3.4·10−3 2.8·10−3 4·10−4 · ·

HPU 1·10−4 0.0199 · · · · · · 1.2·10−3 3.7·10−3 · · · 3·10−4

Notes: The table reports wild-bootstrap p-values, based on B = 9999 iterations, of the

Hausman- (H) and Chow-type (C) structural stability tests of Chen and Hong (2012) for

univariate predictor regressions. The symbol · corresponds to a p-value less than 5 · 10−5.

Table 4: Stability Test Results (Cont.)

OSE SC SW WM WW YH

H C H C H C H C H C H C

RATIO · · 3.7·10−3 5.8·10−3 0.0180 1.8·10−3 0.0181 0.0112 · · 4.3·10−3 1.7·10−3

GROWTH · · 2·10−4 · 2·10−4 2·10−4 3·10−4 1·10−4 2.3·10−3 1.3·10−3 3·10−3 7.8·10−3

UR · · 1.5·10−3 · · · · · 1·10−4 · · ·

LF · · 1.2·10−3 3·10−4 · · 6·10−4 2·10−4 · · 5.9·10−3 1.9·10−3

HS · · 0.0192 0.0357 · · · · 4.1·10−3 1.3·10−3 8·10−4 9·10−4

CONS · · 1.8·10−3 4.8·10−3 · · 3·10−4 · 1.0·10−3 8·10−4 5·10−4 1.6·10−3

INDUS · · · 1·10−4 · · · · 0.0242 5.7·10−3 2·10−4 3·10−4

RABMR · · 6·10−4 · · · 8·10−4 · 2·10−4 · 0.0134 4.9·10−3

SPREAD · · 1.2·10−3 4·10−4 · · · · · · · ·

CCI · · 1·10−4 3·10−4 · · · · 0.0446 8·10−4 0.0408 6.6·10−3

HPU · 1.3·10−3 · 1.0·10−3 1·10−4 8·10−4 · 1.4·10−3 3·10−4 2.6·10−3 · 3·10−4

Notes: The table reports wild-bootstrap p-values, based on B = 9999 iterations, of the

Hausman- (H) and Chow-type (C) structural stability tests of Chen and Hong (2012) for

univariate predictor regressions. The symbol · corresponds to a p-value less than 5 · 10−5.
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