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Abstract

New sampling algorithms based on simulating continuous-time stochastic pro-
cesses called piecewise deterministic Markov processes (PDMPs) have shown
considerable promise. However, these methods can struggle to sample from multi-
modal or heavy-tailed distributions. We show how tempering ideas can improve
the mixing of PDMPs in such cases. We introduce an extended distribution defined
over the state of the posterior distribution and an inverse temperature, which in-
terpolates between a tractable distribution when the inverse temperature is 0 and
the posterior when the inverse temperature is 1. The marginal distribution of the
inverse temperature is a mixture of a continuous distribution on [0, 1) and a point
mass at 1: which means that we obtain samples when the inverse temperature is 1,
and these are draws from the posterior, but sampling algorithms will also explore
distributions at lower temperatures which will improve mixing. We show how
PDMPs, and particularly the Zig-Zag sampler, can be implemented to sample from
such an extended distribution. The resulting algorithm is easy to implement and
we show empirically that it can outperform existing PDMP-based samplers on
challenging multimodal posteriors.

1 Introduction

Recently there has been considerable interest in developing sampling algorithms based on simulating
continuous time stochastic processes called piecewise deterministic processes (PDMPs) Davis [1993].
These sampling algorithms are qualitatively similar to Hamiltonian Monte Carlo algorithms Neal
[2011]. To simulate from some targst distribution ⇡(x), they work with an augmented state-space
(x,v), where the x component can be viewed as position, and the v component as a velocity. The
motivation for this is that these processes will encourage exploration of ⇡(x) by simulating continuous
velocity paths in between random event times at which the velocity changes. Examples of such
sampling algorithms include the Bouncy Particle Sampler [Peters and de With, 2012, Bouchard-Côté
et al., 2018], the Zig-Zag algorithm [Bierkens et al., 2019], the Coordinate Sampler [Wu and Robert,
2020] and the Boomerang Sampler [Bierkens et al., 2020]. See Fearnhead et al. [2018] for an
overview of these methods. Importantly, it is simple to write down the event rate, and how the velocity
should change at each event, to ensure these PDMPs have ⇡ as their invariant distribution. These
depend on ⇡ only through the gradient of log ⇡, and thus ⇡ only needs to be known up to a constant
of proportionality.
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These PDMP samplers have a number of advantages, including non-reversible dynamics (which is
known to improve mixing relative to reversible processes [Diaconis et al., 2000, Bierkens, 2016]),
and the ability to reduce computation-per-iteration by either leveraging sparsity structure in the model
[Bouchard-Côté et al., 2018, Sutton and Fearnhead, 2021] or using only sub-samples of the data to
approximate the log-likelihood at each iteration (whilst still guaranteeing sampling from the target
[Bierkens et al., 2019]). However, like other MCMC algorithms, particularly those that use gradient
information, these PDMP samplers can struggle to mix for multi-modal target distributions, or for
heavy-tailed targets [Vasdekis and Roberts, 2021].

One of the more successful techniques for enabling an MCMC algorithm to sample from challenging,
e.g. multi-modal, target distributions is to use tempering. There are various forms of tempering, but
each is based on defining either a discrete set or continuum of distributions that interpolate between a
distribution that is simple to sample from (viewed as at high temperature) and the target distribution
(at a low temperature). The idea is that allowing moving across this set will improve mixing, as
moving between modes will be easier for the distributions at higher temperatures. Examples of such
algorithms include parallel tempering [Swendsen and Wang, 1986], simulated tempering [Marinari
and Parisi, 1992], and continuous tempering [Graham and Storkey, 2017].

In this paper we show how continuous tempering ideas can be used with PDMP samplers. We have
chosen continuous tempering, as opposed to the alternative tempering approaches, as it is the method
that can most naturally benefit from the continuous-time nature of PDMP dynamics. To the best of
our knowledge, this is the first attempt at using tempering ideas to improve PDMP samplers. The
general idea is to define a joint distribution on the state of the PDMP, z = (x,v), and the inverse
temperature, �. The target distribution of interest is the x-marginal of this joint distribution when
� = 1. We define the joint distribution so that it has a point mass at � = 1 – thus simulating from it
will lead to a proportion of the resulting samples being from the target. We then use a PDMP sampler
to simulate from this joint distribution. Constructing the appropriate dynamics of the PDMP sampler
is non-trivial in this case as we have to deal with its behaviour as it transitions between the continuous
distribution on � 2 [0, 1) and the point mass at � = 1. We use recent ideas for PDMP samplers with
discontinuities [Chevallier et al., 2021, 2020] to solve this challenge.

While we express ideas based on and similar to Graham and Storkey [2017], a key difference is the
inclusion of a point-mass at � = 1, this means we can obtain samples from ⇡(x) rather than having
to resort to importance sampling to correct samples drawn at different temperatures. It is easy to
introduce a point mass into the dynamics of the PDMP sampler due to its continuous sample paths:
we simulate paths for � 2 [0, 1) until the process hits � = 1 – we then simulate paths with � fixed
to 1 for an exponentially distributed period of time before returning to � 2 [0, 1). By comparison,
using a point-mass within a Hamiltonian Monte Carlo sampler is not possible as the discretised
sample paths will not hit � = 1 with probability 1. Yao et al. [2020] consider an indirect approach
to sampling with a pointmass at � = 1 using a continuous link function. Our approach is distinct
and more direct, allowing one to exploit the unique advantages of PDMP samplers — such as the
ability to perform subsampling without altering the ergodic distribution and application to sampling
transdimensional distributions.

The benefits of introducing the point mass at � = 1 are numerically investigated, and practical
considerations related to choosing tuning parameters to encourage a desired proportion of time at
the target distribution are presented (Section 3.4). We find that, analogously to standard methods in
discrete-time, the tempered counterparts of PDMP samplers outperform vanilla PDMP on challenging
sampling problems.

2 The Zig-Zag sampler

For the purposes of brevity and ease of exposition, we focus specifically on a continuous-tempered
version of the Zig-Zag sampler see also the supplementary material for additional details. However,
we stress that the underlying ideas can easily be applied to any PDMP sampler, for example, the
Bouncy Particle Sampler [Bouchard-Côté et al., 2018] or the Boomerang Sampler [Bierkens et al.,
2020]; see the comments at the end of Section 3.2.

Consider the problem of sampling from a target density defined for x 2 X := Rd by

⇡(x) =
1

Z
exp(�U(x))
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where U : X ! R is a continuous differentiable function referred to as the potential and Z is
the, potentially unknown, normalising constant Z =

R
X exp(�U(x))dx. We will denote the un-

normalised target density by q, so ⇡(x) = q(x)/Z.

The Zig-Zag process is a continuous-time piecewise deterministic Markov process, which can be
defined so as to have ⇡(x) as its invariant distribution. The process is defined on an extended
state-space that can be viewed as consisting of a position, x and a velocity component, v. For the
Zig-Zag process, the velocity is restricted to be ±1 in each axis direction. Thus the extended space is
E = Rd ⇥ {�1, 1}d. We write z = (x,v) for z 2 E from here on. We will use subscripts to denote
time, and superscripts to denote components. So zt will be the state at time t, while xi

t will be the ith
component of the position at time t.

For an event at time t we use the notation zt� to be the state immediately before the event, and
zt the state immediately after it. The dynamics of the Zig-Zag process are deterministic between
a set of random event times. At each event time the direction of one component of the velocity is
switched. The deterministic dynamics are specified by a constant velocity model. So, if there are no
events between times t and t+ h, for h > 0, the change of state is given by zt+h = (xt+h,vt+h) =
(xt + hvt,vt).

The events occur with a rate that depends on the current state. For the Zig-Zag process we have
d types of event, each of which results in the flipping of one of the d components of the velocity
process. To ensure that we have ⇡(x) as the x-marginal of the process’s invariant distribution, these
rates are defined to be, for i = 1, . . . , d,

�i(xt,vt) = max(0,vi
t@xiU(x)),

with the transition at the corresponding event being that vi
t = �vi

t�, and all other elements of the
state are unchanged.

Pseudo-code for simulating the Zig-Zag process is given in Algorithm 1. When we simulate such a
process, the output of the algorithm is the set of event times, positions and velocities after the event
times. This set is known as the PDMP skeleton and with the deterministic dynamics of the process it
defines the continuous time path of the process. We can use such a simulated path to give us draws
from ⇡(x), by discarding some suitably chosen initial path time as burn-in, and then evaluating the
x component of the process at a set of evenly spaced discrete time-points (see e.g. Fearnhead et al.
[2018] for alternative approaches that use the continuous-time paths).

Algorithm 1 Zig-Zag algorithm
1: Inputs: initial state (xt0 ,vt0) and number of simulated events K
2: t0  0
3: for k 2 1, . . . ,K do

4: Simulate an event-time ⌧i for each rate �i(xt,vt)
5: i⇤  argmini{⌧i} and tk  tk�1 + ⌧i⇤
6: xtk  xtk�1 + ⌧i⇤vtk�1 . Update position
7: vi⇤

tk  �v
i⇤
tk�1

. Update velocity
8: end for

9: Outputs: Zig-Zag skeleton {tk,xtk ,vtk}.

3 Continuously-tempering with a point mass

3.1 Continuous-tempering

Continuous-tempering is an approach to improve mixing of MCMC and related sampling algorithms.
It introduces a second distribution ⇡0, called the base distribution, which is assumed to have a density
⇡0(x) = q0(x)

Z0
. The idea is that this density will be simple to simulate from. For any � 2 [0, 1]

it is now possible to define a distribution which interpolates between ⇡ and ⇡0 in that its density
is ⇡(x)�⇡0(x)(1��). Continuous-tempering then defines a joint distribution on � and x. This
distribution has un-normalised density q(x,�), on Rd ⇥ [0, 1], defined to be

q(x,�) = q0(x)
1��q(x)� .
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In practice tempering methods often introduce a prior, p(�) on � 2 [0, 1], and sample from the
distribution proportional to p(�)q(x,�). The idea of introducing the prior is that it can be tuned to
give a marginal distribution on � that has reasonable mass across all of the interval [0, 1]. Without a
prior, the distribution q is likely to put almost all mass on � close to 0 or on � close to 1.

By construction, conditional on satisfying � = 1, samples drawn from q(x,�) are distributed
according to ⇡. However, if we use a continuous prior, samples will almost-surely not lie in that set,
and we have to use importance sampling to correct for � 6= 1. This leads to a weighted sample from
⇡, with the Monte Carlo accuracy of the resulting approach depending greatly on the variability of
the weights introduced by importance sampling.

To overcome this issue, we use a prior p(�) that introduces a point mass at � = 1. Specifically, for
↵ 2 R, and an arbitrary probability density function  on the interval [0, 1), we define

p(�) = (1� ↵)(�)1(0�<1) + ↵(�)1(�=1).

With the above prior, we can define the augmented target

!(dx, d�) / q(x,�)(1� ↵)(�)dxd� + q(x)↵(�)dx��=1. (1)

We can extend the Zig-Zag process to sample from such a distribution. The next subsection describes
the extension. The usual advantages of subsampling and transdimensional sampling using PDMPs
apply for the tempered extension.

3.2 Continuously-tempered Zig-Zag

Unlike most MCMC samplers, Zig-Zag is a continuous-time process. This makes it simpler to
deal with the point-mass at � = 1, using ideas from Chevallier et al. [2020]: we simulate paths for
� 2 [0, 1) until � hits the boundary at � = 1; when this happens, we set the velocity component
for �, denoted as vd+1

t , to zero so that the Zig-Zag process explores the distribution ! restricted to
� = 1; the Zig-Zag process stays with � = 1 until the first event in a new Poisson process, at which
point we set the velocity component for � to �1 to allow exploration of the distribution for � 2 [0, 1).
We define the rate of the events when we leave � = 1 to be ⌘. Algorithm 2 provides a sketch of the
relevant modifications of the standard Zig-Zag process for events concerning the inverse temperature
variable �.

Algorithm 2 Tempered Zig-Zag algorithm
1: Run Zig-Zag for �t 2 [0, 1) until first time t at which trajectory hits � = 1
2: vd+1

t  0 . Kill the velocity component for �
3: Simulate an event-time ⌧ with rate ⌘
4: Run the Zig-Zag process with � = 1, for time ⌧ . Sample ⇡
5: vd+1

t+⌧  �1 . Reintroduce �
6: Goto Step 1.

An appropriate choice of rate to ensure that the resulting algorithm generates a process with ! as its
limiting distribution is given in the following result (the proof of is located in the supplement).

Theorem 1 Assuming (�) is continuous and the rate function in Algorithm 2 is chosen as

⌘ =
1� ↵

2↵
,

Then, the resulting Zig-Zag process has ! as a stationary distribution.

The theorem statement above considers the case where  is continuous but we note in the proof that
more general choice is possible with a slight adjustment to the rate.

Importantly, the rate ⌘(x) is constant, and thus simulating the time at which we transition from � = 1
to � < 1 is independent of the path of the process and simulating the event time is simple. While we
have described the use of continuous tempering as an extension of the Zig-Zag process, the same
construction readily extends to other PDMP samplers.
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Remark 1 Tempered version of any PDMP-based samplers can be constructed more generally by
adding a tempering variable � with associated velocity ±1 and Zig-Zag rate function (irrespective
of the base PDMP). When � hits 1, the process reduces to the PDMP sampler on ⇡(x) and is
reintroduced with rate given by that of Theorem 1.

3.3 Importance sampling estimator

By construction, continuously-tempered Zig-Zag will spend a substantial amount of time in states
with � = 1, and thus the states at those times can give draws from ⇡(x). We can use importance
sampling ideas from Graham and Storkey [2017] to re-weight samples when 0  � < 1 to give
weighted samples from ⇡(x); but this only applies if (�) / ⇠1�� for some constant ⇠.

The idea of this approach is that, for � 2 [0, 1) we can marginalise out � from !, and the marginal
distribution for x is

![0,1)(x) =

Z 1

0
(�)q(x)

✓
q0(x)

q(x)

◆1��

d� = q(x)

Z 1

0

✓
⇠q0(x)

q(x)

◆1��

d�.

Defining �(x) = log q0(x) + log ⇠ � log q(x), the above is equal to

q(x)

Z 1

0
exp{(1� �)�(x)}d� = exp{�(x)}�(x)�1(1� exp{��(x)}) = exp{�(x)}� 1

�(x)
.

Thus if we have this as our proposal distribution, then the corresponding importance sampling weights
will be w(x) = �(x)/[exp{�(x)}� 1]. This will involve additional post-sampling computation of
the importance weights at the samples taken from the Zig-Zag trajectory.

3.4 Calibration of (�)

The efficiency of continuous-tempering depends on an appropriate choice of  and ↵. The choice
of  also arises in path sampling Gelman and Meng [1998] and in simulated tempering Marinari
and Parisi [1992]. A common approach from this literature is to choose  so the resulting marginal
for � is uniform. This choice is made to balance a non-negligible amount of time at � = 1,
while simultaneously allowing occasional excursions to lower inverse temperatures to help mix, e.g.
between modes. We consider how this choice for  may be adapted to our work considering the point
mass at 1 and additional parameter ↵.

For � 2 [0, 1] define, Z(�) =
R
Rd q(x,�)dx. The induced �-marginal of ! for �0 2 [0, 1) is

!(�0) =
(1� ↵)(�0)Z(�0)

(1� ↵)
R 1
0 (�)Z(�)d� + ↵(1)Z(1)

.

The above suggests that an appropriate choice is (�) / Z(�)�1, as this would both induce � to
be marginally uniform under ! for � 2 [0, 1), and cause the parameter ↵ to directly represent the
probability that � = 1 under !.

In our work we choose (�) / bZ(�)�1, where bZ(�) = exp
nPm�1

k=0 ak�k
o

for some coefficients

{ak}m�1
k=0 . The restriction to polynomial terms allows for simple implementation of thinning bounds

following Sutton and Fearnhead [2021]. Since Z(�) is unknown in practice, a common approach
is to replace it with an approximation. Following ideas from the path sampling literature [Gelman
and Meng, 1998, Yao et al., 2020], we can make use of numerical integration to form an estimate
of logZ(�) using a pilot run of the sampler. The terms {ak}m�1

k=0 may be estimated based on this
approximation (see Section 6.2 in the supplementary materials for details).

4 Numerical experiments

4.1 Mixture of Gaussians

In our first example, the target corresponds to a mixture of Gaussian distributions with equal weights
and variances so our target has unnormalised density

q(x) =
KX

i=1

exp

✓
� 1

2�2
(x� µi)

>(x� µi)

◆
,
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where K = 5, �2 = 0.2 and {µ1, ...,µ5} were generated uniformly on the region [0, 10]⇥ [0, 10]
and are given in the supplementary material. Figure 1 plots the PDMP trajectories for the tempered
and untempered Zig-Zag sampler, in addition to the trajectories for inverse temperature fixed at � = 1.
For this example we choose q0(x) as a Gaussian N (⌫,⌃) centred at ⌫ = (5, 5)T with covariance
matrix ⌃ = 2I2.

Figure 1: Trajectories of the Zig-Zag process simulated for 30,000 events for a multi-modal Gaussian
mixture model, Zig-Zag (left) and continuously tempered Zig-Zag (right) with ↵ = 0.7.

Table 1: Recovery of first two moments of a Gaussian mixture (averaged over 20 replications).

Root-mean-square error (RMSE) Thinning
Method ↵ !(� = 1) E[X1] E[X2] E[X2

1 ] E[X2
2 ] efficiency

Zig-Zag 1 1 2.557 2.740 30.577 31.761 0.057
Zig-Zag CT 0.8 0.789 0.650 0.741 7.898 7.182 0.080

0.7 0.703 0.399 0.683 4.563 6.418 0.090
0.5 0.499 0.329 0.539 4.199 4.930 0.114
0.3 0.302 0.304 0.453 3.216 4.155 0.139
0.2 0.197 0.294 0.472 3.756 4.617 0.153
0.1 0.097 0.349 0.389 3.987 4.198 0.167

Zig-Zag CT (IS) 0 0 0.483 0.472 5.567 5.030 0.301

Table 1 displays the root-mean-square-error (RMSE) of the Monte Carlo estimates from the Zig-Zag
and tempered Zig-Zag averaged over 20 runs. All methods were simulated for 50,000 event-times
with the first 40% used as burnin in the standard Zig-Zag and used for both burn-in and estimating
the polynomial (�) in the tempered samplers. The standard Zig-Zag is not able to explore the
multiple modes yielding worse estimates of the first and second moments. We also compare to a
direct Zig-Zag analogue of the continuously tempered HMC algorithm [Graham and Storkey, 2017]
where no mass is given to � = 1 and (�) / 1, the estimator is based on importance sampling as
defined in Section 3.3. Further details and boxplots showing variability of the estimated moments are
given in the supplementary material. Additional tables in the supplementary material record the work
normalised performance of the methods (MSE multiplied by number of gradient evaluations) – the
main findings are similar.

We find that the tuning procedure yielded precise control over the time spent at � = 1, and that for ↵
between 0.1 and 0.3 the results are similar. Tempering with a point mass was found to give more
efficient estimates of the first and second moments. This may be because the importance sampling
estimate spends more time at � ⇡ 0. In addition to exhibiting lower RMSEs, the tempered versions
of the Zig-Zag sampler have better computational properties. The thinning efficiency, measured as
the proportion of proposals that result in an event-time simulation is ⇡ .06 at � = 1 but improves
significantly when the sampler can transition to lower temperatures. While the importance sampling
estimator for � = 0 has the best thinning efficiency it requires additional post processing to evaluate
the importance sampling weights.
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4.2 Transdimensional example

We apply the tempered Zig-Zag to the challenge of sampling a transdimensional distribution. Such
target distributions arise naturally in variable selection problems. The resulting target (posterior)
distribution is a discrete mixture of 2p models, where p is the number of variables in the dataset.

Such a setting produces a challenge, as typical samplers such as HMC do not extend naturally to
such spaces. On the other hand, PDMPs have recently been extended to sample transdimensional
distributions [Chevallier et al., 2020, 2021, Bierkens et al., 2021]. This extension employs within-
model gradient information to efficiently explore the space and jumps between models when a
parameter hits zero. The approach is beneficial as an informative likelihood function’s gradient will
direct less informative variables towards zero and more informative ones away from zero, aiding
exploration of the sampler.

This example explores how tempering a target with a point mass can improve performance over the
standard transdimensional Zig-Zag process. Specifically, we define a family of example problems
of increasing difficulty in the sense that for higher values of an underlying parameter m, separation
between the mode of the slab component and the spike at zero is increased. Allow

q(x) =
2Y

i=1

(w�(xi;m,�2) + (1� w)�0(xi)), (2)

where �(xi;m,�2) is the normal density and w = 0.5 is the probability of a variable being included.
We fix �2 = 0.5 and increase m from m = 0 to m = 4. To enable tempering, define

q(x,�) =
2Y

i=1

(w�(xi;m�,�2) + (1� w)�0(xi)),

where at � = 0 the spike and slab is centred at zero, encouraging variables to enter and exit the model.
While this is a somewhat artificial example, it is important to note that it encompasses precisely the
situations which transdimensional PDMPs will find challenging, and allows us to explore robustness
for increasing levels of pathology in the purest setting possible.

Figure 2 (rightmost panel) displays the dynamics of the tempered Zig-Zag for this problem for the
choice of m = 4. Note that the standard transdimensional Zig-Zag process (bottom left) becomes
stuck in a single model whilst its tempered counterpart is able to transition easily between models
and thus visit the required areas for which each coordinate is equal to zero.

Figure 2: Sampling from (2) with m = 4. I. Exact samples from the spike-slab distribution. II.
Standard Zig-Zag for 104 event-times. III. Tempered Zig-Zag trajectories with ↵ = 0.5 for 104
event-times.

Table 2 gives the absolute error for the Monte Carlo estimates of the marginal inclusion probabilities
and marginal means. For lower m, the standard and tempered Zig-Zag perform similarly as the mode
of the slab is close enough to ensure regular crossing of the zero-axis for the PDMP trajectories.
However, as m increases, the marginal probabilities of inclusion tend to 1 and the standard Zig-Zag
process becomes stuck in a single model.
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Table 2: Absolute error of marginal mean and probability of inclusion for X1 (averaged over 10
simulations for increasing m in (2)).

Mean Absolute Error
m = 0 m = 1 m = 2 m = 3 m = 4

E[X1] Zig-Zag 0.005 0.018 0.633 1.498 1.998
Zig-Zag CT 0.007 0.025 0.022 0.047 0.214

P(|X1| > 0) Zig-Zag 0.009 0.012 0.322 0.500 0.500
Zig-Zag CT 0.010 0.023 0.008 0.018 0.055

4.3 Boltzmann machine relaxation

Following Nemeth et al. [2019] and Graham and Storkey [2017], the final example considers sampling
a continuous relaxation of a Boltzmann machine distribution. Full details surrounding the derivation
of the distribution can be found in [Nemeth et al., 2019, Supplementary Material, Section D], though
for the considered example the target density on Rdr is of the form

q(x) =
2db

(2⇡)dr/2Zb exp(
1
2Tr(D))

exp

✓
�1

2
x>x

◆ dbY

k=1

cosh(q>
k x+ bk),

where qk denotes the k-th row of Q, which is a db ⇥ dr matrix such that QQ> = W +D, and D is
an arbitrary diagonal matrix that ensures W +D is positive semi-definite. The above is a continuous
relaxation of the Boltzmann Machine distribution on {�1, 1}db with probability mass function

q(s) = Z�1
b exp

✓
1

2
s>Ws+ s>b

◆
.

The moments up to second order of the relaxation and the original (discrete) Boltzmann Machine
distribution are related via E[X] = Q>E[S] and E[XX>] = Q>E[SS>] + I . We employ a
similar experimental setup as in Nemeth et al. [2019], namely a 28-dimensional example which
allows for exact computation via enumeration of the moments of S, and hence in turn of X (the
latter being useful for evaluating sampler performance). Table 3 displays the results. We find that the
best performance is given by the Zig-Zag sampler with ↵ = 0.2 which far outperforms the standard
Zig-Zag ↵ = 1 and importance sampling version of the sampler. For these experiments the tuning of
 is notably sub-optimal as the proportion of time spent at zero is not fully controlled by ↵. Despite
this, the samplers were able to outperform the importance sampling approach where ↵ = 0 and
the standard Zig-Zag. Further details on the experiment and specification of  may be found in the
supplementary material. Additional tables are also reported in the supplementary material recording
the work normalised performance of the methods (MSE multiplied by number of gradient evaluations)
– the main findings are similar.

Table 3: Average root-mean-square error of the first and second moments of the Boltzmann machine
relaxation averaged over 20 simulations reported to 3 decimal places.

Average RMSE Thinning
Method ↵ !(� = 1) E[Xk] E[X2

k ] efficiency
Zig-Zag 1 1 1.304 2.456 0.146

Zig-Zag CT 0.700 0.632 0.515 1.718 0.187
0.500 0.417 0.493 1.563 0.219
0.300 0.231 0.417 1.890 0.251
0.200 0.145 0.296 1.089 0.267
0.100 0.076 0.594 2.643 0.284

Zig-Zag CT (IS) 0 0 0.566 3.580 0.505

5 Discussion

We present a general strategy to improve the performance of PDMP samplers on challenging targets.
The approach uses an extended distribution that uses an inverse temperature which interpolates
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between a challenging distribution of interest and a tractable base distribution. At lower values of
� the mixing will improve and we allow a pointmass at � = 1 to attain exact samples from the
distribution. As a proof of concept, a numerical study of these ideas surrounding the Zig-Zag sampler
was employed. This revealed that there are considerable benefits to the proposed extensions, as
well as to introducing the point mass at � = 1. We compared our tempering with a point-mass
extension of the Zig-Zag to a version based on continuously tempered estimates that are given
using importance sampling ideas from Graham and Storkey [2017]. The importance sampling
approach requires restrictive choice of  and gave inferior performance. Our approach may be
readily applied to other PDMP samplers and can incorporate assets of sampling with a PDMP such
as sampling transdimensional spaces and using subsampling methods. Another avenue of research
is in incorporating direct simulation from q0 when the sampler hits � = 0 — such moves would be
particularly useful when q0 is a tractable multimodal distribution.

Broader impact

Effective sampling methods are instrumental in many probabilistic modelling approaches that account
for uncertainty quantification (e.g., Bayesian Machine Learning approaches). Thus, it is important to
employ reliable methods in obtaining such estimates, especially if they are used for downstream tasks
and decisions. The methodological innovations discussed herein aim to produce more reliable results
in the context of PDMP samplers, which are a growing area of research. The proposed approaches are
more suited to sampling challenging multi-modal distributions with PDMP-based samplers. As the
methods are presented as a proof of concept, and do not feature as an implemented component within
any deployed artificial intelligence system, there are no immediate broader consequences related to
their potential failures.
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Supplementary Material: Continuously-Tempered

PDMP samplers

1 Proof of Theorem 1

The measure q(x,�)p(�)dxd� has a density on the open set Rd ⇥ [0, 1). We will sample it using the
Zig-Zag process on the extended space E0 = (Rd ⇥ [0, 1))⇥ {�1, 1}d+1. On the other hand, the
measure ��=1q(x)dx is essentially a density on Rd. We will sample it using Zig-Zag on the extended
space F = Rd ⇥ {�1, 1}d.

Following the construction of Chevallier et al. [2021, 2020], we "stitch" E0 and F together through an
active boundary. Let Bin be the "entrance" boundary at the temperature � = 1: Bin = (Rd⇥ {1})⇥
({�1, 1}d ⇥ {�1}), and let Bout be the "exit" boundary B

out = (Rd ⇥ {1})⇥ ({�1, 1}d ⇥ {1}).
The process Zt is as follows: when in E0, should it hit the boundary B

out at time t�, i.e. Zt� 2 B
out,

it jumps to F at time t: Zt 2 F . Note that the process Zt never enters Bout. When in F , the process
jumps back to the entrance boundary B

in with rate ⌘(z). The state space is:

E = E0 [B
in [ F.

More precisely, if Zt� 2 B
out, then Zt = g(Zt�) with g being the projection that removes the

temperature coordinate and velocity:
g : Bout ! F

(x, 1,v, 1) 7! (x,v).

Conversely, if the process jumps from F to B
in at time t then Zt = f(Zt�) with

f : F ! B
in

(x,v) 7! (x, 1,v,�1).

With this construction, we use Theorem 2 of Chevallier et al. [2021] and follow the proof of Theorem
3 of Chevallier et al. [2021] for our setting to show that ! will be invariant for the process if

⌘(x) =
q(x, 1)(1�)

q(x)(1)

1� ↵

2↵
=
(1�)

(1)

1� ↵

2↵
.

Intuitively, this result is obtained by choosing an ⌘ that balances the flows E0 [B
in ! F and F !

E0 [B
in. Starting from the target distribution, the amount of mass that flows through a point z =

(x, 1,v, 1) 2 B
out to (x,v) 2 F during a time interval of length dt is 1

2d+1 q(x, 1)(1�)(1� ↵)dt.
Conversely, the amount of mass that flows through a point z = (x,v) 2 F to (x, 1,v,�1) 2 E0 is
1
2d q(x)(1)↵⌘(x)dt. Hence, the previous choice of ⌘ balances the flows out.

Remark 1 (extension to other PDMP samplers) Theorem 1 can be restated for other PDMP sam-

plers. Here is an highlight of the changes that needs to be done to the proof of theorem 1 to

accomodate another PDMP sampler:

1. the velocity space is not {�1, 1}d and must be then modified accordingly

2. the projection g stays the same (remove the temperature coordinate)

3. jumping from F to B
in

has to be adjusted to the velocity set. In particular, for ZigZag there

is only one possible velocity to chose from, hence we use a deterministic function f . For

other samplers, it will most likely not be the case and the velocity must be sampled from the

velocity distribution of B
in

at point x.

Preprint. Under review.



4. the rate ⌘(x) controls the out-flow, which must be balanced with the in-flow. The in-flow

depends on the velocity component in the temperature coordinate. For ZigZag, it is always 1

(or -1), and hence does not appear in the rate ⌘(x). For other samplers, this will most likely

not be the case, and it must then be taken into account.

2 Continuously-tempered Zig-Zag rates

When sampling in E0, the Zig-Zag process has a rate for each component of x,

�xj (z) = max(0,�vj
@xj log q(x,�)) j = 1, . . . , d, (1)

and an additional rate for the inverse temperature �,

��(z) = max(0,�vd+1(@� log q(x,�) + @� log (�)).

When sampling in F , there are d rates

�xj (z) = max(0,�vj
@xj log q(x)) j = 1, . . . , d,

which correspond to those given in (1) since by definition q(x,� = 1) = q(x).

3 Simulation via thinning

The main practical challenge with simulating the Zig-Zag process, for example with Algorithm 1,
is simulating the event times. Whilst the event times depend on the state, as the state-dynamics
are deterministic until the next event, these can be re-expressed as rates that depend only on time.
To see this consider the ith event, and assume that we are at time t and the current state is zt.
Until there is the next event (which could be any of the d possible events), the state will evolve as
zt+s = (xt + svt,vt), thus the rate until the next event of type i will be

�̃i(s) = �i(zt+s) = max(0,vi
t@xiU(xt + svt)).

Simulating a Zig-Zag process thus requires simulating events of an inhomogeneous Poisson processes
of rates �̃i(t). We sample a random variable u uniformly in [0, 1] and the next event time is the time
t such that: Z t

0
�̃i(s)ds = � log(u). (2)

In practice, solving this equation analytically is only possible for a restricted class of rate �̃, such as
rates that are piecewise constant or piecewise linear functions of time. Where we can not simulate
event times directly, we can use an approach called thinning.

We find an upper rate �+i (s) such that �̃i(s)  �
+
i (s) for all s, and such that we can simulate events

at rate �+i directly. We then propose events at this larger rate, and accept each proposed event with
probability �̃i(s)/�+i (s).

The thinning method requires computing an upper bound �̄i. The computational efficiency of the
resulting algorithm for simulating the Zig-Zag process is directly related to the quality (tightness) of
the upper bound: a loose upper bound will lead to many rejections and therefore wasted simulation
effort. We note that one useful approach for constructing appropriate upper bounds in Lemma 1
below. This approach has been used many times [Bierkens et al., 2020, 2021, Bouchard-Côté et al.,
2018, Chevallier et al., 2020] to construct thinning bounds and is repeated here for completeness —
further details may be found in the derivation from Section 3.3 of Bierkens et al. [2019].

Lemma 1 Suppose there exists a matrix M = (Mij)di,j=1 2 Rd⇥d
such that for every x 2 Rd

and

element of the Hessian H(x) = (�@i@j log q(x))di,j=1, we have |H(x)i,j |  Mi,j then the following

linear bound

�i(s) = max(0,�vi
@xi log q(x+ sv))  max(0, ai + bis)

where ai = �vi
@xi log q(x) and bi =

Pd
j=1 Mij .

2



Proof: The following in-time bound holds

d

ds

⇥
�vi

@xi log q(x+ sv)
⇤
= �vi

dX

j=1

vj
@xj@xi log q(x+ sv) 

dX

j=1

Mij

from which, max
�
0,�vi

@xi log q(x+ sv)
�
 max

⇣
0,�vi

@xi log q(x) + s
Pd

j=1 Mij

⌘
. ⇤

We note also that numerical approaches to simulating the event times have been proposed Pagani
et al. [2020].

4 Thinning bounds for geometric tempering

If one can use Lemma 1 to simulate the Zig-Zag at inverse temperature � = 0 and � = 1, then
implementing thinning for the geometrically tempered target is trivial. This approach assumes
standard geometric tempering q(x,�) = q0(x)1��

q(x)� and (�) = exp(�
Pm

k=0  k�
k) where

 k 2 R are constants chosen according to Section 3.4.

Suppose we have matrices M and M
0 which bound the Hessians of the target H(x) and base H0(x)

distributions.

The rate function for the movement in the xj
coordinate will depend on

@xj log q(x,�) = �@xj log q(x) + (1� �)@xj log q0(x).

The following bound �(s)  �̄(s) applies

�̄(s) = max(0, (� + vd+1
s)(aq + bqs) + (1� (� + vd+1

s))(aq0 + bq0s))

where

aq = �vj
@xj log q(x), aq0 = �vj

@xj log q0(x)

bq =
dX

j=1

Mji bq0 =
dX

j=1

M
0
ji.

Further simplification gives,

�̄(s) = max(0, a+ bs+ cs
2) (3)

where a = �aq + (1� �)aq0 , b = vd+1(aq � aq0) + �bq + (1� �)bq0 , and c = vd+1(bq � bq0).

The rate function for the movement in the � coordinate will depend on

@� [log (�) + log q(x,�)] = �
m�1X

k=1

k k�
k�1 + log q(x)� log q0(x).

The following in-time bound holds for q and an analogous bound holds for q0

d

ds2

⇥
�vd+1 log q(x+ sv)

⇤
=

d

ds

2

4�vd+1
dX

j=1

vj
@xj log q(x+ sv)

3

5

= �vd+1
dX

i=1

vi
dX

j=1

vj
@xi@xj log q(x+ sv)


dX

i=1

dX

j=1

Mij ,

from which,
�vd+1 log q(x+ sv)  aq + bqs+ cqs

2

3



where

aq = �vd+1 log q(x), bq = �vd+1
dX

j=1

vj
@xj log q(x), cq =

1

2

dX

i=1

dX

j=1

Mij .

The rate function for the inverse temperature � may be bounded by

�̄(s) = max(0,�
m�1X

k=1

k k(� + svd+1)k�1 + aq + bqs+ cqs
2 + aq+0 + bq0s+ cq0s

2). (4)

The rates from (3) and (4) are polynomial in s, so thinning can be implemented using the approach of
Sutton and Fearnhead [2021].

5 Thinning in the Examples

In Examples 1 and 3, we use geometric tempering from an approximating multivariate-Gaussian
distribution. Thinning is implemented using the arguments from section 4 and bounds on the Hessians
for the base and target distributions.

5.1 Hessian bound for a multivariate Gaussian

One common choice for a base distribution is a d-dimensional multivariate Gaussian. Here

q(x) =
1p

(2⇡)d⌃
exp

✓
�1

2
(x� µ)>⌃�1(x� µ)

◆

where the Hessian is H(x) = (�@i@j log q(x))di,j=1 so we have the upper-bound |H(x)|  M

where Mij = |⌃�1
ij |.

5.2 Hessian bound for mixture of Gaussians

The target has un-normalised density,

q(x) =
KX

k=1

exp

✓
� 1

2�2
(x� µk)

>(x� µk)

◆
,

Following the argument in Section 4, it suffices to find a matrix that bounds the Hessian of log q(x).
Since q is the mixture of independent Gaussians it also follows that H(x)i,j = 0 for i 6= j.

Let �k(x) = exp
�
� 1

2�2 (x� µk)>(x� µk)
�

then,

@xi log q(x) =

PK
k=1 �k(x)

1
�2 (xi � µi

k)PK
k=1 �k(x)

=
1

�2

 
xi � 1

q(x)

KX

k=1

µi
k�k(x)

!

with second derivative,

@xi@xi log q(x) =
1

�2

0

@1 +
1

�2

2

4
KX

k=1

(µi
k)

2�k(x)

q(x)
�
 

KX

k=1

µi
k
�k(x)

q(x)

!2
3

5

1

A

 1

�2

✓
1 +

1

�2

1

4
(M i �m

i)2
◆

where M
i = maxk{µi

k} and m
i = mink{µi

k} and the bound follows from Popovicius inequality.
We have the bound |H(x)|  M where Mij = 0 for i 6= j and Mi,i =

1
�2

�
1 + 1

�2
1
4 (M

i �m
i)2
�

otherwise.
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5.3 Boltzmann machine relaxation

The target has un-normalised density,

q(x) =
2db

(2⇡)dr/2Zb exp(
1
2Tr(D))

exp

✓
�1

2
x>x

◆ dbY

k=1

cosh(q>
k x+ bk).

Following the argument from Section 2, it suffices to find a bound on the Hessian matrix. The first
order derivatives are

�rx log q(x) = x�
dbX

k=1

qk tanh(q
>
k x+ bk)

and the Hessian matrix is

H(x) = I �
dbX

k=1

qkq
>
k sech2(q>

k x+ bk).

As 0  sech2(t)  1 we have

H(x)  I �
dbX

k=1

min[0, qkq
>
k ] = M

+
, H(x) � �

dbX

k=1

max[0, qkq
>
k ] = M

�
.

We have the bound |H(x)|  M where M = max(|M+|, |M�|). Thinning may be implemented
using the argument from Section 4.

5.4 Transdimensional example

The transdimensional example does not use geometric tempering, but the bounds are simple to
construct. The tempering is

q(x,�) =
2Y

i=1

(w�(xi;m�,�2) + (1� w)�0(x
i)),

where � is the normal density function. For this example, we took (�) = 1.

Variables that are not stuck at the pointmass are simulated according to the slab N (µ�,�2) distribu-
tion. With gradient @xi log q(x,�) = 1

�2 (xi �m�), their event rate is

�xi(s) = max

✓
0,

vi

�2
((xi + svi)� µ(� + svd+1)

◆

which is a linear function in s that may be simulated exactly using the methods of Sutton and
Fearnhead [2021]. Following Chevallier et al. [2020] the rate to reintroduce a variable xi = 0 is
given by

w

(1� w)
�(0;m�),�2) =

w

(1� w)

1p
2⇡�2

exp

✓
�m

2

2�2
�
2

◆

which admits thinning using �̄(s) = w
(1�w)

1p
2⇡�2

. The rate for the temperature (when not stuck at
� = 1) is

�(s) = max

0

@0,
mvd+1

�2

X

i:|xi|>0

�
xi + svi �m(� + svd+1)

�
1

A ,

which is a linear function of s that may be simulated exactly using the methods of Sutton and
Fearnhead [2021].
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Table 1: Location of the means for the Gaussian mixture

µ1 2.66 5.73 2.02 9.45 6.29
µ2 3.72 9.08 8.98 6.61 0.62

6 Additional simulation details

6.1 Mixture of Gaussians

For the Mixture of Gaussians the location of the means are given below (stated to 2 decimal places).

For �2 = 0.5 the distance between most local modes is greater than 15 standard deviations with
the minimum distance being 14.85 standard deviations from it’s closest neighbour. This presents a
challenging posterior for sampling as seen in Figure 1 of the main paper. For this example the exact
first and second moment of the Gaussian mixture can be calculated exactly and is stated in Table 2
below.

Table 2: Table of exact first and second moments of the Gaussian mixture model

X1 X2

E[Xk] 5.228 5.803
E[X2

k ] 34.751 44.418

Boxplots showing the variability of estimated first and second moments of X1 show the performance
improvement given using tempering ↵ 6= 1 and using a point-mass ↵ 6= 0.

Figure 1: Recovery of the first and second moments of X1 for the Gaussian mixture model

The methods presented in Table 1 and 3 of the paper present the results when all methods are run
for the same number of event times. In practice the efficiency of the methods will also depend on
the computational efficiency of the thinning procedure and any post processing evaluations for the
Importance Sampling method. Table 3 and Table 4 below show the performance of the methods when
accounting for this additional computation cost. We define the work normalised efficiency as the
square root of the total number of gradient (or target) evaluations multiplied by the Mean Square Error.
This work includes the additional target evaluations required for the importance weights in Zig-Zag
(IS). Relative work normalised efficiency is then the ratio of this metric relative to a competitor. The
table below shows the relative work normalised efficiency for the methods comparative to the original
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Zig-Zag sampler. A relative efficiency of 2 indicates the proposed method is twice as efficient as the
standard Zig-Zag.

Table 3: Work normalised recovery of first two moments of a Gaussian mixture (averaged over 20
replications).

Work normalised relative efficiency Thinning
Method ↵ !(� = 1) E[X1] E[X2] E[X2

1 ] E[X2
2 ] efficiency

Zig-Zag 1 1 1 1 1 1 0.057
Zig-Zag CT 0.800 0.789 4.641 4.366 4.568 5.216 0.080

0.700 0.703 8.079 5.024 8.447 6.202 0.090
0.500 0.499 10.963 7.134 10.265 9.047 0.114
0.300 0.302 13.145 9.388 14.838 11.885 0.139
0.200 0.197 14.153 9.479 13.235 11.225 0.153
0.100 0.097 12.550 12.057 13.145 12.958 0.167

Zig-Zag (IS) 0 0 10.640 11.689 11.038 12.713 0.301

Table 4: Average work normalised root-mean-square error of the first and second moments of the
Boltzmann machine relaxation averaged over 20 simulations reported to 3 decimal places.

Average Work normalised RMSE Thinning
Method ↵ !(� = 1) E[Xk] E[X2

k ] efficiency
Zig-Zag 1 1 1.304 2.456 0.146

Zig-Zag CT 0.700 0.632 2.025 1.065 0.187
0.500 0.417 1.835 1.016 0.219
0.300 0.231 2.021 0.795 0.251
0.200 0.145 2.511 1.033 0.267
0.100 0.076 1.332 0.549 0.284

Zig-Zag CT (IS) 0 0 1.253 0.390 0.505

6.2 Tuning of (�) in experiments

For the tempered Zig-Zag, (�) is chosen to approximate Z(�). This quantity may be estimated
using many approaches outlined in Gelman and Meng [1998]. For our experiments, we use numerical
integration as described in Section 2.3 of Gelman and Meng [1998] further details may be found
therein. We use the trapezoidal rule to estimate

\logZ(�(k)) =
1

2

k�1X

j=1

(�(j+1) � �(j))(Ū(j) + Ū(j+1)),

where Ū(j) = E
⇥
@� log q(x,�) | � = �(j)

⇤
is estimated using Monte Carlo and the values of � are

ordered so that �(1) < �(2) < · · · < �(k)  · · · < �(n). In practice, either a finite grid of fixed values
� from 0 to 1 can be used to construct this estimate or a prior run of the Zig-Zag with an uniformed
choice (�) / 1 may be used to obtain these samples. We may then fit the regression model

[logZ(�) ⇡ log (�),

to specify the polynomial terms in (�).

In Example 1 (Gaussian mixture model), all methods were run for 50,000 events and the first 40%
was used as burnin and tuning of . In the initial, burnin sampling we specified (�) / 1 with ↵ = 0.
The tempered Zig-Zag samplers then used the events from this burnin process to construct an estimate
of [logZ(�). The samplers were then run for the remaining 30,000 event times and the estimated first
and second moments were recorded.

In Example 2 (the transdimensional example), we fix (�) = 1 because the marginal distribution for
the inverse temperature � was sufficiently close to being uniformly distributed.
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In Example 3 (Boltzmann machine relaxation), a finite grid of 15 � values equally spaced from
0.01 to 0.99 were used to form the construction of [logZ(�). The associated choice of  was used
for all continuously tempered methods. For ↵ = 0 tempering with importance sampling, we used
(�) = log ⇠1�� where ⇠ was specified using a variational Gaussian approximation to the target as
in Graham and Storkey [2017] and Nemeth et al. [2019].

6.3 Computational resources

All experiments were implemented using the code accompanying the supplementary material. The
multiple runs required for the simulation study were implemented in parallel using high performance
computational resources. This amounted to submitting job requests for each individual replicate of
the simulation studies. In each replicate the methods were given the same amount of computational
resources i.e. simulated event-times. The results of the parallel runs were collected and processed to
evaluate the performance of the methods — i.e. calculation of the average root mean square error.
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